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Abstract

In this work, we propose a hierarchical latent
dictionary approach to estimate the time-
varying mean and covariance of a process
for which we have only limited noisy sam-
ples. We fully leverage the limited sample
size and redundancy in sensor measurements
by transferring knowledge through a hierar-
chy of lower dimensional latent processes. As
a case study, we utilize Magnetoencephalog-
raphy (MEG) recordings of brain activity to
identify the word being viewed by a human
subject. Specifically, we identify the word
category for a single noisy MEG recording,
when only given limited noisy samples on
which to train.

1 Introduction

The interpretation of noisy time series data is a chal-
lenge encountered in many application domains. From
speech processing to weather forecasting, the regime of
low signal to noise ratio (SNR) hinders data analysis.
In such scenarios, replicates or repeated trials can im-
prove the ability of an algorithm to uncover the under-
lying signal. Within the problem setting, a key chal-
lenge is how to fully leverage the multiple time series
in order to optimally share knowledge between them.
The problem is compounded when the time series is of
high dimension and there are few replicates.

As a motivating example, consider Magnetoen-
cephalography (MEG) recordings of brain activity (de-
scribed further in Section 2). Due to the recording
mechanism, the SNR is extremely low and recording
many replicates of a given stimulus is a costly task. A
further obstacle is the sheer dimensionality of the time
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series, typically on the order of more than 100 sensors
recordings per time step. However, the close spatial
proximity of the sensors leads to redundancies that can
be harnessed in conjunction with the repeated trials.
This situation is common to many high-dimensional
time series domains.

Motivated by the structure of our high-dimensional
time series, we propose a Bayesian nonparametric dy-
namic latent factor model (DLFM). A DLFM assumes
that the non-idiosyncratic variations in our observa-
tions are governed by dynamics evolving in a lower
dimensional subspace. To transfer knowledge between
the multiple trials and better recover the signal from
few noisy samples, we hierarchically couple the latent
trajectories. To capture the MEG signal’s long-range
dependencies we take the latent trajectories, or dictio-
nary elements, to be Gaussian process random func-
tions. This hierarchical latent dictionary formulation
is a main contribution of this paper.

In many application domains it is insufficient to as-
sume that the correlations between the elements of the
observation vector are static. For example, the spa-
tial correlation of the MEG sensor recordings change
as the co-activation pattern of brain regions evolves in
time. In such cases, one needs a heteroscedastic model.
Within the DLFM framework, this is achieved by ex-
tending the standard model to have a time-varying
mapping from the lower dimensional subspace to the
full observation space.

Though our model is general enough to be applied in
many domains, we focus here on the task of predict-
ing the category of word a person is viewing based on
MEG recordings of their brain activity. We show a
subject a set of concrete nouns (see Table 1), and col-
lect multiple recordings of their brain activity for each
word. We then wish to predict the word based on one
low-SNR MEG recording.

Single trial MEG classification is an inherently chal-
lenging task due to large inter-trial variability and the
susceptibility of MEG sensors to interference. Still,
successful single trial analyses have been performed
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Table 1: The 20 concrete nouns used in this experiment,
sorted by category.

Animals Buildings Food Tools

bear apartment carrot chisel
cat barn celery hammer
cow church corn pliers
dog house lettuce saw
horse igloo tomato screwdriver

in the past, mostly through decompositional methods
like principal component analysis [13] or discrimina-
tive classification algorithms [6, 18]. Our work aims
to produce a generative model that characterizes the
MEG signal’s time-varying mean and covariance. A
generative model allows us to predict not only what
stimulus caused a specific MEG recording, but also
what MEG signal (and thus what neuronal activation)
would be observed in response to a given stimulus.
The approach we develop in this paper is generic, but
shows significant promise – it forms the foundation
for more intricate future generative models that incor-
porate other characteristics of the MEG signal (e.g.,
frequency and phase, lagged correlation, sensor drift),
more elaborate representations of the stimulus, and as-
sumptions about the cognitive subprocesses that give
rise to observed brain activity.

2 The Magnetoencephalography Data

When neurons in the brain fire in a coordinated fash-
ion, a weak magnetic field can be detected outside of
the skull. The MEG gradiometer measures the spa-
tial gradient of this magnetic activity (i.e. the change
in magnetic field strength in space) measured in Tes-
las per meter (T/m) [15]. Gradiometers are arranged
within a helmet, at 102 locations around the head (Fig-
ure 5 illustrates the layout) 1. As mentioned, the MEG
signal is incredibly noisy, as is apparent in Figure 4.
To increase the signal to noise ratio (SNR), researchers
typically collect multiple trials (samples) of subjects
performing a task (e.g. reading a word), and ana-
lyze the sample mean MEG signal over trials. While
the maximum likelihood estimate (MLE) may perform
well in scenarios with large amounts of data, time and
subject fatigue constrains the number of trials that
can be obtained. Thus, we seek a model that can ef-
ficiently learn the subtle signal from a few very noisy
replicates.

MEG sensors produce redundant recordings of under-
lying cognitive processes; adjacent sensors are often

1Our MEG machine has three sensors at each helmet
position: two gradiometers and one magnetometer. To
reduce the dimensionality of the problem we consider only
one gradiometer per helmet location.

highly correlated. For this reason techniques often
seek to explain the data with a small number of latent
sources (e.g. Equivalent Current Dipole (ECD) meth-
ods [14]). Recently, Bayesian approaches to source lo-
calization have been developed [16, 26, 30]. The suc-
cess of such methods indicates that there is an accu-
rate lower dimensional representation for the brain ac-
tivity captured by MEG. The model described herein
learns a lower dimensional representation of the ob-
served MEG activity, but focuses on the accuracy of
fit rather than the localization of the latent sources.

3 Background

We provide a brief review of some key elements of our
generative model outlined in Section 4: Gaussian pro-
cesses and dynamic latent factor models.

Gaussian Processes A Gaussian process provides a
distribution over real-valued functions f : T→ R, with
the property that the function evaluated at any finite
collection of points is jointly Gaussian. The Gaus-
sian process, denoted GP(m, c), is uniquely defined
by its mean function m and kernel function c. So,
f ∼ GP(m, c) if and only if

p(f(t1), . . . , f(tn)) ∼ Nn(µ,K), (1)

with µ = [m(t1), . . . ,m(tn)] and K the n×n Gram ma-
trix with entries Kij = c(ti, tj). The properties (e.g.,
continuity, smoothness, periodicity, etc.) of functions
drawn from a given Gaussian process are determined
by the kernel function. One example kernel leading to
smooth functions is the squared exponential kernel:

c(t, t′) = d exp(−κ||t− t′||22), (2)

where d is a scale hyperparameter and κ the bandwidth,
which determine the extent of the correlation in f over
T. See [21] for further details.

Factor Analysis A latent factor model assumes
that the non-idiosyncratic variations in the observa-
tions are determined by a smaller collection of latent
variables. Specifically,

yi = Ληi + εi, ηi ∼ Nk(0, I), εi ∼ Np(0,Σ0), (3)

where yi is a p-dimensional observation, ηi is a k-
dimensional latent factor with k << p, Λ is the factor
loadings matrix, and εi is idiosyncratic Gaussian noise
with Σ0 = diag(σ2

1 , . . . , σ
2
p). Marginally, yi ∼ Np(0,Σ)

with Σ = ΛΛ′ + Σ0. That is, the p × p-dimensional
covariance matrix which, in general, has p(p + 1)/2
unique elements is assumed to have a decomposition
in terms of a low rank component plus a diagonal ma-
trix resulting in p(k + 1) unique elements. For large
p domains, this approach represents a substantial re-
duction in parameters. Inferring the dimension of a
latent space has been explored in many works includ-
ing [2, 4, 17].
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Dynamic Latent Factor Models The latent fac-
tor model of Equation (3) assumes that the latent fac-
tors are independent. Latent representations have also
been explored in the time-series domain by assuming
a latent factor process. Such dynamic latent factor
models have a rich history. Typically, the dynamics
of the latent factors are assumed to follow a simple
Markov evolution with a time-invariant parameteriza-
tion [19, 28]:

ηt = Γηt−1 + νt, νt ∼ Nk(0, I)
yt = Ληt + εt, εt ∼ Np(0,Σ0).

(4)

Assuming a stationary process on ηt, the resulting
model leads to yt ∼ Np(0,Σ) with Σ = ΛΣηΛ′ + Σ0.
Here, Ση denotes the marginal covariance of ηt.

4 Hierarchical Latent Dictionary
Learning

To cope with the high-dimensionality of the MEG
time series, one might propose to use the dynamic
latent factor model (DLFM) of Equation (4). How-
ever, such a model assumes Markov dynamics. Fur-
thermore, the time-invariant parameterization leads to
a homoscedastic model (i.e., the covariance does not
evolve in time.) As we will see, these assumptions
are insufficient to capture the key long-range depen-
dencies and heteroscedasticity inherent in MEG data.
Furthermore, we wish to develop a model that can
share information between the noisy single trials. In
this section, we develop a DLFM in which the latent
dynamics evolve nonparametrically and the latent tra-
jectories, or latent dictionary elements, are hierarchi-
cally coupled. Furthermore, we allow for time-varying
factor loadings, leading to a heteroscedastic model.

The model outlined herein, and depicted in Figure 1,2
and 3, is generic to a variety of signal types and predic-
tor spaces (e.g., weather patterns evolving spatially),
but for ease of exposition we will restrict our descrip-
tion to the MEG application of interest. As such, we
take the predictor space to be time and the collection
of signals to be single trials of MEG responses to some
single word stimulus w ∈ W. Assume we use p MEG
sensors. We use τ to denote continuous time, and t
is the discrete time index. All variables, and their di-
mensions, appear in Table 3 of the Appendix.

Observation Model We take each MEG signal to
be Gaussian distributed with time-varying mean and
covariance. The mean is assumed to be trial-specific
whereas the covariance is taken to be shared between
trials of a given word stimulus. Let y(i,w)

t ∈ Rp be
a p-dimensional MEG response at time τt for the ith
single trial of word stimulus w. Conditioned on the
trial-specific mean process µ(i,w)(·) and word-specific
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Figure 1: A graphical representation of the model out-
lined in Section 4 for one word w, and its trials i = 1 . . . Jw.
The mean of the child latent process ψ(i,w) (light green)

is given by the parent latent process ψ(0,w) (dark green).

The latent factors η
(i,w)
t are centered about ψ(i,w). The

marginal mean of y(i,w) is governed by Θw, ξw and ψ(i,w)

while the covariance of y(i,w) is governed by Θw, ξw and
Σw0 as in Equation 10.

covariance process Σ(w)(·), our model specifies

y
(i,w)
t ∼ Np(µ(i,w)(τt),Σ(w)(τt)), (5)

independently for each word w, trial i and time t.

Classical approaches focus on modeling the time-
varying mean µ(τ), which captures changes in levels
of MEG signal magnitude. Typically, a homoscedas-
tic approach is taken in which the covariance Σ(w) is
static. However, as we show in Section 7, capturing
the time-varying correlations amongst the sensors is
key. As such, we develop a heteroscedastic approach
with time-varying covariance Σ(w)(τ). Additionally,
allowing for a time-varying covariance matrix provides
insight into the changing coordination of neuronal ac-
tivity between brain areas, an idea of dynamic func-
tional connectivity fundamentally different from those
explored via network analyses [5]. Our dictionary ap-
proach, outlined below, also has the ability to auto-
matically infer the frequency of latent components, a
characteristic of MEG data currently of great inter-
est [8].

Our specific choice of trial-specific mean, but shared
covariance is justified experimentally by the fact that
the trial-to-trial variation of the raw activity is signif-
icant (see Figure 4) while the co-activation of brain
regions is fairly similar. In many application domains,
such an assumption is reasonable and dramatically re-
duces the parameterization of the model.

Building a Hierarchy To fully leverage the signal
in each single trial, we construct a word-specific hierar-
chical latent model (See Figure 1). Specifically, we hi-
erarchically couple the trial-specific means for a given
word stimulus w. One could take each of the p com-
ponents of µ(i,w)(·) to be a draw from a Gaussian pro-
cess centered about a word-specific global mean pro-
cess µ(0,w)(·) [1]. However, this approach does not har-
ness the inherent redundancy in our high-dimensional
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ψ (1,w) (⋅)

ψ (Jw ,w) (⋅)

ψ (0,w) (⋅)



Figure 2: The hierarchy of latent processes. Each child
ψ(i,w) is centered around the parent ψ(0,w), allowing shar-
ing of information. See Equation 8.

observation vector (e.g., spatially co-located sensors
measure similar neuronal activity). Instead, our goal
is to discover a latent dictionary of Gaussian processes.

To cope with the high-dimensionality of the data, and
as motivated by our MEG application, we consider a
semi-parametric DLFM. Recall from Section 3 that a
DLFM assumes that the non-idiosyncratic variations
in our observations are governed by dynamics evolv-
ing in a lower dimensional subspace. To model long-
range dependencies, we assume that the latent fac-
tors η(i,w)

t ∈ Rk evolve nonparametrically, while het-
eroscedasticity is captured via a time-evolving factor
loadings matrix Λ(w)(τt) ∈ Rp×k. Specifically, taking
k << p, we propose

η
(i,w)
t = ψ(i,w)(τt) + ν

(i,w)
t , ν

(i,w)
t ∼ Nk(0, Ik)

y
(i,w)
t = Λ(w)(τt)η

(i,w)
t + ε

(i,w)
t , ε

(i,w)
t ∼ Np(0,Σ(w)

0 ).
(6)

Here, the factor loadings Λ(w)(τt) (and thus the in-
duced covariance) are shared between trials of a given
word w. Figure 3 illustrates the (time-varying) pro-
jection of the noisy latent functions up to the observa-
tion space. As in Section 3, the idiosyncratic noise co-
variance is diagonal and, furthermore, time-invariant:
Σ(w)

0 = diag(σ2
w,1, σ

2
w,2, . . . σ

2
w,p).

The evolution of the latent factors η(i,w)
t is governed

by a collection of k latent dictionary functions, each of
which is a random function:

ψ(i,w)(τ) = [ψ(i,w)
1 (τ), ..., ψ(i,w)

k (τ)] (7)

To capture a smoothly evolving latent factor mean
with correlations over potentially distant time points,
we take the ψ(i,w)

j (·) to be Gaussian process random
functions with squared exponential correlation func-
tions. To share structure between the single trials
within this latent space, we hierarchically couple the
trial-specific latent dictionary functions as

ψ
(0,w)
j (·) ∼ GP(0, c0) ψ

(i,w)
j (·) ∼ GP(ψ(0,w)

j (·), c1),
(8)

yt
(i,w) = Λ(τ t )ηt

(i,w) +εt

Λ(τ1)Λ(τ n )

ηt
(i,w) =ψ (i,w) (τ t )+ν t

(i,w)

Λ(τ j )
Figure 3: The latent model for one trial i of word w. In-
dependent noise is added to the child latent process ψ(i,w)

(see Figure 2) to produce η
(i,w)
t (green circles). Then,

η
(i,w)
t is projected to the full dimensional space via the

time-varying Λ(τ) (grey). The observed data (y
(i,w)
t , pur-

ple circles) is that projection plus sensor-specific noise (ε).

with ci(ξ, ξ′) = di exp(−κ||ξ − ξ′||22) for i = 0, 1. The
choice of d0 and d1 controls the amount of prior varia-
tion of the global functions from 0 and the trial-specific
functions from the global functions, respectively. Con-
ceptually, the child processes ψ(i,w)

j are centered about

the parent process ψ(0,w)
j (See Figure 2). During model

fitting, the child processes share information through
the parent process.

We would also like to have the factor loadings Λ(w)(τ)
vary smoothly with time in order to capture the key
changes in correlation amongst the p MEG sensors.
However, treating the elements of Λ(w)(τ) in a sim-
ilar fashion to those of ψ(i,w)(τ) requires defining
p × k latent Gaussian random functions. For large
p, this is methodologically and computationally im-
practical. To reduce the dimension further, we employ
the Bayesian nonparametric heteroscedastic regression
of [7] in which Λ(w)(·) is modeled as a weighted combi-
nation of a much smaller set of L×k latent covariance
dictionary functions ξ(w)

lk (·). Specifically we model

Λ(w)(τ) = Θ(w)ξ(w)(τ) (9)

with ξ(w)
`k (·) ∼ GP(0, c0) and Θ(w) ∈ Rp×L distributed

according to the shrinkage prior of [2]. Specifically, a
conditionally Gaussian prior is induced on Θ that flexi-
bly shrinks the elements Θ(w)

j` toward zero increasingly
as ` grows, as controlled by a set of latent precision
parameters (see Appendix). Since the `th column of
Θ(w) weights the `th row of covariance dictionary func-
tions in ξ(w), our choice of shrinkage prior discounts
the importance of the Gaussian process random func-
tions with higher row index.

Finally, we employ the usual conditionally conjugate
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inverse gamma prior on the diagonal elements of Σ(0)
0 :

σ−2
j,w ∼ Ga(aσ, bσ), independently for each j = 1, . . . , p.

Marginalizing the idiosyncratic noise terms ν(i,w)
t and

ε
(i,w)
t induces the following mean and covariance struc-

ture of the observed signal y(i,w)
t :

µ(i,w)(τt) = Θ(w)ξ(w)(τt)ψ(i,w)(τt)

Σ(w)(τt) = Θ(w)ξ(w)(τt)ξ(w)(τt)′Θ(w)′ + Σ(w)
0 .

(10)

As the decomposition in Equation (10) is not unique,
we learn an over-complete dictionary in which there
are infinitely many ways to characterize the mean and
covariance functions. For inference tasks based on the
induced mean and covariance processes, as examined
in Section 7, identifiability of a unique decomposition
is not necessary. Avoiding identifiability constraints
leads to computational and modeling advantages [11].
Although our semi-parametric DLFM captures non-
Markovian dynamics and heteroscedasticity, the Gaus-
sian process formulation comes at a computational
cost relative to the traditional DLFMs of Section 3.

5 Related Work

Our hierarchical latent dictionary model takes inspira-
tion from a wide body of work. Our model is similar
to the Bayesian nonparametric heteroscedastic regres-
sion model of [7], but incorporates the idea of a la-
tent hierarchy of Gaussian processes, the children of
which need not be centered around 0. This hierarchy
is central to our framework, and key in sharing in-
formation between single trials. A (non-hierarchical)
Gaussian process latent factor model was considered
in [25], but within a homoscedastic framework with-
out a time-varying factor loading matrix. In [12] a
hierarchy of Gaussian process parameters is utilized,
but the Gaussian processes do not operate in a lower
dimensional latent space.

Employing Gaussian processes for heteroscedastic
modeling was also proposed in [9, 29], though based
on an alternative covariance decomposition. We ap-
peal to the framework of [7] because of the ready in-
terpretation in terms of latent factor models.

6 Posterior Computations

Due to the form of our model, posterior computation
can rely on a Gibbs sampler, which alternately sam-
ples parameters in blocks from standard distributions
and is implemented in parallel for the different word-
specific models. Sampling steps are fully detailed in
the Appendix. The steps are similar to [7]; here we
focus on the sampling of latent dictionary elements.
Note that the sampler is run independently for each
word w. We assume Jw single trials of word w, each of
length n. The derivations of the conditional posteriors

harness the fact the observation model of Equation (6)
can be rewritten as

y
(i,w)
t,j =

k∑
m=1

η
(i,w)
t,m

L∑
`=1

Θ(w)
j` ξ

(w)
`m (τt) + ε

(i,w)
t,j (11)

Block-Sample {ψ(i,w), ν
(i,w)
1:n }: For each single

trial i, we sample each child process ψ(i,w) from its
conditional posterior marginalizing ν(i,w)

t and cycling
through each latent dictionary function ψ

(i,w)
` . We

then treat ν(i,w)
1:n as auxiliary variables that are im-

puted conditioned on ψ(i,w). From Equation (6), we
have that marginally

y
(i,w)
t = Λ(w)(τt)ψ(i,w)(τt) + ω

(i,w)
t

ω
(i,w)
t ∼ Np(0,Σ(w)(τt))

Λ(w)(τt) = Θ(w)ξ(w)(τt) (12)

and Σ(w) as in Equation (10). Recall that ψ(i,w)(·) ∼
GP(ψ(0,w)(·), c1), so we could sample the parent pro-
cess ψ(0,w) and condition on that value when sampling
child processes ψ(i,w). However, the parent process
ψ(0,w) can be analytically marginalized and we can
instead use the predictive distribution of ψ(i,w)

` (τ1:n)
given {ψ(j,w)

` (τ1:n), j 6= i} (the dictionary function
evaluated at τ1, . . . , τn). Standard Gaussian results
imply that the conditional posterior of ψ(i,w)

` (τ1:n) is

ψ
(i,w)
` (τ1:n) | y(i,w)

1:n , ψ
(i,w)
\` (τ1:n), ψ(0,w)(τ1:n),Ω(w) ∼

Nn

Σ̃(w)
ψ


[Λ(w)(τ1)]′·`Σ

−(w)(τ1)ỹ(i,w)
1 + µ̃1

...
[Λ(w)(τn)]′·`Σ

−(w)(τn)ỹ(i,w)
n + µ̃n

 , Σ̃(w)
ψ


where Ω(w) denotes {Θ(w), ξ(w),Σ(w)

0 } and

Σ̃−(w)
ψ = K̃−1+

diag
(

[Λ(w)(τ1)]′·`Σ
−(w)(τ1)[Λ(w)(τ1)]·`, . . .

[Λ(w)(τn)]′·`Σ
−(w)(τn)[Λ(w)(τn)]·`

)
. (13)

Here, µ̃ and K̃ are the mean and covariance
of the predictive distribution of ψ

(i,w)
` (τ1:n) given

{ψ(j,w)
` (τ1:n), j 6= i} marginalizing ψ

(0,w)
` (τ1:n),

ỹ
(i,w)
t = y

(i,w)
t −

∑
(r 6=`)[Λ

(w)(τt)]·rψ
(i,w)
r (τt), and ψ(i,w)

\`

is the set of latent dictionary functions ψ(i,w)
j for j 6= `.

In the Appendix we provide an alternative deriva-
tion without marginalizing the parent processes ψ(0,w),
which allows for parallelization across single trials.
Such parallel sampling is advantageous when there are
many single trials.
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Figure 4: Examples of the estimated mean calculated us-
ing MLE (blue) and our hierarchical model (µ(0,w), red)
with the corresponding raw signal (green) for Subject 1,
two MEG sensors and 10 trials of the word hammer. Note
the extreme noise of the raw MEG signal and the smooth-
ness of µ(0,w) compared to µMLE .

Conditioned on ψ(i,w), we independently impute ν(i,w)
t

for each t. Such parallel sampling is advantageous
when there are many single trials, and allows for block
moves. Consider ỹ(i,w)

t = y
(i,w)
t − Λ(w)(τt)ψ(i,w)(τt) =

Λ(w)(τt)ν
(i,w)
t + ε

(i,w)
t . Then, straightforwardly,

ν
(i,w)
t | y(i,w)

t , ψ(i,w)(τt),Θ(w), ξ(w)(τt),Σ
(w)
0 ∼

Nk

(
Φ(w)Λ(w)′(τt)Σ

−(w)
0 ỹ

(i,w)
t ,Φ(w)

)
. (14)

Where Φ(w) =
(
I + Λ(w)′(τt)Σ

−(w)
0 Λ(w)(τt)

)−1

. Sub-
sequent steps proceed as in [7] (see Appendix).

7 MEG Word Category Classification

Recall the goal outlined in Section 1: we wish to iden-
tify the word a subject is viewing based on a single
noisy MEG recording. Our MEG data was recorded
while two subjects viewed 20 stimuli describing con-
crete nouns (both the written noun and a representa-
tive line drawing), with 20 interleaved trials per word.
These concrete nouns fall into four categories: ani-
mals, buildings, food and tools (see Table 1). In terms
of the model outlined in Section 4, trial i of word w

for time points t = 1 : n is denoted y(i,w)
1:n , and y(i,w)

t is
a p = 102 dimensional vector.

Our dataset consists of MEG single trials recorded
from two subjects. Independently for each subject we
trained one hierarchical latent model per word, using
15 trials as training data, and 5 trials per word for
testing. This resulted in 5 subject-specific models per
word category (20 word models per subject) and 100
test instances per subject. We ran the sampler for
3000 iterations. To evaluate performance we use sam-
ples thinned to 100 from iterations 2500 : 3000. A

full list of settings appears in the Appendix. While
the word models were trained on the full 1.7 seconds
of MEG signal, we use only the 1 second after word
stimulus to score models. The resulting parent mean
µ(0,w)(τ) = Θ(w)ξ(w)(τ)ψ(0,w)(τ) is shown in Figure
4, along with the corresponding noisy MEG signal.
Note the extreme noise of the raw MEG data and the
smoothness of µ(0,w)(τ) due to its GP formulation.

To assess convergence of the sampler, we performed
the modified Gelman-Rubin diagnostic [3] on the
MCMC samples of the mean and variance terms for
four sensors at five time points for one word model.
We chose one sensor per brain lobe, with equal dis-
tribution between hemispheres and five equally spaced
time points between 151 ms and 551 ms following stim-
ulus onset. These sensors and time points were also
used to create Figures 4 and 5. We then calculated
the potential scale reduction factor (PSRF) [10] for
these 20 sensor/time points combinations across three
chains. The 20 mean variables had no PSRF above 1.2
(maximum PSRF = 1.04). In two cases the variance
had PSRF above 1.2. However, the maximum PSRF
for the variance was only 1.26. This analysis indicates
convergence of the sampler. Anecdotally, we found the
mean converges very quickly (within 500 iterations),
but fitting the covariance requires more iterations.

Figure 5(a) shows a representation of the posterior
mean correlation at two time points as computed from
samples of Σ(w)(τt). One of the advantages of our het-
eroscedastic approach is that it allows us to explore
the evolution of brain activity over time. Movies of
the posterior mean correlation can be found in the
supplementary material. In the movies, and in Fig-
ure 5, there is a striking spatial smoothness to the
correlation. This smoothness emerges even though our
model imposes no spatial smoothness constraint, nor
has any information about the spatial arrangement of
the sensors. The left and right columns of Figure 5(a)
and Figure 5(b) show the correlations for the word
hammer and house, respectively. The top and bottom
rows depict correlation for sensors covering the occip-
ital lobe and parietal lobes of the brain, respectively.
At 150 ms it is expected that there will be few differ-
ences between words, as the mind has not processed
the meaning of the word. By 500 ms it is generally
accepted [15] that the brain has begun to process the
meaning of the word, and so we would expect the corre-
lation patterns to differ between words. Both of these
patterns of activation can be confirmed in Figure 5.

7.1 Evaluation Metrics

After models are learned for each of the 20 words, we
can classify a single trial as belonging to a particular
word category by choosing the category of the word
model with the maximal score. We explored different
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(a) Correlation at time = 151 ms
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(b) Correlation at time = 501 ms

Figure 5: Posterior mean correlations computed from samples of Σ(w)(τ) for Subject 1 and words hammer and house
between a selected sensor (star) and all other sensors, shown as positioned in the MEG helmet viewed from above. The
black triangle indicates the position of the subject’s nose. The left and right columns of (a) and (b) show the correlations
for the word hammer and house, respectively. The top and bottom rows are for sensors located near the frontal and
parietal lobes, respectively. At 151 ms the mind has not processed the word’s meaning, and there are few differences
between brain activation patterns for different words. By 500 ms the brain is processing the meaning of the word, and
the correlation patterns differ.

Table 2: Accuracy for classifying single MEG trials into one of four word categories. Our method appears in the

shaded row. ph indicates the hierarchical Monte Carlo integration of Equation (16), ll is log likelihood, Σ̂(w) is the static

covariance matrix, Σ̂
(w)
t is the kernel estimate of time-varying covariance and µ

(w)
MLE is the MLE estimate of the mean for

word w. SVM is a linear support vector machine. (Binomial confidence intervals: * p=0.05, ** p=0.01)

Classification Rule µ Σ Accuracy, Subj 1 Accuracy, Subj 2

Chance - - 0.25 0.25
argmax

w
{ll(y(∗)

1:n|µ
(w)
MLE , Σ̂

(w))} µ
(w)
MLE Σ̂(w) 0.27 0.20

argmax
w
{ll(y(∗)

1:n|µ
(w)
MLE , Σ̂

(w)
t )} µ

(w)
MLE Σ̂(w)

t 0.33* 0.27

SVM 0.35* 0.32
argmax

w
{ph(y(∗)

1:n|{y
(w)
train})} µ∗ ∼ N(µ(0,w),K) Σ(w)(τ) 0.39** 0.34*

scoring methods depending on the comparison being
made.

Predictive Likelihood For our Bayesian hierarchi-
cal model of Section 4, we compute the predictive like-
lihood of each single trial as follows. Let y(∗)

1:n denote
the data associated with the single trial we wish to
classify. For each word w, we wish to compute

p(y(∗)
1:n | {y

(i,w)
1:n }

Jw
i=1) =∫ (∫

p(y(∗)
1:n | Ω(w), ψ∗)p(ψ∗ | ψ(0,w))dψ∗

)
p(Ω(w), ψ(0,w) | {y(i,w)

1:n }
Jw
i=1)dΩ, (15)

where Ω(w) denotes {Θ(w), ξ(w),Σ(w)
0 }. Though the

integral over ψ∗ has a closed form, its computa-
tion involves an unwieldy matrix of size (np)2. For

this reason, we perform Monte Carlo integration by
drawing Gaussian process samples ψ

∗(i,w)
m (τ1:n) ∼

Nn(ψ(0,w)
m ,K) where ψ

(0,w)
m is a MCMC sample of

ψ(0,w). We then compute the likelihood of y(∗)
1:n given

the sampled ψ∗(i,w)
m . The integral over Ω(w) is approx-

imated by samples from our Gibbs sampler (see Sec-
tion 6.) Thus, the predictive likelihood of the single
trial data under word w is approximated as

p(y(∗)
1:n | {y

(i,w)
1:n }

Jw
i=1) ≈

1
300 ·M

M∑
m=1

(
300∑
n=1

p(y(∗)
1:n|Ω(w)

m , ψ∗(i,m))

)
, (16)

where M is the number of Gibbs samples considered,
Ω(w)
m is the mth Gibbs sample of {Θ(w), ξ(w),Σ(w)

0 },
and 300 is the number of new Gaussian process sam-
ples we draw.
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Log Likelihood Under MLE As a comparison
to our Bayesian model-based approach, we classified
single MEG trials based on non-latent-factor Gaus-
sian formulations with maximum likelihood estimates
(MLE) of the associated parameters. For each of the
MLE-based models, we calculate the mean (µMLE) by
averaging the training trials per word. An example of
µMLE can be seen in Figure 4, alongside the estima-
tion from our model and the noisy MEG signal. We
estimate sample covariance matrices in two ways: (i)
using all trials and time points to compute one static
covariance matrix (Σ̂(w)), and (ii) with a kernel esti-
mation method. The kernel estimation of the time-
varying covariance (Σ̂(w)

t ) was obtained by computing
the covariance within a sliding window of size 40 ms.
To both matrices a small diagonal component (10−3Ip)
was added to ensure positive definiteness. For each of
these MLE-based comparisons, we compute the likeli-
hood of the test single trial assuming a Gaussian with
the specified MLE mean and covariance.

7.2 Word Category Classification
Performance

To ascertain which characteristics of the signal are
most important for classification performance, we eval-
uated the mean and covariance components in turn.
The results are summarized in Table 2. There is a
clear trend with both subjects: the MLE of the mean
(µ(w)
MLE) with a static covariance (Σ̂(w)) was not pow-

erful enough to represent the MEG activity, and does
not yield statistically significant performance for either
subject. Introducing a time-varying covariance matrix
( Σ̂(w)

t ) improves performance, giving statistically sig-
nificant results for Subject 1, but not Subject 2. Note
that it is exceedingly difficult to estimate covariance in
high dimensions with little data, a hindrance overcome
with our Bayesian latent factor approach.

Our method of fitting an instantaneous mean and co-
variance outperforms all models, and performs signif-
icantly above chance, p = 0.01 for Subject 1, and
p = 0.05 for Subject 2. Our method is the only one to
perform above chance for Subject 2.

Discriminative methods often produce very powerful
and accurate classifiers, but they lack interpretability
and extendibility. Still, for comparison, we include
here the performance of a one-vs-all SVM (ties broken
by distance to the hyperplane). We used a linear, RBF
and third order polynomial kernel and found that the
linear kernel performed best. The SVM performance
is below that of our generative approach, and not sta-
tistically significant for Subject 2. Moreover, taking a
generative approach rather than a discriminative one
allows for extensions upon which we elaborate in Sec-
tion 8.

8 Discussion

In this paper we introduced a method that identifies
the signal amongst the noise in MEG recordings of
brain activity. Our model outperforms discriminative
methods and affords many opportunity for extensions.
For example, a natural extension to our hierarchical
model adds a layer to the hierarchy, building a parent
model for each word category. In this way we can har-
ness the signal in many more trials when approximat-
ing the average response to a particular word category.
A similar technique could be used to fit a subject-
specific response template, while hierarchically sharing
information from many trials across many subjects.

Though not explored here, our method also allows for
the prediction and interpolation of missing data, an-
other challenge often encountered when working with
sensor-derived data. Indeed, during MEG recording
sessions, single sensors may become uncalibrated or
artifacts introduced by eye blinks may temporarily ob-
scure the signal. Our latent factor approach can cope
with such lost data without relying on imputing the
missing values.

Furthermore, our generative model supports sampling
from the learned distribution, which allows us to ex-
plore changes in brain activity in relation to stimuli.
In future work, we plan to explore brain activity fluc-
tuations in response to the semantic components of a
word, as in [20]. A generative model based on word
semantics will allow us to model the mental processes
used to represent concepts, which could lead to a bet-
ter understanding of the human brain.
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Table 3: The variables of the model described in this pa-
per, and their dimensions. In the context of the MEG data,
p is the number of sensors, n is the number of time sam-
ples. L and k are parameters of the model that determine
the number of latent factors.

Variable name Dimension

y
(i,w)
t p× 1

µ(i,w)(τt) p× 1

Σ(w)(τt) p× p

Σ
(w)
0 p× p

η
(i,w)
t k × 1

ψ(i,w)(τt) k × 1

ψ(0,w)(τt) k × 1

ν
(i,w)
t k × 1

ε
(i,w)
t p× 1

Λ(w)(τt) p× k

ξ(w)(τt) L× k

Θ(w) p× L

ω
(i,w)
t p× 1

Σ̃ξ n× n

Σ̃
(w)
ψ n× n

A Model Details

Here we cover in greater detail the sampling methodol-
ogy used to estimate the time-varying mean and covari-

ance of the MEG signal y
(i,w)
t . Code is available at http:

//www.cs.cmu.edu/~afyshe/papers/aistats2012/. For
reference, the variables appear in Table 3, along with their
dimensions. Recall our latent factor model:

η
(i,w)
t = ψ(i,w)(τt) + ν

(i,w)
t , ν

(i,w)
t ∼ Nk(0, Ik)

y
(i,w)
t = Λ(w)(τt)η

(i,w)
t + ε

(i,w)
t , ε

(i,w)
t ∼ Np(0,Σ(w)

0 ).
(17)

With this formulation, we can marginalize out the idiosyn-

cratic noise terms ν
(i,w)
t and ε

(i,w)
t to induce the following

mean and covariance structure:

µ(i,w)(τt) = Θ(w)ξ(w)(τt)ψ
(i,w)(τt)

Σ(w)(τt) = Θ(w)ξ(w)(τt)ξ
(w)(τt)

′Θ(w)′ + Σ
(w)
0 .

(18)

A.1 Prior selection

To ameliorate the burden of setting L (the number of la-
tent dictionary functions), we seek a prior on Θ that favors
many values of Θ being close to zero. Then we may choose
L larger than the expected number of dictionary functions
(also controlled by the latent factor dimension k). As pro-

posed in [2], we use the following shrinkage prior:

Θj` | φj`, ζ` ∼ N (0, φ−1
j` ζ
−1
` ) φj` ∼ Ga(3/2, 3/2)

δ1 ∼ Ga(a1, 1), δh ∼ Ga(a2, 1), h ≥ 2, ζ` =
Ỳ
h=1

δh.

(19)

Choosing a2 > 1 implies that δh is greater than 1 in ex-
pectation so that ζ` tends stochastically towards infinity as
` goes to infinity, thus shrinking the elements Θj` toward
zero increasingly as ` grows. The φj` precision parameters
allow for flexibility in how the elements of Θ are shrunk
towards zero by incorporating local shrinkage specific to
each element of Θ, while ζ` provides a global column-wise
shrinkage factor.

We specify the prior on Σ0 via the usual inverse gamma

priors on the diagonal elements of Σ
(W )
0 . That is,

σ−2
w,j ∼ Ga(aσ, bσ) (20)

independently for each j = 1, . . . , p.

A.2 Sampling

Now we cover the sampling procedure in its entirety. Recall
that the sampler is run independently for each set of Jw
single trials for word w, and each single trial has length
n. The derivations of the conditional posteriors harness
the fact the observation model of Equation (17) can be
rewritten as

y
(i,w)
t,j =

kX
m=1

η
(i,w)
t,m

LX
`=1

Θ
(w)
j` ξ

(w)
`m (τt) + ε

(i,w)
t,j . (21)

Again, we use Kj to denote the Gram matrix with elements
cj(t, t

′) for j = 0, 1.

Step 1: Block-Sample {ψ(i,w), ν
(i,w)
1:n } For each sin-

gle trial i, we sample ψ(i,w) from its conditional poste-

rior marginalizing ν
(i,w)
t and cycling through each latent

dictionary function ψ
(i,w)
` . We then treat ν

(i,w)
1:n as aux-

iliary variables that are imputed conditioned on ψ(i,w).

From Equation (17), we have that marginally y
(i,w)
t =

Λ(w)(τt)ψ
(i,w)(τt) + ω

(i,w)
t with ω

(i,w)
t ∼ Np(0,Σ

(w)(τt)),

Λ(w)(τt) = Θ(w)ξ(w)(τt), and Σ(w)(τt) as in Equation (18).
Standard Gaussian results imply that the conditional pos-

terior of ψ
(i,w)
` (τ1:n) (i.e., the dictionary function evaluated

at (τ1, . . . , τn) is

ψ
(i,w)
` (τ1:n) | y(i,w)

t , ψ
(i,w)

\` (τ1:n), ψ(0,w)(τ1:n),Ω(w) ∼

Nn

0BBB@Σ̃
(w)
ψ

26664
[Λ(w)(τ1)]′·`Σ

−(w)(τ1)ỹ
(i,w)
1 + ψ(0,w)(τ1)

...

[Λ(w)(τn)]′·`Σ
−(w)(τn)ỹ

(i,w)
n + ψ(0,w)(τn)

37775 , Σ̃(w)
ψ

1CCCA ,

(22)

where we use Ω(w) to denote {Θ(w), ξ(w),Σ
(w)
0 } and

Σ̃
−(w)
ψ = K−1

1 +

diag
“

[Λ(w)(τ1)]′·`Σ
−(w)(τ1)[Λ(w)(τ1)]·`, . . .

[Λ(w)(τn)]′·`Σ
−(w)(τn)[Λ(w)(τn)]·`

”
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ỹ
(i,w)
t = y

(i,w)
t −

P
(r 6=`)[Λ

(w)(τt)]·rψ
(i,w)
r (τt), and ψ

(i,w)

\` is

the set of latent dictionary functions ψ
(i,w)
j for j 6= `.

Conditioned on ψ(i,w), we independently impute ν
(i,w)
t for

each t. Consider

ỹ
(i,w)
t = y

(i,w)
t − Λ(w)(τt)ψ

(i,w)(τt)

= Λ(w)(τt)ν
(i,w)
t + ε

(i,w)
t (23)

Then, straightforwardly,

ν
(i,w)
t | y(i,w)

t , ψ(i,w)(τt),Θ
(w), ξ(w)(τt),Σ

(w)
0 ∼

Nk
“

Φ(w)Λ(w)′(τt)Σ
−(w)
0 ỹ

(i,w)
t ,Φ(w)

”
. (24)

Where Φ =
“
I + Λ(w)′(τt)Σ

−(w)
0 Λ(w)(τt)

”−1

Step 2: Sample ψ(0,w) Conditioned on {ψ(i,w)
` }Jw

i=1

the parent latent process ψ
(0,w)
` has form

ψ
(0,w)
` (τ1:n) ∼ Nn(Ω−(w)φw` ,Ω

−(w)) where Ωw = K−1
0 +

JwK
−1
1 and φw` = K−1

1

P
i ψ

(i,w)
` (τ1:n).

Step 3: Sample ξ(w) Conditioning on ξ
(w)

\`m (i.e., all la-

tent covariance dictionary elements not equal to ξ
(w)
`m ), our

Gaussian process prior implies the following conditional
posterior:

ξ
(w)
`m (τ1:n)|{y(i,w)

t }, ψ(i,w), {ν(i,w)
t },Θ(w), ξ

(w)

\`m,Σ
(w)
0

∼ Nn

0BBB@Σ̃ξ

JwX
i=1

26664
η

(i,w)
1,m

Pp
j=1 Θ

(w)
j` σ

−2
j,wỹ

(i,w)
1,j

...

η
(i,w)
n,m

Pp
j=1 Θ

(w)
j` σ

−2
j,wỹ

(i,w)
n,j

37775 , Σ̃ξ
1CCCA (25)

where

Σ̃−1
ξ = K−1

1 +

JwX
i=1

diag

 “
η

(i,w)
1,m

”2
pX
j=1

“
Θ

(w)
j`

”2

σ−2
j,w, . . .

“
η(i,w)
n,m

”2
pX
j=1

“
Θ

(w)
j`

”2

σ−2
j,w

!
(26)

and ỹ
(i,w)
t,j = y

(i,w)
t,j −

P
(r,s)6=(`,m) Θ

(w)
jr ξ

(w)
rs (τt).

Step 4: Sample Σ(w)
0 Let Θ

(w)
j· =

h
Θ

(w)
j1 . . . Θ

(w)
jL

i
and η

(i,w)
t be as in Equation (17). Since the diagonal ele-

ments of Σ
(w)
0 have prior σ−2

w,j ∼ Ga(aσ, bσ), standard con-
jugate posterior analysis yields

σ−2
w,j | {y

(i,w)
t }, ψ(i,w), ν

(i,w)
t ,Θ(w), ξ(w) ∼

Ga

 
aσ +

nJw
2
, bσ +

1

2

JwX
i=1

nX
t=1

(y
(i,w)
t,j −Θ

(w)
j· ξ

(w)(τt)η
(i,w)
t )2

!

Step 5: Sample Θ(w) Conditioned on a set of latent

precision parameters φ(w) and ζ(w), the shrinkage prior

of [2] reduces to a Gaussian prior on Θ. The posterior
decomposes along the rows of Θ as follows:

Θ
(w)
j· | {y

(i,w)
t,j }, ψ

(i,w), ν
(i,w)
1:n , ξ(w), φ(w), ζ(w) ∼

NL
“
σ−2
w,jΣ̃

(w)
Θ η̃(w)′y·,j , Σ̃

(w)
Θ

”
, (27)

where η̃(w)′ is the concatenation of matrices ξ(w)(τ1:n)η
(i,w)
1:n

for i = 1 . . . Jw.

η̃(w)′ =
h
ξ(w)(τ1)η

(1,w)
1 . . . ξ(w)(τn)η(1,w)

n . . .

ξ(w)(τ1)η
(Jw,w)
1 . . . ξ(w)(τn)η(Jw,w)

n

i
(28)

y·,j concatenates the jth sensor measurements for all

T single trials into a column vector, and Σ̃
−(w)
Θ =

σ−2
w,j η̃

(w)′ η̃(w) + diag(φ
(w)
j1 ζ

(w)
1 , . . . , φ

(w)
jL ζ

(w)
L ).

The hyperparameters φ(w) and ζ(w) are updated as in [2].

A.3 Parameter Settings

Recall the squared exponential kernel ci(t, t
′) =

di exp(−κ||t − t′||22). We parameterized with κ = 500,
d0 = 8 and d1 = 4.

To ensure that L=10 was set high enough, we verified that
a large number of the columns of Θ with higher column in-
dex were sufficiently close to 0 in L2 norm. For our choice
of the k=10, we performed sensitivity analysis and got com-
parable results.

Following [7] we set a1 = 2, a2 = 5. For the idiosyncratic
noise variances, we place a diffuse prior with aσ = 1 and
bσ = 0.1.

B MEG Data Acquisition

All subjects gave their written informed consent approved
by the University of Pittsburgh (protocol PRO09030355)
and Carnegie Mellon (protocol HS09-343) Institutional Re-
view Boards. MEG data were recorded using an Elekta
Neuromag device (Elekta Oy). While the machine has 306
sensors, to reduce the dimension of the data, only record-
ings from the second gradiometers were used for these ex-
periments (arbitrarily chosen). The data was acquired at
1 kHz, high-pass filtered at 0.1 Hz and low-pass filtered
at 330 Hz. Eye movements (horizontal and vertical eye
movements as well as blinks) were monitored by recording
the differential activity of muscles above, below, and be-
side the eyes. At the beginning of each session we recorded
the position of the subject’s head with four head position
indicator (HPI) coils placed on the subjects scalp. The
HPI coils, along with three cardinal points (nasion, left
and right pre-auricular), were digitized into the system.

The data were preprocessed using the Signal Space Separa-
tion method (SSS) [22, 24] and temporal extension of SSS
(tSSS) [23] to remove artifacts and noise unrelated to brain
activity. In addition, we used tSSS to realign the head posi-
tion measured at the beginning of each block to a common
location. The MEG signal was then low-pass filtered to
50 Hz to remove the contributions of line noise and down-
sampled to 200 Hz. The Signal Space Projection method
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Algorithm 1 One iteration of the sampling algorithm. For compactness, some distributions are given in
information form. Recall that w indexes the word model, Jw the number of trials for a word model, p the
number of sensors, n the number of time points, and L and k are the dimensions of the latent dictionaries.

for i← 1, Jw do
for `← 1, L do

Σ̃(w)
ψ = K̃−1 + diag

(
[Λ(w)(τ1)]′·`Σ

−(w)(τ1)[Λ(w)(τ1)]·`, . . . [Λ(w)(τn)]′·`Σ
−(w)(τn)[Λ(w)(τn)]·`

)
ỹ

(i,w)
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(i,w)
t −

∑
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(w)(τ)]·rψ
(i,w)
r (τ)

ψ
(i,w)
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n



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1 + ψ
(0,w)
1

...
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n + ψ
(0,w)
n

 , Σ̃(w)
ψ


for t← 1, n do

ỹ
(i,w)
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ν
(i,w)
t ∼ N−1

k

(
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0 ỹ
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0 Λ(w)(τ)
)

for `← 1, L do
ψ
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` (τ1:n) ∼ N−1

n (K−1
1

∑Jw

i=1 ψ
(i,w)
` (τ1:n),K−1

0 + JwK
−1
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for `← 1, L do
for m← 1,K do

Σ̃ξ = K−1
1 +

∑Jw

i=1 diag
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η
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1,m
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for j ← 1, p do
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[
Θ(w)
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for j ← 1, p do

y·,j = [y(1,j)(t1:n) . . . y(Jw,j)(t1:n)]′

η̃(w)′ =
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Θ
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(SSP) [27] was then used to remove signal contamination
by eye blinks or movements, as well as MEG sensor mal-
functions or other artifacts. Each MEG repetition starts
260 ms before stimulus onset, and ends 1440 ms after stim-
ulus onset, for a total of 1.7 seconds and 340 time points of
data per sample. MEG recordings are known to drift with
time, so we corrected our data by subtracting the mean
signal amplitude during the 200ms before stimulus onset,
for each sensor/repetition pair. Because the magnitude of
the MEG signal is very small, we multiplied the signal by
1012 to avoid numerical precision problems.

Due to recording error, 2 trials were lost. Words lettuce
and cat have only 19 trials.

C MEG Videos

Four videos of the posterior mean correlation
(computed from samples of Σ(w)(τ)) for Sub-
ject 1 are included in the supplementary mate-
rial (available at http://www.cs.cmu.edu/~afyshe/
papers/aistats2012/). The videos are named
“S1 hierarchical helmet word1 word2 sensorNum.avi”
where word1 and word2 correspond to the word models
used to create the video and sensorNum is the number
of the sensor for which the correlation is plotted. Note
that the videos for hammer and house correspond to the
snapshots shown in Figure 5 of the paper.


