VERSION SPACES. AN APPROACH TO CONCEPT LEARNING.
MITCHELL, TOM MICHAEL
ProQuest Dissertations and Theses; 1979; ProQuest Dissertations & Theses Global

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the
most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the material
submitted.

The following explanation of techniques is provided to help you understand
markings or notations which may appear on this reproduction.

1.

The sign or “target” for pagesapparently lacking from the document

photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting through an image and duplicating
adjacent pages to assure you of complete continuity.

. When an image on the film is obliterated with a round black mark it is an

indication that the film inspector noticed either blurred copy because of
movement during exposure, or duplicate copy. Unless we meant to delete
copyrighted materials that should not have been filmed, you will find a
good image of the page in the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photo-

graphed the phictographer has followed a definite method in “‘sectioning”
the material. It is customary to begin filming at the upper left hand corner
of a large sheet and to continue from left to right in equal sections with
small overlaps. If necessary, sectioning is continued again—beginning
below the first row and continuing on until complete.

. For any illustrations that cannot be reproduced satisfactorily by

xerography, photographic prints can be purchased at additional cost and
tipped into your xerographic copy. Requests can be made to our
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases we

have filmed the best available copy.

University
Microfilms
International

300 N. ZEEB ROAD, ANN ARBOR, MI 48106
18 BEDFORD ROW, LONDON WCIR 4EJ, ENGLAND

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PLEASE NOTE:
In all cases this material has been filmed in the best possible

way from the available copy. Problems encountered with this
document have been identified here with a check mark v~ .

1. Glossy photographs
2. Colored illustrations
. Photographs with dark background

3

4. IMllustrations are poor copy

5. Print shows through as there is text on both sides of page
6

. Indistinct, broken or small print on several pages throughout

7. Tightly bound copy with print lost in spine
8. Computer printout pages with indistinct print

9. Page(s) lacking when material received, and not available
from school or author |

10. Page(s) seem to be missing in numbering only as text
follows

11. Poor carbon copy

12. Not original copy, several pages with blurred type L/’/’
13. Appendix pages are poor copy

14. Original copy with light type

18. Curling and wrinkled pages

16. Other

ek
l M ilms
SOON. ZEEB RD.. ANN ARBOR, M1 48106 1313) 761-4700

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VERSION SPACES:
AN APPROACH TO CONCEPT LEARNING

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Tom Michae! Mitche!l

December, 1878

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7917262

MITCHELL,y TOM MICHAEL
VERSION SPACES: AN APPROACH TO CONCEPT
LEARNING.

STANFORD UNIVERSITY, PH.D., 1979

Universi
Microfilms
International 300 N. ZEEB ROAD, ANN ARBOR, Mi 48106
© Copyright 1978
by
Tom Michael Mitchell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| certify that | have read this thesis and that in my oplnion it Is fully adequate,
in zcope and quality, as a dissertation for the degree of Doctor of Philosophy.

. rw ,
?fw\ Cn /g 7 Q (i

(Principal Adviser: Computer Science)

| certify that | have read this thesis and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Coomptotr Frea ____123)5 /P8

(Computer Science)

| certify that | have read this thesis and that in my opinion It Is fully adequate,
In scope and quality, as a dissertation for the degree of Doctor of Philosophy.

RHY oo i) 2 ///f/?d“/

(Electrical Engineering)

Approved for the Unlversity Committee cn Graduate Studies:

LW TS s o

Dean of Graduate Studies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

Abstract

A method Is presented for learning general descriptions of concepts from a
sequence of positive and negative training instances. This method involves examining
a predetermined space or language of possible concept descriptions, ﬂpdlng those
which are consistent with the observed tralning instances. Rather than use heuristic
search techniques to examine this concept description space, the subspace (version
space) of all piausible concept descriptions is represented and updated with each
training Instance. This version space approach determines all concept dascriptions
consistent with the training instances, without backtra:king to reexamine past training
instances or previously rejected concept descripticns,

The computed version space summarizes the information within the training
Instances concerning the identity of the concept to be learned. Version spaces are
therefore useful for making reliable classifications based upon partially learned
concaepts, and for proposing Informative new tralning instances to direct further
learning. The uses of version spaces for detecting inconsistency in the training
Instances, and for learning In the presence of inconsistency are also described.

Proofs are given for the correctness of the method for representing version
spaces, and of the associated concept iearning algorithm, for any countably infinite
concept description language. Empirical results obtained from computer
implementations In two domains are presented. The verslon space approach has been
implemented as one component of the Meta-DENDRAL program for learning production
rules in the domain of chemical spectroscopy. Its implementation in this program Is

described ln. detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

It is impossible to find space to thank ail the people who have contributed
toward this work. Some of those who | especlally want to thank are: Brucé Buchanan.
This man is a philosopher, & scientist, and a friend. Three years of his insights,
guidance, and moral support allowed this work to occur. Cordell Green, Richard
Pantell, and Edward Feigenbaum, the other members of my reading and orals
committees, whose comments aided In clarifying the presentation of the ideas In this
thesis. Reid Smith and Jan Alkins for their support of every imaginable kind. Their
help In tiguring out what | was dolng, thelr encouragement that it was worth doing, and
their f;'iendship helped put things In perspective when It was needed most. Others
who took the time to read and comment carefully on various drafts of this dissertation:
Saul Amarel, John Burge, Lew Creary, Jim Davidson, Peter Friedland, Ann Gardner, Rick
Hayes=-Roth, Chitoor Srinivasan, and Mark Stefik. My parents, who have helped me in
countless ways, and whose enthusiasm for learning has been a great influence. Joan,
my best friend and wife. She kept us human during all the late nights and crazy
weeks. I'll never be sure whether this thesis took more of my time or hers. Thanks as
well to SUMEX-AIM, the Stanford Artificial Intelligence Laberatory, and Rutgers
University for providing facllities for generating this text. Special thanks to Reid
Smith who supplied the PUB commands for formatting this document, and to Lew Creary
who kindly ran off the final copy. Varlous phases of this work were supported by the
Nationa!l Institutes of Health under grant RR 00612-07 and by the Advanced Research

Projects Agency under contract DAHC 16-73-C-0436.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

vi

Chapter Page
Abstract N Y/
Acknowledgements S '

1. introduction T
11 The Problem Considered Here . . « « « « v ¢ ¢ o v v v v v v v v v o 8

1.1.1 Representing Concepts e e e e e e e e e .. 4

1.1.2 Conceptlearning. + « « « ¢ + ¢ v o v v v v s s oo 4

1.2 Some Earlier Approaches. . « « v o ¢ v v v v v e e e e e e e 6

1.2.1 Depth=-First S@A8ICh « « + v + v v o v s s v v v e v 20 0o B

1.2.2 Breadth=First Search. . . + « v v v ¢ v v v v e v v o v oo o0 T

1.8 Outstanding Problems. . « « « « v ¢ ¢ ¢ ¢ v ¢ o v 0 000 e P -
1.3.1 Which Concept Descriptions Are Consistent With the

Training INStEBNCEST + « v v v v v v 0 v e e 0 e e 2

1.3.2 When Is the Concept Unambiguously Learned? 10

1.8.83 Are the Training Instances Consistent? 11

1.3.4 What Additional Training Instances Would be

Informative? . « ¢« « v vt e v e e e s e e e e e 1

1.4 Version Spaces and Conceptlearning. « « « « « v v v ¢ « v ¢ o .12

1.6 Main Themes Of ThiISWOTK « « « v ¢ ¢ ¢ ¢ ¢ ¢« v v e 0o s e s 0 o s+ 13

1.6 ReadingtheRest . . . ¢ v ¢ v v v e v vttt v oo oeses 14

2. Vearsion Spaces and Concept Laarnlné e e e s et s et e e e e e e e e 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

- 2.1 Introduction T X -
2.2 The Problem T 1

2.2.1 One Concept LearningProblem 18

2.2.1.1 A Note Concerning This Example - . 22

2.3 The Approach e e e e e e e e e e e e e e e e e ¥4
2.3.1 The Verslon Space Approach . . . + v « v v v ¢ v v o o & . . 23
2.3.2 Representing Version Spaceso v 00 o0 e 24

2.3.2.1 The General-to-Specific Partial Ordering. 26

2.3.2.2 The Partial Ordering for the Arch Learning

Problem. . . + « « « ¢ ¢ v ¢« v o v e e e e e e 27

2.3.3 Using Version Spaces for Concept Learnlng. e .. . 28
2.3.3.1 Initializing the Version Space« 29
2.3.3.2 Processing Trainlng Instances. e e e e e 32
2.3.4 Applying Partially Learned Concepts e e e e e e 46

2.3.4.1 Efficiency. + « « « v ¢ ¢« v v v v e v v i i e .. 48

2.4 A Second Example: Learning Feature Value Intervals. 48

2.6 Summary e e e e e e e e e B8
3. Formal Treatment e e e e e s e e e e e e e e e B6
3.1 Introduction e s e e e e e e e e e e e e .. 56

3.2 The Concept LearningProblem . . . « + + ¢ v v v v v v v v v v o .. BB
3.3 Reprasenting Version SpaceS « + « « ¢ ¢ v« v et s e e v e e e e 68
3.3.1 ThePartialOrdering . + « + « v ¢ v v e o s e v o oo 0. 68
3.8.2 The Boundary Sets Representation for Version Spaces 60

3.3.3 Admissibility of Pattern Languages . . « v . « « v ¢ ¢« oo . . 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

3.3.4 Validity of the Boundary Sets Representation for
Verslon Spaces + « « v v v v o o o o s s v v 0 v . B2
3.4 The Concept Laarning Algorithm. « . . ¢ ¢ ¢ v v v v v v .., B3

3.6 inconsistent LearningProblems ¢« . . v i v v .. B

3.6 Summary e e e e e e e e e e e e e e . 72
a, Uses for Version Spaces of Partially Learned Concepts v «. . 74
4.1 Introduction e €

4.2 Using Incompletely Learned Concepts « « « « + v v v v v v v v v v v 76

4.2.1 Reliable Classifications Using Partially Learned
CONCEPLS « v v v v v v 4 0 0t s 0 e e e e s . T?

4.2.2 Estimating Certainty of Unrellable Classifications. 81
" 4.3 Requesting New Tralning Instances. 86

4.3.1 Choosing Instances to Efficiently Determine the
Concept « ¢ ¢« v b v e e e e e e e e e e e e 87

4.3.2 Choosing Instancas to Control Boundary Set Sizes . . . , , . 20

4.4 Combining Separately Obtained Results and Merging Concept
Descriptions . + « v ¢« v v v v v v v e e e .. B4

4.4.1 Algorithm for Determining Intersection of Version

SPACES. « v v 4 b v e e e e e e e e e .. 96

4.6 Summary e e e e e e . 97
6. Learning in Less Perfect Situations e e e e e e e e e 08
6.1 Introduction S < £
6.2 Three Inconsistency Problems B <]]
6.2.1 incorrect Training Instances. S K o]o)

6.2.2 Insufficient Concept Description Language 101

6.2.3 Disjunctive Concepts. + « « « + « v ¢+ Ve e e e e e . 102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ix

6.3 Detecting Inconsistency with Version Spaces. . . + « v+ « v ¢« v . . 102
6.4 Learning and Inconsistency v i e i e s e e e e .. 104
6.4.1 Multiple Version Spaces . « « « v v ¢« v ¢ o e v ¢ o o o o 106
6.4.2 Learning Using Muitiple Version Spaces 107
6.4.2.1 The Algorithm. v v v v v v v v v v v .. 190
6.4.2.2 ANEXample .« . v v e e e e e e e e e 113

6.4.83 An Optimal Solution to Learning with Limited
lnconsistency . . « « v v v v v 0w . e oo .o 118
6.4.3.1 ANoteonEfficiency. . . « « v v v v v v v v o v . 110
6.6 A Heuristic Approach to Learning with Multiple Inconsistencles . . . 122
6.6.1 Creating NewBoundary Sets c o0 . 124
6.6,2 Limitations . v v . v i i v e i i e e e e e e .. 125
6.6 Learning Disjunctive Concepts » « . . + « v . v v . . PN 126
6.7 Summary 130
6. Version Spaces and Meta-DENDRAL 131
6.1 Introduction T Ech
6.2 The Chemistry Problem ¢ v ¢ v v v v v v v v v v ., 132
6.2.1 Mass Spectrometry . . v v v h b e e e e e e e e e e e 183
6.2.2 C13 NMR Spectrometry . . . « « ¢« ¢« v v v v . . e e 185
6.3 The Concept LearningProblem 187
6.3.1 The Patternlanguage . . .« « v ¢ ¢« v ¢ v v v e v+ v+ .. 139
632 Thelnstances. « . ¢ v v v v v i v v e e 140
6.3.3 ThePatternMatcher. 142
6.3.4 The Partial Ordering « « « v ¢ v v v ¢« v ¢ v v o v o o o o o . 182
6.3.6 Inconslsfencles O - <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 The Learning Algorithm . . v v v v v s v v v v e e e e e
6.4.1 Updating the Specific Version Space Boundary Set, .
6.4.2 Updating the General Version Space Boundary Set
6.4.3 Use of Domain Knowledge and Heuristics

6.6 Using Version Spaces inMeta=DENDRAL
6.6.1 Modifying Existing Rules Using New Data s e e

6.6.1.1 Some ExperimentalResults.
6.5.2 Inferring Rules from INTSUM Tralning Instances

6.6 Lessons and Limitations . « « « v ¢ v v v v h e e e e e e e e .
6.6.1 SizesoftheBoundary Sets . . « v v v v v ¢ v ¢ v v v v w
6.6.2 Need forDomainKnowledge . . + « « v v v v 4 v v v v & o W
6.6.83 Learning Disjunctive Setsof Rules « v v v v . W
6.6.4 Need for Training Instance Selection

6.7 Summary

7. Comparison With Alternate Appro8Ches . v v v v v v v v o ¢ o o o o o o

7.1 Concept Learning as Search. e e e e e e e e e e e e e

7.2 Modei-Driven and Data-Driven Search Strategies.

7.3 Three Data-Directed Strategies. . . .« . v ¢ v v v v v v v v o v v s
7.3.1 Depth-First Search ~ Current Bast Hypothesis, . .
7.83.2 Breadth-First Search - Several Alternatse Hypotheses . . .
7.3.3 Cendidate Eiimination - All Plausible Hypotheses

7.4 Capabliities

7.6 Efficiency
7.6.1 Training Resource Requirements. . « + v ¢ v v & v v v 4 v &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144
146
148
148
162
164
166
168
168
168
168
168
170

171

172
172
174
176
177
178
178
180
182

182

7.6.2 Computer Resource Requirements « « ¢« v + s . .

7.6 Summery e e e e e e e e e e e e e
8. Summary &and Concluslons . . . v v v v v v v e c e e e e e e e e e e e
8.1 Results
8.2 Assumptions and Limitationa . « v v v ¢ ¢« v 0 v e 0 e h e b e e e e
8.3 Future Work e e e e e s e e e e e e e
8.4 Concluslons
References e e e e e e e e e e e e e e e . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

183

187

189
188
182
186

186

197

Chapter 1

Introduction

Machine learning Is one of the earliest and most ambitious goals of computer
sclence. In the past two dscades, several partially successful programs have been
v.ritten that are capable of various kinds of learning in well-controlled, constrained
domains (e.g., [Samuel, 1063], [Feigenbaum, 1863], [Hunt, 1878], [Plotkin, 1970],
[Winston, 1870], [Waterman, 1870], [Michalski, 1873], [Hayes-Roth, 1874],
[Vere, 1976], [Soloway, 1877], [Buchanan, 1874], [Lenat, 1876], [Langley,
1977]). The results so far have been tantalizing. The plausibility of machine learning
in narrowly restricted domains has been demonstrated, but the proficlency and
generality of the learning strategies which have been employed have yet to be
determined. Although progress has been made toward the goal of machine learning, we
are only beginning to understand many of the problems involved and to discover

methods for dealing with these problems.

One recent trend in artificial intelligence (Al) research provides strong practical
motivation for research in machine learning. The Increasing success of performance
programs that make extensive use of domain-specific knowledge underscores the
importance of developing efficient methods for acquiring such knowiedge. One
performance program which employs domain-specific knowledge is the DENDRAL
program [Feigenbaum, 1871], which alds chemists in determining the molecular
structure of unknown compounds. This program utilizes its knowledge of chemistry to

infer plausible molecuiar structures consistent with avallable laboratory data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduction 2

assoclated with an unknown sample. The task of acquiring the domain specific
knowledge used by DENDRAL and other “knowledge-based" programs (e.g., MYCIN
[Shortliffe, 1876], HEARSAY [Lesser, 1976]) has proven a difficult and time
consuming task. Informal methods for obtaining domain-specific kﬁowledge by
querying experts (e.g., chemists, doctors) often result in Inexact, incomplete, and
inconsistent knowledge bases [Feigenbaum, 1977]. One recent study [Davis, 1876]
has focussed on methods for systematizing and automating the querying of experts to

obtain reliable knowledge bases.

Laarnlr{g programs offer an attractive alternative to obtaining domain knowledge
solely from human experts. A program capable of modifying existing rules and inferring
new rules for inclusion In the knowledge bases of programs such as DENDRAL would

be an important asset for increasing the proficiency and flexibility of these programs.

Bullding such learning programs Is a well-defined and realistic goal for research
on machine learning ~ and a goal toward which some progress has already been made.
The Meta-DENDRAL program [Buchanan, 1878], for Instance, learns production rules

ihat contain one kind of chemical knowledge used by the DENDRAL program. The rules

that Meta-DENDRAL learns are used to predict peaks In the mass spectra and '3C
NMR spectra of classes of organic compounds. Programs that acquire domain-specific
knowledge for performance programs In other areas have also been written (e.g.,
playing draw poker [Waterman, 1870], diagnosing plant diseases [Larson, 1877],

racognizing spoken words [Hayes=-Roth, 1876)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduction 3
1.1 The Problem Considered Here

“lLearning" Is a broad term covering a wide ranje of processes. We learn
(memorize) muiltiplication tables, learn (discover how) to walk, learn (bulld up an
understanding of, then an ability to synthesize) language. Our current understanding
of learning is sketchy, and It would be premature tc try to program a computer to
attempt very sophisticated learning problems without first developing a better
understanding of the central processes Involved in learning. This study therefore
focuses on one type of behavior that Is central to a wide range of learning tasks: the

ability to generalize.

The abllity to generalize is the ability to take into account many specific
experiences and obseivations, then to extract and retain the important common
features of those experiences. For instance, a child learns to associate classes of
objects or actlons with words. He sess many kinds of birds (and many more things
which are not birds) and forms a general notion or eciicept of "bird" that he learns to
associate with the corract word, and which allows him to identify birds he has never
seen. A research chemist performs a simllar task in attempting to characterize the
behavior of molecules in analytic instruments. He begins by examining the structure
and exhibited analytic data of many known molecules, then extracts general notions
or rules which allow him to predict the behavior (and observable data) for molecules

which he has never examined.

This ability to generalize from specific instances of a class to a gen'eral model or

description of the class, often referred to as concept /earning, is the central topic of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduction 4

this dissertation. Concept learning has been studied by many researchers Iin the
fields of psychology (e.g., [Bruner, 1866], [Hunt, 1875]) and artificial Intelligence
(e.g., [Evans, 1968),[Waterman, 1870],[Winston, 1876],[Michalski, 1873],[Hayes-
Roth, 1976), [Vere, 1877]). The ability to generalize from examples is both a
powerful abllity in Itself, and a key building block for more sophisticated learning
behavior. For example, the generalization techniques developed In this dissertation
have been used as a central component of the Meta-DENDRAL program for Inferring

production rules to be used by DENDRAL.

1.1.1 Representing Concepts

The abllity to learn concepts presupposes the abllity to represent and store
learned concepts. In this work, concepts are described by patterns which state the
properties common to instancaes of the concept. The utility of representing concepts
in this way has been demonstrated by earlier concept learning programs In a variety
domains (e.g., [Winston, 1870],[Michaiski, 1878],[Hayes-Roth, 1876),[Vere,
1976], [Buchanan, 1878]). In this work, as with earlier work, the primitive properties
and raiatiens aporooriate for describing concepts in any given domain are supplied to
the program, and defihe a language in which the program must describe concepts.
This language Is referred to here as the eoncept description language, or

equivalently, the pattern language.

1.1.2 Concept Learning

In order to learn a particular concept, a program must have both a language in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 5

which to express concepts and a set of training Instances that exemplify some
“target concept". Training instances are labeled as either positive instances
(examples of the concept) or negative instances (not examples of the concept). The
task of tha concept learning program is to determine a description of the target
concept that Is consistent with these observed training instances. In summary, the

class of concept learning problems considered here is the following:

Concept Learning Problem:
Given: 1. A concept description language.

2. A procedure that matches concept descriptions to
training instances.

3. Sets of positive and negative training instances of the
" target concept.

Determine: Concept descriptions within the given language which are
consistent with the provided training instances.

Concept learning as defined above can be viewed as a search problem. The
language of allowed concept descriptions defines the domain of concepts that the
program might learn, or the search space of possible "solutions" to the concept
learning probiem. The program must examine this solution space, subject to
constraints imposed by the training Instances, to determine a valid description of the
target concept. Many researchers have shared the view of concept learning as a
search problem [Amarel, 1871], [Winston, 1870), [Simon, 1873], {Hayes-Roth,

1975).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 6
1.2 Some Earlisr Approaches

if concept learning Is viewed as a search problem, then concept learning
methods can be characterized in terms of the search strategies which they employ.
The two most common classes of search strategies employed by concept learning
programs described in the literature can be characterized as depth-first search, and
breadth-first search. General capabilities and limitations assoclated with each of
these classes of strategies are described in chapter 7. The major results of chapter
7 are summarized here to provide an indication of the capabilities and limitations of
existing approaches to concept learning. References to several programs are
included in the discussion of each class of search strategies. Although none of these
programs employs exactly the same strategy, there are programs that.share

capabillities and limltations characteristic of definite classes.

1.2.1 Depth=First Search

One common strategy for examining the space of possible concept descriptions
Is depth-first search (see, for instance, [Winston, 1970], [Waterman, 1270]), in which
& single concept description from the searcn space Is chosen as the current best
hypothesis to describe the target concept. This concept description Is then tested
against each of a sequence of tralning instances. If the concept description is
inconsistent with a new training instance, it is modified to become consistent with the
new training instance while remaining consistent with past training Instances. Each
such modification yields a new current best hypothasis, and can be viewed as a step

in a depth-first search through the search space of possible concept descriptions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 7

Depth-first search was one of the earliest approaches to learning concepts
described as patterns [Winston, 1970]. Although this method Is usaful, it has several
shortcomings. The following two difficuitles are inherent to the depth-first search
strategy for concept learning.

1) In modifying the current concept description in response to
a new training instance, it Is costly to determine which possible
modifications are censistent with previous training Instances. Each
modification must be tested against all previous training instances.
As a result, the more training instances the program has processed,
and therafore the closer it is to learning the correct description of

the concept, the greater the cost of processing the next training
instance.

2) Once the program has determined which modifications will
result in concept descriptions consistent with the training
Instances, it must choose one of these concept descriptions &s the
new current best hypothesis. Since it Is Impossible to reliably
choose the "correct” modification from among the many possibilities,
the program must be prepared to backtrack and reconsider
alternate cholces if subsequent tralning Instances reveal that an
incorrect choice has been made. ’

1.2.2 Breadth=First Search

Several researchers [Plotkin, 1870], [iichaiski, 1973], [Hayes-Roth, 1874],
[Vere, 1276] have written concapt learning programs employing & breadth-first search
strategy for examinlng the space of possible concept descriptions. Each of these
programs takes advantage of an Important structure on the search space of possible
concept descriptions to organize the breadth-first search. This structure is a partial
ordering of concept descriptions which embodies the usual intuitive notion of the

terms "more general" and "more specific'. These programs begin with the most

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduction 8

spacific concept description consistent with the first training instance, then consider
progressively more general concept descriptions, as needed, to determine the set of
maximally specific concept descriptions consistent with the training instances. Thus,
the program sweeps out & breadth-first search from specific to general concept

descriptions.

Because the breadth-first search Is organized around the specific-to-general
partial ordering on the search space, modifications to the set of current hypotheses
can be made without reconsidering past positive training instances. Past negative
Instances must, however, still be reexamined. The breadth-first search programs
cited above represent an important step in taking advantage of the specific-to-
general partial ordering inherent to this class of concebt learning problems: (1) to limit
the number of considered modifications to the set of current hypotheses, and (2) to
avoid the need to reconsider past positive training Instances when processing new

tralning instances.

1.3 Outstanding Probiems

Despite the progress which has been made toward finding good strategies for
concept learning, many critical problems remain. In addition to the central problem of
searching an enormous space of possible concept descriptions for one conslstent with
the tralning instances, there are more global problems. These include determining the
point at which a concept has been reliably learned, detecting and recovering from
inconsistent training data, and proposing informative new training instances. Solutions

to these problems require that the program be capable of examining what it has

»

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduction -

learned so far - of summarizing and reasoning with the partial information that has
been conveyed by the training instances concerning the lidentity of the target
concept. Each of these probiems, restated as a question, is considered below.

Progress toward solutions to these probleims forms the main focus of this thesis.

1.3.1 Which Concept Descriptions Are Consistent With the Training Instances?

The central prcslem faced by any concept learning program is to determine a
general description of the target concept which is consistent with the observed
training Instances. Additional criteria for acceptability such as “simplicity”,
talegance” or "generality” may also be important in choosing a concept description,

but the primary criterion is consistency with the training instances.

For both the depth-first search and breadth-first search strategies described
above, an important and costly step is determining which modifications to @ current
hypothesis are consistent with past training instances. For the depth-first search programs
referenced, each past training instance mist be reexamined to obtaln this information.
With the above breadth-first search programs, each past negative Instance must be
reexamined. Is there a compact method of summarizing the information contained in
the training instances so that past instences do not have to be reexamined at all? Is
there a way of efficientiy keeping track of all concept descriptions consistent with

past training instances?

The term version space is used in this work to refer to the set of all concept

descriptions, within a prescribed language, that are consistent with a set of training

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduction . 10

instances. The following chapters describe and prove correct a method for efficiently

representing and computing version spaces.

1.3.2 When Is the Concept Unambiguously Learned?

“"How can & concept learning program detect the point at which It has observed
enough training instances to rellably use the learned concept?" For programs which
employ a depth-first search approach, the question becomes "How can the program
predict whether additional training instances will lead to further modifications to the
current hypothesis?®. This Is a crucial question for gauging the reliability of

classifications based upon the learned concept description.

To answer this question the program must be able to detect whether there are
concept descriptions in addition to the current hypothesis that are consistent with the
training instances. If so, then the Identity of the concept has only been partially
determined by the training instances, and the concept is not yet completely learned.
If additiona! training Instances are not avallable, then a second question arises: "How
can descriptions of partially learned concepts be used to classify future instances in
a reliable manner?" For some concept description languages & finite set of training
instances can never determine a unique concept description. For such problems, the

Issue of reliable use of partially learned concept dascriptions is unavoidable.

Chapter 4 lllustrates the use of version spaces to detect whether a unique
concept description is determined by the observed instances. The use of version
spacaes to determine classifications of new instances based upon partiaily learned

concepts Is also described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduction 11

.3.8 Are the Tralning instances Consistent?

In many problem domains, learning is complicated by the Inconsistency of the
training Instances with respect to the language of concept descriptions. If the
tralning Instances contain errors, or the language of concept descriptions Is
Insufficlent, then there may be no concept descriptions consistent with the training
instances. In such inconsistent concapt learning problems the program must be able

to detect and recover from inconsistency.

How can a concept learning program officlently detect this kind of
inconsistency? What does it mean to learn a concept in the presence of
Inconsistency? Is there an efficient method for finding concept descriptions that are

“maximally consistent” with the training instances?

Chapters 3 and & describe and prove correct a method for determining concept
descriptions that are meximally consistant with a set of training instances. A more

efficlent, approximate method, based upon this exact method, is also presented.

1.8.4 ‘What Additional Training Instances Would be Informative?

Many authors (s.g., [Simon, 1873],[Smith, 1877], [Buchanan, 1974],[Winston,
1970]) have stressed the significance of a carefully chosen sequence of training
instances to good learning behavior. Winston, for example, discusses the importance
of showing the program instances which are *near misses" of the target concept; that
is, negative training instances which differ in only small ways from positive instances

of the concept.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 12

An Important question Is whether the program itseif can propose instances
whose classification as positive or negative instances will reveal additional Information
concerning the ldentity of the target concept. The strategy which a program must
employ to chose its own training Instances is much different from that which a good
teacher must employ - the pregram must choose informative training instances without
knowing the identity of the target concept (see the discussion of learning with and
without a teacher in [Buchanan, 1978a]). To choose informative new training
Instances, the program must be aware of what cannot be determined on the basis of

observed data concerning identity of the target concept.

Chapter 4 describes a strategy for proposing optimally informative new training

Instances, based upon examining the version space determined by past observed

instances.

1.4 Vsision Spaces and Concept Learnlng_

Answers for each of the above four questions are possible If the learning
program represents explicitly what can and cannot be determined about the Identity of

the target concept. Version spaces summarize this needed information.

The approach to concept learning proposed here Involves representing and
updating the version space of all convspt descriptions consistent with the obsarved
tralning Instances. The version space Is Initialized to contain ali concept descriptions
consistent with the first positive training Instance. Additional tralning Instances are

then conslidered one at & time. Candidate concept descriptions are ollmlnateql from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 13

version epace as they are found to bs inconsistent with subsequant training
instances, so that at each step, exactly those concept descriptions consistent with

the training instances remain.

Since the version space may in general contain many concept descriptions, an
efficient method for representing version spaces is needed. A general (independant
of the concept description language) scheme for representing version spaces and for
revising a represented version space in response to subsequent training instances Is

presanted and proven correct.

1.6 Main Themes of This Work

In considering issues related to concept learning, many intermingled themes

appear In the following chapters. Several of these themes are described below.

Concept learning as search: Concept learning Is a problem of examining a
prescribed space of possible solutions (concept descriptions) subject to a set of
constraints on acceptable solutions (tralning instances). This view of concept
learning provides a useful perspeciive for comparing alternate approaches to concept
learning (see chapter 7), as well as for relating concept learning to other problem

solving tasks (see [Simon, 1873]).

Version space approach as one method for examining the solution space: \f
concept learning Is viewed as a search problem, then the version space approach to
concept learning is one method for examining the solution space of concept

descriptions. It is a general, theoretically sound, method which provides a coherent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction 14

way of thinking about what learning means in terms of the search paradigm. No claims

are made for the psychological validity of this approach.

Version space as summary of allowed concept descriptions: The summary of
aliowed concept descriptions provided by the represented version space allows the
program to determine how precisely the target concept has been learned. This
summary Is also useful for classifying subsequent instances, even when observed

training instances are insufficient to uniquely determine the concept.

Version space as summary of observed iralning Iinstances: The version space
provides a compact summary - in the language of concept descriptions = of the
information contained in the training instances concerning the identity of the target
concept. Because the version space summarizes this information, the program does
not need to store observed training Instances for reexamination. In addition, this view
of version spaces !eads to their use in detecting Inconsistency in the training

instances, and for combining results obtained from separate sets of training instances.

1.6 Reading the Rest

Chapter 2 introduces a general method for representing version spaces, and an
associated concept learning algorithm. The method is lllustrated for concept learning

problems drawn from two domains.

Chapter 3 provides & forma! treatment of the methods introduced In chapter 2.
The correctness and generality of the version space approach to concept learning &re

proven. The definition of version spaces is then generalized to allow learning concepts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduction 16

from Inconsisiant training instances, and the correctness of the associated learning

algorithm (described fully in chapter 6) is proven.

Chapter 4 describes applications of version spaces to problems of reliably using
partially learned concepts, proposing informative new tralning instances, and

combining results obtained from separate sets of data.

Chapter 6 considers learning in the presence of inconsistent data. An extension
to the approach introduced in chapter 2 Is described, which allows determining
concept descriptions maximally consistent with the observed training instances for
problems involving limited inconsistency. A more efficient, approximate Ieaming

strategy based on this optimal strategy is presented for dealing with more severe

inconsistency.

Chapter 6 describes in detall the implementation of the version space approach
as part of the Meta-DENDRAL program for learning rules in the domain of chemical
spectroscopy. Experiments are described Involving the use of version spaces for

concept learning in this domain.

Chapter 7 contrasts the capabilities, efficiency, and computational complexity of
the version space approach with classes c_>f eariier strategies for concept iearning.
The comparlson is based on the view of concept learning as & search problem, and the
perspective that concept learning programs may be usefully characterized in terms of

their search strategies.

Chapter 8 summarizes the major contributions and limitations of the work

reported here, and considers possible routes for turther work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1ée

Chapter 2

Version Spaces and Concept Learning

2.1 Introduction

This chapter considers a class of concept learning probiems in which a program
Is presented a sequence of positive and negative training lnstance's of the concept,
and askad to construct a general description of the concept in a prescribed language.
An approach to this class of problems is praesented, which Is assured of finding all
valid descriptions of the target concept expressed In the allowed language. This
version space approach to concept learning Is described in general terms, and

lustrated for two specific concept learning problems.

2.2 The Probiem

As described in chapter 1, we consider the class of concept learning preblems

which may be defired as follows:

Concept Learning Problem:
Given: 1. A language of patterns for describing concepts.

2. An associated pattern matcher.

3. Sets of positive and neoative training instances of the
target concept.

Determine: Concept descriptions within the given language which are
consistant with the training instances.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 17

The target concept is the (known or unknown) concept exemplified by the set
of positive training Instances. We shall call the solution to the concept learning
problem the version space of the target concept with respect to the observed

training Instances. That Is, the version space of the target concept is the set of all

plausible versions of the target concept given the observed tralning Instances’.

Version Space: The version space of a target concept with respect to a set
of training Instances is the set of all concept descriptions within the
given language which are consistent with those training instances.

The term consistent is used above and throughout this chapter in the following
strict sense: a concept description is consistent with a set of tralning instances If it
matches all positive training instances, but no negative instances. Thus we assume
that the training data contain no errors, and that the language of concept descriptions
contains at least one description of the target concept consistent with all training
instances. The verslon space approach is simplest for concept formation problems

satisfying these criterla.

Chapter 6 discusses concept learning problems for which the above error-free
assumption does not hold. There, an extension of the version space approach is
presented in which the program attempts to find concept descriptions consistent with

the largest possible subsets of the training instances.

' The term "version space” is used rather than "version set" because, as will be
described, there is a useful structure on this set of concept descriptions which allows
it to ba efficlently represented and computed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 18
2.2.1 One Concept Learning Froblem

In order to discuss concept learning In concrete terms, the bulk of this chapter
relies upon one particular concept learning problem to iHliustrate general issues and
techniques. This concept learning problem, originally discussed by Winston [Winston,
1870], Involves learning to identity simple classes of structures bullt out nf childran's
blocks. The task may be, for example, to learn the concept of an "arch" given a

series of block structures, each labeled as either an aréh or a non-arch.

By choosing a language for representing such "blocks world" concepts, and an
associated pattern matcher, the arch learning problem can be stated as an instance
of the class of concept learning problems described above. A natural choice for
reprasenting concepts involving various blocks and relationships among them Is to use
& language of structural patterns, or networks. Each node in the network will
represent an individua! block in the structure, and each link between nodes will
denote some relation between the blocks. The arch learning probiem can then be

stated as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Speces and Concept Learning 18

The Arch Learning Problem:

Given: 1. Concept description language: A1 possibie networks with nodes
representing individual blocks, and links between nodes
representing relations between the corresponding blocks.
Each node (block) has the following properties which may be
constrained as shown:

Pronerty Allowed Constraints
Shape Brick, Wedge,

NOT-Brick, NOT~Wedge, ...,
(Brick OR Wedge), ..., any

Orientation Standing, Lying, Leaning, ...,
NOT-Standing, NOT-Lying, ...,
(Standing OR Leaning), ..., any

Each link in the network is labeled as one of the following
ralations:

supports, does-not-support, touches, does-not—touch

2. Pattern Matcher: A pattern matches a training instance if the

pattern constraints are satisfied by the instance; that is,
if there is a mapping of pattern nodes onto instance nodes
such that each constrained property of each node and link

in the pattern is satisfied by the corresponding node or
1ink in tha instance. -

3. Training instances: Network descriptions of block

structures labeled as either positive or negative instances
of the concept "arch".

Determine: Al concept descrintions within the given language which
are consistent with every training instance.

The following pattern Is a legal concept description in the blocks world concept
description language described above, and therefore represents a concept which the

program might learn:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 20

standing supports NOT-~lying
brick »| brick OR wedge

Training instances are represented In the same network language as the
concept descriptions. For axample, the following is a positive instance of the concept

described above:

standing supports standing
brick » wedge

The relations in the concept description language are not independent. For
example, the relation (A supports B) implies the relation (A touches B). Figure 2.1
illustretes the dependencies among these two relations and their negations. The
arrows Indicate which relations are implied by other relations. Because of this legical
hierarchy involving the relzilors, only the urpermost (most specific) valid reiation
along each branch nssad bs sxplicitiy stated for any instance or concept description.
All lower relations in the hlerarchy are then implied by the stated relation, and all

higher relations are known not to hold {or they would be the one explicitly stated).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 21

A Not-TouchB%msDprorts A
- 8 Not=Support A A Touches B A Not-Support B

Figure 2.1 Hierarchy of “Suports" and “Toucuis" constraings.

Arrows Indicate which constraints are implied by others.

Patterns constitute sets of constraints on possil:ic values for node and link
properties. A pattern matches an Instance If all the cui..traints stated by the pattern
are satisfied by the Instance. A pattern may match an instance that contains
properties or relations in addition to those constrained by the pattern (i.e., the above
pattern would match the above instance even if the supports relation was removed
from the pattern). The pattern matcher must teke Into account the hierarchy of
relations shown In figure 2.1, since this hierarchy is used for Implicitly representing

certain relations as described above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 22
2.2.1.1 A Note Concerning This Example

The detalls of the concept description language and the pattern metcher
defined for the arch learning problem have been chosen to allow a compact example
on which to focus a discussion of concept learning. Limitations ¢’ the above concept
description language (l.e., the lack of additiona! node properties such as Size) and the
pattern matcher (i.e., the requirement that pattern nodes map onto rather than into
instance nodes) represent limitations on the formulation of this problem. These do not
reflect limitations on the techniques described for concept learning, which are equally

valid for more complex pattern languages and matching predicates.

2.3 The Aprroach

Although we have defined the arch learning probiem in some detall, we have so

far sald little about how a program might actually learn the concept of an arch. The

approach followed here is to view concept learning as & search problem'. The
concept description language defines a search space containing descriptlons of all
concepts which the program might learn. A program learns the target concept by
examining this search space - subject to constraints Imposed by the training
instances - to find valid descriptions of the target concept. Given this perspestive on
concept learning, there are at least as many strategles for concept learning as there

are methods for examining the search space of possible concept descriptions.

The version space approach is a general method for eolving the class of concept

! The paper [Simon, 1973] discusses learning as one form of problem solving,
and search as one strategy for learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 23

formation problems described above. This method accomplishes a complete @xamination
.of the search space of possible concept descriptions, without backtracking or
reexamining training instances, assuring that all concepts consistent with the training
Instances will be found. In contrast with search strategies which maintain and modify
& small number of concept descriptions, the version space approach efficiently keeps
track of ali plausible concept descriptions at each step. In addition to providing the focus
for the learning algorithm, this computed version space contains useful Information for
applying partially learned concepts and for determining informative new training

instances.

2,3.1 The Vercion Space Approach

The version space approach to concept learning reduces the Initial search
space of concept descriptions In order to determine exactly those descriptions which
are consistent with observed training instances. Central to this approach is a means

for efficlently representing and updating the version space.

The version space is Initialized to contaln all concept descriptions consistent
with the first observed positive tralning Instance. Subsequent positive and negative
training Instances are then examined, and candidate concept descriptions
inconsistent with any instance are eliminated from the version space. Therefore, at
each step the version space contains exactly those concept descriptions which are

consistent with every observed tralning Instance.

Features of this candidate eiimination algorithm for concept learning using

version gpaces Include:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 24

1) All concept descriptions consistent with ell training
instances will be found.

2) The version space at each step provides the program with
a useful summary of all alternate interpretations of the observed
data. This information may be used to recognize the point at which
& concept has been reliably learned, to reliably classify subsequent
instances even on the basis of partially iearned concepts, and to
determine informative new training instances.

3) Resuits produced are independent of the order in which
training Instances are presented.

4) Each training instance is examined only once. Therefore,
training instances need never be stored, and the algorithm requires
time proportional to the number of observed training instances.

’

6) Backtracking is never required to reconsider previously
examined candidate concepts.

6) The appreach may be extended to handle situations in
which no concepi description Is consistent with every tralning
instance. Chapter 6 describes a method for determining all concept
descriptions maximally consistent with the training Instances. A
more practical, heuristic method for dealing with inconsistency is
also described.

2,3.2 Representing Version Spaces

The version space is the "solution" to the concept learning problem at any given
point in the processing of training instances. Although the version space Is a useful
concept to work with, it can only be useful to a learning program If it can be

efficiently represented and computed.

In general the version space may contain an infinite number of concept

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Laarning 26

descriptions. Even for most finlte concept description languages, representing &
varsion space by listing all its members Is hopelessly inefficlent. Not only will storage
space requirements be prohibitive, but the processing required to check each
candidate concept version agalnst each training instance would be also be enormous.
A representation for version spaces is meeded which is both compact, and easily computed by

the learning algorithm.

By a "representation" for version spaces, we mean a way of storing the
information needed to reconstruct every concept description in the version space. As
described below, It Is possible to find such a representation for which "che storage
space requirements are not directly tied to the number of concept descriptions in the

vearsion space.

2.3.2.1 The General-to-Specific Partial Ordering

The key to finding an efficient representation for version spaces lies In
observing that there Is a convenient structure on the search space of concept
descriptions being considered. In particular, a partial ordering can be defined for any
concept description language in terms of its associated pattern matcher. The relation

"more specific than or equal 10" is defined as follows:

Pattern P1 is more specific than or agual to pattern P2 (P1 2 P2) If and
only if P1 matches a subset of all the instances which P2 matches.

We will also use the strict relation “more specific than".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 28

Pattern P1 Is more specitic than pattern P2 (P1 > P2) If and only if (P12
P2) and P1 Is not equal to P2.

For example, In the blocks world concept language defined In the previous

saction, the pattern P1:

standing supports iying
brick ' wedge OR brick

is more specific than the pattern P2:

not=lying touches any orientation

any shape wedge OR brick

since the constraints represented In P1 are satisfied only If the weaker constraints of
P2 are satisfied. P1 matches only Instances which P2 also matches, and P1 s

therefore "more specific than or equal to" P2.

The above definition of "more specliic” is simply a formalization of the usual
intuitive notion of "more specific" or "less general". When these terms are used
anywhere within this dissertation, they are taken to have the above well defined
meaning. Nolice that the definition of the partial ordering Is stated in language
independent terms. The “more specific than or equal to" relation Is shown in chapter
3 to define a partial ordering on any concept description language. Similar partial
orderings have been defined for specific pattern languages and used by [Piotkin,
1870], [Michaiski, 1973], [Hayes-Roth, 1875], and [Vere, 19768] In their work

involving machine learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spacas and Concept Learning 27
2.3.2.2 The Partial Ordering for the Arch Learning Problem

It is quite easy to describe the partial ordering for the blocks-world concept
description language In terms of Individual constraints on nodes and links. We may
define a generai-to-specific ordering on allowed constraints for each node feature
and on the aliowed relations between nodes, based upon the meaning of each
constraint as defined by the pattern matcher. Pattern P1 Is then more specific than
P2 If and énly if each constraint In P1 Is more specific than the corresponding

constraint in P2.

For instance, the hlerarchy shown In figure 2.1 corresponds to the general-to-

specific ordering for relations between nodes'. in that figure, the arrows indicating
that a constraint is implied by another constraint a/so indicate that the constraint
pointed to Is more general. This hlerarchy reflects the intended meaning of each
constraint in the hierarchy, and the pattern matcher Is designed to reflect these
meanings (i.e., the pattern matcher will match the pattern link "A touches B" to the
link "X supports Y" in an instance). Similar partial orderings are easily defined for
allowed constraints on the node features shape and orlentation (e.g. Wedge > (Wedge

OR Brick) > Not-Sphere).

It is easy to show, given these partial orderings on individuel links and node
features, that pattern P1 is more specific than P2 If and only if there is a legal
mapping of nodes and links in P1 to those in P2 such that each constraint in P1 Is

more specific than the corresponding constraint in P2.

1 To be a complete description of the partial ordering on relations, each of the
three lower relations in the figure should also polnt to the constraint “Any relation".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 28

The importance of the generel-to-specific ordering of concepts lies in the fact
that for a broad class of concept description languages, any version space can be
represented in terms of its sets of maximal and minimal patterns according to this
ordering. We shall refer to the subset of maximally specific patterns of a set of
patterns, X, as MAX(X), and to the subset of minimally specific or maximally general

patterns of X as MIN(X), where

MAX(X) = {xeX| (VyeX) =(y>x)}
MIN(X) = {xeX| (VyeX) = (x>y)}

The boundary sets of maximally speclitic patterns, (S}, and maximally general (or
minimally specitic) patterns, (G), of a given version space may be used to represent
the version space. The concept descriptions contained in the version space are
exactly those contained in the sets S and G as well as all concept descriptions

between these two sets in the partial ordering.

In the arch-learning example, detailed below, the version space of ali concept
descriptions consistent with a given training set of arches and non-arches is
represented by the sets of maximally specific and maximally general concept

descriptions consistent with these instances.

This boundary sets representation for version spaces is both compact and
easlly updated in response to new training instances. In chapter 3, a proof is given
that for a well defined broad ciass of concept description languages (including any
language containing a countably infinite number of concept descriptions), the version

space associated with any set of training instances can be correctly represented by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 29

its boundary sets $ and G. Furthermore, it is proven that the stated method for
updating these boundary sets in response to new training instances yields the

representation for the correctly updated version space.

2.3.3 Using Version Spaces for Concept Learning

Verslon spaces are the data structures with which the learning algorithm works.
This algorithm, called the candidate elimination algorithm, begins by initializing the
version space to the set of all concept descriptions consistent with the first observed
positive training Instance. Subsequent tralning Instances are than considered one at
a time, and any concept descriptions inconsistent with the current training instance
are eliminated from the version space. Thus, in the end only concept descriptions

consistent with all the training instances remain in the version space.

Although we speak of the candidate elimination algorithm as operating on the
version space, it actually operates on the boundary sets, S and G, which represent the

version space. Below we explain the candidate elimination algorithm by tracing its

behavior in learning the arch concept '

2.3.3.1 Initializing the Version Space

The version space is initialized to the set of all concept descriptions consistent
with the first positive training instance. This is accomplished by initializing the sets §
and G, respectively, to the maximally speclfic and maximally general concept

descriptions which match the first positive training instance.

' The following is a hand simulation = not a computer implementation - of the
version space approach to this problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Szaces and Concept Learning 30

The most specific concept description which matches the first positive training
instance of an arch, as shown in figure 2.2, Is the description of the Instance Itself.,
This Is the most specific (most constrained) concept description within the search
space which matches the tralning Instance, and therefore is taken as the Initial
element of the set §. The G boundary of the version space Is Initialized to the most
general concept description which matches the Instance. In this case, G contains the
general concept description which states that an arch is any collection of three
objects with any properties and any relations among these three objects (recall that
in this example a pattern can match only Instances conteining the same number of

nodes as the pattern).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concspt Learning

31

lying
brick
%
Positive ¥ <,

Instance: S N

(

(1Y

standing standing
brick not touch brick
lying
brick
Yy
‘,’3 <
o 0
e
& o
standing standing
brick not touch brick
any orientation any orientation any orientation
G:

any shape

any shape

any shape

Figure 2.2 Initializing the version space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 32

Notice that there are very many candidate versions of the target concept
contained in this initial version space: namely the members of S and G as we!l as all
concept descriptions which lie between these two boundary sets in the partial
ordering. It Is clear to us that the current G is too géneral, but on the basis of the
single observed training instance the program has not yet discovered this fact.
Further training instances will reduce the number of concept descriptions contained in
the version space, moving thé boundary sets 8 and G toward each other lp the partial
ordering. Notice, however, that the varsion space can never contain any candidate
version of the target concept which it does not contain at this point. Any such

concept description is inconsistent with this first training instance.

2.3.3.2 Processing Training Instances

Once the version space is Initialized, subsequent training Instances are
considered one at a time. At aach step, the sets § and G are modified as needed to
eliminate from the version space those concepi descriptions which are inconsistent
with the current training instance. These boundary sets of the version space move
monotonically toward each other as they converge toward the target concept. Figure
2.3 deplcts this behavior. The entire figure represents the search space or language
of concept descriptions. Specific patterns are located toward the top of the box, and
more general patterns toward the bottom, as Indicated by the arrow at the left. The
boundary sets of maximally spacific and maximally general ‘concept descriptions

delimit the current versicn space within the search space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 33

more) Maximally Specific Versions (S)
specific
nositive
instances
v
-~
negative
instances
more
general < Maximally General Versions (G)
Figure 2.3

Effect of Positive and Negative
Training Instances on Version Space Boundaries

- The movement of the S§ boundary of the version space may be viewed as a
breadth first search from specific to general patterns. The boundary is forced to
become more general as new positive Instances are encountered which are not
matched by ail patterns in 8. The breadth and depth 6f this search are controlied by
the reguirement that each pattern in 8 be more specific than some pattern in G (this

assures that sach S pattern is consistent with all past negative instances).

In a complementary fashion, the G boundary moves in breadth first manner from
general to specific descriptions of the target concept. It is forced to become more
specific as new negative instances are matched by some pattern in G. The breadth
and depth of this search are controlied by the requirement that each pattern in G be
more general than some pattern in § (this assures that each G pattern is consistent

with ali past positive instances).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 34

The interplay batween these two complementary gsearches is simple, but crucial
to controlling the combinatorics of the problem. Requiring patterns in each boundary
set to lle along the same branch of the partial ordering as some pattern In the
opposite boundary keeps both searches from getting too broad or deep. These
constraints the iwo boundary sets impose on each other are not heuristic or
approximate - they are exact constraints justified by the past training instances. In a
sense, the $ boundary provides a summary (in the language of concept descriptions)
of all past positive instances. it tsils which additional constraints may be added to
the general patterns in the G boundary. This summary is used to direct the search
tracaed out by the G boundary which, in turn, summarizes the negative instances and is

used to direct the 8 search.

The algorithm for updeting the boundary sets in response to a training instance
Is described below. In the formal notation, the predicate M Is the pattern matching
predicate, t' - et P is the set of all concept descriptions In the prescribed language,
the set VS Is the current version space, and the functions MIN and MAX are as

described earlier in this saction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 36

The Candidate Elimination Aigorithm
IF new instance, |, is a negative instance,
THEN BEGIN
COMMENT Retain in the set 8§, only patterns which do not match i;
S «~ {seS| “M(s,));

COMMENT Replace G by the set of least specific patterns In the current
version space which do not match i;

G ~ UPDATE-G(G, S, I);
END
ELSE IF i is a positive Instance,
THEN BEGIN
5 COMMENT Retain in the set G, only patterns which match I;
G ~ {geG| M(g.)};

N .
COMMENT Replace S by the set of most specific patterns in the current
version space which match i;

END.

Where the functions UPDATE-G and UPDATE-S yield the following sets.
UPDATE-G(G, S, 1) = MIN({peVS| =M(p,i)})

= MIN({p<P| (3s€S)(30€G) ((s2p2g) A =M(p,i))})

UPDATE-S(S, G, i) = MAX({peVS| M(p,))})

= MAX({peP| (3s€S5)(3geG) ((s2p2P) A M(p,i))}).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 36

The functions UPDATE-G, UPDATE-S,' MIN, and MAX, and the predicate M must
all, of course, depend upon the particular concept description language. With these
procedures correctly defined, the algorithm as stated above is valid for any concept
learning problem for which the sets G and 8§ correctly represent the version space.
Chapter 3 contains a proof of the correctness of this algorithm, as well as conditions

under which the boundary sets S and G may be used to.represent the version space.

Consider how this algorithm applies to the arch learning example. When the
second training Instance, this time a negative instance, is encountered, the version
space is updated as shown in figure 2.4. Here, the pattern contained in the &
boundary is consistent with the negative instance (it correctly does not match the

instance) and S Is therefore left unaitered.

On the other hand, the pattern in the G boundary of the version space is now
found to be too general. it incorrectly matches the negative Instance, predicting that
this Instance is an arch. Thus the pattern contained in G Is eliminated from the
version space, and the G boundary Is moved to the set of least more specific patterns
which do not match the negative instance, yet which remain more general than the S

element. In this case, the touches relation is added to the old G pattern to arrive at

the new G boundary of the version space.

! Functions simllar to UPDATE-S have been implemented by several researchers
for particular pattern languages (e.g. the least generalization algorithm of Plotkin
[Piotkin, 1870], the interference matching aigorithm of Hayes-Roth [Hayes-Roth,
1876), and the maximal common generelizations algorithm of Vere [Vere, 1976]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Varsion Spaces and Concept Learning

standing not touch

37

standing

brick
Negative

Instance:
—

brick

lying
brick
lying
brick
S }/
>
standing not touch standing
brick brick

any orientation

any shape
New G:
any orientation any orientation
any shape any shape
Old G: any orientation any orientation any orientation
any shape any shape any shape

Figure 2.4 Revising the version space on the basis of a negative

training instance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Varsion Spaces and Concept Learning 38

it Is important to understand why the touches relation is added to arrive at the
new G, while alternate constraints (alternate branches In the search) are not
considered. The supports relation was not considered since, as mentioned above,
supports Is a more specific constraint than touches. Since the touches relation is
sutficlent, adding the supports relation would not yleld a maximally general concept

description.

A different constraint which might have been added to the old G to disallow the
match to the negative instance would be to constrain the shape of one of the objects
to be something other than a brick. This branch of the search Is not considered
because the resulting pattern is no longer more general than $ (and is therefore
inconsistent with some past positive instance!). Thus, although there are many
patterns more specific than the old G which do not match the new negative instance,
In this case there is only one maximally genera! such pattern consistent with S. In

general, of course, there may be severa! patterns in the updated boundary set G.

The procedure UPDATE-G(G, S, I), which determines the patterns minimally more
specific than G, less specific than §, and whick 42 not match the negative instance |,
must of course depend upon the pattern languaga. For the current language, such a
procedure could be written using the fact that patterns are made more specific only
by tightening (making more specific) existing constraints on individual nodes or links,
or by adding new constraints. Given a pattern g, which matches |, one procedure for
finding all minimally more specific patterns less specific than some pattern in S, which

do not match |, is the following:

1) For each pattern, s, in §, find all mappings of nodes in g to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spacas and Concept Learning a8

those in s, such that each node and link constraint In g Is less
specific than the corresponding constraint in s. These mappings
indicate how each constraint in g may be made more specific while
g remains more general then or equal to s.

2) Consider In turn, each legal mapping of nodes and links in g
to those in |, corresponding to the mappings for which g matches |i.
Find the set of all minimal ways (of those allowed by step 1) for
making g more specific, such that this mapping no longer constitutes
a match of g to i. Repeat this for each mapping, using the updated
set of patterns at each step.
The procedure UPDATE-G may therefore replace any pattern in G which matches i by
the set derived from the above procedure, then find the set of minimally specific

patterns In the resulting set.

& In processing the above negative training Instance, the mappings of the pattern
in G to the pattern in S indicate ways In which each node in the general pattern may
be made more specific, as well as links which may be added to that pattern. By then
examining the mappings of this general patiern to the negative instance, it is
apparent which of these possibilities result in patterns which do not match the
instance. This procedure results in considering only patterns which will not match the

new Instance and which are assured to be more general than the pattern in S.

The next training instance Is the negative instance shown in figure 2.6. The §
boundary Is consistent with the negative Instance, so it Is left unchanged. The
pattern contained in G incorrectly matches the new regative Instance, so it is
eliminated from the version space, and the G boundary is made more specific. As with

the previous training instance, although there are many sets of constraints which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 40

could be added to the old G to disallow its match to the negative instance, there is
only a single resulting pattern In the now G boundary set. Any other way of making
the G pattern more specific would be more specific than the new G shown in the
figure, would fail to disallow the match to the negative instance, or would fail to

remain more general than the S version space boundary.

lying
Negative brick
Instance:
standing touches standing
brick brick
lying
brick
S:
standing not touch standing
brick brick
any orientation
any shape
New G:
any orientation not touch any orientation
any shape any shape
Figure 2.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 41

Figure 2.6 shows the effect on the version space of a new positive training
instance. In this case the G boundary of the version space correctly matches the
positive Instance, and Is tharefore left unchanged. The pattern contained in the §
boundary does not match the new Instance, so It is eliminated from the version space,
and the S§ boundary moved to the set of minimally more general patterns (still more
speacific than G) which match the instance. As with updating G in previous instances,
there are many ways of making the pattern In S more general to maka it consistent
with the new Instance, but In this case, there Is only a single pattern contained In the

resulting S.

The procedure UPDATE-S(S, G, 1), which determines all patterns minimally more
general than those in S, which are more specific than some pattern in G, and which
match the Instance |, Is used to obtain the new set S for this instance. One strategy
for implementing UPDATE-S Is to apply the following procedure to each pattern in the
set §, then determine the set of maximally specific resulting patterns.

1) For each pattern, s, In the set S, determine all mappings of
nodes in s to those in |I.

2) For each mapping found in step 1, generalize each node and
link constraint In 8 as needed untii It matches the corresponding
feature value or link in I. This ylelds the minimally more specific
pattern which matches | under this mapping. Find the maximally
specific patterns in the resulting set, and delete those which are
not more specific than some pattern in the set G.

In the example of figure 2.6, the obvious mapping of the pattern in S to the new
positive instance Is the mapping which results In the maximally specific resulting

pattern shown in the figure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning

42

standing
Positive wedge ‘\QE?
Instance: o
e
K3
standing not touch standing
brick brick
lying
brick
Old S:
standing not touch standing
brick brick
lying OR standing
brick OR wedge
New S:
standing not touch standing
brick | brick
any orientation
any shape
G:
any orientation not touch any orientation
any shape any shape
Figure 2.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 43

The four training Instances considered thus far are exactly the four used by
Winston [Winston, 1876] to teach the arch concept to his program. The version
space delimited by the S and G boundaries In figure 2.6 contains all the concept
descriptions (within the described language) which are consistent with these four
training Iinstances. From the number of alternate plausible concept descriptions in the
versior space it Is clear that the information contained in these four training instances
Is not sufficient to unambiguously describe the arch concept. This point lllustrates an
important feature of the version space approach to concept learning: by examining
the alternate concept descriptions In the version space, It Is possible to recognize
whether enough training data has been processed to unambiguously learn the concept.

This point is discussed further In chapter 4.

Figures 2.7 and 2.8 illustrate two additional training instances (chosen by the

author) and their effects on the version space of the arch concept.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Negative
Instance:

Version Spaces and Concept Learning

not touch

standing

121

brick

lying

brick

44

New G:

Old G:

lying OR standin

brick OR wedge S,
x> 8 @&b
o3 s o
P
standing not touch standing
brick brick
any orientation
an
5 y shape
S
BN
an i ion i i
y orientat not touch any orientation

any shape

any orientation

any shape

any orientation

any shape

not touch

any shape

any orientation

Figure 2.7

any shape

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning

45

lying
brick
Negative
instance:
standing not touch standing
brick brick
lying OR standing
brick OR wedge
standing
5 . not touch
S: brick
any orientation
any shape
)
ot
o)
Now G any orientation not touch any orientation
' any shape any shape
any orientation
o,gc‘—’ any shape
s
any orientation any orientation
Oid G: not touch
any shape any shape
Figure 2.8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 46
2.3.4 Applying Partially Learned Concepts

At some point the program wlll be expected to apply Its learned definition of the
target concept. Depending upon the training data observed up to that point, there
may or may not be a single concept description in the version space. If there Is not,
then the identity of the target coricept has only been partially determined by the
training instances, and some strategy for using the partially learned concept must be

found.

One strategy is to choose a single concept description from the versicn space,
relying upon heuristics or outside knowledge of the domain to make this selection. The
chosen concept description could be taken as the current best hypothesis of the
identity of the target concept, and used to classify future possible instances of the

concept.

A second strategy is to take the entire version space as the current description
of the target concept. This is a more complete strategy, since the patterns contained
in the version space represent all alternate interpretations of the training data within
the concept description language. With this strategy, new Iinstances are
characterized by taking each pattern in the version space into account. If all
patterns in the version space classify the new instance as an example of the target
concept’. then the prograin is certain that this is an lnstanqe of the concept (i.s.,

avery possible interpretation of the training instances yields the same classification).

Howaever, If some patterns in the version space match the new instance while others

' This may be determined simply by testing elements of S against the new
instance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 47

do not, then the program has detected that there are alternate possible

interpretations of the tralning data ylelding conflicting interpretations of the new

instance.

As an example, suppose that only the first four training instances were
presented in the above arch learning problem. If the program were then asked
whether the structure in figure 2.7 were an arch, its response would depend upon
which of the above two strategles were employed. |f the first strategy were used,
then the program would answer "yes" or “no", depending upon which concept
description were chosen from the version space. If the second strategy were used,
then the answer would be "On the basls of the observed training .data, the
classification is ambiguous. Some concept descriptions consistent with the training
data indicate that this Is an arch, others indicate that it is not." On the other hand, if
the new instance were classified as an instance of the concept by every pattern in
the verslon space, the response would be "All alternate interpretations of the training

data indicate this is an instance of the concept.”

Thus, by using the version space itself to describe what is known about the
target concept, it Is possible to make reliable use of whatever training deta are
avallable. The more Informative the provided training Instances are, the fewer
alternate concept descriptions in the version space, and the more often the version
space willl classify subsequent possible instances with certainty. Chapter 4
discusses this use of version spaces in greater detail, as well as the related issue of

choosing informative new Instances to refine partlally learned concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning a8

2.3.4.,1 Efficlency

Section 2.2.2 discussed how each boundary set of the version space is used to
limit the size of the other. This effect was apparent in the above example in which
the S and G boundary sets never contained more than a single concept description.
These sets will In general contaln multiple patterns, as lllustrated in the following
section, since the general-to-specific ordering is a partial ordering. Thus, even
though the boundary sets representation for version spaces constitutes a major step
toward containing the combinatorial explosion Inherent to learning, the explosion is not

smothered completely.

The size of the boundary sets Is not directly related to the number of concept
descriptions in the version space, as Is clear from the above example. The size of
these sets is, however, sensitive to the the particular training instances encountered.
Although the first four training Instances in the above arch learning example were not
chosen with the version space approach in mind (they were taken directly from
[Winston, 1875]), each was carefully chosen by Winston to highlight a single
important aspect ot the erch concept. This strategy for choosing training Instances
helps control the size of the version space boundaries by limiting the branching in the
breadth first searches. Presumably, these training instances also limited the

branching in Winston's depth first search strategy.

The problem of iarge boundary sets is more evident in more complex search
spaces. In the Meta-DENDRAL program (see chapter 6), boundary sets containing

100 patterns have at times been required to represent the version spaces of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 40

chemical concepts learned by that program. In such cases the concept descriptions

contained dozens of nodes and links in contrast with the three node arch example.

Although the size of the boundary sets representing version spaces can be a

serious problem, it can be controlled to some degree by careful selection of training

instances, and of course, by introducing heuristic pruning‘. Chapter 4 discusses
strategies for generating tralning instances to control the size of the § and G
boundaries. Chapter 7 contains a further discussion of relative efficiency of the

version space approach and several other concept learning strategies.

2.4 A Second Example: Learning Feature Value Intervals

Here we briefly consider a second concept learning problem in order to provide a
different perspective on the version space approach. This problem involves learning
concepts from training Instances represented as teature vectors. The task is to
determine ranges of allowed numerical values of & given set of features which
distinguish positive instances of the concept from negative instances. The feature
value Interval learning problem outlined here is similar to that studied by [Brown,

1877] in which the problem of learning bridge tldding strategies was considered.

This is a simpler problem than learning network or structural descriptions of
concepts; it involves no relations between objects. In fact, the kind of learning
described in this example - determining possible generalizations of properties of

individual objects - might take place for each node in 8 structural description learning

1 Introducing heuristic pruning, however, invalidates the guarantee that al!
concept descriptions consistent with the data will be found.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 60

problem. Because of its relative simplicity this problem provides an llluminating glimpse

of the version space approach to forming generalizations.

Described In the format used earlier, the Interval learning problem Is:

Interval Learning Probiem:

Given: 1. Concept Description Language: A1l pairs of intervals of the
following form where a8 and b are real numbers.

gad¢ x <b
or as x <b
or ad x sb
or as X sb

For example, the following is a legal concept description:
(2¢xs5, 181sy<568) .
© 2. Pattern Matcher: A pattern matches an instance if each
feature value in the instance lies within the corresponding
interval specified by the pattern (the positive instance

below matches the above pattern, while the negative
instance below does not).

3. Training instances: Ordered pairs of values of the properties
X and Y, along with an assignment of the training instance
as a positive or a negative instance of the target concept.
For example, the following are training instances:

2 4 , 388 - positive instance
6 , 208 - negative instance

Determine:

A1 concept descriptions within the given language which are
consistent with every training instance.

The above definition of pattern matching for this concept description language,
taken together with the eatlier general definition of "more specific than or equal 0"

leads to the following partial ordering on patterns In this example.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 61

Partial Ordering for Feature Value Intervals: Pattern P1 is more specific
than or equal to pattern P2 If each interval specified by P1 [s
conteained in the corresponding interval specified by P2.

For example, the pattern (2<x<6, 6<y<10) is more specific than the pattern (0<{x<6,

3<y<12).

Figure 2.8 illustrates the sequence of version spaces (generated by program)

which resuit from applying the candidate elimination algorithm to the sequence of

training instances shown.

The process begins by initializing the version space to the space of all patterns
consistent with the first positive training instance, in this case (4, 8). The most
specific pattern consistent with this positive training instance (i.e., the pattern which
can match only this instance) is used to initialize the set S. The most general pattern
in the language {which matches every possible instance) is clearly consistent with the
first positive training instance, and is therefore used to initialize the set G. The two
patterns contained in S and G, as well as all patterns between these two in the
general-to-specific partial ordering, are all the concept descriptions In the allowed
language consistent with this first training instance. Although there are an
uncountably infinite number of patterns in the version space, only these two patterns

belonging to S and G are needed to represent the version space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 62

Sequence of i Version Space
Training Instances Speciﬁlc Boundary (S) General Boundary (G)
(4, 8) = positive
instance
(4sxs4, B8sys8) (=0o{x <0, ={y{e)

(3, 12)= negative
instance

. 3¢{x<w, —oo(,y(oo}
~00{ %00, =0o{y<12)
(2, 9) - positive
instance
(2sxs4, 8sys9) (=oolx<w, =0{y<12)
(1, 9) - negative
instance
» (1<x<e0, =y<12)
(5, 7) - negative
instance
. 1{x<5, ={y<12)
1<x<0, 7<y<12)

(5, 9) - positive
instance

(2sx<5, 8<ys9) (1<{x<e, 7<y<12)

Figure 2.9: Feature Interval Learning Example

Once the version space is inltialized, additional training instances are examined
one at a time, and versions of the emerging concept which are inconsistent with the
current training instance are eliminated from the version space by altering the

boundaries S and G. As in the earlier example, negative instances force the G

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 63

boundary of the verslon space to become more specific, whereas positive instances

force the S boundary to become more general.

The boundary G of the initlal version space is inconsistant with the second
tralning Instance (it Incorrectly matches this negative instance). The boundary Is
therefore moved to the set of least more specific patterns which do not match the
current negative instance and which remain more general than the current S. In this
case there are two such patterns lying along different branches in the partial
ordering. Notice that in addition to the two patterns shown In the new G, the pattern
(-oXx<3, =(y<{w) also is minimally more specific than the old G without matching the
new negative instance. Here, however, the constraints imposed by the S boundary on
branching of the G boundery come into play. This pattern is not considered since it is
not more general than the S boundary, and Is therefore known to be inconsistent witii

some pravious training instance.

The resulting version space is pruned further by the third training instance which
affects both the S and G version space boundarias. This Iinstance causes $ to
become more general and eliminates one of the two patterns from G. Notice that a If
a pattern contained in G does not match a given positive instance (as Is the case
here), that entire branch of patterns in the partial ordering is eliminated from the
version space. This Is because the offending pattern can nelther be made more
general (it Is already as general as possible without matching some negative instance)
nor more specific (making any pattern more specific cannot result in it matching an

instance which it did not previously match).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning &84

The process of eliminating candidate concepts from the version space continues
until at the end of the training sequence the version space |s bounded by the
patterns shown. Figure 2.10 illustrates the patterns contained in the final boundary
sets derlved from the trailning data. In this figure, positive instances are plotted as
"+" points, and negative instances as "-" points. Each pattern Is depicted as a
rectangle whose boundaries are defined by the stated intervals on x and y. A pattern
matches an instance if the instance is contained within the rectangle corresponding to
that pattern. It is possible to verify from the figure that the boundary sets S and G
derived by the program are, in fact, the maximally specific (smallest rectangle) and
maximally genersl (largest rectangle) pattarns in the sallowed language which are

consistent with all training instances.

— 3
105
. _ S
%+

5

o s 10

G boundary set S boundary set

gl: 2<{x<ew, 7<y<12 $l: 2sxs5, 8sys9

Figure 2.10 The verslon space for a feature interval learning
problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Concept Learning 66

2.6 Summary

The wversion space approach to concept learning has been described and
illustrated. Subsequent chapters provide a formal justification of the approach, and
examine extensions of this approach for dealing with errorful data. The use of version
spaces to represent and apply partially leerned concepts and to generate Informative
new training Instances Is considered, and the use of version spaces for concept
learning in the Meta-DENDRAL domain of chemical spectroscopy described. Finally,

the use of version spaces for concept learning Is compared with earller methods for

concept learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Chapter 3

Formal Treatment

3.1 Introduction

A formal description and justification of the verslon space approach to concept

learning Is presented In this chapter’. A class of concept learning problems Iis
defined, and the version space approach to this class of problems presented. The
major results presented In this chapter are the following:

1) The correctness of the boundary sets representation for

version spaces is proven for a broad class of admissible concept
description languages.

2) The correctness of the procedure for updating these
boundary sets in response to new tralning Instances is proven.

3) An extendad definition of version spaces Is given for
dealing with Inconsistent concept learning problems (discussed
further in chapter 5). The correctness of the boundary sets
raepresentation for this definition of version spaces is proven, as
well as the correctnaess of the stated procedures for updating
these sets in rasponse to subsequent training Instances.

3.2 The Concept Learning Problem

Given a set, |, of all possible instances of concepts, a target concept In | is

defined as an ordered pair, <C,, C.), of subsets of | whare

1] am Indebted to Lew Creary and Chitoor Srinivasan for useful suggestions
which helped to clarify several Issues in the following discussion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 67
c.NncC.=g.

The set C, Is known as the set of positive Instances of the concept, and C. as the

set of negative instances of the concept.

The concept is presented as a sequence of training instances drawn from C,
and C_. At any point In this sequence of training instances the sets |, and [. are

defined as follows:

I, = {leC, | | has been presented as a positive instance}

I. = {leC. | i has bean presented as a negative instance}.

5 A concept learning problem is an ordered triple <P, M, <l,, I.>> where

P = & set of patterns
M(p, i) = a matching predicate where peP and lel

<l,, I.> = sets of positive and negative instances of the target concept.

We define the consistency predicate K, as follows:
K(p, €Iy 1.2) & (((Viel,) M(p,D)) A ((Viel.) =M(p,)))
and will say that a pattern p Is consistent with training instances <l,, I.> if and only If

K(p, <I,, 1.3).

Given a concept learning problem <P, M, <l,,!.>>, the goal of the learner is to

find patterns from P which are consistent with the observed training instances of the

concept’. Such patterns allow distinguishing elements of |, from elements of I_, and

' Other criteria, such as “generality” or “elegance", may also be Important in
choosing a pattern to describe the concept. Here only the central critarion for
acceptance, consistency with the training instances, is considered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment ' 68

are to be used to classify subsequent elements of |. The solution to the concept

learning problem is the set VS of all such patterns.
VS = {peP| K(p, <I,, 1.7) }

The set VS assoclated with a particular concept learning problem <P, M, <I,, {.>>
will be called the version space of the training instances <l,, I.> with respect to P and

M, or simply the version space assoclated with the concept learning problem.

3.3 Representing Version Spaces

The version space associated with a particular goncept learning problem is the
solution to that problem. In order for computers to solve such problems version
spaces must be represented efficiently. In this section the boundary sets representation

of varsion spaces is discussed.

We begin with a definition of the boundary sets representation for version
spaces. This representation utilizes a partial ordering over P which is defined for any
concept learning problem by the matching predicate M. The "more specific than or
equal to" relation on elements of P Is first defined and shown to be a partial ordering.
The boundary sets representation is then defined in terms of this partial ordering, and
shown to be valid for any pattern language a.n:.‘ matching predirate meeting a certain

admissibllity criterion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 68

38.3.1 The Partial Ordaring

The relation more specific than or equal to (2) is defined on the set of patterns, P,

as foliows:

(VP 1,P2€P)(Py2p,) # ({iel | M(py)} ¢ {let | Mlp,I)})).

it will also be useful at times to rely upon the strict relation more specific than (O)

defined as follows:

(VP1.P2€P)((P1>P2) “ ((py2p) A (py%p,))).

Theorem 1: Partial Ordering Theorem. The relation2 on P Is a partial ordering.

Proof: The relation Is
reflexive: (VpeP)(p2p)
antisymmetric: (Vp,,p,eP)((py2p,) A (p22p4))
= ({lel | M(p,)} ¢ {lel | M(p,,D)} ¢ {iel | M(py,)})
= (p4=py)).
and transitive: (Vp,,p,,p3€P)((p412p,) A (p,2p3))
> ({iel | M(py)} ¢ {iel | M(p2)} < {iel | M(pa.)})

nd (P1ZP3))-

The following definitions will be usefu! in considering nartlally ordered subsets of

P. For any subset A of P, we refer to the subset of the maximally specific elements of A

as MAX(A):

MAX(A) = {acA] (Va'eA) =(a'>a))}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 80

Similarly, we refer to the subset of minimally specific (or maximally general) ¢lements of A
as MIN(A):

MIN(A) = {acA] (Va'eA) ~(a>a')}.

Finally, we de‘ine a ckain of P as a totally ordered subset of P. That Is, a subset A of
P is a called chain of P if and only if

(Vx,yeA)(x2y Vv y2x)

3.3.2 The Boundary Sets Representation for Version Spaces

Given a concept learning problem <P, M, <i,, I.>> and the associated version

space VS, the boundary sets representation for VS is defined as the ordered pair <G, $>
of subsets of P, where
G = MIN(VS)

S = MAX(VS).
Notice that by the definition of VS,

G = MIN({peP] (K(p, <I,,l.2))})

S = MAX({peP| (K(p, <1150}).

The pair of sets <G, S> associated with a concept learning problem is said to
reprasent the version space, VS, assoclated with that problem If and only if

(VpeP)((peVS) » (3geG)(IseS) (s2p2g)).

Theorem 2 states that for admissible pattern languages, the version space

associated with any concept learning problem can be represented by its boundary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 81

sets <G, S). Before precenting this theorem, we define the admissibility criterion for

pattern languages.

3.3.3 Admissibility of Pattern Languages

A set of patterns P with assoclated matching predicate M is said to be an
admissible pattern language if and only If every chain of P has a maximum and a

minimum element.

Notice that since every finite or countably Infinite chain has a maximum and =2
minimum element, every finite or countably infinite set of petterns yields en edmissible pattern
language. Therefore, the structural pattern languages used In the arch learning

problem of chapter 2 and the chemlistry problem of chapter 6 are admissible.

An example of an inadmissible pattern language helps further clarify the
admissibllity criterion. Consider the language of patterns described In the second
example of chapter 2 (section 2.4). Here P is a language of feature value intervals,
consisting of patterns such as (8<x<5, 4<y<6). This language Is admissible even
thougt it is uncountably Infinite. The language becomes Inadmissible, howevaer, If only
the strict “<" relation Is aliowed in defining feature value intervals, and not the
relation "<". The resulting language is Inadmissible, and the version space assoclated
with any set of training Instances cannot be represented by its boundary sets.
Consider, for example, the positive tralning Instance (4, 8). The pattern
(3.89¢<x<4.01, 7.00<y<8.01) Is consistent with this training instance, and there Is an
.Infinlte chain of progressively mcre specific patterns also consistent with the

Instance, with no maximum element,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 62
3.3.4 Validity of the Boundary Sets Representation for Version Spaces

For concept learning problems Involving admissible pattern languages, version

spaces may be represented in terms of their boundary sets <G, S>.

Theorem 2: Validity of the boundary sets representation.

Consider a concept learning problem <P, M, £I,, 1.2, with
assoclated version space VS, and assoclated boundary sets <G, S$>,

and for which I, and |. are non-empty.

If P and M are admissible, then (VpeP)({(peVS) # (3geG)(3seS) (s2p2g)).

- Proof: We first prove that (VpeP)((peVS) « (3geG)(3seS) (s2p2g)).
Consider arbitrarily chosen peP and s€S such that s2p. By S ¢ VS, we have
(Viel,)(M(s,1))
and by s2p,
{ie! | M(s,)} ¢ (iet | M(p,D)} .

Thus, (Viel,)(M(p,)) . (1)

Similarly, for arbitrarily chosen geG such that p2g,
(Viel.)(=M(g,D)

and by p2g,
{iei | M(p.1)} ¢ {ie! | M(g.D} .

"Taking the complement of sach set,
{iet | =M(p.)} 2 {lel | ~M(g.D} .

Thus, (Viel.)(=M(p,)). (2)

By (1) and (2), peVS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 83

The proof that (VpeP)((peVS) = (3peG)(IseS) (s2p2g)) follows directly from
the admissibility of P and M. Consider an arbitrary peVS, and chose &
maximal chaln, A, of VS that contains p. Because P and M are admissible,

A contains a maximum element, s. Because A Is a maximal chain of VS, s€S.
Simllarly, A has a minimum element which Is contained in the boundary set G.
Thus,

(pevs) = (3seS)(3geGi(s2p2g),

and the theorem is proven.

Theorem 2 shows that for the class of admissible pattern languages, one can
determine whether a pattern belongs to a given version space by a simple test
involving the members of G and S. Thus the procedure for testing for membership of
an arbitrary pattern in a given version space Is efficlent with this boundary sets

representation of version spaces.

8.4 The Concept Learning Algorithm

In this section, a proof Is given of the validity of the procedure described in
chapter 2 for revising the boundary sets <G, S> In response to & new training
instance. We consider two learning problems which differ by a single training
instance, and show that the boundary sets associated with the second concept
learning problem may be derived from those assoclated with the first problem and the
new training instance. Theorem 3 covers the case in which the new tralning instance
is a negative instance, while theorem 4 covers the case where the new Iinstance Is a

positive instance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 64

Theorem 3: Revising boundary sets given a negative training instance.

Consider a concept learning problem CP=<P, M, I, |.>> with associated
VS, §, and G; and a second concept learning problam C™' = <P, M, Clyy 112 with

associated VS', §', and G', where I.' = |_ U {I}. Then the sets S' and G' obey the

following equalities.

G' = MIN({peVS| =M(p,1)}

S' = {8eS| =M(s,1)}.

Proof: By definition of the consistency predicate, we find that
K(p, <lyy 1.'3) & (K(p, <Iy, 12) A =M(p,i)))
and by definition of VS,
VS' = {peP|K(p, <l 1.D)}
= {pePiK(p, <I,, 1.¥) A =M(p,1)}

= {peP| (peVS) A =M(p,i)}

= {peVS| ~M(p,)).

Therefore,
G' & MIN(VS') = MIN({peVS| =M(p,1)}).

The first half of the theorem !s proven.

In order to prove S' = {5eS] =M(s,))}, we first prove that S'cS.

Consider arbitrary s'cS'. We wish to prove that s'eéS. We begin with
(VpeVS) ((peVvs') v (pgvs'))

By definition of S', we know that (VpeVS') (~(p>s')). Therefors,
(¥peVS) (—{p>s') v (pgVs")).

Since VS' & {peVS| =M(p,l)}, we know that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Forma! Treatment 65

(VpeVvS)((peVvS') = M(p,) » ~(p>s"))
Thus (VpeVS)(=(p>s')). But § = MAX(VS) & {qeVS| (VpeVS)(~(p>q))).

Therefore, 8'€S, and we have proven that S'cS.

Since S' = MAX(VS') & MAX({peVS| =M(p,))}), and S'¢S¢VS, we have
§' = {peS| =M(p.1}},

and the theorem is proven.

Theorem 4: Revising boundary sets given a positive training instance,

Consider a concept learning problem CP & <P, M, <I,, I.>>, with assoclated
VS, S, and G; and a second concept learning problem CP= = <P, M, <I,*, |.>> with
associated version space VS' and boundary sets §' and G'. Assume ;' =l, U {i}.

The sets S' and G' associated with CP' obey the following equalities:

§' = MAX({peVS| M(p,)})

G' = {geG| M(g.l)}.

Proof: This thecrem Is the dual of theorem 3. Its proof Is analogous to the

ﬁroof of that theorem.

3.5 inconsistent Learning Problems

This section presents an extenslon of the version space approach which allows
dealing with inconsistent concept learning problems; that Is, concept learning problems
for which no pattern from P is consistent with the training instances. This extended

approach deals with inconsistency by consldering sets of patterns consistent with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 66

subsets of the tralning Instances. Methods for dealing with Inconsistent learning
problems are discussed in detail in chapter 6. This section provides the theoretical

foundation for that discussion.

A more general definition of the term version space is introduced, In which a
version space contains patterns consistent with at least one of a set of alternate
pairs <I,, I.>. The validity of representing such version spaces by their boundary sets
is proven in theorem 6. Theorems 6 and 7 prove the correctness of the procedure

described in chapter & for revising these boundary sets.

We begin by introducing the following notation which will be useful In referring to

s sets of subsets of I, and I.. We denote the set of m-element subsets of A by SS(A,

m). PS(A) refers to the power set of A.

SS(A, m) = {XePS(A)] (cardinality of X)=m}.

In the following, unless otherwise stated, when discussing & concept learning
problem <P, M, <I,, 1.>>, the symbols pos and neg are taken to be the cardinality of I,
and |_ respectively.

pos = cardinality of |,

neg = cardinality of ..

In inconsistent learning problems, there Is no pattern consistent with all training
instances. Chapter & describes strategies for determining patterns consistent with
the largest possible subsets of training instances. To accomplish this, It is useful to

generalize the dsafinition of version spaces as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment : 67

We define the version space VS, o associated with the concept learning problem
<P, M, <I,, 1.>> as the set of all patterns consistent with some pos-s slement subset of

|, and some neg-g element subset of I..

VS, g = {PeP| (3,881, p-s)) (3T.eSS(l., n-g)) (K(p, <T,, TO))}.

The boundary sets S, ; and G, ; are defined as follows:
Sy = MAX(VS, o)

G, o = MIN(VS,).

Notice that Sy and Gy, are equal to the boundary sets S end G defined in section

3.2 of this chapter.

We now prove that any of a range of boundary sets S and Gk.o correctly

represent VSM. Notice that theorem 2 is & special case of theorem 6, for which
s=g=)=k=0,
Theorem 6: Validity of boundary sets representation for vsm.

Consider the concept learning problem <P, M, <I,, I.>> for which P and M are

admissible, and in which |, and |, are non-ampty subsets of |

If j2g and k2s, then

(VpeP)((peVS, o) » (3seS,)(3geC, ()s2p2)).

Proof: Consider first the proof that (VpeP)((peVS, o) « (3seS,)(3geGy o)(s2p29)).
Conslder arbitrarily chosen

ses,',. and peP such that s2p. Then by seVS§, ;,
((37,€SS(l,, pos-s)) (VicT,) M(s,)))

and by s2p,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment

{iel | M(s,)} ¢ (lel | M(p.).
Thus,
((3T,eSS(l,, pos-s)) (VieT,) M(p,))) (1.
Similarly, for arbitrarily chosen geG, ; and peP such that p2g, by gevs,

((37.€SS(l., neg-g)) (VieT.) =M(g.)).

And by p2g,
{iet | M(p.)} ¢ {let | M(g/D)}
{let | =M(p,D} 2 {lel | =M(g.D}.
Thus,

(37.eSS(l., neg-g)) (VieT.) =M(p.)) 2).

By (1) and (2) above, we conclude peVvs, ..

Next consider the proof that (VpeP)((peVs, ;) = (3seS;)(3g€G, ;)(s2p29)).

We begin by expressing VS;

VS, ; = {peP| (3T,e85(l,, pos-5)) (3T.eSS(1., neg-g)) (K(p, <T,, T.>))}

as the union over all <T,, T.), of VS, o associated with that <T,, T.>:

VS, \ , VS, o associated with <T,, T.>
<T,, T
T.€SS(l,, pos-s)
T.eSS(l., neg-g)

Conslder, then, arbitrarlly chosen peVS, ;. By theorem 2,

(3seS)(3geG)(s2p2g)

where S and G are the boundary sets assoclated with the <T,, T.>
for which K(p, <T,, T.>).

And for arbitrary se$S such that s2p, either 6€S, ;, or there is some

p contained In a different veraion space, VSp,0' assoclated with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[

68

13

Formal Treatment 60

a different <T,, T.>', for which p>s. In this c;se. again by theorem 2.‘
(3s'eS')(s'2p2s)

where S' is the set MAX(VS,o'). Now either s'eS, g, or there is

yet another verslon space containing some more specific pattern. Since |,

and |. are assumed to be finite sets, SS(I,, pos-s) and SS(l., neg-g) must

also be finite. This sequence of progressively more specific patterns bounding

the VS, o associated with various {T,, T.> therefore has a

maximum element, which by definition belongs to Sm. Therefors,
(VpeVs,) (3se§, o) (s2p).

And since for J2g, S, ,cS, , we have

(VpeVS, o) (IseS,) (s2p) for J2g.

A similar argument applies to the set Gy ;, yielding
(VpeVs, o) (3geG; o) (p2g) for k2s.
Therefore, the theorem is proven:

(VpeVS, o) (3seS;) (3geG, o) (s2p2g) for J2g, k2s.

Finaliv, we prove that algorithm described in chapter 6 for revising the sets S,'g
and G,'° in response to a new training Instance is corract. Theorems 6 and 7 consider

the case is which the new training instance Is a positive and negative instance,
respectively. Theorem 6 is a generalization of theorem 4, theorem 7 a generalization

of theorem 3.

Theorem 6: Revising boundary sets given a positive training instance.

Consider the concept learning problem CP=<P, M, <l,, I.>> with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 70

assoclated VS, , S, ., and G, , and & second concept learning probiem

CP' = <P, M, <I,', I.>> with associated VS, ', §, /', and G, ', and where

=0, U D).

The sets S, ;' and G, ;' may be determined from the sets S, S,.1, and G, ¢ as

follows:

S.o' = MAX(S,_q o U MAX({peVS, ;| M(p,)}))

G, o' = {PeG, gl (3seS; ')(s2p)}.

Proof: We begin by proving the first of the two equalities. Assume that

the cardinality of |, is pos, and the cardinality of I. is neg.
Then the cardinality of I,' is pos+1. Consider the version space VSM'.

VS, ' = {peP|(3T,eSS(l,', pos+1-5)) (3T.€SS(., neg-g)) (K(p,<T,, T.>)))}.
Notice that the set of pos+1-s element subsets of I,' may be written as the
union of two disjoint subsets as follows:

SS(l,', pos+1-5) £ AU B,
where A is the set of those subsets of |,' that do not contain the
new instance i.

A = {XeSS(l,', pos+1-s)] =(ieX)}

= SS(I,, pos-(s-1))

and B contains those subsets of I,' which contain the new instance, i.

B = {XeSS(l,', pos+1-3)] (ieX)}.
VS, ' may therefore be represented as the union of two sets:

VS, ;' ® {PeP| (3T,€A) (3T.€SS(I., nag-g)) (K(p, <T,, T.>))}

U (peP| (3T,€B) (3T.€SS(L., neg-g)) (K(p, <T,, T.>))}

VS, ® VS,.4 U {PeP| (3T,€B) (3T.€S8(l., neg-g)) (K(p, <T,, T.5))}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Forma!l Treatment

Since each element in B contains the new instance i, the second set in the
sbove union may be rewritten as follows:
{peP| M(p,)) A (3T,e85(l,, pos-s)) (3T_eSS(l., neg-g)) (K(p, <T,, T.>))}
= {peP| M(p.l) A (PeVS,)}
= {peVS, ;| M(p.D}.
Thus,
VS, o' = VS,q,9 U {PeVS, | M(p.D)}. (1).
But since
MAX(XUY) & MAX(MAX(X) U MAX(Y)),
The first half of the thecrem ls proven:

Sug' ® MAX(VS, ') = MAX(S,.q g U MAX({peVS, ol M(p,D}).

We now prove that G, ' = {peG, | (BSES..Q‘)(SZP)).

Because both G, ' and G, ; are consistent with any subset
of negative Instances in SS(I., neg-g), they differ only in that patterns
contained in G, ;' must be consistent with pos+1-s instances from 1,'
whereas patterns contained in Gs.a need be consistent with only pos-s
instances from I,. But since

Lel, U}
each element in G, ;' must also be consistent with at least

pos-s elements of I,. Therefore,

GW' < Gs.o'

A pattern p can be consistent with pos+1-s instances from I," and neg-g

instances from |_ only If it satisfles (3seS, ;')(s2p).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Formsal Treatmen 72

Thus,
G, g = (PG, gl (35€S, o) (s2p)}

and the theorem is proven,

Theorem 7: Revising boundary sets given a negative training instance,

Conslider the concept learning problem CP=<P, M, <l,, I.0> with
assoclated VS, ;, S, q, and G, g, and a second concept learning problem
CP' = <P, M, <i,, I.'>> with associated VS, ', S, ', and G, ', and where

L=l U i)

The sets S, ;' and G, ;' may be determined from the sets S, g, G, o and G, ;.4

as follows:

Gyg' = MIN(G, g.q U MIN({peVS, ;| ~M(p,)}))

S"g‘ = (sesml (ageG‘.gl)(szg)}.

Proof: This theorem Is the dual of theorem 6. Its proof is analogous

to the proof of that theorem.

3.6 Summary

A class of concept learning problems has been defined, and a formal justification
of the wversion space approach provided. The boundary sets representation for
version spaces was proven correct for a range of admissible pattern languages

including any countably Infinite language (theorem 2). The procedure describad in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Formal Treatment 73

chapter 2 for revising these boundary sets In response to training Instances was &lso

proven corrgct (theorems 3 and 4),

A more general definition of version spaces was provided for dealing with
Inconsistent concept learning problems. The correctness of the boundary sets
reprasentation for this general definition of version spaces was proven (theorem 5).
The procedure described in chapter & for revising the boundary sets for ihis general

version space was also proven correct (theorems 6 and 7).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Chapter 4

Uses for Version Spaces of Partially Learned Concepts

4.1 Introduction

Because version spaces summarize the range of plausible concept descriptions
consistent with a given set of training instances, they have Iimportant applications to
problems of applying and further refining partially learned concepts. Although the
Issue of working with and representing partially learned concepts has received littie
attention, it is an important practical problem to be faced if learning programs are to
acquire information in a useful form. in this chapter, we consider the use of version
spaces to describe what is known about & given concept when available training data
Is insufficient to determine a unique concept description. This property of version
spaces Is useful for tasks such as:

1) Making use of partially learned concepts for recognizing
new instances of the concept.

2) Selecting useful training instances to direct future learning.

3) Combining partially learned concepts from different sets of
training data.
This chapter discusses the above uses of verslon spaces which stem from their ability

to summarize the information contained in the training Instances with respect to the

concept description language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learnsd Concepts 76
4,2 Using Incompletely Learnsd Concepts

Since a version space contains all concept descriptions consistent with the
Hata. it provides a direct indication of the precision with which a concept has been
learned. A concept Is "completely" learned when the version space contains only a
single concept description: a unique concept description consistent with the training
instances. If the version space contains many concept descriptions, the identity of
the target concept has been only partislly determined, and additional training

instances are needed to choose among the current possibilities.

It Is unrealistic In many problems to expect sufficient training data to be

> available to define the target concept completely. In the Meta-DENDRAL problem
domain, for instance, it is rare that sufficient chemical data are avallable to uniquely
define the chemical concepts learned there. Many desirable training molecules are
difficult or impossible to synthesize, end even for avaliabie molecules the cost of
obtaining training data Is substantial. A more basic problem is that It is possible to
detine concept description languages for which any finite set of tralning instances Is

insufficient to determine a unique concept description.

Any performance program which must use an incompletely learned concept to
classify possible new instances, must have a means of determining how reilable that
classification Is. The learning program must therefore provide the partially learned

concept to the performance program, along with some indication of its reliabliity.

One possible strategy for using partially learned concepts Iis to select one of the

plausible concept descriptions from the version space (perhaps using outside

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 76

knowledge of the domain), and to attach some numerical "certeainty" to this concept

description.

This strategy of choosing a single concept description with an associated
“certainty" does not take full advantage of the information provided by the version
space concerning the identity of the target concept. The following example iliustrates

this point.

Assume that there are several concept descriptions In the version space, and
that one concept description, D, Is chosen, and assigned some probability of being the
correct description of the target concept. Consider Instance 1 which Is categorized
as a positive Instance by every concept description in the version space, and
Instance 2 which Is categorized as a negative instance by every concept description
except D. Instance 1 should be given a very high probabillity of being a positive
instance, since Its classification does not depend upon whether D is the correct
description of the concept - every concept description in the version space classifies
instance 1 as a positive instance. On the other hand, the classification of instance 2
depends strongly upon whether D Is the correct description of the target concept.
But any scheme which considers only concept description D cannot be aware of this

distinction between instance 1 and instance 2.

An attractive strategy for classifying new instances is to provide the entire
version space as the set of alternate plausible descriptions of the partially learned
concept. As is shown in the following subsections, the version space may be used to

classify certain instances with the same certainty as If the concept were completely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 77

learned. For other instances, It Is possible to make a reasonable estimate of the

certainty of their classification.

4.2.1 Reliable Classifications Using Partially Learned Concepts

Although for partially learned concepts the exact identity (concept description)
of the concept is not known, it is known that the correct concept description Is one of
those contained in the version space. Therefore, instances which are classified in the
same way by all patterns In the version space may be classified with the same
certainty as if the concept description were uniquely determined by the training
instances. |f this condition is met, then it does not matter which.pattern remaining in
the version space Is the correct description of the target concept - they ail yield the

same classification.

Consider, for Instance, the feature Interval learning example in figure 4.1, in

which the specific boundary set contains the single pattern s, (plotted as a
rectangle), and the general boundary set contains the patterns g, and g,. A pattern

matches an instance If the corresponding rectangle contains the Instance. The
version space lliustrated In figure 4.1 Includes all patterns corresponding to

rectangles which both contain s,, and are contained in either rectangle g or g,.

Since the version space in figure 4.1 contains many patterns, the associated
target concept has not yet been fully determined. Even though much is still to be

learned about the identity of the target concept, all instances lying outside both g,

and g, cannot match any patterns in the version space, and therefore should not be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 78

classified as instences of the concept. Alternately, any ingtence inside the rectangle
s, matches every pattern in the version space. It is therefore an Instance of the target
concept regardiess of which concept description In the version space truly represents

the target concept.

301 - =
9
8a - -
20+
S,
-
b. -
o] 0 20 30
G boundary set S boundary set

ol: 14<x<24, B<(y<38 sl: 18sxs22, 1Bsyslé6

02: 4<x<24, 8¢y<22

Figure 4.1 Version space of a partially determined concept.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 79

As new training Instances are presented, the rectangle s, will become larger,
while g; and g, will become smaller. Consequently, a smaller number of patterns wiii
be delimited by these version space boundaries, and, as expected, a larger proportion

of all possible instances will be reliably classified by the corresponding version space

description of the target concept.

In the above example, it Is not nec~.ssary to match each pattern in the version
space to an Instance In order to determine whather (a) all patterns match the
instance, (b) all patterns do not match the instance, or (c) some patterns match while
others do not. Regardless of the concept description language, it is necessary only to test the
patterns contained in the version space boundary sets, 8 and G, in order to determine which of

these three conditions is met.

If every pattern in the boundary set 8§ matches an Instance, then all patterns in
the version space match that instance. This Is true because all patterns in the
version space are more general than some pattern in s Similarly, If no pattern in the
bourdary set G matches en instance, then no pattern in the version space matches
that instance (all patterns in the version space are more specific than some pattern in
G). Thus, the following rules summarize the method for obtaining a reliable

classification of a potential Instance of the target concept.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 80

IF all patterns in S match this instance,
THEN this is an instance of the concept
ELSE IF no pattern in G matches the instance,
THEN this is not an instance of the concept
ELSE there are alternate possible interpretations of the training
data (alternate patterns in the version space) which yield

alternate classifications of this instance.

It should be kept in mind that in referiing to "reliably" classified instances, we
mean reliable with respect to the given concept description language, and the presented
training instances. |f the chosen concept description language does not contain a
correct description of the concept dascribed by the tralning instances, then of course
any method of classifying new instances cannot be reliable. It is possible to deal with
inconsistent data In a reasonable manner using the extended method described in
chapter 6. The above strategy for “reliably" classifying instances then bescomes a
method for classifying instances based upon assumptions concerning the maximum

number of undetected errors in the observed training instances.

One additional note on efficlency. It is possible to improve upon the efficiency
of the above strategy when the boundary set G contains many patterns. In such
caseas, It may be more efficient to determine & single pattern which Is more general
than all the patterns In G and to first test the Instance against this pattern. If the

instance does not match this pattern, it cannot match any of the patterns contained in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 81

G, or any pattern in the version space. If the Instance does match this pattern, it
must stil be tested against the patterns In G and S. In the Meta-DENDRAL
implemantation of this classification procedure using version spaces, this efficiency
measure is used to quickly pretest instances. Because the boundaty sets in that
program often contain dozens of patterns, this strategy improves the overall

efficiency of the testing procedure.

4.2.2 Estimating Certainty of Unreliable Classifications

For instances which cannot be reliably classified as described above, it may be
useful to estimate the classification of the instance. In such cases, where the
training data is Insutficient to determine a reliable classification, additional knowledge
about the problem domain should play an important role. It may be possible using such
knowledge to reject certain concept .descrlptlons, or to rank by plausibllity the
alternate concept descriptions. The use of domain specific knowledge in this manner
is an attractive area for future work, and has not been considered except in a few
obvious ways in the Meta=DENDRAL implementation of the version space approach.
Here we present one strategy in which it is assumed that all patterns in the version

space are equally plausible as correct descriptions of the target concept.

If all patterns in the version space are considered equally plausible descriptions
of the target concept, then it is reasonable to classify the new instance by
determining what proportion of these patterns classify the Instance as a positive
Instance. The Instance may be classified according to this proportion, and the

proportion taken as the certainty of the classification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 82

Unfortunately, determining exactly how many patterns in a given verslon space
do and do not match an instance Is not always simple. One method ie to assume the
instance in question is a positive instance, and update the version space accordingly.
The number of patterns contained in the resulting version space is the number of
patterns in the original version space which match the new instance. The ratio of this
number to the number of patterns in the original version space yieids the proportion of

patterns In the original version space which match the instance.

For the feature interval learning problem, it is fairly easy to work out this
strategy. In ordar to simplify the problem, we assume that the language of feature
intervals allows only integers (i.e., 4{x<7 is allowed, but 4.6<x<7.6 is not). Then to
count the number of patterns in the version space of figure 4.1, we simply count
those rectangles contained in either g; or g, which contain the rectangle 84. Since
each rectengle represents the boundaries of a pair- of intervals, and since each
interval involves two relations, each of which may be either € or <, the number of
patterns in the version space is approximately! 2° times the number of counted
rectangles. We calculate the number, N, of patterns in the version space of figure 4.1

as follows:
N = 16 « (A+B-C)

A = number of rectangles contalned in g,, which contain s,

= |(14-18)] « |(22-24)| + |(8-10)} * |(16-30)|

& 6+3+83+16=676

VFor convenience, we ignore the small effect on the total count of patterns
arising from the fact that each maximally general pattern may contain only the <
relation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 83

B = number of rer:tangles contained In g2, which contain s,

£156.8+3-7=045

C = number of rectangles coniained in both g, and g,, which contain s,

£53+8+7=316

N = 20,880.

There are approximately 20,880 patterns In the current version space. Now
suppose the instance (13, 14) is presented to be classified as either a positive or
negative instance of the target concept. In order to determine the number of
patterns in the version space which match this instance, we update the version space
under the assumption that the new instance Is a positive instance. Figure 4.2

lllustrates the resulting version space, in which the new instance Is represented by a

circle'.

' Notice that in figure 4.2, the pattern g, has basen removed from the boundary
set G. As explained in chapter 2, this Is because g, does not match the new
"nositive" instance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 84

y« -
_ : P
a0
S
ﬂ _
o]
-+
Jo- - -
L 1
o 10 a0 30
bounda et S boundary set
92: A(x<24, 8¢(y<22 $l: 13sxs22, 18sys1é

Figure 4.2 Effect on version space of treating (13, 14) as o
positive training instance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 85

In the resulting version space, there are approximately 10,080 patterns. The
probabillitv that the new instance is & positive instance Is therefore = 10080/20880
= 0.48, under the assumption that all patterns in the version space are equally likely

daescriptions of the target concept.

The calculation of the number of patterns in a version space, and hence an
astimate of the raliability of a classification based upor; a partially learned concept, is
straightforward for the feature interva! learning problem. For more complex structural
description languages, the calculations are more involved, but the general approach is
the same. The assumption that all concept descriptions in the version space are
equally likely descriptions of the target concept does not take Into account
information concerning the relative probabliities of the alternate concept descriptions.
Still, the probability of classification based on this assumption provides a reasonable

estimate based upon the information available,

The above section describes the use of version spaces for summarizing and
applying partially learned concepts. With respect to the chosen concept description
language, it is possible to determine how precisely the training data has described the
identity of the ta:get concept. As described above, it Is also possible to classify
subsequent instances on the basis of an incomplate knowledge of the identity of the
target concept. The following section considers the related probiem of generating
informative training Instances to direct future refinements to partially learned

concepts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 86
4.3 Requesting New Treining instances

This section discusses requesting new training Iinstances to direct further
refinement of an incompletely learned concept. The issue of choosing good
sequences of tralning instances has been addressed by many researchers [Bruner,
1856], [Popplestone, 1869], [Simon, 1973], [Buchanan, 1874], [Smith, 1877], but
an understanding of general methods for intelligent training instance generation has
yet to be developed. The problem has many facets, and could itself form the basis for
a substantial research project. The intent here Is to describe how the information
contained In version spaces is crucial to generating a sequence of instances whose
(externally provided) classification will optimally determine the identity of the target
concept. In addition, guidelines for requesting Instances which contro! the
intermediate sizes of the S and G boundary sets are discussed. Both of these issues

are lilustrated using a simple feature interval learning problein.

The problem of choosing informative training instances is very different if the
identity of the target concept Is known than If it is unknowr. If the agent choosing
the instances knows the concept, the problem is similar to that faced by Intelligent
computer assisted instruction (ICAI) programs, which present a series of examples to
a student. Recent work in this area [Brown, 19875], [Sleeman, 1878], [Clancey,
1979] has stressed the Iimportance of inferring a mode! of the student's current

understanding of a concept ¢s a basis for selacting the next training example.

In contrast, we consider here the problem in which the learner must choose the next

instance. Thus an Instance Is chosen whose classlification Is expscted to provide

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 87

additional information concerning the target concept. Although Instances are chosen
without exact knowledge of the target concept, version spaces provide a useful
summary of what has been learned so far about the target concept. Thus, in contrast
to the problem faced by ICAl programs, an exact model of the “"student's" current

understanding of the concept is available.

4.3.1 Choosing instances to Efficiently Determine the Ccncept

Since concept learning using version spaces corresponds to reducing the number
of alternate concept descriptions in the version space, the goal of efficiently learning
the target concept may be rephrased as the goal of rapidly reducing the number of
concept descriptions In the version space. Intelligent instance generation then
becomes quite similar to a game of twenty questions, in which the task is to determine
which of a large set of possible hypotheses (concept descriptions in the current
version space) is the correct one by posing questions (training instances) which can
be answered either yes or no (positive or negative classification). Assuming that all
hypotheses are equally likely, the optimal strategy is to ask questions which will rule
out one half or the other of the current hypotheses, depending upon the answer. The
optimal strategy for generating instances (without knowledge of the exact identity of
the target concept) Is to generate at each step an instance which matches half the

concept descriptions in the current version space.

Consider, as an example, the version space for the feature Interval learning
problem lllustrated in figure 4.1. If an optimal strategy for generating training

instances without knowledge of the target concept is used, then the expected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 88

number of training instances required to complete learning of the target concept is
log, N, where N is the number of concept descriptions in the current version space’.
For the version space of figure 4.1, N=20880. Therefore, we expect that log, 20880

= 16 additional well chosen training instances will be sufficient to learn the target
concept associated with that problem. It Is Interesting to note that given knowledge

of the identity of the target concept, it is possible to choose a sequence of 6 training

instances to unambiguously describe any feature interval conceptz. As expected,

knowing the target concept allows designing more efficlent training sequences.

Which instance should be chosen next for the version space in figure 4.17 As
shown In the previous section, the Instance (13, 14) matches 48% of the patterns in
this version space. This instance would therefore make a near optimal choice as the
next training Instance for updating the varsion space. Figure 4.2 lllustrates the
version space which results if the instance (13, 14) is generated, found to be a
positive instance, and Is then used to update the version space. It comes as no
surprise that the most informative new training Instances are the instances which are

least reliably classified by the version space.

Although It Is obvious In retrospect that (13, 14) was an excellent choice for
the next training instance, how can such Instances be derived in general from the
boundary sets representing the current version space? The solution depends upon

understanding the combinatorics of the particular pattern language. For the version

" The corresponding statement for the game of twenty questions is a well-known
result from information theory.

2 Given the rcoctangle corresponding to the target concept choose negative
training instances at sach corner of the rectangle, and positive instances in any two
opposing corners.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 89

space lllustrated in figure 4.2, the combinatorics may be worked out quite easily.
Figure 4.3 shows the version space from figure 4.2, with a dotted line indicating the
locus of instances which match half the patterns in the version space, and which are

therefore optimal next training instances.

30 -
Pa -
» 04 |
S
i T [.
| " |
| |
| + l
10 - - ! _H !
© 10 20 30
G boundary get S boundary set
g2: 4<x<24, B8<y<22 sl: 13sxs22, 18syslé

Figure 4.3 Optimally informative next training instances (dashed
line).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 80

Although it Is possible to derive the set of optimal next training instances for the
above version space, such an analysls for structural cencept description languages is
more complex, and exact solutions may be costly in terms of processing time. A
detalled analysls of the combinatorics of the Individual concept description language
is necessary to determine a general rule for generating such optimal instances for
learning problems using that language. Of course an approximate procedure for finding
instances which match nearly half the patterns in the version space would be nearly
as useful an asset as an assured optimal procedure. Such approximate methods might

be evaluated by comparing their performance against the theoretical optimal log, N

performance.

4.3.2 Choosing Instances to Control Boundary Set Sizes

The computational efficiency of the version space approach is closely tied to
the sizes of the boundary sets used to represent version spaces. Although the
boundary sets are an efficient representation for version spaces when compared with
the alternative of listing all patterns in the version space, in many situations the size
of these boundary sets Is still the limiting factor in applying the approach. One
important aspect of the capability to generate new training instances, therefore, is

the option of generating training instences to control the sizes of these boundary

sets.

Genersting Instances to control the sizes of the version space boundaries is

complicated by the fact that it is not known beforehand whethaer the generated

' | am indebted to an anonymous IJCAIl referee for suggesting this possibility.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 81

instance will be classified as a positive or negative instance of the target concept.
The following rules for generating Instances appear to be reasonable even in the
absence of this information.

1) Generate instances which match half the patterns in each
boundary set.

2) After choosing the specific patterns which are not to match
the instance, generate Instances whose feature values and
relations are consistent with all the constraints except one In each
of these specific patterns.

The first rule above tends to shrink boundary sets which already contain multiple
patterns. If the generated instance is found to be a positive instance, then the
general boundary will shrink to contain only the half of its patterns which match match
the instance. If the instance Is instead found to be a positive instance, then only the

half of the patterns which did not match the instance can lead to additional branching.

The effect on the specific boundary set Is analogous.

The second rule attempts to minimize the branching which does occur. The
strategy Is to focus on determining the constraint for a single feature or relation in
the pattern, choosing values for the other features and relations which are known to
be consistent with the target concept. In other words, the generated instance would
match all patterns in the version space if it were not for the single different feature
value. When the classification of this new instance Is obtained, the oniy vranching in
the boundary sets is branching associated with this feature. If, on the other hand, an
instance were generated with several feature values which conflict with the specific

patterns, then branches of the partial ordering corresponding to altering each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 02

corresponding constraint (as well as combinations of these) would have to be

consldered.

Briefly consider the above strategy applied to the feature interval learning
problem, in which two features, x and y, are to be constralned by patterns, and no
relations are involved. Since In this problem the specific boundary can never contain
more than a single pattern, there is no danger of branching of this boundary. The
general boundary can, however, contain multiple patterns, as it does in figure 4.4. This
figure shows the version spacg illustrated in figure 4.2, with the shaded region
indicating Instances which satisfy the above rules for generating new instances.
These shaded instances elther match the specific constraint on aliowed values of x,
but do not match the constraint on y, or vice versa. Any instance in this shaded areas,
regardiess of its classification, will lead to tha same size or smaller boundary sets.
Notice that this shaded region includes the instance (13, 14), shown earlier to be a
near optimal training instance for reducing the uncertainty of the partially learned

concept description.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts

30+ =

SR N 77/

a0 -

ao 30
G boundary set S boundary set
gl: 14<x<24, 8(y<38 8l: 18sxs$22, 18syslé

92: 4<x<24, 8<y<22

Figure 4.4 Training instances which control boundary set sizes
(shadaed ares).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Uses for Version Spaces of Partially Learned Concepts 84

The above sirategy always succeeds in reducing or, at worst, not Increasing the
boundary set slzes for the feature interval learning problem. For structura! pattern
languages, the situation is complicated by the fact that muitiple possible mappings of
pattern nodes to instance nodes must be considered. As a resuit, 8 guarantee such
as the one above is not possible for struct.ural pattern languages. Nevertheless, this
appears to be a good strategy for the reasons given above, for controlling the sizes

of the version space boundaries for structural languages.

it should be stressed that the above strategy for generating new training
instances has not been implemented. The discussion in this section is, as mentioned
earlier, preliminary. However, given the demonstrated potential of using version
spaces for generating new instances, and the importance of finding short sequences
of tralning instances which completely determine the target concept while keeping the
branching of the version space boundaries under control, this appears to be a

rewarding area for further research,.

4.4 Combining Separately Obtained Results and Merging Concept Descriptions

Yet another use for version spaces is in merging concept descriptions learned

from different sets of training data. In particular, suppose that the version space VS,
Is formed from the set of training data T,, and that the version space VS, is formed
from a second set of training data, T,. Then the version space, VS, consistent with
the union of the training sets T, and T, Is the intersection of the version spaces V§,
and VS,. Stated another way, a concept description is consistent with all instances in
(T, U T, (i.e, it belongs to VS) Iif and only if it is consistent with T, (belongs to Vs,)

and is consistent with T, (belongs to T).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 85

This property leads to a simple method for comparing and combining resuits
learned from separate sots of data. An algorithm Is described below which computes

the boundary sets representing the intersection of VS, and VS, directly from the

boundary sets reprasenting VS, and VS,.

One could imagine & program learning two concepts, but being uncertain whether
these two could instead be expressed as & single concept in the provided language.
This may often be the case when it is known that a disjunctive set of concept
descriptions Is to be learned by a program. In such cases, each disjunct will cover
some subset of the positive training instances. A simple method for determining
whether any two disjuncts may be replaced by a single disjunct is then of obvious
value. If the version spaces associated with each disjunct are available (that is, the
version spaces associated with the corresponding subsets of positive instances) then
it is easy to determine which disjuncts may be combined. Any disjuncts whose version

spaces intersect may be replaced by any concept description In that intersection.

In the Meta-DENDRAL problem, for instance, it is known that a disjunctive set of
rules is needed to cover any significant portion of the training instances. Meta-
DENDRAL therefore searches for Individual rules which cover a significant portion of
the posltive instances. Almost always, there are several rules which can be replaced
by a single stronger rule. Version spaces are used in Meta~-DENDRAL to detect such

occurrences while, at the same time, computing the merger of the disjuncts.

A second application of the capability to combine results learned from separate

sets of training Instances lies in the prospect of parailel processing. A convenient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 86

method for taking advantege of multiple processors for concept learning problems Is to
break the set of available training instances for a given concept into several subsets.
Each procassor may then compute the version space consistent with one of these
subsets. The Intersection of the version spaces determined by the set of processors
ylelds exactly the result which would be obtained by a single processor working with

the entire set of training instances.

4.4.1 Algorithm for Determining Intersection of Version Spaces

Consider two version spaces, VS, and VS,, represented respectively by the
pairs of boundary sets <G,, $;>, and <G; S,>. The version space, VS, which is the
intersection of VS, and VS, may be represented by the boundary sets <G, 8>, where

S = MAX(VS)

= MAX(VS,; U VS,)
= MAX({peP|(3s,€8,)(3s,€85,)(394€G,)(39,€G,) (s,Zp)NA(s,2p)A (P2 g IN(P2g,)}

= {xeML(S,, S,)| (39,€G,)(3g,€G,) (x2g,) A (x2g,) }

and
G = MIN(VS)
= MIN(VS, U VS,)
‘= MIN({peP|(3s,€5,)(35,€5,)(3g,€G,)(3g,€G,) (s ZpIN(s2pIN(p2gIN(P2g,)}
e {xeMU(G,, G,)| (Is,€8,)(3s,€8,) (5,2x) A (s,2x) }
where

ML(S,, S;) = MAX({peP| (35,€S,)(3s,€S;) (s42p) A (s,2p)})

MU(Gp Gz) 8 MIN({PEPI (391561)(392562) (p291) A (PZGZ)})

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Uses for Version Spaces of Partially Learned Concepts 87

The last expression for each set Is written in a way which suggests an algorithm
for finding S and G from the sets S,, S,, G,, and G,. In particular, S may be computed
by finding the subset of patterns from ML(S,, §;) which are more specific than or

equal to some pattern in both G; and G,. The set G may be computed in an analogous

manner.

The functions ML and MU have been impiemented for the Meta-DENDRAL
language of chemical concept descriptions, and are used there to compute the
intersection of version spaces formed from different clusters of positive instances.
When the version spaces associated with two different clusters of positive instances
are found to intersect, they are replaced by their intersection. This version space
contains all concept descriptions consistent with the union of the two sets of positive

instances.

4,5 Summary

The boundary sets G and S determined from & given set of training instances
provide a useful summary of those Instances with respect to the chosen concept
description language. Several important uses of this information for problems related
to concept learning were considered. In particular, we have discussed the uses of
version spaces to classify possible instances of the target concept even when the
concept has been only partially learned, to generate useful new training instances to
direct future learning while controlling the sizes of the version space boundary sets,

and to combine separately learned concept descriptions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Chapter §

Learning In Less Perfect Situations

5.1 Introduction

The candidate elimination algorithm as presented in chapters 2 and 3 finds all
concept descriptions within a predetermined language which are consistent with every
observed training Instance. In problems for which such concept descriptions exist,
this approach provides the solution to the concept learning problem. In other
problems, however, there may not be any concept description consistent with each
training instance. This chapter presents an extension to the version space approach

which allows dealing with this later class of concept learning problems.

When no concept description is consistent with all training instances, the
problem may be caused by either incorrect training Insiances, a deficiency in the
concept description language, or when several disjoint concept descriptions are
needed to cover the entire class of training instances. Although these three causes
appear to be distinct, they lead to & common problem for the concept formation
algorithm. Therefore, these will be treated as different causes of the single problem
of inconsistency of training instances with respect to the concept description

language - for short, the inconsistency problem.

Many artificlal intelligence approaches to machine iearning have not addressed

the Inconslstency problem. Statistical approaches of pattern recognition and adaptive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 88

control have, on the other hand, emphasized its Importance. Artificlal intelligence
approaches to learning have been able to ignore the inconsistency problem largely
bacause they have been developed in domains with reli.ab!e data. As we learn enough
about learning to move away from simple domains, inconsistency problems will become
increasingly common. Few measurements taken in the real world are completely noise-
free, and It is unlikely that our data representations will be able to moqel the real
world so faithfully that the distinctions between similar situations will always be
representable. Thus, for learning techniques to be applicable to a large number of

new problems, we will have to face squarely the problem of inconsistency.

in the rest of this chapter, several sources of inconsistency are discussed. An
extension of the version space approach is presented which allows learning concepts
in the presence of inconsistency. This extended approach determines concept
descrif:tions consistent with the largest possible subsats of training instances for
concept learning problems Involving only a few inconsistencies. A less costly heuristic
method is also presented which attempts to determine optimal concept descriptions
according to a scoring function based upon numbers of positive and negative

Instances with which the concept description is consistent.

6.2 Three Inconsistency Problems

An Inconsistent concept learning problem refers here to any concept learning
problem for which there is no perfect solution; that Is, any problem for which no
concept description may be found which is consistent with every tralning instance. As

noted above, there are several possible causes of such inconsistency. Here we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 100

briefly describe three possible causes in order to illustrate the range of Inconsistent

concept learning problems.

6.2.1 Incorrect Training Instances

One cause of inconsistency In concept learning problems is Incorrect training
Instances. Incorrect training instances do not accurately represent the target
concept for some reason, and may or may not result in inconsistency as defined
above. Two causes of incorrect training instances are apparent in the Meta=-
DENDRAL problem. Meta-DENDRAL learns production rules that predict which bonds In
a given molecule will break within & mass spectrometer. For this program, rules are
formed from training instances consisting of molecular bonds which break or do not

break inside the mass spectrometer.

Unfortunately, such training instances are not directly available to Meta~-
DENDRAL. Instead of bonds which break and do not break, the available training data
consist of masses of the resulting molecular fragmeﬁts. In general, an observed
fragment mass may be attributable to any of sevaeral potential broken bonds within the
molecule. Thus, the available training data in this case are not the needed training
Instances, but rather data from which the training instances must themselves be
inferred. The ambiguity of mapping the available data of observed molecular
fragments into inferred training instances of broken and unbroken bonds results in a

set of partly incorrect, and often Inconsistent training instances.

In addition to the ambiguity in inferring training Instances in the desired form

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 101

from available data, Meta-DENDRAL must deal with a second source of training
instance error: the available data themselves may be incorrect. The available data
are obtained from the mass spectra of known molecules. The resulting spectra may
contain spurious peaks resulting from impurities in the input sample. At the same time,
fragmentations which do occur may not always be detected by the instrument. Thus,
Incorrect positive instances as well as incorrect negative instances are implied by the

observed data.

Whatever the source of incorrect data, It is useful to divide incorrect training
instances into two classes. Training instances incorrectly presented as positive
instances will be described as false positive instances, while instances incorrectly
presented as negative instances will be called false negative instances. This dichotomy

of data errors has important implications for detecting and dealing with inconsistency.

§.2.2 Insufficient Concept Description Language

A second possible cause of inconsistent concept learning problems is that the
language chosen for describing concepts simply does not contaln a correct description
of the target concept. The problem of finding a language rich enough to represent all
possible concepts in a given domain Is a difficult one. In the Meta-DENDRAL program,
for instance, It is known that the language of chemical substructures used to form
rules is not sufficient to express all possibly meaningful rules of mass spectroscopy.
But chemists themselves do not know all the important features needed for a better
language, and no one yet knows how to write a program which successfully designs Its
own concept description lenguage. It appears, therefore, that thls cause of

inconsistency is unavoidable in at least some concept learning problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 102

6.2.3 Disjunctive Concepts

Inconsistency in concept learning problems may aiso arise from the fact that
training Instances presented as belonging to a single target concept may have to be
represented as a disjunction of concept descriptions from the chosen language.
Although this might be interpreted as a case in which an insufficient concept
description language is being used (a sufficient language is the language of arbitrary
disjunctions of patterns in the current language), It is a special case worth singling
out. For in this case, it may be possible to successfully cover all training instances by
learning a disjunctive set of concept descriptions which taken together are sufficlent
tc describe the target concept. For example, in the Meta-DENDRAL program, a se? of

rules is typically required to explain a significant amount of the training data.

5.3 Detecting Inconsistency with Version Spaces

The first step toward dealing with Inconsistency in a concept learning problem is
detecting the fact that an inconsistency exists. When an inconsistency arises, the
version space becomes empty. In the basic version space approach the boundary
sets S and G collapse into empty sets, giving an immediate indication that there are
no concept descriptions consistent with all the training instances. This may happen
elther when a new negative tralning instance matches every pattern contained in the
S version space boundary, or when a new positive instance matches no pattern

contained In G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 103

15
[Y]
Jo o o X
Q
+ 8
. +
\ -
5
[]
0 s 10 &
oundary set
. boundar
gl: 3Ix<11, 3¢) set
02: HKx<l4, 4&'?{3 81: b8sxs18, Ssysl)
03: HKx<12, ¥Ky<13

Figure 6.1 An inconsistent interval learning problem. New training
Instance (circled) ylelds an Inconsistent instance set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 104

Consider again the class of learning problems described in chapter 2 in which
concepts are represented as feature value intervals. Figure 5.1 shows a consistent
set of positive and negative training Instances (uncircled + and - points), and the
patterns contained in the associated version space boundary sets. Recall that in this
class of problems, concept descriptions correspond to rectangles which match the
instances contained within them. If the circled negative instance, (7, 10), is
presented as the next training instance, an inconsistency arises. No legal concept
description (rectangle) is consistent with this new instance as well as all previous
training instances. The candidate elimination algorithm detects this fact by noting
that the pattern in the S boundary matches this negative instance. Since all patterns
in the version space are more general than the S boundary, they all match the

instance.

Once an inconsistency is found to exist, the concept learning problem becomes
a problem of finding a concept description which is in some way a "best fit" to the
observed data. That is, finding a concept description which is consistent with some
reasonable subset of the training instances. Detecting an inconsistericy does not, of
course, Indicate the cause of the inconsistency. In the above example it is impossibie
to know whether the new positive instance is incorrect (a “stray"), whether some
previous instance was incorrect, or whether some cause other than data error Is

responsible for the detected inconsistency.

6.4 Learning and Inconsistency

A reasonable approach to desling with inconsistency is to try to find the largest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lsarning in Less Perfect Situations 105

consistent subsets of training instances, and to find concept descriptions consistent
with these subsets. This is an imposing task, since testing n-element subsets of the
training instances is a combinatorially explosive problem. Nevertheless, the goal of
finding these so-called maximally consistent concept descriptions is a useful one to
keep in mind when considerira how to deal with inconsistent learning problems.
Maximally censistent concept descriptioni A concept description is

maximally consistent with a set of positive and negative training

instances If there is no concept description consistent with a larger

number of training instances.

The following sections describe an extension of the version space approach
which allows learning in the presence of inconsistency. In this extended approach,
the term version space is generalized to refer to a set of concept descriptions
consistent with any of a range of possible training instances, rather than a single,
definite set of training instances. Several such version spaces, consistent with
progressively smalier classes of training instances are maintained by the program.
Several strategles are discussed which utilize these multiple version spaces for
learning In the presence of Inconsistency. An optimal solution, which determines
maximally consistent concept descriptions, Is presented for problems involving a small
number of inconsistencies. A heuristic approach Is presented to deai more efficiently

with more severe inconsistency.

When an inconsistency is detected by the collapse of the version space
consistent with all training instances, the program shifts its attention to the version
space consistent with the next largest consistent subset of tralning instances, and

constructs new version spaces consistent with yet smaller subsets of the training

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 106

instances, as needed. Although this is a backtracking style approach, it differs from
many backtracking approaches in two important respects:
1) Training instances need not be stored or reexamined.
Instead, the information needed for backtracking is summarized In
the additional boundary sets - sets whose size remalins

approximately constant with the number of observed training
Instances.

2) These additional sets delimit concept descriptions
consistent with many different subsets of the training Instances
without explicitly examining each such subset.

6.4.1 Multiple Version Spaces

The extended version space approach operates on sets of concept descriptions
in much the same way that the basic version space approach '6perates on the
boundary sets G and S. Given a set of p positive and n negative training instances,
the following boundary sets of concept descriptions are used to delimit the version
spaces of various subsets of the training Instances.

s‘.j: The set of maximally spacific concept descriptions consistent with any

subset of p-s positive training instances, and n-j negative
instances.

Gk.a‘ The set of maximally general concept descriptions consistent with any

subset of n-g negative training instances, and p-k positive
instances.

Notice that S;, and Gy o are the same as the boundary sets S and G used in the

basic version space approach. The boundary sets defined above delimit several

version spaces, defined as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 107

VS, : The set of concept descriptions consistent with any subset of p-s
poslitive Instances and n-g negative instances.

VS,'Q can be represented by the boundary sets S,.j and Gk.o' where J2¢g and k2s

(this Is proven In Theorem & of chapter 3). That Is, the concept descriptions

contained In VS, ; are exactly those which lie between S, ; and Gy g In the general to

specific ordering. More formally,
For any j and k such that J2g and k2s,

VS, = {peP| (BXGS‘J)GYGGK'Q) (x2p2y)}

where P is the set of &ll concept descriptions.‘

In order to simplify notation, and since we will only consider pairs of boundary
sets S;; and Gy o for which j2g and k2s, we will often drop the subscripts | and K, and

refer simply to S; and G,. The exact values of J and k do not affect the use of S

and G, ¢ in representing VS, ., as long as j2g and k2s.

5.4.2 Learning Using Multiple Version Spaces

In the extended version space approach, as In the basic approach, learning
occurs when candidate concept descriptions are eliminated from the version space.

All boundary sets S, and Gg are revised in response to each training instance so that

at each step, VS,.g Is correctly represented.

In order to deal with inconsistent concept learning problems, two serles of

' Note the relation >t is used above in two differant senses. Whan applied to
integers it refers to the usual “"greater than or equal" relation. When appliad to
concept descriptions, it refars to the "more specific than or equal” relation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 108

boundary sets Sp, Sy, ... S;n and G, Gy, ... Gy, are maintained as depicted in figure

6.2. Each pair of general and specific boundary sets represents a differant version
space corraesponding to different subsets of the training Instances. As before,

training instances force the S, boundaries to become more general and the Gg
boundaries to become more specific. An Inconsistency Is detected when S, becomes
more general than G, (the boundaries cross), indicating that the version space VSg ¢ is
empty. When this occurs, the program falls back to the version spaces VS1.o and

VS, 1 which at that point contain all concept descriptions maximally consistent with

the training Instancaes.

Boundary S;,

Boundary S,

more 1 Boundary S,
specific _
positive
instances
v
A
negative
instances
more
general { Boundary G,

Boundary G,

Boundary ng

Multiple Version Space Boundaries
Figure 5.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 108

Concept descriptions maximally consistent with the training data can always be
determined using this approach provided there is a consistent subset of at least p-s

-sn

positive Instances, and n-gn negative instances In the tralning datae. If thig condition

Is not met, every G, boundary will become more specific than every § boundary
& ’

indicating that the version spaces VS,,0 through Vs, on @il are empty

When the above approach falls, a heuristic approach may be used. In the
heuristic approach, the Program selects at each step a version Epace consistent with
the largest possible number of training instances. On the basis of this choice, it

e,

decides which additional boundary sets to retain, which ones to drop ¢
rom

consideration, and which sets should be added to the list it is keeping', Although this
heuristic approach attempts to find maximally consistent concept descriptions, it
cannoct be assured of finding optimal solutions to inconsistent learning problems. This
is due to the fact that (1) the program selects a set of “current best verslon space
boundaries", rather than all possible boundaries, and (2) when new boundaries sets
are added, they are approximated (as described below) so that past training

instances need not be reexamined.

Before considering alternate strategies for learning using muitiple version
Spaces, we examine the algorithm for updating the boundary sets. The boundary sets
must be initialized using an initlal set of Positive and negative training Instances
Each set is then updated in response to subsequent training instances in a manner

which is independent of the order In which training instances are presented

1 .
As discussed below, when new b
, oundary sets are added In
grocesslng & gequence of tralning Instances, only an epproximationth:: n;:‘ddle of
oundary set Is avallable uniess previous training instances are reconslderéd ® frue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 110

6.4.2.1 The Algorithm

The ealgorithm for updating the boundary sets S, and G, utilizes the same

operators for modifying the boundary sets as are used by the basic approach
described in chapter 2, and Involves an additional comparison between boundary sets.
In order to understand the algorithm for updating the boundary sets, consider an

example.

Suppose the set §;, consistent with p-s of the p observed positive training
instances, has been initialized. When a new positive instance is observed, S, must be
updated to the set of maximally specific concept descriptions consistent with any
p+1-s of the p+1 positive instances. Any concept description in the new S; must be
consistent with either (1) s+1 of the original p positive instances, or (2) s of the
original p positive instances and the new instance. The updated set S, Is therefore
obtained by taking the maximally specific elements in the union of the following two
sets: (1) the old boundary set S,.,, and (2) the set S, updated as In the baslc
epproach to be consistent with the new positive instance. The first of these sets
bounds the concept descriptions consistent with p+1-s of the first p positive
instances, while the second set bounds those descriptions consistent with s of the

first p instances as well as the new instance. In this way the set S, may be updated

in an incremental fashion, without explicitly considering ail subsets of p+l-s of the p+l

instances.

The boundary set §, may be initialized by examining the first s+1 positive

instances, and setting S; to the set of maximally specific concept dascriptions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 111

consistent with any of these Instances. Similarly, G, may be initialized by examining

the first g+1 negative instances, and finding the set of maximally genera! concept
descriptions consistent with any of these. This Is a generalization of the procedure

for initializing S and G in the basic version space approach.

Once the boundary sets §; through S, and Gy through ng have been initialized,
they are updated with aeach new training Instance &s described below. The
correctnaess of this algorithm is proven Iin theorems 6 and 7 of chapter 3. The
procedures UPDATE-G(G, S, I) and UPDATE-S(S, G, i) refer to the procedures
described in chapter 2, used thaere to update the sets S and G. They yield the set of
minimally more specific (general) concept descriptions consistent with thé new

* instance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 112

Algorithm for Updating Multiple Version Space Boundaries

IF the new instance, |, is a negative instance
THEN BEGIN
FOR g-gn to 0 DO
Gg - MIN(G,., U UPDATE-G(Gy, S;p, 1));
FOR s«sn to 0 DO

S, = the subset of patterns of S; which are more specific than
some pattern in Ggp; '

END
ELSE IF the new Instance is a positive instance
THEN BEGIN
FOR s~sn to 0 DO
S, = MAX(S,.y U UPDATE-S(S;, Gy, 1))
FOR g~gn to 0 DO

Gg ~ the subset of patterns of G0 which are more general than
some pattern in S;;

END;

Where MAX(X) and MIN(X) are the sets of maximally specific and maximally
gen=ral patterns in the set X:
MAX(X) = {xeX] (VzeX) —(z2x)}

MIN(X) & {xeX] (VzeX) =(x22)}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 118

Notice that each set S; is pruned to include only patterns more specific than
some pattern in Gy, and each Gg Is similarly pruned using S,,. Each set S, therefore
refers to the set S, ., defined in section 4.1, and each G refers to G,, . Pruning is

done in this way in order to assure that the version space corresponding to every

possible pairing of §; and Ga Is correctly represented.

5.4,.2,2 An Example

The operation of the algorithm for updating boundary sets is illustrated here,

using the earlier feature Interval learning example. In this example, the sets Sy, S,,
Gy, and G, are to be determined. Figure 6.3 lllustretes these four boundary sets

derived from the same set of tralning Instances used in figure 6.1. In order to make

the drawing intelligible, only one pattern from each of these boundary sets is plotted

in figure 5.83.

Notice the sets S and G in figura 6.1 are subsets of §; and G, in figure 6.3. The

version space represented by S and G from figure 6.1 is the same as the one

represented by Sy and Gy in figure 5.3. The reason G, contains concept descriptions

in addition to those in G is that concept descriptions which do not match one positive

instance are allowed In Gy, but not in G. These additional concept descriptions are
Included so that G, may be used in conjunction with §,; to represent the version space
VS,0 S and G may, of course be derived from S, and G, by removing from each set

any concept descriptions not bounded by the opposite set in the partial ordering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 114

'S- 80
9 -
+
104
-t
| S
5 So -+
o 5 o 5
G boundary get boundary set
68 ¢gb6: 3<{x(1l], 3Iylw S8 s8: bSsxsle,
3(xC12, 3I{y«<13 Ssysll

3(x<14, 4<y(13
—o{x<11, 6<y<e
~o(x{14, 6<y<13

61 gl: =(x<12, 3¢<y<13 S1 sl: 5sxs9, 7sy<1l
=o(xC1]l, 3(yle 7sxs18, 5sys9
—o(x{14, 4<y<13
3{x<{w 4<yC13
3(x<1], =o(y<o
3¢x<12, =Cy<13
3(xC12, 3Hyl=
3(x€14, 4<ylw
3(x<14, 3HyK13
={x{ew, 6<y<13

Figure 6.3 Multiple boundary sets GO, G1, 80, and S1, for a
consistent set of training instances.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 116

Consider the performance of the algorithm described above If the negative

instance (7, 10) is used to update the boundary sets lllustrated In figure 6.3.

The boundary set G, is updated first. Initially, G, is the set of maximally general
patterns consistent with any 4 of the 6 observed negative training instances. G.'1

contains the following patterns:

3¢x<0 4<y(13
=o{x{e0 6<{y<13
3(x<1]1 =yl
3<(x<C12 =oCy<13
~0(x<{1]l 3<¢{y{m
=0{x<12 3<y<13
=0{x<14 4<{y<13
3¢{x<12 3<y<e
3{x<id 4<y<o
—o{x{14 6{y<{e
3<x<14 3<y<13

Gy, consistent with all & observed negative instances, Is the set of patterns:

3<¢x<]1]l 3<y<e

I<{x<12 3<y<13

3<x<14 4<y<13
=0{x{1l 6<y<ew
-o{x<{14 6<y<13

and S, (sn=1) is the set of patterns:

5sx<9 7sysll
75x<18 5<ys9

The set, U, of patterns minimally more specific than G, and consistent with the new

negative instance is first determined.
U = UPDATE=G(G,, S,, (7 18))

u: 3{x<e0 4<y(18
3¢xC12 =oCy<{18

=0{x<12 3<{y<18

=0{x<14 4<y<18

3¢{x<14 3<y<16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 116

U contains the maximally general patterns consistent with any 4 of the original 6

negative instances, as well as the new instance. The boundary G, is consistent with

all & of the original negative instances. The maximally general elements of the union
of U and G, is therefore taken as the new boundary set G, shown below:

3¢x{w 4<{y(lB
3{x{12 ={y({18
~0{x{12 3<y<l18
=o(x{14 4<y<18
3<{x<14 3<y<l@o
3{x<11l 3Ky
3<¢x<12 3<y<13
3(x<14 4<y<13
—0{X<{]l]l 6<{y<{w
=0{x<14 6<y<13

The boundary set Gy Is updated next. Since the set G_, is always empty, G, is

updated as in the basic version space approach, without combining it with a second

boundary set. After both G, and G, have been updated, the sets S; and S, are
pruned by removing any pattern tor which there is no more general pattern in G;. In
this case, no pruning takes place in either S, or S, and the resulting boundary sets

are as shown in figure 5.4. Again, only a single pattern from each boundary set is

plotted in this figure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning In Less Parfact Situations 117

3

J0 =

s <

Ve

10 15

U4

$ boundary set

G boundary set
5sxs18, 5sysll

S8 s8:

68 ¢B:

61 ¢gl:

3<(x<12,
3(x<14,

3{x<11],
3(x<le2,
3<x<14,
3(x<14,
3<x<12,
3¢(x{ew,
—-{x{12,
=o{x{14,
-o{x{14,
=0(x<{11,

3(y<18
4<¢y<18

3(y{
3¢y<13
3¢yK18
4¢y<13
o y< 18
4¢y<18
3<(y<18
4<y<18
6<y<13
6Cy<e

5sx<9,
7sx518,

7yt
S5<ys9

Figure 5.4 Multiple boundery sets from figure 6.3 updated In
response to a new instance. An inconsistency arises with the
introduction of this training instance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 118
65.4.3 An Optimal Solution to Learning with Limited Inconsistency

The extended version space approach described above finds all maximally
consistent concept descriptions for concept learning problems involving & limited
number of Inconsistencles. If boundary sets S through S, and Gy through G, are
Initialized and modified as described above, then al/ maximally consistent concept
descriptions will be found provided there is a consistent subset of at least t training
instances, where t Is the smaller of sn and gn. At least some maximally consistent
concept descriptions will be found provided there is a consistent subset of at least p-
sn positive instances and n-gn negative instances. These guarantees follow directly

from the validity of representing Vss.q in terms of Gc and §;, together with the

correctness of the procedure for updating G9 and S, with each training instance.

For the concept learning problem illustrated in figures 5.1, 6.3, and 6.4, only a
single inconsistency occurs; that Is, there is a consistent subset of all but one of the
training instances. This inconsistency is detected when the negative training

instance (7, 10) is presented. This Instance forces the boundary G, to become more

specific than S, Indicating that the version space VS, 5 Is empty.

The task of the program then becomes tc find all concept descriptions maximally
consistent with the tralning instances =~ In this case, those consistent with any n+p-1

training instances.

In general, there may be many such consistent subsets of n+p-1 training
instances. These will fall into two classes: (1) those consistant with p positive

instances, and some n-1 negative instances, and (2) those consistant with some p=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 118

positive and n negative Instances. The version spaces VS, and VS, , respectively
contain all concept descriptions consistent with these two classes of training sets.
VSp 4 contains concept descriptions consistent with the assumption that the
inconsistency arose from a false negative Instance, while VS, , contains concept
descriptions consistent with the assumption that the inconsistency was due to a false

positiva instance.

Notice that it is not possible to represent the union of VS, and VS, as a
version space represented by a single pair of boundary sets. Therefore, unless it is
known that the inconsistency arose from a false positive or from a false negative

instance, the program must keep track of both V§p, and VS, o if it is to consider all

maximally consistent concept descriptions .

5.4.3.1 A Note on Efficiency

Optimal solutions ére feasible only for problems involving a limited number of
inconslstencies. However, it is worth comparing this approach with the brute force
method of finding the optimal solution in order to gain some insight into the efficiency
of this approach to dealing with Inconsistency. The discussion below concerning
efficiency of representing and updating multiple version spaces applies as well to the

heuristic approach discussed in the following section.

A brute force method for determining all maximally consistent concept

' In the Meta-DENDRAL program false positive instances are much more
common than false negative Instances. This is due to the way in which training
instances are inferred from the available data, and because disjunctive concept
descriptions must be learned.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 120

descriptions is to determine the version space of each of the N subsets of N-1
training instances, then to take the union of these version spaces. Such an approach
would have complexity N times the complexity of the basic version space approach.
The extended version space approach, described above, obtains the same results as
this brute force method, but requires only an additiona! comparison of two boundary
sets per training Instance beyond the computation required by the basic candidate
elimination algorithm. This improvement in efficiency stems directly from generalizing
the déﬂnltion of version space to include concept descriptions consistent with

alternate sets of training Instances.

Some Insight Into the storage sosts of representin_g vs,'g is provided by
contrasting figure 6.1 with figure 6.3. The boundary sets shown in figure 6.3 are
larger than those in figure 5.1, reflecting the increased cost of representing several
version spaces consistent with a range of subsets of the training instances. One
might expect that to represent vsm should require the storage needed to represent a
version space of any particular subset of training instances, multiplied by the number
of possible subsets of p-s positive instances and n-g negative instances. In the
current example, there are 20 possible subsets of training instances corresponding to
VS, Thus, since the version space corresponding to the single set of all training
instances in figure 6.1 is represented by 4 patterns, one might expect approximately
80 patterns would be required to represent VS, , in figure 5.8. However, only 13

patterns are required to represent VS, 4

Two main factors contribute to the smaller than predicted sizes of the boundary

sets which represent VSW. First, only a small proportion of the possible subsets of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 121

training instances corresponding to VS, are consistent with respect to the concept

description language. In the current example, only 2 of the 20 subsets were

consistent. Thus, many possible subsets contribute no concept descriptions 1o VS, o

Second, of those subsets of training Instances which are consistent, the version
spaces will in general overlap. Thus, storage requirements do not increase linearly
even with the number of consistent subsets of training instances corresponding to

Vs

8.0°

It is also of interest to examine the number of patterns contained in the

boundary sets over the course of processing training instances. This data s

', Notice that the size of each boundary set tends to

summarized in table 5.1 below
increase up to a certain limit as training instances are processed. The sizes of these
sets then tend to remain at this limit, although the sizes vary considerably from step
to step. This trend is typical of the set sizes for both the basic version space
approach and the extended approach. The same general behavior has been recorded

for multiple boundary sets in the Meta-DENDRAL domain, in which concepts are

described in a structural pattern language.

! Note that for the feature Iinterval learning problem, the S, boundary set must
always contain & single pattern (the Intervals delimited by the maximum and m'nimum

observed values of each feature).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 122

Training Instance Sizes of Version Space Boundary Sets
Sequence

Sy So 6o Gy
7, 7 1 1
5, IZ i 2 1 1
14, 8 - 2 1 3 |
7, 3 - 2 1 4 3
3, 6 - 2 | 6 7
1, 13) - 2 1 8 12
18, 5 + 2 1 5 18
12, 4 - 2 1 6 13
9, 9) + 2 1 5 11
7, 18) - 2 1 2 18

Table 5.]. Sizes of version space boundary sets at each step in the
tralning sequence. Data is taken from the example shown in figure
6.3. positive instances are indicated by a "+", negative instances

by a "-",

6.6 A Heuristic Approach to Learning with Multiple Inconsistencies

The approach assured to find an optimal solution is feasible only for problems
involving & limited number of inconsistencies. |f even a moderate number of training
instances must be rejected to arrive at a consistent subset of instances, the
approach becomes Inefficient. However, the procedure for obtaining the optimal
solution leads directly to a heuristic approach for dealing with learning problems

Involving many Inconsistencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 123

The heuristic approach to dealing with Inconsistency requires a criterion for
salecting the "best" version space within the program's consideration at each step,
and two parameters, sn and gn, which limit the number of §; and Go boundary sets
respectively which the program is to consider. After each training instance, the best
version space, VSM. is chosen from those which the program has represented. The
boundary sets S, and Gg which represent this version space are retained, as are S,
through S, . and Gg” through Ggwn. Any other boundary sets are dropped from
consideration. If any of the boundary sets to be retained are not currently stored by

the program, they ara approximated using a procedure described below.

Since the version space VS, ; contains all concept descriptions consistent with

any subset of p-s positive and n-g negative Instances, the criterion for ranking
vearsion spaces corresponds to a criterion for selecting among alternate classes of

consistent subsets of training instances.

Reasonable criteria for selecting the central version space are to choose VS, o
such that s is minimized, g is minimized, or s+g is minimized. Minimizing s corresponds
to selecting the version space consistent with the greatest number of positive
instances. Minimizing g corresponds to selecting the version space consistent with
the greatest number of negative instances. Minimizing s+g corresponds to selecting
the varsion space consistent with the largest possible number of training Instances

without distinguishing between positive and negative instances.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 124

6.6.1 Creating New Boundary Sets

When the heuristic procedure selects a current best version space and the

associated range of boundary sets S through S, , and G9 through Gm,n. not all of the

required boundary sets may be currently stored by the program. Any such boundary

sots are approximated by the program as described in this section.

Suppose that a sequence of boundary sets up through S, Is currently kept by
the program, and that the additional boundary set S,, Is desired. The set S, is the

set of maximally specific concept descriptions consistent with some p=-s of the p
observed positive training instances. When the next positive Instance s

encountered, S,,; will be defined as the current set §,, since at that point the set will

be consistent with p-s = (p+1)-(s+1) of the (p+1) observed positive instances.

The boundary set G,y is created from the set G, in an. analogous manner, when
the next negative training instance is observed. In general, the sets S, and Gg,, are
approximated by the current sets S, and G, once i additional positive or negative

training instances have been encountered.

The above procedure gives only an approximation of the true set Sg,. By
definition, S, Is the set of maximally specific concept descriptions conélstent with

any p-(s+l) of the p observed positive instances. Although the above procedure
correctly determines concept descriptions consistent with this number of positive
Instances, It does not consider all possible subsets of p-(s+l) positive instances. In

particular, since S,y Is set to the vaiue of S, when a new positive Instance is

encountarad, any subset of positive Instances including the new positive Instance is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 125

not considered at this point. Depending upon whether these ignored subsets would or
would not have been consistent with more specific concept descriptions than those

already in S, the approximation of S+ will not or will be accurate.

6.6.2 Limitations

Although the heuristic approach described here attempts to find concept
descriptions maximally consistent with the training data, it does not always succeed.
The approach may be characterized as one which considers a range of version spaces
corresponding to a range of consistent subsets of training instances at each step.
Since the program can consider only some of the possible consistent subsets of
instances, it chooses a class of the largest such subsets (corresponding to the
selected version space), and several classes of progressively smaller subsets
(corresponding to the version spaces represented by the additional boundary sets).
The program can find maximally consistent concept descriptions within the scope of
the consistent subsets of training Instances considered at each step. The
performance of the program therefore is determined by the scope of consistent

subsets of instances which the program chooses to consider.

This heuristic method differs from an exact method in that it considers only some
of the possible consistent subsets of training instances. This Incompleteness is due
to two factors: (1) at any step in the process there may be several classes of
largest consistent subsets of training instances (l.e., V200 V81,10 VSp2), but the
program chooses only one of these; and (2) creating new boundary sets Is an

approximate procedure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 126

The first of these two limitations on completeness in the heuristic approach may
be overcome in exchange for & ditferent shortcoming. Rather than select among
alternate plausible version.spaces. the program might instead choose the smallest
version space which contains all these version spaces. For example, rather than
choose between VS;,, VS, 4, and VS, ,, select the version space VS, , which contains
each cf these possibilities. This strategy allows the program to retain all maximally
consistent concept descriptions, but results in additional concept descriptions,
consistent with fewer training instances, being considered as well (vsz'z contains
more concept descriptions than the union of V§,,, VS, ,, and VS;.). If the cost of
obtaining training instances is low, this may be a good strategy, since additional
training instances may be relied upon to eliminate the extra concept descriptions from

VS,,.

The heuristic approach described here is applied in the following section to a
concept learning problem in which inconsistency arises from the fact that a disjunction
of available concept descriptions is needed to cover the entire set of training

instances.

6.6 Learning Disjunctive Concepts

One cause of inconsistency discussed in saction 6.2.3 is that a disjunctive set
of concept descriptions may be required in order to cover all observed training

instances. Here the use of the extended version space approach for learning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 127

disjunctive concept descriptions Is lllustrated. Of course, the version space approach
may be ¢ plied to concept learning problems in which the concept description
language Itself allows disjunctions (resulting In larger boundary sets than If the

language does not allow disjunctions).

In this section, the extended version space approach is used as & bullding block
in a simple iterative approach to learning disjunctive concapts. The training Instances
are first processed to search for the version space corresponding to the largest
consistent subsets of the training instances. A concept description from this version
space is then used to filter out positive training instances which it matches, and the
procedure iterates on the remaining unexplained training Instances. The process

continues until all training instances are explained by some concept description.

Notice that although this iterative approach will not in general find the smallest
set of disjuncts required to explain the data, it tends to find the disjuncts in order of
the number of training Instances which they explain. Thus, if It is desirable to set a
threshold on the minimum number of training instances which & disjunct must uniquely
cover In the training data, this process may be terminated when a disjunct is

generated which does not meet the threshold,

~

The heuristic approach described in the previous section is used here. In this

example, the strategy for selecting the current best VS,‘g Is as follows:
Version Space Selection Strategy for Learning Disjunctive Concepts: At
each step select the version space consistent with all negative

instances and the largest possible number of positive instances. In
other words, select VS, ; for which g=0 and s Is minimized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning in Less Perfect Situations 128

During each lteration through the data, the program learns a single disjunct in
the eventual disjunctive concept description. It is expected, therefore, that during
each iteration except the last, a set of positive instances which cannot be compieteiy
covered by & single disjunct will be presented. For this reason the above selection

strategy selects the VS, which is consistent with every negative training instance,

but which may be inconsistent with some positive instances. In this example, the
parameters controlling the number of additional boundary sets kept by the program are

set to sn=2 and gn=0.

Figure 5.5 illustrates a set of training instances, and the version spaces of the

two disjuncts which were found by the program to cover these instances.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lsarning In Less Perfect Situations 128

20-
_ Gia
S\a
< T _
+
- - qih
10
- 7 S
h g + 7
T E e
+ -
0 ' 10 ' Q0
boundary set boundary set
BA pgla: 1<x<7, 2<y(18 SA sla: 2sxs6, 4sysld
EB glb: 9<{x<w, 4¢y{ll SB slb: 18sxsl6, Ssys8

7<{x{w, 4<{y<9

Figure 5.6 Learning a disjunctive concept.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Learning In Less Perfect Situations 130

During the first iteration through the training insfances. the program found the
version space containing the concept description (1<{x<7, 2<y<18). The five positive
instances which this concept description covers were then removed from the training
data, and the procedure Iteratad on the reduced set of training instances. During the
second iteration, the program found the version space containing the pattern (8<x <,
4<y<11), which covers the remaining three training instances. Thus, In two passes
through the training data, the program discovered the disjunctive concept descrintion

(1<x<7, 2<¢y<18) OR (8<x<», 4<y<11), consistant with all training instances.

§.7 Summary

Iﬁconsistency can arise in concept learning problems from several causes. The
extended version space approach of representing and updating multiole version
spaces, each consistent with a class of consistent subsets of the training instances,
ls presented in this chapter. This extended approach Is capable of determining all
concept descriptions maximally consistent with the training data In learning problems
involving a limited number of inconsistencies. A suboptimal (but less costly) heuristic
approach is presented for concept learning problems involving a larger number of

inconsistencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

Chapter 6

Version Spaces and Meta-DENDRAL

6.1 Introduction

One of the best measuras of the utility, capabilities, and limitations of version
spaces Is provided by their application to & concept learning problem in science. The
version space approach to concept learning has been implementad as one part of the
Meta=-DENDRAL program [Buchanan, 1878] which learns production rules in the

domein of chemical spactroscopy. These rules predict major peaks in the mass

spectra and 3C NMR spectra of classes of orgenic molecules.

In this chapter, the problem of inferring rules of mass spectroscopy and 3¢ NMR
spectroscopy Is briefly described. This rule Inference problem Is broken down Into
two major tasks: (1) determining a set of training instances for this rule learning task
from the avallable training data, and (2) learning rules from these training instances.
The Meta-DENDRAL learning problem Is complicated by noisy, ambiguous data, the
need to learn a disjunctive set of rules, and the known insufficlency of the concept

description language.

The use of version spaces in Meta=-DENDRAL Is described. The concept learning
problem Is outlined in the terms used In earlier chapters, and the algorithm for updating
the version space boundaries Is described in detall. Particular aspects of the problem

domaln. which influence the use, performance, and efficiency of the version space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 132

approach are discussed, as well as intuitions concerning the general viability of the

version space approach, gained from experimenting with this implementation.

6.2 The Chemistry Problem

The Meta-DENDRAL problem is to discover general rules within a prescribed

ianguage for predicting peaks in the mass spectra and '*C NMR spectra of classes of
molecules. These rules are inferred from training data consisting of pairs of known
molecules and their assoclated spectra. The rules generated by Meta=-DENDRAL are
useful both to chemists for the insight which they provide, and as part of the
knowledge base of a set of computer programs called DENDRAL [Feigenbaum, 1871].
The DENDRAL programs apply knowledge of several areas of chemistry to the problem

of elucidation of molecular structures from chemical data.

The rules which Meta=-DENDRAL learns are of the form (pattern -+ action). These
are interpreted as follows: if the pattern matches & molecule, then the specified
action is taken. In Meta-DENDRAL the pattern characterizes a substructure within a
molecule, and the action specifies the appearance of spectral peaks in some region of
the spectrum‘. When the pattern fits within a molecule, the corresponding spectral

peaks are predicted for that molecule.

The Meta-DENDRAL program is described in [Buchanan, 1878]. In the following
subsections, the two areas of spectroscopy are briefly described, and thelr common

concept learning problem described in the terminology of earlier chapters. Some

' In the mass spectrometry domain the rules specify processes which produce
gpectral peaks rather than the peaks themselves.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 133

simplifications of the chemica! problem have been made In the following discussion Iin

order to allow presenting the main ideas compactly.

6.2.1 Mass Spectrometry

A mass spectrometer Is an instrument for chemical analysis which produces a
characteristic spectrum (set of peaks) from a small sample of any given compound.
This spectrum is useful for structure elucidation, since it acts as a "fingerprint" to
determine the identity of the chemical sample used to generate the spectrum,
Chemists are interested in being able to predict the mass spectrum of a given
molecule, and, more importantly, in being able to reconstruct the molecular structure of

an unknown compound from its mass spectrum.

The mass spectrometer bombards a chemical sample with a beam of electrons
which causes molecules in the sample to break apart. The mass of resulting molecular
fragments is then detected by the machine. A spectrum is produced in which the mass
of each detected fragment is indicated by a spectral peak. The intensity of each
mass peak is determined by the relative number of fragments of that mass which were

detected by the machine.

Meta-DENDRAL forms rules that predict which bonds in a given molecule can be
expected to break, and therefore yield peaks in the mass spectrum of the molecule.
A typical rule of mass spectroscopy generated by Meta~-DENDRAL is shown In figure
6.1. This ruie indicates that if the substructure described on the left appears within a

moleculs, then the bonds between atoms 8 and 14, and between atoms 11 and i2 will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 134

break in & mass spectrometer. The bar through these bonds indicates that they will

break, and that a mass spectral peak will be observed at the mass of the right hand

fragment' resulting from the break. The table below the drawing describes

constraints on features of each of the atoms in the drawing.

\ / 11 — 12 \ 11 12
18 — 9 \) IIB -9 .
/ \
8 — 14 — 15 a-tm—ls
NODE NODE CONSTRAINTS
Atom Non-Hydrogen Hydrogen Unsaturated
- Type Neighbors Neighbors Electrons
8 any 22 any any
9 any 3 any any
18 any 23 any any
11 any 22 any any
12 any 21 any any
14 any 22 any any
15 any 21 any 8

Figure 6.1 = A MetaDENDRAL mass spectroscopy rule

in order to obtain training instances from which to determine such rules, Meta-
DENDR.AL must first determine which bonds in each tralning molecule have broken to
yield the fragment masses represented in the mass spectrum. Since there are usually
many ways to break up & molecule to obtain fragments of a given mass, the mapping
of spectral peaks to the molecular fragmentations which cause them is ambiguous.

General knowledge of mass spectroscopy s therefore brought to bear during this step

' This convention reflects the fact that only positively charged fragments are
detectad. The arrow Iin the figure indicates which fragment is charged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 135

as described in [Buchanan, 1878). The result of this procedure, implemented in the
INTSUM (INTerpret and SUMmarize data) program, is a set of partly reliable training
instances corresponding to sets of bonds in the training molecules which are
expected to have broken (positive instances) and not to have broken (negative
instances) in the mass spectrometer. Each set of bonds capable of cutting a molecule
is therefore a positive or negative instance for the rule whose action is "break these

bonds".

6.2.2 C13 NMR Spectrometry

13 :
C nuclear magnetic resonance spectroscopy ('°C NMR) is a second

spectroscopic technique for which Meta-DENDRAL forms rules [Mitehell, 1878]. As
with mass spectrometry, the '3C NMR spectrum provides Information about the
molecular structure of an unknown compound. '3C NMR spectroscopy takes advantage

of the fact that the nucleus of 130, a naturally occurring isotope of carbon, resonates

when placed In a strong magnetic field, at a frequency which is influenced by the local
environment of the '3C atom. Therefore, in a given molecule, each '3C atom will have

a resonance frequency depending upon its environment within that molecule. The 3¢
NMR spectrometer detects the resonance frequencies of these nuclei by bombarding

the sampie with electromagnetic radiation, and measuring frequencies at which this
radiation is absorbed. The '°C spectrum Is a list of observed frequencies at which

radiation is absorbed, indicating the resonance frequencies of the various '3C atoms in

the sample.

The rules formed by Meta-DENDRAL for predicting '*C NMR spectra are similar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta~DENDRAL 136

to those formed in the mass spectrometry domain. They are also of the form (pattern

~ action), in which the pattern again characterizes some molecular substructure, and
the action is the prediction of a spectral peak in a given region of the 3¢ NMR

spectrum. Figure 6.2 shows a typical 'C NMR rule generated by Meta-DENDRAL. -
This rule predicts that the nucleus of atom 1 is associated with a peak in the
indicated region of the spectrum (measured in parts per million from a standard

reference peak).

l]e—2—=3—1 ——) 14.6 ppm. s peak(l) < 14.7 ppm.
NODE NODE CONSTRAINTS
Atom Non-Hydrogen Hydrogen Unsaturated
Type Neighbors Neighbors Electrons
1 3¢ 1 any any
2 C 2 any any
3 C 2 any any
4 C 21 2 any

Figure 6.2 = A MetaDENDRAL 13C NMR rule

There Is an important difference in the training information required by Meta~-

DENDRAL for the '3C NMR problem and the mass spectroscopy problem. Ag mentioned
earlier, the training data for mass spectroscopy are pairs of known molecules and

observed spectra, from which training Instances are determined by the INTSUM
program. There is as yet no automated analog to INTSUM for the 3C NMR domain, so

the chemist must Indicate which '*C atoms in the training molecule give rise to each

observed spectral peak.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 137

6.3 The Concept Learning Problem

For both of the above domains, a major part of the rule learning problem is to find
generalizations from the training set of molecular structures. The generalization
problem is one of finding a chemical substructure whicﬁ characterizes those training
instances for which a glven set of spectral peaks appears. For the mass
spaectroscopy problem, chemical substructures must be found to characterize the
important local chemical environment surrounding bonds that break In a mass

spectrometer. For the 3¢ NMR problem, substructures must be found to characterize

the local environment surrounding 3¢ atoms whose nuclel resonate at or near a given

frequency.

Finding generalizations of the molecular sites described by training instances is
one part of rule learning which is a concept learning problem in itself, and Is the part

of the rule learning process for which version spaces are useful,

Various uses of version spaces within Meta-DENDRAL have been considered, all
of which involve the use of version spaces in the context of the following concept

learning problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and MetaDENDRAL 138

MetaDENDRAL Concept Learning Problem:

Given: I Concept description language: A1)l possible networks with nodes
representing non-hydrogen atoms in a molecule, and links
between nodes representing chemical bonds between the
corresponding atoms. Each node (atom) has the following
properties which may be constrained as shown:

Property Allowed Constraints
Atom=Type C, N, O, S, ..., any

Non-Hydrogen-Neighbors &, 28, 1, 21, 2, ...
Hydrogen-Neighbors 8,1, 2, ..., any

Unsaturated-Electrons 8, 1, 2, ..., any

Each link in the network represents a chemical bond between
the corresponding non-hydrogen atoms. An absent link
indicates there cannot be a chemical bond between the
corresponding atoms. Each pattern has an associated site
which is a particular atom (in the NMR domain) or set of
bonds (in the mass spectroscopy domain) with which the
spectral peak is associated. A pattern may contain only
nodes that are directly or indirectly connected to the site
of the pattern.

2. Pattern Matcher: A pattern matches a training instance
if the pattern constraints are satisfied by the instance;
that is, if there is a mapping of pattern nodes into
instance nodes such that (1) the node or links in the
pattern site map into the node or links in the instance
site, (2) the pattern constraints for cach node property are
satisfied, (3) nodes connected by a link in the pattern are
mapped to nodes connected by a link in the instance, and
(4) nodes not connected by a link in the pattern are mapped
to nodes not connected by a link in the instance.

3. Training instances: Network descriptions of molecules
with associated sites, labeled as either positive or
negative instances of the target concept. Each feature of

each node in the molecule must have a specific value (i.e.,
Atom-Type may be "C", but may not be “any").

Determine: Al concept descriptions within the given language which
are consistent with the training instances.

The pattern language, pattern matcher, training instances, and general-to-

specific partial ordering are discussed further in the following sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 139

-

6.3.1 The Pattern Language

Each pattern in the Meta-DENDRAL program describes a chemical substructure

which may occur within a molecule, and locates a particular site (atom or set of bonds)

within that chemical substructure. The site corresponds in the 3¢ NMR and mass
spectroscopy domains, respectively, to the atom or set of bonds within the molecule
which vield the predicted spectral peak. Allowed patterns are restricted to those
which contain only atoms connected to the pattern site by some chain of chemical

bonds.

The pattern language described above s & structural, or network language
which states constraints on several node properties, and which specifies chemical
bonds as links between the nodes. Hydrogen atoms are the only atoms not explicitly
represented by nodes. Because they are so common, they are represented instead
by the Hydrogen-Neighbors feature of each node in the pattern. This language is
similar to the structural language described in chapter 2 for the arch learning problem.

Figures 6.1 and 6.2 lllustrate legal patterns in this language.

The node features Atom-Type, Non-Hydrogen-Neighbors, Hydrogen-Neighbors,
and Unsaturated-Eilectrons are interdependent; that is, given specific values for
Atom-Type and any two other features, the fourth feature Is uniquely determined. As
a result, it is possible to construct syntactically distinct, but semantically equivaient
patterns which match exactly the same instances in the space of possible instances.
Node constraints implied by other node constraints are therefore made explicit in each

pattern in the general boundary of the version space, in order to keep this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 140

redundancy Iin the pattern language from adversely affecting the size of the boundary

sets.

It should be noted that although chemically meaningless patterns may be
constructed in the language of chemical substructures (i.e., a substructure containing
an atom with 20 neighbors), the program will never construct version spaées
containing such patterns. Only patterns which match the observed positive training
instances are allowed members of the version space. Thus, only patterns which are

substructures of observed (and hence realizable) structures are considered.

6.3.2 The Instances

The language of training instances is a subset of the pattern language. Each
training instance Is a complete molecule with an associated site. A training Iinstance
for the mass spectroscopy problem, consisting of a complete molecule and the

indicated broken bonds (the site), is shown in figure 6.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 141

12 18
\
11 13 -- 17
| | | break bondz betuween atoms
1 18 8 14 16 11 and 12, and 8 and 14
/N / N\ \ /
2 18 8 15 mass peak observed at mass
| | | corresponding to fragment
3 5 7 containing atom 12
\ /N /A
4 6 208
NODE NODE CONSTRAINTS
Atom Non-Hydrogen Hydrogen Unsaturated
Type Neighbors Neighbors Electrons
1 C 2 2 2]
2 C 2 2 B
3 C 2 2 B
4 c 2 2 5
5 C 3 1 5]
) C 2 2 8
7 C 3 1 1
8 c 3 1 8
9 C 3 1 g
18 C 4 8 8
11 C 2 2 5]
12 C 2 2 8
13 c 4 8 B
14 C 3 1 B
15 C 2 2 8
16 C 2 2 8
17 C 2 2 g
18 C 1 3 8
13 C 1 3 B
20 0 1 g 1

Figure 6.3 - A Training Instance for Mass Spectrometry Rules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta=DENDRAL 142

6.3.83 The Pattern Matcher

It is simplest to define the pattern matching predicate by first defining the
concept of a connected mapping of pattern nodes to instance nodes. Given a
mapping, X, of pattern nodes to instance nodes, we use the notation X(p) to refer to
the instance node to which the pattern node p is mapped.

Connected Mapping: A mapping, X, from pattern nodes to instance nodes is a

connected mapping If (1) the mapping is 1-to-1 and into, and (2)
every pair of instance nodes X(p,) and X(p) share a common link if

and only If the pattern nodes P and p, also share a common link.
A pattern matches an instance If there is & connected mapping from pattern

nodes to instance nodes for which all the node constraints in the pattern are

satisfied.

Pattern Matcher: A pattern P matches an instance | if there is a connected
mapping, X, of nodes from P Into nodes from | such that for each
pattern node, p, each feature constraint stated in p is satisfied by
the corresponding feature value in the instance node X(p).

6.3.4 The Partial Ordering

The general definition of the general to specific ordering, first stated in chapter

2, Is repeated here.

Pattern P1 is more specitic than or equal to pattern P2 (P1 2 P2) if and
only If P1 matches a subset of all the Instances which P2 matches.

This definition, together with the above definition of the pattern matcher yields
the following equivalent, but domain specific, definition of the partial ordering for the

current pattern language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 143

Domain Specitic Definition of Partial Ordering: Pattern P1 is more
specific than, ¢r equa! to pattern P2 if and only if there is &
connected mapplng, ¥ of nadas [n P2 into nodes in P1 such that for
gach pailr of nodes p,, X{zp), the feature constraints assoclated

with X(p,) are more spocific than or equal to the feature
constraints assoclated with p,.

The general-to-specific ordering on patterns may therefore be expressed in
terms of a general-to-specific ordering on node feature constraints. The ordering on
the node constraints is simple (e.g., the constraint nch for the feature Atom-Type is
more specific than the constraint vany"). Figure 6.4 lllustrates the partial ordering for

constraints on the node feature Non-Hydrogen-Neighbors.

more I "
specific . 2
\ /
22 1
\ /
ES 8
'Sgﬁﬁm \ /
! 28

Figure 6.4: Partial ordering for constraints on the node
feature Non-Hydrogen-Neighbors

6.3.5 Inconsistencies

Meta-DENDRAL faces several sources of inconsistency in the set of training
instances associated with the above concept learning problem. in the mass
spectroscopy domain, training instances for the above concept learning problem are

not directly available but must be determined from the training data as noted earlier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Mete-DENDRAL 144

But the data from which training instances are determined are not totally reliable, due
to noise peaks or missing peaks In the spectrum. In addition, the language of chemical
substructures is known to be insufficient to capture all possibly relevant features of
chemical substructures. Chemists themselves do not know all the correct features.
Finally, this Is & disjunctive concept learning problem. There is no single

characteristic substructure which coveirs all instances in which molecules fragment, or

all instances in which a '3C NMR resonance peak occurs in a given region of the
spectrum. Instead, many rules are required to explain a substantiai portion of the

training data.

Because of these inconsistencies a single rule of mass spectroscopy typically
covers at most 5% of the positive training instances proposed by INTSUM. Although
the epproach described in chapter § for dealing with inconsistent learning problems is
implemented in Meta~DENDRAL, this approach cannot efficiently deal with such
widespread inconsistency. As a result, the inconsistencies in the INTSUM proposed
treining instances must be reduced in some way before the version space gpproach
may be practically applied to the problem. Methods for reducing this inconsistency
are discussed in a later section of this chapter. Before considering this problem
turther, we describe the algorithm for concept learning using version spaces in ieta-

DENDRAL.

6.4 The Learning Aigorithm

The cavdidate elimination algorithm which uses version spaces for concept

learning is described in domain independent terms in chapter 2. Chapter 6 describes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 145

an extended algorithm for dealing with Inconsistent learning problems. The extended
algorithm of chapter & Is Implemented in Mewa-DENDRAL, where it is used to learn
rules from uncertaln training instances. The number of boundary sets used by the
extended algorithm is under user control, ac are optiona! heuristics for pruning these

boundary sets if they surpass.a user set threshold.

This saction describes the implementation of the functions UPDATE-S and
UPDATE-G for the Meta-DENDRAL pattern language, as well as the use of optional
heuristics and domain knowledge to prune the version space boundary sets. UPDATE-
S(S, G, 1) Is the routine which determines the updated S boundary given a new
positive i;mstance, while UPDATE-G(G, S, i) determines the updated G boundary set
given & new negative instance. Those readers who are not interested In the
implementation of these two functions may want to skip over the two subsections

6.4.1 and 6.4.2.

The definitions of UPDATE-S and UPDATE-G are repeated below from chapter 2.
P refers to the set of all possible patterns, and VS refers to tha current (not yet

updated) version space.

UPDATE-G(G, S, i) = MIN({peVS| =M(p,D)})

= MIN({peP| (3s€8)(3geG) ((s2p2g) A =M(p,i))})

UPDATE-S(S, G, i) = MAX({peVS] M(p.i)})

= MAX({peP] (35€S)(3ge@) ((s2p2g) A M(p,))}).

As discussed in chapter 2, the boundary sets S and G trace out complementary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta=-DENDRAL 146

breadth-first searches through the space of allowed concept descriptions. It is
possibie to implement UPDATE-S and UPDATE-G as simple generate and test
procedures which consider progressively less specific (less general) patterns along
each branch of the partial ordering until a pattern Is found which is consistent with
the new instance. The new boundary set could then be found by taking the maximally
specific (maximally general) patterns found during this search, and removing those
patterns which are not bounded in the partial ordering by some pattern in the opposing
boundary set. Such procedures would, however, be Inefficient because they require

explicitly examining every pattern between the old and new boundary sets.

It is, fortunately, possible to Improve substantially on the above brute force
methods for implementing the functions UPDATE-G and UPDATE-S. By considering
prospactively (1) which patterns In § and G lie along the same branch in the partial
ordering, and (2) possible mappings of patterns in S to the new instance, it is possible
to move directly to the the correct pattern along each branch of the partial ordering,

without explicitly considering intermediate patterns.

6.4.1 Updating the Specific Version Space Boundary Set

Functions similar to UPDATE-S have been implemented by several researchers
for pattern languages in several domains. Plotkin's least generalization algorithm
[Plotkin, 1871], Hayes-Roth's interference matching algorithm [Hayes=-Roth, 1878),
and Vere's maximal common generalizations algorithm [Vere, 1976] are all similar in
intent to UPDATE-S. All of these approaches involve some method for considering

possible correspondences or mappings from the pattern to the Instance, then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Versicn Spaces and Meta-DENDRAL 147

detarmining generalizations of the pattern which allow it to match the instance
according to one of these mappings. Several aspects of this "partial matching"

problem are described by Hayes=-Roth in [Hayes-Roth, 1878].

The implementation of UPDATE-S in Meta~-DENDRAL Is similar to the aigorithms
mentioned above. The program considers patterns In the set S one at & time, as
described below, to find minimally more general patterns consistent with the positive
instance. The variable NEW-S is used to store the new boundary set § as it Is being

constructed.

UPDATE-5(S, G, i)

FOR EACH pattern, p, in S,

IF p matches 1, THEN add p to NEW-S and delete from NEW=S
any pattern more general than p.

ELSE BEGIN

Consider all maxima) connected mappings of subpatterns of p to i.

For each such mapping consider all least generalizations of nodes in
p, including the removal of nodes from p, which are required
to allow p to match i according to this mapping.

For each resulting pattern, if the pattern is less specific than
some pattern in NEW-S, or if there is no pattern in G
more general than this pattern, then ignore the pattern,

else add the pattern to NEW-S, and delete from NEW=S any
pattern which is more general than this pattern.

END;

The term maximal connected mappings of subpatterns of p to i refers to connected
mappings of subsets of connected nodes of p into | which are not contained In any

other mapping. These mappings are determined by initially mapping the site of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 148

pattern to the site of the instance, then repeatedly mapping neighbors of mapped

nodas to each other.

6.4.2 Updating the General Version Space Boundary Set

The procedure for updating the general version space boundary takes
advantage of the fact that the patterns in the S boundary provide & compiete "menu"
of constraints which may be added to patterns in G. In other words, only by adding
constraints from some pattern in S can the resulting pattern be a member of the

current version space, and therefore be a valid member of the G boundary set.

The implementation in Meta-DENDRAL of the function UFDATE-G is described
below. By determining all ways (alternate mappings) in which a general patternin G is
more general than a specific pattern in S, the program determines all ways in which
nodes in the general pattern may be made more specific. The program then finds all
possibie mappings of the general pattern to the negative instance, and gdds to the
pattern the minimal set of constraints needed to assure that each mapping is not a
valid match. Possibic mappings of the general pattern to the instance are determined
by finding maximal connected mappings of subpatterns of the specific pattern to the
instance. These mappings include all connected mappings of the general pattern to
the Instance, as well as mappings of nodes which might be added to the general

pattern.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and MetaDENDRAL 148

UPDATE-G(G, S. 1)

FOR EACH pattern, p, in G, determine 81) mappings of p to patterns in S.
FOR EACH maximal connected mapping, m, of patterns, s, in S to i,

BEGIN
FOR EACH pattern, p, in G,

IF p matches i by the composition of some mapping of p to s, and
some mapping of s to 1,

THEN replace p in G by the set of minimal patterns derived
by adding constraints from s to p so that p no longer
matches 1 under this mapping.

Remove all patterns from G which are not maximally general.

END.

6.4.3 Use of Domain Knowledge and Heuristics

Knowledge of chemistry may be employed by the learning algorithm in two ways.
First, because the language of chemical substructures allows syntactically distinct,
but semantically equivalent patterns, knowledge of the meaning of these patterns is
necessary for deleting redundant patterns from the version space boundaries. This
use of domain knowledge has no effect on the completeness of the version space
approsch. Second, because the version space boundaries become quite large for
some problems, it is sometimes useful to apply heuristics based on outside knowledge
to prune the boundaries. If heuristic pruning is used, of course, the program can no

longer be assured to determine all concept descriptions consistant with the tralning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta~-DENDRAL 180

Instances. The remainder of this section describes domain knowledge and heuristics

which the user may apply to the candidate elimination algorithm.

Knowledge of the interdependency of the node features is always used by the
program. As described In section 6.3.1, values for some subsets of node features
completely determine the vaiue for the remaining feature. For example, It a given

node in some pattern has the following node constraints,

Atom-Type = C
Non-Hydrogen-Neighbors = 3
Hydrogen—-Neighbors = any
Unsaturated-Electrons = 8

then any atom which matches this pattern node must have 1 hydrogen neighbor (since
carbon has a valance of 4). This node will match exactly the same instance nodes as

the following node.

Atom=Type = C
Non-Hydrogen-Neighbors = any
Hydrogen-Neighbors = 1
Unsaturated-Electrons = 8

Because these two sets of node constraints have the same chem.cal meaning,
and because neither is more general than the other, if there is a pattern in the
boundary set G which contains one of these nodes, there will be a second pattern
identical to the first, but containing the other node. This leads to a multiplication of
the size of the general boundary set. In order to prevent this occurrence, when a
new pattern is generated in the general boundary, any node constraints which are
implied by stated node constraints are made explicit in the node. Thus, If either of
the above nodes appeared in a pattern in the general boundary, that node would be

replaced by the following node.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and MetaDENDRAL 961

Atom-Type = C
Non-Hydrogen-Neighbors = 3
Hydrogen=Neighbors = 1
Unsaturated-tlactrons = 8

The procedure which makes these Implicit node constraints explicit uses knowledge of
the valances of atoms, and of the interdependence of the node features. This use of
domain knowledge eliminates redundant patterns from the boundary set, thereby

improving efficiency without affecting the completeness of the learning algorithm.

In contrast to the above use of domain knowledge, there are several methods
available for pruning the boundary sets which may affect the completeness of the

algorithm. These options are listaed and explained below.

Imposing assumptions concerning the class of molecules considered: Meta~DENDRAL
forms rules valid for classes of compounds. Simple assumptions concerning the class of
structures under study may sometimes lead to effective pruning of the version space
boundaries. The user has the option of adding two additional assumptions to the
routine described above for adding implicit node constraints. (1) By assuming a
maximum valance for atoms considered within the class of compounds, additional node
constraints will be filled in by the above procedure. (2) The user may also specify
that all atoms with a valance of four are carbon atoms. This is often the case in
organic molecules, and allows the program to fill in additional node constraints (Atom-
Type) for certain nodes. Both of thaese assumptions, when correct, allow pruning the
version space without endangering the completeness of the candidate elimination

algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 162

Weakening the pattern language: The user may elect to consider only a subset of
the node features in the pattern language when updating the general boundary set.
This option allows choosing a more limited pattern language, and the operation of the
program meay then be characterized as & complete examinaticn of the reduced
language of rules. When operating with a reduced pattern language, the user may

instruct the program to begin considering the entire range of node properties when

the selected subset is not sufficient to find patterns consistent with all instances.

Limiting branching of the boundary sets: There are several ways In which the
branching of the specific and general boundary sets may be reduced heuristically.

s The user may set a parameter which limits the number of alternate mappings of
patterns to instances considered in several portions of the procedures UPDATE-S and
UPDATE-G. Limiting the number of mappings considered may or may not reduce the
branching of the boundary sets, and usually reduces the time required by UPDATE-G

and UPDATE-S.

Setting a ceiling on sizes of boundary sets: |f, after other pruning of the boundary
sets, the size of the set still exceeds some user defined thrashold, the sets may
simply be truncated. The specific boundary set is truncated to the specified size by
deleting the patterns which contain the fewest nodes, while the general boundary is

truncated by removing the pa{terns which contain the largest number of nodes.

6.5 Using Version Spaces in Meta-DENDRAL

How Is the version space approach used in conjunction with other parts of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 163

Meta-DENDRAL program? What new capabilities derived for Meta=DENDRAL by the

use of version spaces?

The version space approach adds the following new capabilities to the Meta-

DENDRAL program.

1) The abllity to augment the original tralning data to modify
existing rules, without the need to reconsider the original data.

2) The ability to determine to what degree each rule has been
learned, and to provide a means of using partially learned rules in a
reliable manner.

3) A new strategy for forming rules from the training instances
inferred by INTSUM. In contrast to the old strategy (implemented in
the RULEGEN and RULEMOD programs), this new strategy is
conceptually simpler, considers both positive and negative evidence
of potential rules from the beginning of the search, considers
alternate versions of each rule, bypasses the “coarse search"
which RULEGEN conducts in forming plausible rules, and allows
forming rules which focus on the most “important" or most
“interesting" training instances first.

4) A more complate method for considering alternate plausible
versions of each rule, so that versions of the rule with better
evidential support may be found.
These capabilities are illustrated in the following sections using examples taken

from the domain of mass spectroscopy. The programs which define, revise, and

reason with version spaces have been implemented so that they apply as well to the

similar concept learning problem in the 3¢ NMR domain. The uses of version spaces in
this domain are analogous to their use described here for the mass spectroscopy

problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta~-DENDRAL 164
6.56.1 Modltying Existing Rules Using New Data

One feature of the version space approach is the capabllity to process training
instances sequentially, without backtracking to reconsider either previously examined
training instances or previously rejected concept descriptions. This feature is
exploited in Meta-DENDRAL to overcome its earlier inability to modify exlisting rules
using subsequent training data. Once the version space of some rule is obtained,
eithaer from the positive and negative Instances associated with some rule formed by
RULEGEN and RULEMOD, or directly from clusters of INTSUM suggested training
instances (as described in the following section), the version space may be refined

using subsegquent training instances.

Because a set of rules (and assoclated versions spaces) is required to cover &
reasonable portion of the training data, it is necessary to determine which pesitive

and negative training instances should be used to update which version spaces.

All negative instances are used to update sach version space since each rule
(or version space) in the set should be consistent with every negative instance.
Nevertheless, because of the several sources of inconsistency associated with this
learning problem, it Is sometimes impossible to obtain rules which match an acceptable
number of positive instances without matching some negative instances. If all of the
patterns in each of the multiple version spaces (see chapter 5 discussion of desiing
with inconsistency) match a negative instance, it is accepted as negative evidence

assoclated with the rule, and the version space Is not altered.

in order to determine whether & given positive instance should be used to train

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 1588

a glven version space, the version space is used to clessify the Instance. If the

Instance is classified as a negative Instance by every pattern in the version space,’

then there is no concept description consistent with this new instance as well as past

Instances assoclated with this rule, and the Instance is rejected?. If, on the other
hand, there is some pattern In the current version space which matches the Instance,

then the instance is accepted as a training instance for the current version space.

The use of version spaces described above to filter possible training Iinstances
Is one use of the partially learned concept represented by a version space. Although
the algorithm for revising the varsion space in response to specified training Instances
obtains results independent of the order In which the instances are presented, the
above procedurs for screening possible positive instances is itself order dependent.
Because the acceptance or rejection of a training instance depends upon the
contents of the version space when that instance is encountered, an instance may be
accepted if presented early In the training sequence, but rejected if presented later,
when the description of the disjunct has become less ambiguous. The above method
for assigning positive instances to individual rules (version spaces) is therefore, order
dependent, and works best if positive instances which truly “"belong" to the same

disjunct are presented together early in the sequence.

Once an instance has been accepted or rejected as a training instance for a
given version space, that version space Is updated according to the algorithm

described in section 6.4.

' When multiple version space boundaries are used as described in ochapter & to
deal with Inconsistency, the weakest (outermost) pair of boundaries is used to
classify the instance.

2 The instance may still, of course, be used to train the wversion space
associated with some other rule in the disjunctive set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 166
6.6.1.1 Some Experimental Results

Table 6.1 summarizes the results of applying this method of assigning instances
and updating version spaces for a set of aromatic ester data. In this case, RULEGEN
and RULEMOD were used (without the aid of version spaces) to form rules from a set
of 4 aromatic ester molecules analyzed by INTSUM. A set of 3 rules was formed,
whose predicted fragmentations (both evidenced and unevidenced) for the set of

training molecules are summarized in the first column of table 6.1.

Version spaces were then formed for each rule by using the evidenced
fragmentations associated with the rule as positive training instances for the
associated version space. The original training data were then applied as described
above to further modify each version space. This step resulted In a set of version
spaces whose predicted fragmentations for the same set of 4 training molecules are
summarized in the second column of the table. Notice that the complete examination of
alternative rule versions afforded by version spaces allowed determining better
versions of two of the three rules produced by RULEGEN and RULEMOD - without

examining new date.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and MetaDENDRAL

167

Rule As generated by Version Spaces Version Spaces
RULEGEN and RULEMOD determined from refined using
same training data additional data
Predictions Predictions Predictions
Correct Incorrect Correct Incorrect Correct Incorrect
Rulel 6 8 6 8 14 8
Rule? 5 B 7 8 17 8
Rule3 6 2 18 2 28 5

Table 6.1: Using version spaces to revise Meta-DENDRAL rules.

The resulting version spaces were then modified by examining 4 additional
training molecules and their associated spectra. Each version space In the set was
refined by eliminating patterns inconsistent with new training instances. The total
number of correctly and incorrectly predicted fragmentations for all 8 training
molecules is summarized in the finai column of the table. The processing of the
additional four training molecules both reduced the number of alternate rule versions in

each version space, and Increased the evidential support of the remaining rule

versions.

In addition to the above use of version spaces to refine rules formed by

RULEGEN and RULEMOD, version spaces have been used to learn rules directly from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta~-DENDRAL 158

clusters of INTSUM inferred training Instances. The following section describes the

later use of version spaces.

6.5.2 Inferring Rules from INTSUM Training Instances

In order to use version spaces to infer a disjunctive set of rules directly from
the INTSUM proposed training instances, It is advisable to provide the program with an
initial indication of which positive instances are likely to be explained by a single
disjunct, or rule. This initial estimate is necessary because the method described
above for assigning instances to version spaces is based upon information already

learned and summarized by the version space.

Since the rules formed by Meta~DENDRAL are ruies for classes of similar
compounds, the data Input to the program is typically a set of molecules sharing some
common substructure, or chemical skeieton. Because of this similarity among training
molecules, training instances corresponding to sites in different molecules, but which
occupy the same position in the skeleton common to these molecules may reasonably
be ciustered together and assigned to & single rule. This step is currently done by

hand.

The program uses this suggested cluster of positive instances to initialize the
version space for each disjunct. Instances in the cluster are considered one by one,
and the version space updated accordingly. Additional training instances from the
same tralning molecules are then considered, assigned to version spaces of alternate

disjuncts as described in the previous section, and used to further refine the version

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta=DENDRAL 158

space. The use of multiple version space boundaries allows the program to recover
from errors in the initial clustering of tralning instances, and in the scraening of
subsequent training instances. There is, of course, a limit on the number of errors
from which the program can recover. This limit is related to the number of version

space boundaries maintained (as discussed in chapter 6).

Figure 6.6 illustrates two training molecules belonging to & class of compounds
called androstanes, with a common skeleton consisting of atoms 1 through 19 in each-
molecule. These molecules were two of thirteen provided with thelr associated mass
spectra as training data to Meta-DENDRAL. Plausible training Instances
(fragmentations) suggested for the two molecules by INTSUM include the indicated
fragmentations. All atoms except atom 20 in each molecule are carbon atoms. In both
molecules atom 20 is an oxygen atom. The difference between these two structures

Is the location of the single oxygen atom.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 160

12 18
\
11 13 -~ 17
| | | break bonds between atoms
1l 19 8 14 16 11 and 12, and 8 and 14
/N /7 \ \ /
2 10 8 15 mass peak observed at mass
J | | corresponding to fragment
3 5 7 containing atom 12
N\ /N 7\
4 6 28
12 18
\ |
11 13 -- 17
] | | break bonds between atoms
1 19 9 14 16 11 and 12, and 8 and 14
/' \}] /7 \ N/
2 18 8 15 28 mass peak observed at mass
3 I | | corresponding to fragment
3 5 7 containing atom 12
N /7 N/
4 6

Figure 6.5 - Tuwo training instances associated With the same version space.

A cluster of similar positive training instances, such as the two in the above
figure, which contain fragmentations in several molecules which occur at the same
position in the common skeleton, are suggested as instances to be covered by &
single rule. Each suggested cluster provides the starting point for training the version
space of a single disjunct. After these instances have been processed, the program

considers all negative training instances In all molecules, refining the version space as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 161

needed for each. in this way, a version space is formed which contains rules
consistent with at least the initial cluster of positive instances, and the fewest

possible negative instances.

Figure 6.6 illustrates the version space formed from training instances which
exhibited the common fragmentation depicted in figure 6.5, including the two
molecules shown in the figure as well as ten others out of the set of thirteen. In this
example, the sizes of the boundary sets G and S were limited to a maximum of 10
patterns. The version space in figure 6.6 contains all possible rules which predict the
common fragmentation which occurred in 12 out of the 13 training molecules, and
which make no incorrect predictions within the 13 molecules. Only a single pattern
from each boundary set is shown In the figure. There were 10 patterns in the G

boundary, and 1 pattern in the S boundary at this point.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 162

Single pattern in specific boundary set:

12 18
\
11 13 -- 17

| | l
1 18 8 14 16
/ N\l /7 \ N/

f J}B ? 15
3 5 7
N /7 N/
4 6
NODE NODE CONSTRAINTS
Atom Non-Hydrogen Hydrogen Unsaturated
Type Neighbors Neighbors Electrons

1 C 22 any any

2 C 2 2 %)

3 C 22 any any
4 C 22 any any

5 C 3 1 8

6 C 22 any any

7 C 22 any any

8 C 3 1 8

S C 3 1 8
18 (W 4 0 2}
11 C 22 any any
12 C 22 any any
13 C 4 8 8
14 C 3 1 B
15 C 2 2 %}
16 C 22 any any
17 C 22 any any
18 C 1 8
18 C 1 3 e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 163

One of 18 patterns in the genera! boundary set:

12

NODE NODE CONSTRAINTS
Atonm Non-Hydrogen Hydrogen Unsaturated
Type Neighbors Neighbors Electrons
8 any 22 any any
9 any 3 any any
11 any 22 any any
12 any 21 any any
14 any 22 any any
15 any 21l any 8

Action associated with patterns in the version space:
1. Break bonds between atoms 11 and 12, and between atoms & and 14.

2. Predict a peak corresponding to the mass of the resulting
fragment which contains atom 12.

Figure 6.6 - Meta-DENDRAL version space.

Additional positive instances are then considered, screened, and assigned as
positive instances for the version space according to the scheme described aarlier
using the partially learned version space. Figure 6.7 illustrates the version space

obtained in this way, starting with the version space shown in figure 8.8. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaceos and Meta-DENDRAL

resulting version space contains rules which cover a total of 26 positive Instances in
the 13 tralning molecules - the original cluster of 12 positive instances and 14
additional positive instances chosen by the screening procedure. At this point the G
boundary set contains 1 pattern, and the S boundary set contains 2 patterns. Figure

6.8 shows the predictions of rules in the final version gpace for 2 of the 13 training

molecules.

One of 2 patterns in the specific boundary set:

12
\
11 13 -- 17
| |
18 8 14

15

NODE

Atom Non-Hydrogen
Type Neighbors

22
22
22
23

[0 WPy

4 s s b
ONUITDWNI—OWoo~I0NM
JOOOOOOO0O0O0O0O0
v
N

o
wC

v

-

NODE CONSTRAINTS

Hydrogen
Neighbors

any
any
any
any
1
any
any
any
any
any
any
any
any

Unsaturated
Electrons

8
any
any

8

8
any
any
any

8

8

8
any
any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL

Single pattern in the general boundary set:

12
}1
8 14
N\ /N \
18 8 15
NODE NODE CONSTRAINTS
Atom Non-Hydrogen Hydrogen
Type Neighbors Neighbors
8 any 22 any
S any 3 any
11 any 22 any
12 any 21 any
14 any 22 any
15 any 21 any

Unsaturated
Electrons

any
any
any
any
any

165

Figure 6.7 - Version space from figure 6.6 after consideration of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14 additional positive instances.

Version Spaces and Meta-DENDRAL 166

12 18 A: break bonds beiween atoms
\ 11 and 12, and 8 and 14
11 13 -- 17 record fragment containing node 12
| |
19\ 8 14 16 B: break bonds betueen atoms
| \ \ / B and 7, and 18 and 9
2 18 8 15 record fragment containing node 7
|
5 7 C: break bonds between atoms

N/ N\ 7 and B, and S and 18
4 (N record fragment containing node &

| | D: break bonds between atoms
S 9 14 16 11 and 12, and 8 and 14
\ NN record fragment containing node 11

8

| E: break bonds between atoms

7 7 and 6, and 9 and 18

ANV AR record fragment containing node 7

Figure 6.8 - Fragmentations in training molecules predicted by the version
space shown in figure B.7.

The above procedure, beginning with reasonable clusters of positive instances
derived from evidenced fragmentations in the common skeleton of several training
molecules, yields rules and version spaces such as the one above. In general, these
rules apply to many instances in addition to the initial cluster, and fmay pradict several

fragmentations within each training molecule, as illustrated in figure 6.8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta=-DENDRAL 167

The above example lllustrates the use of version spaces for learning rules of
mass spectrometry from the plausible tralning instances suggested by INTSUM. In the
above class of androstanes, the five most commonly evidenced skeletal breaks were
used to provide five clusters of instances to initialize version spaces for five
potentially different rules. The evolution of the version space corresponding to one of
these Instance clusters is shown above. The end result of following the above
training process for each of the five instance clusters is summarized in table 6.2. The
resulting version spaces contained rules which correctly predicted 77 fragmentations
over the training set of 13 androstanes, with only a single incorrect prediction. Table
6.2 also summarizes the results of an earlier run of Meta-DENDRAL, using the
RULEGEN and RULEMOD programs to infer rules from the INTSUM results. The five best
rules obtained by RULEGEN and RULEMOD correctly predicted 87 fragmentations in the

same 13 training molecules, with 5 incorrect predictions.

Rule inference Predicted Fragmentations
program
Correct Incorrect

Version space L
program 77 1

RULEGEN and
RULEMOD 87 5
(5 best rules)

Table 6.2: Summary of predictions on training data by two sets
of rules for 13 mono-keto-androstanes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 168
6.6 Lessons and Limitations

One conclusion to draw from experimenting with version spaces in Meta-
DENDRAL, Is that they provide the basis for a sound, eaéily characterized approach to
an important part of a complex rule learning task. Here we examine the limitations of

the approach lllustrated by this implementation.

6.6.1 Sizes of the Boundary Sets

The most severe limitation on applying the version space approach in this domain
is the problem of efficiency. Although the & androstane rules discussed above were
generated using the version space approach in about a third the time which RULEGEN
and RULEMOD would require, the approach is still limited by computer resource
requirements. Meta-DENDRAL is a research experiment - not a production level
program - and its implementation in INTERLISP is designed to allow easy restructuring

"of the control strategies, as opposed to efficient but fixed processing of data.

Still, the efficiency proklam in the version space section of Meta-DENDRAL is
directly related to the large boundary sets sometimes needed to represent version
spaces. Because of the cost of dealing with these large boundary sets,’ options exist
for heuristic pruning of> the boundary sets based upon the several flexible criteria

described above.

€.6.2 Need for Domain Knowledge

Syntactic methods alone are sometimes inuuificiant in Meta=DENDRAL to deal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 168

with the combinatorics involved in rule learning. Because the language of chemical
substructures employed by Meta=DENDRAL Is redundant, knowledge of the
interdependencles of the node properties (including outslde knowledge concerning the
valances of atoms) is needed to prevent inefficiency in representing version spaces.
By Introducing this knowledge, redundant rules in the version space may be eliminated

without affecting the final results.

In addition, assumptions concerning the particular class of compounds under
consideration may be used to prune from the version space those rules which do not
fit the assumptions. Allowing more fiexible ways to constrain the range of rules
considered is a desirable extension for the current program. One step in this direction
is to allow the user te input particular subpatterns which must not appear in a rule,.
This would allow, for example, prohibiting rules which break bonds between atoms with
no unsaturated electrons. Such constraints could be used to prune the version space
in much the same way that positive and negative tralning instances are currently

used.

6.6.3 Learning Disjunctive Sets of Rules

The need to provide an initial cluster the INTSUM produced training instances to
begin the generalization process Illustrates & limit on the use of verslon spaces for
learning large sets of disjunctive rules. Although the extended version space
approach described in chapter & does allow learning in Inconsistent situations,
including learning disjunctive sets of rules, there is a limit on the number of training

instances which a single disjunct must cover in order for the approach to be efficient.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Version Spaces and Meta-DENDRAL 170

Because each rule learned in Mecta-DENDRAL typically covers only a small percentage
(< 5%) of the positive instances, many alternate specific boundary sets must be
maintained in order to learn a set of rules that cover the training data. This limitation
is circumvented in Meta-DENDRAL by introducing & plausible initial cluster of positive
Instances to Initialize each rule, or disjunct. Given this starting point, the program can
use the information summarized in the version space to screen possible new

instances, and succeeds in lsarning a useful set of rules to cover the data.

6.6.4 Need for Training Instance Selection

The use of version spaces to generate training instances to direct future
learning, outlined in chapter 4, may be especially useful in the Meta=-DENDRAL domain.
Because the cost of obtaining training data in this domain is high, & method for
suggesting highly informative new training data is attractive for economies in both
obtaining and processing data. In addition, it instances could be selected to control
the sizes of the version space boundary sets, heuristic pruning could be reduced,
rasulting in a more complete examination of the rule description language. Even if the
program were able to determine which of a large library of available spectra were
potentially informative, the savings in entering and processing data could be

substantial.

It is likely that any useful program for suggesting new training data would make
use of substantial knowledge of chemistry (e.g. stability of pessible molecules, cost of
synthesis) in addition to the Information summarized in version spaces. This appears

to be a rewarding avenue for further research in Meta=-DENDRAL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Varsion Spaces and Meta<DENDRAL 171

6.7 Summary

The use of version spaces in Mcta-DENDRAL has been described. It has been
shown that a central part of the rule learning problem in Meta-DENDRAL corresponds
to a concept learning problem to which the version space approach Is well suited.
Version spaces have been used to add several Important capabilities to Meta-
DENDRAL: to extend its proficiency in examining a space of possible rules, to allow
using new training data to revise existing rules, and to provide an alternative to the
major rule inference programs RULEGEN and RULEMOD. Version spaces provide a more
complete method than RULEMOD for considering possible revisions to RULEGEN
produced rules, as demonstrated in the experiment describing the processing of the
ester data. If provided with a rough initial clustering of training instances determined
by INTSUM, version spaces provide an alternate strategy to RULEGEN for forming

disjunctive sets of rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Comparison With Alternate Approaches

Learning concept descriptions from sets of training instances is a problem which
has recelved attention by many researchers. In this chapter the wversion space
approach is compared to several earlier approaches to concept learning. In keeping
with the view of concept learning as a search problem, the alternate approaches are
grouped according to the search strategies which they employ. Comparisons are
made ‘between these classes of strategies in terms of their capabllities and

efficiency.

7.1 Concept Learning as Search

The class of concept learning problems consldered throughout this thesis Is the

folliowing:

Concept Leariing Problem:
Given: 1. A concept description language.
2. An associated pattern matcher.

3. Sets of positive and negative training instances of the
target concept.

Determine: Concept descriptions within the given language which are
consistent with the provided training instances.

This concept learning problem may easily be phrased as the following search

problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 173

Search Problem:
Given: 1. Search spacs of possible hypotheses.
2. Constraints on acceptable hypotheses.

Determine: Hypotheses within the search space which are consistent
witn the provided constraints.

The correspondence between the above search problem and the above concept
learning problem Is as follows: The search space of possible hypotheses is the space
of concept descriptions which can be stated in the provided language. Constraints on
acceptable hypotheses are the training instances of the target concept. The pattern
matcher provides a procedure for applying training instances as constraints on
acceptable hypotheses. Given a particular constraint (training instance), and a
hypothesis (concept description), the hypothesis satisfies the constraint If either (1)
the training instance is a positive instance and matches the concept description, or
(2) the training Instance Is & negative instance and does not match the concept

description.

This view of concept learning as a search problem has been held by many
researchers [Amarel, 1971], [Winston, 1970}, [Simon, 1873], [Hayes-Roth, 1875]
and provides a useful basis for characterizing alternate strategies to concept
learning. Given this perspective, there are at least as many approaches to concept
learning as there are methods for examining the space of possible concept

descriptions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 174
7.2 Model-Driven and Data-Driven Search Strategies

Two broad classes of search strategies that have been employed for concept
learning problems may be called model-driven and data-driven search strategies.
These terms have been used ([Buchanan, 1878], [Feigenbaum, 1877], [Stefik,
1878]) to refer to procedures for examining search spaces of possible hypotheses In
several problems outside the concept learning problem considered here. In a model-
directed approach, hypotheses are generated according to a predetermined model
based on knowledge of the problem, and are then tested against the set of training
instances (hypothesis constraints). In contrast, in a data-directed approach
hypotheses are generated by considering training instances one at a time to
determine which hypotheses are to be considered next. Thus, model-directed
approaches tend to consider all available constraints at each step to test the
methodically generated hypotheses, whereas data-driven approaches consider the

data constraints one at a time to generate new hypotheses.

The candidate elimination algorithm belongs to the class of data-driven
strategies: each revision to the version space of plausible hypotheses is Initlated by
consideration of a single training Instance. Similarly, Winston's program for inferring
descriptions of "blocks-wprld" concepts {[Winston, 1975] and Hayes-Roth's
Interfarence matching algorithm [Hayes=Roth, 1875] are data-driven approaches. In
each of these programs, training instances are processed sequentially in such a way

that effects of Individua! instances on final results are cumulative. '

Other progrems, such as the RULEGEN portion of the Meta-DENDRAL program

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 176

[Buchanan, 1978] are model-driven In the sense that modifications to current
hypotheses are generated systematically by a generator based on some mode! of the
problem. In RULEGEN, all avaliable training instances are used to prune the model-
driven search at each step, but It Is the predefined model - not the data - that
determinas which hypotheses are to be generated and considered in the next step of

the search.

The data-driven strategies referred to above are well suited to sequential
processing of training instances, since they make decisions by considering each
tralning instance individually, in a quite local context. Model-directed strategies, such
as RULEGEN, consider hypotheses according to a predetermined model, and are not
designed to reconsider previously examined hypotheses when new data becomes
available. As a result, model-driven strategies are not as well suited to the probiem of

revising partially learned concepts on the basis of new data.

Because data-directed approaches make decisions based upcn individual
training Instances, they cannot easlly protect against the effects of occasional errors
in the training instances. Model-directed strategies can more naturaily accommodate
errors Iin the tralning instances because Individual training instance errors are
smoothed out by considering many training instances at once to prune the generated

hypotheses.

In summary, data-directed strategies are well suited for revising partially
learned concepts when new training instances become available, and for efficient

processing of reliable training instances. Model-directed approzchas ara well suited

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 176

to problems invoiving unreliable training Instances. These results are consistent with
the conclusions of other researchers considering hypothesis formation tasks other

than concept learning [Nii, 1878], [Stefik, 1878].

One interesting compromise for taking advantage of the strong points of both
model-directed and data-directed strategies is found in Meta-DENDRAL. In cne
organization of this progrem, described in chapter 6, the initial stage 6f concept
learning is accomplished by the RULEGEN program which conducts a coarse, model-
driven search of the space of possible hypotheses (formed from highly unreliable
training Instances). A data-driven strategy (candidate elimination using version
spaces) Is then used to refine these rulas using both the original and subsequent
training instances. Thus, the first analysis of the data is conducted by a model-driven
strategy, followed by & more complete, data-driven analysis of the initial and

subsequent data.

Although candidate elimination is a data-directed strategy, it can be extended,
as described in chapter 6, for learning in the presence of inconsistency. As a result, It
has the advantages associated with data-driven strategies, but with a capability to

racover from data errors.

7.3 Three Data-Directed Strategies

A range of data-directed search strategies has baeen employed by previous
concept iearning programs. Although no two programs use exactly the same strategy,

It Is useful to group the programs Into classes whose members employ similar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 177

strategies and therefore possess similar performance characteristics. The aim of this
chapter is not to compare alternate concept learning programs, but rather alternate
general strategies which existing programs implement in various ways. We consider two
general search strategies which are well represented In the literature, In addition to
the version space approach. Prototypical examplies of each of these three strategies
are described below. Characteristics of the prototypical example are then described

and ompared.

7.3.1 Depth-First Search - Current Best Hypothesis

Several programs In the literature (e.g., [Winston, 1870], [Waterman, 1870])

3- employ a depth-first search strategy for searching the space of hypotheses (concept
descriptions). In this strategy, a current best hypothesis Is determined in some way,
then revisaed on the basis of axamining subsequent training instances one at a tima. If
the current hypothesis Is consistent with the new training instance, It Is laft
unchanged. If ‘he hypothasis Is inconsistent with the new instance, it Is revised so
that it becomes consistent with the new instance as well as the old instancas. Each
revision to the current hypothesis corresponds to a step in a depth-first search
through the space of possible hypotheses. This revision to the hypothesis involves
two steps. (1) Determining a set of posslble revisions which are consistent with both
the current and previous training instances. (2) Selecting one such modification as the

new current best hypothesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 178

7.3.2 Breadth-First Search - Several Alternate Hypotheses

Several programs have bean written (e.g., [Plotkin, 1870], [Hayes-Roth,
1975], [Vere, 1877]) which employ a breadth-first search strategy to examine
possible concept descriptions. In contrast to the depth-first search strategy, this
strategy Involves maintaining & set of several current hypotheses corresponding to
alternate concept descriptions consistent with the training instances. The above
programs represent an important step in taking advantage of the general-to-specific
partial ordering on the search space cf concept descriptions. Each of these programs
uses this partial ordering to direct the breadth-first search so that progressively more
general concept descriptions are considered each time the set of current hypotheses

must be modified.

Here we describe a prototypical breadth-first search from specific to general
concept descriptions. The approach begins by Initializing the set of current
hypotheses to the most specific concept description(s) consistent with the first
positive training instance. Subsequent training instances are then considered. If the
instance Is & positive instance, any concept description from the current set which
does not match the instance is replaced by the set of least more general concept
descriptions which match the instance. This set is then pruned by eliminating any new
member which matches some past negative Instance. If the new Instance is a
negative instance, concept descriptions from the current set which match the
Instance are deleted. This procedure determines & set of current hypotheses which
correspond exactly to the specific boundary set of the version space associated with the

observed Iinstances. Thus, the breadth-first search strategy corresponds to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 179

determining one of the boundary sets of the version space. This approach is
therefore assured to find the set of maximally specific concept descriptions
consistent with the training instances. This guarantee has been proven for particular
concept description languages by Plotkin [Plotkin, 1870]), Hayes-Roth [Hayes=Roth,

1874]), and Vere [Vere, 1878].

7.3.3 Candidate Elimination - All Plausible Hypotheses

The candidate elimination aigorithm and version spaces have been described in
detall In earlier chapters. In contrast to the above search strategles, the candidate
elimination algorithm represents and revises the version space associated with
observed instances. Thus, it considers the set of all plausible hypotheses consistent
with the set of observed training Instances. The version space is initialized contain all
concept descriptions consistent with the first positive training Instance. Each
subsequent training instance is then used to eliminate from the version space those

candidate concept descriptions which are inconsistent with that instance.

The version space is represented by the sets of its maximally specific and
maximally general concept descriptions. Each of these boundary sets of the version
space traces out a breadth-first search during the course of processing training
instances. The candidate elimination approach can therefore be seen as an extension
to the earlier breadth-first search programs which determine the specific boundary of
the version space. |In addition to the set of maximally specific concept descriptions
maintained in the breadth-first search strategy, a second set of maximally general

concept descriptions is maintained by the candidate elimination strategy. By keeping

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 180

both of these sets, an important new kind of information is available to the learning
program. The Importance of this information in providing additional capabilities for the

candidate elimination strategy is summarized in the next section.

7.4 Capabilities

The central concept learning task is to determine concept descriptions which
are consistant with the training instances. The main difference betwsen the depth-
first search, breadth-first search, and candidate elimination strategies is the number
of correct concept descriptions which they are able to determine. Depth-first search
attempts to find & single acceptable concept description. The breadth-first search
strategy characterized above is assured to find ali maximally specific such concept
dascriptions. The candidate elimination approach determines every concept

description consistent with the training instances.

This difference in the number of concept descriptions determined by the various
approaches is significant for several reasons. By summarizing all plausible concept
descriptions, the candidate elimination strategy avoids having to reconsider past
training instances. There is no need to check which rovisions to the current set of
hypothaeses are consistent with past data. All concept descriptions in the current
version space are consistent with past data. For concept learning problems involving

& large number of training instances, this is an important feature.

The information summarized in the version space boundary sets is also useful for

determining to what extent the target concept has been described by the training

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 181

instances. If there are many concept descriptions In the version space, the training
instances observed so far do not contain sufficient information to uniquely describe
the target concept. In this case, the partially learned concept may still be used to
classliy new Instances as either instances of the concept, not Instances of the
concept, or Instances which cannot be reliably classifiad on the basis of the observed
data. The procedure for classifying new instances on the basis of partially learned

concepts is discussed in chapter 4.

By summarizing all concept descriptions consistent with the current set of
training Instances, version spaces also provide the information required to generate
informative new training Instances. This use of version spaces Is discussed in

chapter 4.

For inconsistent learning problems, in which concept descriptions consistent with
every training instance do not exist, an alternate goal for the learning program is to
determine concept descriptions consistent with the largest possible subset of the
traininé Instances. The candidate elimination algorithm may be exfended as described
in chapter & to determine all such concept descriptions in the presence of limited
inconsistency. For more severe inconsistency, an approximate approach based upon
the exact approach is avallable. It appears that the methods described in chapter &
may be extended to apply as well to the breadth-first search strategy characterized
above. Hayes-Roth [Hayes-Roth, 1874] has described a different extension to the
breadth-first search strategy which allows dealing (in an approximate manner) with

inconsistency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Aiternate Approaches 182

7.5 Efficiency

Efficiency considerations are an important practical consideration when
comparing alternate concept learning strategies. In considering the efficiency of a
learning program, at least two kinds of measures should be taken into account.
Processing time and storage requirements provide measures of the computational
resources required to perform a learning task. It is important to consider as well the

human resources required to perform the task.

7.5.1 Training Resource Requirements

For many fearning tasks the chief human resource cost is in supplying training

o«
1

information to the program. In the Meta-DENDRAL program, for instance, the cost of
supplying training information to the program includes the costs of acquiring samples
of compounds (this often requires synthesizing the compounds in the laboratory) and
obtaining their mass spectra. For problems such as this, human resource costs are
high enough that a significant investment of computer resources is warranted for
choosing well planned training instances. As we look forward to a technology which
will provide less expensive, faster computers, we can expect'the scale along which
we measure machine efficiency to shift in favor of using more machine resources,

further enhancing the relative importance of human resource costs in this tradeoff.

The importance of careful selectlon of training instances for efficient and
reliable learning hes been stressed by several writers [Winston, 1870], [Simon,

1973], [Smith, 1877], yet few learning programs take an active role in determining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 183

their own training instances'. As demonstrated in chapter 4, version spaces

summarize the information needed to propose Informative new tralning Instances. This
capability could have a significant effect on lowering the costs of obtaining and
procassing training instances. To a lesser degree, the breadth-first search approach
provides similar Information in the set of several alternate hypotheses which It

determines.

7.6.2 Computer Resource Requirements

The dependency of processing time and maximum intermediate storage
requirements as a function of the number of training instances Is shown in table 7.1
for the depth-first and breadth-first strategies defined above, as well as for the
candidate elimination algorithm. The calculations of these values for both the
breadth-first search and candidate elimination approaches are based upon the
assumption that the sizes of the version space boundary sets do not grow indefinitely
with the number of observed training instances. Although this assumption has not
been proven formally for arbitrary concept description languages, it hoids empirically
for the two concept learning problems for which the candidate elimination algorithm
has been implemented (the feature interval learning problem, and the Meta-DENDRAL

structural concept description learning problem). This assumptioh is discussed further

below.

' Exceptions include an Induction program [Popplestone, 1969] which Itself
generates training Instances whose (user supplied) classification resolves among
competing hypotheses, and & program [Larson, 1877b] which selects “most
representative" tralning instances from a large set of possibilities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Altsrnate Approaches 184

The dependency of processing time on number of training instances varies
widely among these three approaches. Because the depth-first search described
above does not take full advantage of the partial ordering on the search space, it
must test each revision to the current hypothesis against all past training instances.

As a resuit, it requires processing time proportional to the square of the number of

observed training Instances (denoted O((p+n)?), where p is the number of observed
positive instances, and n the number of observed negdtive instances). In contrast,
the breadth-first search strategy described above does not require reexamining
positive instances. Each time that an observed positive instance alters the set of
curren. hypotheses, those altered hypotheses are tested against previous negative
instances, making the time for procnssing proportional to the product of p and n,
assuming positive and negative instances are intermixed in the training sequence.
Because the candidate elimination algorithm requires no reconsideration of previous
training instances, It requires processing time which Is linear with the number of

observed instances.

The operations counted to determine the orders of the above search algorithms
are comparisons of patterns to instances and of patterns to patterns. For simple
patterns of fixed, independent features, this comparison grows linearly with the
number of features. For more complex, structural patterns (such as those in the
examples of chapters 2 and 6) comparison of patterns to instances may Involve
determining subgraph isomorphism, a known NP-complete problem [Cook, 1971].
Although the complexity of such pattern matching procedures does not affect the
relative comparison of alternate search strategies, it is an Iimportant factor in

determining the overali efficiency of any of the methods (see [Hayes=Roth, 1878]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 185

Processing time Intermediate Storage
Depth-First 0((p$n)?) O(ptn)
Search
Breadth-First O(pxn) o(n)
Search
Candidate O(p+4n) o(l)
Elimination

Table 7.1 Dependency of processing time and maximum storage
costs on number of observed positive training instances, p, and
number of observed negative training instances, n.

5. Table 7.1 also summarizes storage requirements of he alternate strategies as a
function of the training set size. The depth-first search strategy requires storing ali
training instances so that future revisions to the current hypoihesis may be tested
against these instances. The breadth-first search strategy needs to store only
negative instances for later examination because the search is organized to follow
the specific-to-general partial ordering. As described previously, the candidate
elimination algorithm does not require reexamining previous training instances, so its

storage requirements are not proportional to the number of training instances

observed.

A few additional comments on the processing time and space requirements of
the candidate elimination approach are in order. The efficicncy of this approach is

strongly Influenced by the sizes of the boundary sets which represent the version

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 186

space. The processing time required to update the version space boundary sets in
response to an Individual posltive (negative) training instance Is proportional to the

square of the size of the boundary set S (G).

For the concept learning problems considered here, the sizes of the boundary
sets typically behave as shown in figure 7.1. This figure illustrates general trends
which hold empirically for the two concept learning programs for which the version
space approach has been implemented. No formal analysis of the observed trends has

been attempted.

The boundary sets are initialized to each contain a single pattern. Each set
grows as training instances are observed until a plateau is reached. The set sizes
vary, but tend to remain at roughly this plateau until they begin to decrease in size as
the version space contains fewer and fewer concept descriptions. The maximum set

size is typically larger for the general boundary than for the specific boundary.

G
Size of /o
Version Space
Boundary Sets S

\

Number of Observed Training Instances

Figure 7.1 Typical Relation of Version Space Boundary Set Size to
Number of Observed Training Instances.

For the feature interval learning problem, the boundary sets remained small. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 187

that problem, the specific boundary set can never contain more than a single pattern.
The size of the general boundary set rarely exceeded 10 patterns (when multiple
boundary sets are employed to deal with inconsistency, the outer boundarles may be
larger as shown in table 5.1). in contrast, for the Meta-DENDRAL impiementation,
boundary set sizes vary with the complexity of the training molecules. For a set of
aromat.ic esters which typically include 10 to 20 non-hydrogen atoms, the maximum
boundary si.zes were typically 50 patterns in the general boundary and 20 patterns in
the specific boundary. For the set of androstanes lllustrated in chapter 6, the
. maximum general boundary set size often reached 100 patterns, and the specific

boundary set 30 patterns.

The sizes of the intermediate boundary sets can be strongly influenced by the
order in which training instances are presented (the final sets, of course, do not
depend on this ordering). Intermixing positive and negative instances seems to be
the best strategy for controlling boundary set sizes. If all positive instances are
considered first, the spacific boundary becomes quite large. If negative instances
are interspersed with the positive instances, they prune concept descriptions from
this boundary, reducing its maximum size. Chapter 4 suggests guidelines for proposing

training instances to control the sizes of the intermediate boundary sets.

7.6 Summary

A useful perspective on concept learning is that it is one kind of search problem
in which a space of possible concept descriptions is examined subject to constraints

imposed by the training instances. This perspective is useful for characterizing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison With Alternate Approaches 188

various approaches to concept learning, In terms of the strategies which they employ

to examine the search space.

Several classes of search strategiss (concept learning strategies) were
considered. In particular, three data-driven strategies for examining the space of
possible concept descriptions wers characterized and compared in terms of relative
capabllities and efficiency. The set of concept descrinticns determined by a breadth-
first search strategy similar to that employed by Plotkin, Hayes-Roth, and Vere is
found to correspond to the specific boundary set of the version space assoclated

with the training instances.

The information summarized in the represented version space is useful for many
tasks as described in previous chapters. The chief difference between capabilities
of the version space approach and the other approaches considered may be traced to

this new information available to the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

Chapter 8

Summary and Conclusions

8.1 Results

Version spaces provide the basis for a provably correct learning procedure
applicable to a broad class of concept learning problems. This candidate elimination
elgorithm learns concepts described in a predetermined language by examining a
sequence of positive and negative training instances of the concept. The algorithm
begins by representing the version space of all concept descriptions consistent with
the first observed positive instance, then eliminates candidate concept descriptions
from the version space as they are found to conflict with subsequent training
instances. Features of the candidate elimination algorithm include:

1) All concept descriptions (within the prescribed language)

which are consistent with the training instances are contained in
the computed version space.

2) Backtracking is not required to reconsider either previously
examined tralning Instances or previously rejected concept
descriptions. As a result, the program does not need to store past
tralning instances.

3) Results are independent of the order in which training
instances are presented.

4) Processing time is linear with the number of observed
tralning Instances.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Summary and Conclusions 1980

The generality of the version space approach to concept learning has been
demonstrated both theoretically and empirically. The correctness of the boundary
sets representation for version spaces was formally proven for a broad range of
concept description languages Including any countably infinite language. The
correctness of the candidate elimination algorithm for determining the version space
associated with a set of training Instances was also proven. The use of version
spaces has been lllustrated for learning concepts in three different problem domains:
learning classes of simple structures made out of children's blocks, learning numerical

feature value intervals, and learning rules associating chemical substructures with

mass spectral peaks.

By representing the version space, a program acquires the abllity to describe,
and therefore reason about what can and cannot be determined about the identity of
the target concept on the basis of the observed training instances. This ability to
summarize the information from the training instances in the language of concept
descriptions leads to several important capabilities. In particular, version spaces
summarize information needed for solutions to the following four problams discussed

initlally in chapter 1.

Which Concept Descriptions Are Consistent With Observed Tralning

Instances?

Exactly those which are contalned in the version space. Programs which
determine and revise a current best concept description or descriptions must examine

past tralning instances explicitly to determine which revisions to current hypotheses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Summary and Conclusions 181

are conslstent with past Instances. As a result, they require processing time
proportional to the square of the number of tiasining Instances. The version space
approach does not reexamine tralning instances, and therefore requires processing

time which Is linear with the number of training instances (see chapter 7).
When Is a Given Concept Unambiguously Learned?

When only & single concept description remains in the version space.
Furthermore, partially learned concepts can be represented and reliably used.
Learning a concept corresponds to eliminating concept descriptions from the version
space so that exactly those consistent with the data remain. When there is more

5 than one concept description In the version space, the concept is not uniquely
determined by the training instances. In such cases, the version space may be used
to classify new instances in a reliable manner even though the identity of the concept
is not completely determined. Chapter 4 describes this use of version spaces to
classify instances as (1) instances of the concept, (2) not instances of the concept,

or (3) instances which cannot be reliably classified without further training data.
Are the Training Instances Consistent?

If and only if the version space is not empty. Furthermore, an extension
allows learning from inconsistent instances. By definition, inconsistency arises
when thaere is no concept description which matches all positive instances and no
negative instances. Such inconsistency is detected when the version space contains
no concept descriptions. By generalizing the definition of version spaces and the

candidate elimination algorithm, concepts can be reasonably learned in the presence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Summary and Conclusions . - i82

of such inconsistency. For limited Inconsistency, all concept descriptions consistent
with the largest consistent subsets of training Instances are determined. For more
severe Inconsistency, an approximate method based on this exact method Iis

presented (see chapter 5).
What Additional Training Instances Would be Intormative?

Any Instance which matches some, but not all, concept descriptions i the
current version space. By generating such instances, whose classification will allow
eliminating candidate concept descriptions from the version space, a program can
propose informative instances without knowing the identity of the target concept. An
optimal strategy for proposing such training instances is illustrated for the featurae
interval learning problem. Guidelines are also given for choosing training Instances
which improve processing etficiency by controlling the sizes of the version space

boundary sets (see chapter 4).

8.2 Assumptions and Limitations

The method for representing and revising version spaces is detined and proven
in terms independent of the language <chosen for describing concepts.
Implementations of the candidate elimination aigorithm for the feature interval learning
problem, and for the Meta-DENDRAL concept lgarning problem have been described.
In order to use version spaces for learning concepts represented as patterns In a
given concept description language, one must Implement the following language-

dependent procedures:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Summary and Conclusions 183

1) A pattern matching predicate for matching instances to
concept descriptions.

2) A predicate "more specific than" for determining whether
one concept description is more specific than another. ’

8) The procedure UPDATE-S which, given a positive training
instance, revises the specific boundary set of a version space in a
prescribed manner.

4) The procedure UPDATE-G which, given a negative training
instance, revises the general boundary set of a version space in a
prescribed manner.

The implementation of these procedures for the graphical language used to
describe chemical substructures in Meta~-DENDRAL is detailed in chapter 6. This
implementation provides an example of how such procedures might be implemented for
other network or structural pattern languages. These procedures have ailso been
implemented for the feature interval learning problem described in chapter 2.

Procedures similar to UPDATE-S have been implemented by others for other concept

description languages [Plotkin, 1870], [Hayes-Roth, 1874], [Vere, 1875].

Althouch the applicability of the version space approach to concept learning
problems Involving a broad range of concept description languages has been proven
formally, the description and processing of version spaces is more efficient for some
languages than for others. Since procassing time is propertional to the square of the
sizes of the boundsry sets, the nature of the partial ordering associated with the
language strongly influences efficiency. For languages where branching In the partial

ordering is deep, but not wide, the approach will be more efficient than for languages

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Summary and Conclusions 184

for which the branching is more broad. For instance, In tho feature interval learning
problem, the boundary sets which represent version spaces are small. In the Meta-
DENDRAL problem, the sizes of these sets is manageable for simple molecuies in spite
of the rich structural language for describing concepts. For very large molecules, the
boundary sets are sometimes pruned heuristically to improve program efficlency while
sacrificing completeness. For other languages, such as those which allow unlimited
disjunctions of patterns, branching in the partial ordsring may be too great for

practical use of the boundary sets representation for version spaces.

One important topic for further work is the characterization of the sizes of

version space boundary sets and the overall efficiency of the version space approach

Eor

as a function of the chosen concept description language. Methods for choosing
training instances to control boundary set sizes were considered in chapter 4, will be
the subject of future study. A second route toward improving efficiency is to
determine a more efficient scheme for representing version spaces. One interesting
possibility Is to represent each boundary set in terms of a single pattern common to sall

its elements, together with sets of allowed additional features and constraints.

Although efficiency Is an important consideration for any program, proficiency Is
a more basic concern. Fast programs incapable of dealing with central problems wil!
always be lass useful than time consuming programs which solve these problems.
Recent trends in hardware technology indicate that complex programs which require
c.p.u. hours today might require c.p.u. minutes or seconds five years from now
executing on less expensive computers. Progress on methods for machine tearning Is

at a very early stage, and our time is therefore better spent developing methods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Summary and Conclusions 195

which go beyond the capabilities of current programs than In increasing the efficiency

of current methods.

8.3 Future Work

The use of version spaces to propose optimal new training instance. to direct
concept learning was demonstrated in chapter 4 for a simple feature interval learning
problem. The principle employed there generalizes to other concept description
languages, but the implementation of the general method requires language-specific
routines. The determination of routines to generate optimal training instances for

languages of structural or network patterns is a promising avenue for further work.

Version spaces provide a useful summary of what can be known about a given
concept, with respect to the concept description language, on the basis of the training
instances. If the data are not sufficient to completely determine the concept, or if the
data contain errors, then problem specific knowledge may provide additional
constraints for chosing among plausible concept descriptions. The limited use of
domain knowledge to eliminate concept descriptions from version spaces was
considered in the Meta-DENDRAL program, and was discussed in chapter 6. A more
thorough study of methods for constraining the version space on the basis of problem
specific knowledge or other more general criteria (e.g., simplicity, elegance) In
addition to the training data would constitute an important extension of the work

reported here.

This dissertation describes a version space approach to concept learning, which is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Summary and Conclusions 186

used to determine the conditional part of the condition-action rules learned by Meta-
DENDRAL. Further work is needed to generalize the methods discussed here to the
problem of rule learning In which both the condition and the action must be determined.
The work of Vere [Vere, 1877] and Hayes-Roth [Hayes-Roth, 1875] in defining a
partial ordering for several kinds of rules and in describing programs which determine
the set of maximally specific rules cunsistent with training instances provides s solid

base for such an extension of the version space approach.

8.4 Conclusions

One process central to learning is the process of generalization. Version spaces
form the basis of a powerful method for generalizing from training instances to learn
concepts in a broad range of problem domains. This conclusion is supported by both
theoretical and empirical resu!ts. The power of the version space approach derives
tron: an offigiant, provable method for representing and revising version spaces, and

from the summary of observed training instances afforded by version spaces.

Version spaces have important uses beyond their central role in the concept
learning algorithm presented here. They summarize training data information that is
required to perform other tasks, such as using partially iearned concepts in a reliable

manner and proposing optima! new training instances.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

References

The following abbreviations are used in the Reference saction.

1JCAI4 Proceedings of the Fourth International Joint Conference on Artificial Intelligence,
Tbilisi, Georgia, USSR, September 1876 (avallable from MIT Al Lab, 646
Technology Square, Cambridge, Mass,, 02138).

1JCAI5 Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
Cambridge, Mass., August 1977 (available from MIT Al Lab, 645 Technology
Square, Cambridge, Mass., 02138).

[Amarel, 1971]
S. Amarel, Representations and modeling in problems of program formation. In
Machine Intelligence 6, (Me!tzer and Michie, eds.), University of Edinburgh Press,
Edinburgh, 1971.

[Aubin, 1977]
R. Aubin, Sirategies for mechanizing structural induction. //CAl5, Cambridge,
Mass., August 1977, pp. 363-368.

[Banerji, 1974]
R. Banerji, Learning to solve games and puzzles. In Computer Oriented Learning
Processes, (J. C. Simon, Ed.), Noordhoff, Leyden, 1876.

[Barrow, 1972]
H. G. Barrow and R. J. Popplestone, Relational descriptions in picture processing.
In Machine Intelligence 7, (B. Meltzer and D. Michie, Eds.), American Elsevier, New
York, 1872, pp. 377-396.

[Bauer, 1876]
M. Bauer, A basis for the acquisition of procedures from protocols. IJCAl4,
Cambridge, Mass., September, 1976, pp. 226-231.

[Bierman, 1972]
A. W. Bierman and J. A. Feldman, A survey of results In grammatical inference. In
Frontiers of Pattern Recognition, (S. Watanabe, Ed.), Academic Press, New York,
1872, pp.31-64.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

[Brown, 1877]
D. J. H. Brown, Concept learning by feature value interval abstraction. Procedings
of the Workshop on Pattern Directed Inference Systems, SIGART Newsletter-632, 1877,

66-60.

[Brown, 1875]
J. 8. Brown, et al., Steps toward a theoretical foundation for complex, knowledge

based CAl. BBN Report 3135, Cambridge, MA, August 1876.

[Bruner, 1856]
J. S. Bruner, J. J. Goodnow, and G. A. Austin, 4 Study of Thinking. Wiley, New

York, 1966.

[Buchanan, 1874)
B. G. Buchanan, Sclentific theory formation by computei. In Computer Oriented
Learning Processes, (J.C. Simon, Ed.), Noordhoff, Leyden, 1976.

[Buchanan, 1978]
B. G. Buchanan and T. M. Mitchell, Model-directed learning of production rules, In

Pattern-Directed Inference Systems (D. A. Waterman and F. Hayes-Roth, Eds.),
Academic Press, New York, 1878.

[Buchanan, 1978a]
B. G. Buchanan, et al., Models of learning systems. In Encyclopedia of Compurer
Science and Technology, 1878.

[Clancey, 1879]
W. Clancey, Tutoring rules for guiding a case model dialogue. In /nternational
Journal of Man-Machine Studies, (Brown and Sleeman, eds.); January, 1878,

[Cook, 1876]
C. M. Cook and A. Rosenfeld, Some experiments Iin grammatical inference. In

Computer Oriented Learning Processes, (J. C. Simon, Ed.), Noordhoff, Leyden, 18786.

[Cook, 1971]
S. A. Cook, The complexity of theorem proving procedures, In Procedings of the
T hird Anual ACM Symposium on T heory of Computing, 1871, p.151-158.

[Davis, 1876]
R. Davis, Applications of meta-level knowledge to the construction, maintenance,
and use of large knowledge bases. STAN-CS-76-652, Stanford University, July
1876.

[Duda, 1973]
R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. Wiley, New
York, 1873.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

[Eicock, 1867]
E. W. Elcock and A. M. Murray, Experiments with a learning component in a go-
moku playing program. In Machine Intelligence i (Collins and Michie, Eds.), Oliver &

Boyd, London, 1867, pp. 87-108.

[Evans, 1868]
T. G. Evans, A program for the solution of a class of geometric analogy

intelligence test questions. In Semantic Information Processing (M. Minsky, Ed.),
MIT Press, Cambridge, Mass., 1868, pp. 271-268.

[Feigenbaum, 1863]
E. A. Feigenbaum, Thz simulation of verbal learning behavior. In Computers and
Thought (E. A. Felgenbaum and J. Feldman, Eds.), New York: McGraw-=-HIll, 1863,

pp. 297-308.

[Feigenbaum, 1971]
E. A. Feigenbaum, B. G. Buchanan, and J. Lederberg, On generality and problem
solving: a case study using the DENDRAL program. In Machine intelligence 6, (B.
Meltzer and D. Michie, Eds.), American Elsevier, New York, 1871, pp. 165-180.

[Feigenbaum, 1877]
E. A. Feigenbaum, The art of artificial intelligence: I. themes and case studies of

knowledge engineering. /JCAl5, Cambridge, MA, 1877, pp. 1014-1028.

[Fikes, 1972]
R. Fikes, P. Hart, and N. J. Nilsson, Learning and executing generalized robot

plans. Artificial Intelligence, 3, 1872, pp. 261-288.

[Findler, 1868]
N. V. Findier and W. R. McKinsie, Computer simulation of & seif-preserving and

learning organism. Bull. Math. Biophysics, 31, pp. 247-253 (1969)

[Findier, 1877]
N. V. Findler, Studies in machine cognition using the game of poker. CACM, 20(4),
pp. 230-245 (1977).

[Friedberg, 1858]
R. M. Friedberg, A learning machine: part 1. /BM Journal, 2, pp. 2-13 (1858).

[Fu, 1974)]
K. S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York,

1874,

[Fu, 1875)
K. S. Fu and T. L. Booth, Grammatical inference: introduction and survey-part |.
IEEE Trans. on SMC, SMC-5{(3), pp. 85-111 (1875); Part i, IEEE Trans. on
SMC, SMC-5(4) pp. 409-423 (1876).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

[Gold, 1967]
E. M. Gold, Language ldentification In the limit /nformation and Control, 10, pp.

447-474, (1867).

[Green, 1976]
C. C. Green, The design of the PSI program synthesis system. Proceedings of the

Second International Conference on Software Engineering, San Franclsco, California,
October 1876, pp. 4-18.

[Griffith, 1974]
A. K. Gritfith, A comparison and evaluation of three machine learning procedures

as applied to the game of checkers Artificial Intelligence 5, pp. 137-148 (1874).

[Hardy, 1676]
S. Hardy, Synthesis of LISP functions from examples. //CAl4, Cambridge, Mass.

September, 1975, pp. 240-245.

[Hayes-Roth, 1874)
F. Hayes-Roth, Schematic classification problems and their solution. Partern

Recognition, 6, pp. 106-113 (1874).

[Hayes~Roth, 1975]
F. Hayes-Roth and D Mostow, An automatically compilable recognition network for

structured patterns. / JCAl4, Cambridge, MA, September 1975, pp. 356-362.

[Hayes-Roth, 1976]
F. Hayes-Roth and J. Burge, Characterizing syllables as sequences of machine-
generated labelled sements of connected speech: a study in symbolic pattern
learning using & conjunctive feature learning and classification system.
Procedings of 3rd Int. Joint Conf. on Paitern Recognition. Coronado, CA, 1876, pp.
431-436.

[Hayes~-Roth, 19877]
F. Hayes-Roth and J. McDermott, knowiadge acquisition from structural

descriptions. / JCAl5, Cambridge, Mass., August 1877, pp. 246-261.

[Hayes-Roth, 1978]
F. Hayes-Roth, The role of partial and best matches in knowledge systems. In
Pattern-Directed Inference Systems (D. A. Waterman and F. Hayes-Roth, Eds.),
Academic Press, New York, 1878, pp. 6567-576.

[Hedrick, 1876]
C. Hedrick, Learning production-systems from examples. Artificial Intelligence, 7,

pp. 21-49 (1876).

[Hunt, 1863] ‘
E. B. Hunt and C. I. Hovland, Programming a model of human concept formation. In

Computers and Thought (E. Feigenbaum and J. Feldman, Eds.), McGraw-Hill, New
York, 1863, pp.310-326.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201

[Hunt, 1866]
E. B. Hunt, J. Marin, and P. T. Stone, Experimeats in Induction. Academic Press,
New York, 1866.

[Hunt, 1875]
E. B. Hunt, Artificial Intelligence. Academic Press, New York, 1875.

[Kanal, 1974]
L. Kanal, Patterns in Pattern Recognition: 1868-1974. IEEE Trans on Inform.

T heory, IT-20(6), 697-722 (1874).

[Kuhn, 1970]
T. S. Kuhn, The Structure of Scientific Revolutions. 2nd ed., University of Chicago
Press, Chicago, 1870.

[Langley, 1877]
P. W. Langley, BACON: A production system that discovers empirical laws.
1JCAl5, Cambridge, Mass, August 1877, pp. 344-346.

[Larsen, 1877]
J. Larson and R. S. Michalski, Inductive inference of VL decision rules. n

Procedings of the Workshop on Pattern Directed Inference Systems, SIGART Newsletter
63,1877.

[Larson, 1877b])
J. Larson, Inductive inference in the variable-valued predicate logic system
VL21: methodology and computer implementation. Ph.D. thesis, Dept. of Computer
Science, University of lliinois, Urbana, May, 1877.

[Lenat, 1876]
D. B. Lenat, AM: an artificial intelligence approach to discovery in mathematics as
heuristic search, PhD Thesis, Stanford University, Stanford, California, 1876.

[Lesser, 1975]
V. R. Lesser, R. D. Fennell, L. D. Eiman, and D. R. Reddy, Organization of the

HEARSAY Il speech understanding system. [EEE Trans. on Acoustics, §peeck, and
Signal Processing, ASSP-23(1) pp. 11-23 (1876).

[Michalski, 1272]
R. S. Michalski, AQVAL/1 - Cmputer implementation of a variable valued logic
system VL1 and examples of its application to pattern recognition. Procedings Ist
Internationa! Joint Conference on Pattern Recognition, Washington, D.C., 1873, pp.
3-17.

[Minsky, 1863]

M. Minsky, Steps Toward Artificial Intelligence. In Computers and Thought (E.A.
Feigenbaum and J. Feldman, Eds.), McGraw-Hill, New York, 1863, pp. 406-450.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

[Minsky, 1972]
M. Minsky and S. Papert, Perceptrons, The MIT Press, Cambridge, Mass., 1860,

[(Mitchell, 1877]
T. M. Mitchell, Version Spaces: A candidate elimination approach to rule learning.
1JCAI5, MIT, Cambridge, MA, August 1877, pp. 305-310.

[Witehell, 1978]
T. M. Mitchell and G. M. Schwenzer, A computer program for automated, empirical
13C NMR rule formation. Organic Magnetic Resonance, 11,(8), 1878, pp. 378-384.

[Nii, 1878]
H. P. Nii and E. A. Feigenbaum, Rule-based understanding of signals. In Patrern-
Directed Inference Systems (D. A. Waterman and F. Hayes-Roth, Eds.), Academic
Press, New York, 1878,

[Plotkin, 1870]
G.D. Plotkin, A note on inductive generalization, Machinc Intelligence 5 (B. Meltzer
and D. Michie, Eds.), Edinburgh University Press, Edinburgh, 1970, pp. 153-163.

[Plotkin, 1871]
G.D. Plotkin, A further note on inductive generalization, Machine Intelligence 6 (B.
Meltzer and D. Michie, Eds.), Edinburgh University Press, Edinburgh, 1871, pp.
101-124. ‘

[Popplestone, 1868]
R. J. Popplestone, An Experiment in Automatic induction. Machine Intelligence - 5
(8. Meitzer and D. Michie, Eds.), Edinburgh University Press, 1870, pp. 204-215.

[Samuel, 1963)]
A. L. Samuel, Some studies in machine learning using the game of checkers.
Computers and Thought (E.A. Feigenbaum and J. Feldman, Eds.), McGraw-Hill, New
York, 1963, pp. 71-105.

[samuel, 1967]
A. L. Samuel, Some studies in machine learning using the game of checkers |l -
recent progress. IBM Journal of Research and Devclopment, 11(6), 601-617,
(1867).

[Shortliffe, 1876)
E. H. Shortliffe, Computer Based Medical Consultations: MYCIN, American Elsevier,
New York, 1876.

[Simon, 1873]
H. A. Simon and G. Lea, Problem solving and rule Induction: a unified view.
Knowledge and Cognition (LW. Gregg, Ed.), lLawrence Eribaum Associates,
Potomac, Maryland, 1874, pp. 106-127.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

[Sleeman, 1878]
D. H. Sieeman and R. J. Hendley, ACE: a system which analyses complex
explanations. In [International Journal of Man-Machine Studies, (Brown and
Sieeman, eds.), January, 1978.

[Smith, 1977]
R. G. Smith, et al., A model for learning systems. /| JCAl5, Cambridge, MA, 1877,
pp. 838-343.

[Soiomonoff, 1977]
R. Solomonoff, Inductive inference theory - a unificd approach to problems in
pattern recognition and artificial intelligence. /JCAl4, MIT, Cambridge, Mass.,
1976, Vol.1:274-280.

[Soloway, 1977]
E. M. Soloway and E. M. Riseman, Levels of pattern description in learning.
1]CAlS, MIT, Cambridge, MA, 1877, pp. 801-811.

[Soloway, 1978]
E. M. Soloway and E. M. Riseman, Knowledge-directed learning. Pattern-Directed
Inference Systems (D.A. Waterman and F. Hayes-Roth, Eds.), Academic Press, New
York, 1878.

[Stefik, 1878)
M. J. Stefik, Inferring DNA structures from segmentation data. Artificial
Intelligence, 11, August, 1878.

[Sussman, 197¢&]
G. J. Sussman, A Computational Model of Skill Acquisition. MIT Al-TR-297, August
1873.

[Uhr, 1963]
L. Uhr and C. Vossler, A pattern-recognition program that generates, evaluates,
and adjusts its own operators. Computers and Thought (E.A. Feigenbaum and J.
Feldman, Eds.), McGraw-Hill, New York, 1863, pp. 251-26G8.

[Vere, 1875]
S. A. Vere, Induction of concepts in the predicate calculus. / JCAl4, Tbilisi, USSR,
1875, pp. 281-287.

[Vere, 1877]
S. A. Vere, Induction of relational productions in the presence of background
information. / JCAI5, Cambridge, MA, 1977, pp. 349-355.

[Vere, 1978]
S. A. Vere, Inductive Learning of Relaticnal Productions. Pattern-Directed Inference
Systems (D.A. Waterman and F. Hayes-Roth, Eds.), Academic Press, New York,
1878.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

[Waterman, 1970]
D. A. Waterman, Generalization learning techniques for automating the lgarning of

heuristics. Artificial Intelligence, 1(1,2), pp. 121-170 (1870).

[Waterman, 1875]
D. A. Waterman, Adaptive production systems. /JCAl4, MIT, Cambridge, Mass.,

1875, pp.296-303.

[Winston, 1870]
P. H. Winston, Learning structural descriptions from examples, MIT Al-TR-231,

September 1870.
[Winston, 1875]

P. H. Winston, (Ed.), The Psychology of Computer Vision, McGraw-Hill, New York,
1876.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

