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For several decades, statisticians have advocated usirap@mation of labeled and un-
labeled data to train classifiers by estimating parametdra generative model through
iterative Expectation-Maximization (EM) techniques.sTthapter explores the effective-
ness of this approach when applied to the domain of text ifiestson. Text documents
are represented here with a bag-of-words model, which léadsyenerative classification
model based on a mixture of multinomials. This model is areeadly simplistic repre-
sentation of the complexities of written text. This chagbgulains and illustrates three
key points about semi-supervised learning for text clasgifin with generative models.
First, despite the simplistic representation, some texhains have a high positive corre-
lation between generative model probability and classificaaccuracy. In these domains,
a straightforward application of EM with the naive Bayestteodel works well. Second,
some text domains do not have this correlation. Here we captad more expressive
and appropriate generative model that does have a positwelation. In these domains,
semi-supervised learning again improves classificaticcugacy. Finally, EM suffers from
the problem of local maxima, especially in high dimensiomdins such as text classifica-
tion. We demonstrate that deterministic annealing, a warat EM, can help overcome the
problem of local maxima and increase classification accuffacther when the generative
model is appropriate.

3.1 Introduction

The idea of learning classifiers from a combination of labbeled unlabeled data is an old
one in the statistics community. At least as early as 1968a# suggested that labeled
and unlabeled data could be combined to build classifieris kkielihood maximization
by testing all possible class assignments [Hartley and R868]. The seminal paper by
Day [1969] presents an iterative EM-like approach for pastars of a mixture of two nor-
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32 Semi-Supervised Text Classification Using EM

mals with known covariances from unlabeled data alone.|&iriterative algorithms for
building maximum likelihood classifiers from labeled andalreled data with an explicit
generative model followed, primarily for mixtures of nornhstributions [McLachlan,
1975, Titterington, 1976].

Dempster et al. [1977] presented the theory of the EM framlewlaringing together
and formalizing many of the commonalities of previously gested iterative techniques
for likelihood maximization with missing data. Its appliéty to estimating maximum
likelihood (or maximum a posteriori) parameters for mitunodels from labeled and
unlabeled data [Murray and Titterington, 1978] and themgighis for classification
[Little, 1977] was recognized immediately. Since thensthpproach continues to be
used and studied [McLachlan and Ganesalingam, 1982, Gamgsa, 1989, Shahshahani
and Landgrebe, 1994]. Using likelihood maximization of tabe models for combining
labeled and unlabeled data for classification has more tigeaade its way to the machine
learning community [Miller and Uyar, 1996, Nigam et al., 898aluja, 1999].

The theoretical basis for Expectation-Maximization shakhat with sufficiently large
amounts of unlabeled data generated by the model class $tiguiea more probable model
can be found than if using just the labeled data alone. If thestfication task is to predict
the latent variable of the generative model, then with siefficdata a more probable model
will also result in a more accurate classifier.

This approach rests on the assumption that the generatidelrigcorrect. When the
classification task is one of classifying human-authorgtt@as we consider here) the true
generative model is impossible to parameterize, and idgiegctitioners tend to use very
simple representations. For example, the commonly-usigd Bayes classifier represents
each authored document as a bag of words, discarding all watering information.
The generative model for this classifier asserts that dootsra&re created by a draw
from a class-conditional multinomial. As this is an extresimaplification of the authoring
process, it is interesting to ask whether such a generatageting approach to semi-
supervised learning is appropriate or beneficial in the domftext classification.

This chapter demonstrates that generative approachgy@aapaiate for semi-supervised
text classification when the selected generative modekitities are well-correlated with
classification accuracy, and when suboptimal local maxiamebe mostly avoided. In some
cases, the naive Bayes generative model, despite its sityipis sufficient. We find that
model probability is strongly correlated with classificatiaccuracy, and Expectation-
Maximization techniques yield classifiers with unlabeledadthat are significantly more
accurate then those built with labeled data alone. In othses, the naive Bayes generative
model is not well-correlated with classification accurdgy.adopting a more expressive
generative model, accuracy and model probability corigiatare restored, and again EM
yields good results.

One of the pitfalls of EM is that it only guarantees the disgrgvof a local maxima and
not a global maxima in model probability space. In domaike text classification, with
a very large number of parameters, this effect can be venjfiignt. We show that when
model probability and classification are well-correlatbe,use of deterministic annealing,
an alternate modeling estimation process, finds more pletstd thus more accurate
classifiers.
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3.2 A Generative Model for Text 33

Non-generative approaches have also been used for seeriviaga text classification.
Joachims [1999] uses transductive support vector machinbaild discriminative clas-
sifiers for several text classification tasks. Blum and Mittfl998] use the co-training
setting to build naive Bayes classifiers for web pages, usimadpor text and the page itself
as two different sources of information about an instanedikdvitz and Hirsh [2000] use
unlabeled data as background knowledge to augment a neaigstbor classifier. Instead
of matching a test example directly to its closest labeledgXe, they instead match a test
example to a labeled example by measuring their similaity tommon set of unlabeled
examples.

This chapter proceeds as follows. Section 3.2 presentsthergtive model used for text
classification and shows how to perform semi-supervisethileg with EM. Section 3.3
shows an example where this approach works well. Sectiopr@gents a more expressive
generative model that works when the naive Bayes assumiptiwt sufficient, and exper-
imental results from a domain that needs it. Section 3.5gmtssdeterministic annealing
and shows that this finds model parameterizations that acé mmore probable than those
found by EM, especially when labeled data are sparse.

3.2 A Generative Model for Text

This section presents a framework for characterizing tegtichents and shows how to use
this to train a classifier from labeled and unlabeled dat& ffAmework defines a prob-
abilistic generative model, and embodies three assungpébout the generative process:
(1) the data are produced by a mixture model, (2) there is a@o@e correspondence
between mixture components and classes, and (3) the migtum@onents are multino-
mial distributions of individual words. These are the asgtioms used by the naive Bayes
classifier, a commonly-used tool for standard supervisddttegorization [Lewis, 1998,
McCallum and Nigam, 1998a].

We assume documents are generated mpdure of multinomialsnodel, where each
mixture component corresponds to a class. Let therd/belasses and a vocabulary of
size|X|; each document; has|z;| words in it. How do we create a document using this
model? First, we roll a biasetl/ -sided die to determine the class of our document. Then,
we pick up the biasefl(|-sided die that corresponds to the chosen class. We roltiibis
|z;| times, and count how many times each word occurs. These wamdtg form the
generated document.

Formally, every documentis generated according to a piibityatistribution defined by
the parameters for the mixture model, dendtedihe probability distribution consists of a
mixture of components; [M].1 A documenty;, is created by first selecting a mixture
component according to the mixture weights (or class pritiiab), P(c;|6), then using
this selected mixture component to generate a documentdingdo its own parameters,
with distributionP (x;|c;; 6). Thus, the likelihood of seeing documentis a sum of total

1. We use the notatioji\/] to refer to the sef1, ..., M}.
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34 Semi-Supervised Text Classification Using EM

probability over all mixture components:

P(2:l0) = Y Plc;l0)P(wiles;0). (3.1)

JE[M]

Each document has a class label. We assume a one-to-ongpmrdence between mix-
ture model components and classes, and thug;usendicate thejth mixture component,
as well as theth class. The class label for a particular documens writteny,. If docu-
mentx; was generated by mixture componentve sayy; = c;.

A document,z;, is a vector of word counts. We write;; to be the number of times
word w; occurs in document;. When a document is to be generated by a particular
mixture component a document length;| = Zg'l T4, 1S first chosen independently
of the componerit Then, the selected mixture component is used to generatetargnt
of the specified length, by drawing from its multinomial distition.

From this we can expand the second term from Equation 3.1lexgméss the probability
of a document given a mixture componentin terms of its caretit features: the document
length and the words in the docum@nt

P(ile;0) o P(lai]) JT Pluwele;;0)™. (3.2)
wi€X

This formulation embodies the standard naive Bayes assomphat the words of a
document are conditionally independent of the other wondtié same document, given
the class label.

Thus the parameters of an individual mixture component dedimultinomial distri-
bution over wordsi.e. the collection of word probabilities, each writtép, .., such that
Ow,|c; = P(wilc;; 0), wheret € [|X]] and), P(wi|c;;0) = 1. Since we assume that for
all classes, document length is identically distributédpies not need to be parameterized
for classification. The only other parameters of the modelthe mixture weights (class
probabilities))., = P(c;|¢), which indicate the probabilities of selecting the diffetre
mixture components. Thus the complete collection of modedmeters], defines a set of
multinomials and class probabilities:= {0,,, ., : ws € X,c; € [M]; 0, : ¢; € [M]}.

To summarize, the full generative model, given by combirgggation (3.1) and (3.2),
assigns probability?(x;|0) to generating documen, as follows:

P(zi|6) o P(|lail) Y Plel0) T Plowles; )™ (33)

JE[M] wreX

where the set of word counts; is a sufficient statistic for the parameter veaidn this

2. This assumes that document length is independent of, ttemsgh length could also be modeled
and parameterized on a class-by-class basis.

3. We omit here the multinomial coefficients for notationiahglicity. For classification purposes,
these coefficients cancel out.
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3.2 A Generative Model for Text 35

generative model.
3.2.1 Supervised Text Classification with Generative Modsl|

Learning a naive Bayes text classifier from a set of labelecld@nts consists of es-
timating the parameters of the generative model. The estimfithe parameterg is
written 4. Naive Bayes uses the maximum a posteriori (MAP) estimdwes finding
argmaxg P(0|X,Y). This is the value of) that is most probable given the evidence of
the training data and a prior.

Our prior distribution is formed with the product of Diri@tl distributions—one for
each class multinomial and one for the overall class praitiabi The Dirichlet is the
commonly-used conjugate prior distribution for multinaidistributions. The form of the
Dirichlet is:

P (0, 0) o [ Plwtle;)™ (3.4)
weX

where thea; are constants greater than zero. We setal= 2, which corresponds to
a prior that favors the uniform distribution. This is ideati to Laplace and m-estimate
smoothing. A well-presented introduction to Dirichlettdisutions is given by Stolcke and
Omohundro [1994].

The parameter estimation formulae that result from maxation with the data and our
prior are the familiar smoothed ratios of empirical couiitse word probability estimates
0 are:

wi|cj

A A 1+ . 61' i L
ow,,\cj = P(wt|cj;9) _ ‘zx:lrcleX Jrit

|x| + 2321 ZzieX 6ij$is
whered;; is given by the class label: 1 whep = ¢; and 0 otherwise.

The class probabilitieg,,, are estimated in the same manner, and also involve a ratio
of counts with smoothing:

: (3.5)

5 — s 1+ 6y
0., = P(c;|0) = X (3.6)
The derivation of these ratios-of-counts formulae comasctly from maximum a pos-
teriori parameter estimation. Finding theéhat maximize® (0| X,Y") is accomplished by
first breaking this expression into two terms by Bayes' rifi@| X, Y) o P(X,Y|0)P(6).
The first term is calculated by the product of all the documiéetinoods (from Equa-
tion 3.1). The second term, the prior distribution over paeters, is the product of Dirich-
lets. The whole expression is maximized by solving the sysbé partial derivatives of
log(P(0|X,Y)), using Lagrange multipliers to enforce the constraint thatword prob-
abilities in a class must sum to one. This maximization \Welte ratio of counts seen
above.

Chapelle, Scholkopf & Zien: Semi-Supervised Learning 500/18 18:05



36 Semi-Supervised Text Classification Using EM

Given estimates of these parameters calculated from ldledning documents, it
is possible to turn the generative model backwards and lea¢cthe probability that a
particular mixture component generated a given documepétform classification. This
follows from an application of Bayes’ rule:

P(c;|0)P(x;]c;; 0)

P(zil0)
_ P(c;10) HwtexP(wdcj;@)I“ (37)
Yoity P(er|0) T, e Pwilexs 0)7

If the task is to classify a test documentinto a single class, then the class with the highest

posterior probabilityarg max; P(y; = c;|z;; 6), is selected.

P(y; = cjlz;;0) =

3.2.2 Semi-Supervised Text Classification with EM

In the semi-supervised setting with labeled and unlabebsd,dve would still like to
find MAP parameter estimates, as in the supervised settiogealBecause there are no
labels for the unlabeled data, the closed-form equatiar the previous section are not
applicable. However, using the Expectation-Maximizatjgi) technique, we can find
locally MAP parameter estimates for the generative model.

The EM technique as applied to the case of labeled and uelddaka with naive Bayes
yields a straightforward and appealing algorithm. Firstaave Bayes classifier is built in
the standard supervised fashion from the limited amounaloéled training data. Then,
we perform classification of the unlabeled data with the e&gayes model, noting not the
most likely class but the probabilities associated withheglass. Then, we rebuild a new
naive Bayes classifier using all the data—Ilabeled and utddbeusing the estimated class
probabilities as true class labels. This means that thebaeldd documents are treated as
several fractional documents according to these estin@dtess probabilities. We iterate
this process of classifying the unlabeled data and relmgjlthie naive Bayes model until it
converges to a stable classifier and set of labels for the Tataalgorithm is summarized
in Table 3.1.

More formally, learning a classifier is approached as catouy a maximum a posteriori
estimate of), i.e. arg maxy P(0)P(X, Y|6), which is equivalent to maximizing the log of
the same. Consider the second term of the maximization rtteapility of all the observ-
able data. The probability of an individual unlabeled doeanis a sum of total probability
over all the classes, as in Equation 3.1. For the labeled tatayenerating component is
already given by labe}; and we do not need to refer to all mixture components—just the
one corresponding to the class. Usikg to refer to the unlabeled examples, akigto
refer to the examples for which labels are given, the exjgelctg probability of the full
data is:
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3.2 A Generative Model for Text 37

e Inputs: CollectionsX; of labeled documents and,, of unlabeled documents.

e Build an initial naive Bayes classhiief?, from the labeled documentX];, only. Use maximum a
posteriori parameter estimation to fifid= arg maxe P(X;|0)P(6) (see Equations 3.5 and 3.6).

e Loop while classifier parameters improve, as measured bychiaage inl(0|X,Y") (the log
probability of the labeled and unlabeled data, and the p¢see Equation 3.8):

e (E-step)Use the current classifief, to estimate component membership of each unlabeled
documentj.e., the probability that each mixture component (and clasepgied each docu-
ment,P(c;|x4; 0) (see Equation 3.7).

e (M-step) Re-estimate the classifief], given the estimated component membership
of each document. Use maximum a posteriori parameter esimao find 6 =

arg maxg P(X,Y|0)P(0) (see Equations 3.5 and 3.6).

e Output: A classifier,d, that takes an unlabeled document and predicts a class label

Table 3.1 The basic EM algorithm for semi-supervised learning of & téassifier.

101X,Y) = log(P(0))+ > log Y P(c|0)P(wiles;0)
T, €Xy JE[M]
+ Y log (P(yi = ¢j[0)P(wslys = ¢56)). (3.8)
T, €X,

(We have dropped the constant terms for convenience.) &t this equation contains
a log of sums for the unlabeled data, which makes a maximizdty partial derivatives
computationally intractable. The formalism of Expectatiddaximization (EM) [Dempster
etal., 1977] provides an iterative hill-climbing approaefinding a local maxima of model
probability in parameter space. The E-step of the algoridstimates the expectations
of the missing values (i.e. unlabeled class informationggithe latest iteration of the
model parameters. The M-step maximizes the likelihood efrtfodel parameters using
the previously-computed expectations of the missing waasif they were the true ones.

In practice, the E-step corresponds to performing classifio of each unlabeled docu-
ment using Equation 3.7. The M-step corresponds to caloglatnew maximum a poste-
riori estimate for the parameters,using Equations 3.5 and 3.6 with the current estimates
for P(Cj |$i; é)

Essentially all initializations of the parameters lead ¢ong local maxima with EM.
Many instantiations of EM begin by choosing a starting mgaeameterization randomly.
In our case, we can be more selective about the starting poioé we have not only
unlabeled data, but also some labeled data. Our iteratiooeps is initialized with a
priming M-step, in which only the labeled documents are useestimate the classifier
parameters], as in Equations 3.5 and 3.6. Then the cycle begins with atejEthat uses
this classifier to probabilistically label the unlabeleddments for the first time.

The algorithm iterates until it converges to a point whémoes not change from one
iteration to the next. Algorithmically, we determine thaheergence has occurred by ob-
serving a below-threshold change in the log-probabilityhef parameters (Equation 3.8),
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38 Semi-Supervised Text Classification Using EM

which is the height of the surface on which EM is hill-climbin
3.2.3 Discussion

The justifications for this approach depend on the assumptitated in Section 3.2,
namely, that the data are produced by a mixture model, artdthibee is a one-to-one
correspondence between mixture components and classks.dénerative modeling as-
sumptions were correct, then maximizing model probabilibuld be a good criteria in-
deed for training a classifier. In this case the Bayes optoaakifier, when the number of
training examples approaches infinity, corresponds to tA® l[darameter estimates of the
model. When these assumptions do not hold—as certainlyeisdlke in real-world tex-
tual data—the benefits of unlabeled data are less clear. &lthlabeled data, the Naive
Bayes classifier does a good job of classifying text docusjgmivis and Ringuette, 1994,
Craven et al., 2000, Yang and Pedersen, 1997, Joachims, We@allum et al., 1998].
This observation is explained in part by the fact that cfasgion estimation is only a
function of the sign (in binary classification) of the furmtiestimation [Domingos and
Pazzani, 1997, Friedman, 1997]. The faulty word indepece@ssumption exacerbates
the tendency of naive Bayes to produce extreme (almost Oaad3 probability estimates.
However, classification accuracy can be quite high even ulese estimates are inappro-
priately extreme.

Semi-supervised learning leans more heavily on the caresstof the modeling assump-
tions than supervised learning. The next section will showpieically that this method can
indeed dramatically improve the accuracy of a documensifiag especially when there
are only a few labeled documents.

3.3 Experimental Results with Basic EM

In this section we demonstrate that semi-supervised legmith labeled and unlabeled
data provides text classifiers that are more accurate thasethrovided by supervised
learning using only the labeled data. This is an interestsglt as the mixture of multino-
mials generative model is a dramatic simplification of thietauthoring process. However,
we demonstrate that for some domains, the optimizatioeréitof model probability is
strongly correlated with classification accuracy.

Experiments in this section use the well-kno2B Newsgroups text classification
dataset [Mitchell, 1997], consisting of about 20,000 Usearéicles evenly distributed
across twenty newsgroups. The task is to classify an aititde¢he newsgroup to which it
was posted. For preprocessing, stopwords are removed addccaonts of each document
are scaled such that each document has constant lengthpatéhtially fractional word
counts. As the data have timestamps, a test set is formedfi®tast 20% of articles from
each newsgroup. An unlabeled set is formed by randomly thedet0,000 articles from
those remaining. Labeled training sets are formed by pariitg the remaining documents
into non-overlapping sets. We create up to ten training getssize of the set, as data
are available. When posterior model probability is rembded shown on graphs, some
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Figure 3.1 Classification accuracy on ti28 Newsgroups data set, both with and without 10,000

unlabeled documents. With small amounts of training datiagEM yields more accurate classifiers.
With large amounts of labeled training data, accurate patamestimates can be obtained without
the use of unlabeled data, and classification accuraci¢ediio methods begin to converge.

additive and multiplicative constants are dropped, butétegive values are maintained.

Figure 3.1 shows the effect of using EM with unlabeled datth@data set. The vertical
axis indicates average classifier accuracy on test setsharrizontal axis indicates the
amount of labeled training data on a log scale. We vary theuainof labeled training
data, and compare the classification accuracy of traditinae Bayes (no unlabeled
documents) with an EM learner that has access to 10000 dethbecuments.

EM performs significantly better than traditional naive BayFor example, with 300
labeled documents (15 documents per class), naive BayeBae®2% accuracy while
EM achieves 66%. This represents a 30% reduction in claassdficerror. Note that EM
also performs well even with a very small humber of labeleduthents; with only 20
documents (a single labeled document per class), naivesBaytains 20%, EM 35%. As
expected, when there is a lot of labeled data, and the naiyesBaarning curve is close
to a plateau, having unlabeled data does not help nearly eb,rhacause there is already
enough labeled data to accurately estimate the classifranmeders. With 5500 labeled
documents (275 per class), classification accuracy inesefiem 76% to 78%. Each of
these results is statistically significapt< 0.05).%

How does EM find more accurate classifiers? It does so by agitimon posterior model
probability, not classification accuracy directly. If owgrgerative model were perfect then
we would expect model probability and accuracy to be caedland EM to be helpful.

4. When the number of labeled examples is small, we have prailtiials, and use paired t-tests.
When the number of labeled examples is large, we have a gimgleand report results instead with
a McNemar test. These tests are discussed further by Diét{@998].
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Figure 3.2 A scatterplot showing the correlation between the posteniodel probability and the
accuracy of a model trained with labeled and unlabeled ddta.strong correlation implies that
model probability is a good optimization criteria for th@ Newsgroups dataset.

But, we know that our simple generative model does not cepnany of the properties
contained in the text. OU0 Newsgroups results show that we do not need a perfect
model for EM to help text classification. Generative modets i@presentative enough
for the purposes of text classification if model probabilityd accuracy are correlated,
allowing EM to indirectly optimize accuracy.

To illustrate this more definitively, let us look again at #2Newsgroups experiments,
and empirically measure this correlation. Figure 3.2 destraes the correlation—each
point in the scatterplot is one of the labeled and unlabepditssfrom Figure 3.1. The
labeled data here are used only for setting the EM inititibraand are not used during
iterations. We plot classification performance as accumacyhe test data and show the
posterior model probability.

For this dataset, classification accuracy and model prtityaéare in good correspon-
dence. The correlation coefficient between accuracy andehprdbability is0.9798, a
very strong correlation indeed. We can take this as a post4adfication that this dataset
is amenable to using unlabeled data via a generative mogebaph. The optimization
criteria of model probability is applicable here becausgiih tandem with accuracy.

3.4 Using a More Expressive Generative Model

The second assumption of the generative model of Sectiost&&s that there is a one-to-
one correspondence between classes and components indiseenmodel. In some text
domains, it is clear that such an assumption is a dangerausCamsider the task of text
filtering, where we want to identify a small well-defined dlaf documents from a very
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3.4 Using a More Expressive Generative Model 41

large pool or stream of documents. One example might be amytbiat watches a network
administrator’s incoming emails to identify the rare ensgrgy situation that would require
paging her on vacation. Modeling the non-emergency emsitlseanegative class with only
one multinomial distribution will result in an unrepresatite model. The negative class
contains emails with a variety of sub-topics: personal &naion-emergency requests,
spam, and many more.

What would be a more representative model? Instead of muglelisea of negative
examples with a single mixture component, it might be betitemodel it with many
components. In this way, each negative component coulsl, mfiximization, capture one
clump of the sea of examples. This section takes exactlyppeoach suggested by this
example for text data, and relaxes the assumption of a coedaorrespondence between
mixture components and classes. We replace it with a legscte® assumption: anany
to-one correspondence between mixture components argkslaghis allows us to model
the sub-topic structure of a class.

3.4.1 Multiple Mixture Components per Class

The new generative model must account for a many-to-onespondence between mix-
ture components and classes. As in the old model, we firstpidkss with a biased die
roll. Each class has several sub-topics; we next pick onkesfet sub-topics, again with a
biased die roll. Now that the sub-topic is determined, theudoent’'s words are generated.
We do this by first picking a length (independently of subitagnd class) and then draw
the words from the sub-topic’s multinomial distribution.

Unlike previously, there are now two missing values for eanlabeled document—
its class and its sub-topic. Even for the labeled data thexerassing values; although
the class is known, its sub-topic is not. Since we do not haeess to these missing
class and sub-topic labels, we must use a technique such ae Ebtimate local MAP
generative parameters. As in Section 3.2.2, EM is instedias an iterative algorithm
that alternates between estimating the values of missimgs@nd sub-topic labels, and
calculating the MAP parameters using the estimated laBdéier EM converges to high-
probability parameter estimates the generative model earsed for text classification by
turning it around with Bayes' rule.

The new generative model specifies a separation betweemnmigbmponents and
classes. Instead of using to denote both of these; € [N] now denotes only thgth
mixture component (sub-topic). We writg € [M] for the ath class; when component
¢; belongs to class,, theng,; = 1, and otherwise 0. This represents the pre-determined,
deterministic, many-to-one mapping between mixture camepts and classes. We indicate
the class label and sub-topic label of a documentypyand z;, respectively. Thus if
documentr; was generated by mixture componeptve sayz; = c;, and if the document
belongs to class, then we sayy; = t,.

If all the class and sub-topic labels were known for our detidding MAP estimates
for the generative parameters would be a straightforwaptiGgion of closed-form equa-
tions similar to those for naive Bayes seen in Section 32hk formula for the word
probability parameters is identical to Equation 3.5 fovedBayes:
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The class probabilities are analogous to Equation 3.6,dnguhe new notation for classes
instead of components:

Ounle, = Plwilc;; 0) (3.9)

A . 1+,

0;, = P(t,]0) = —==L"2 3.10
The sub-topic probabilities are similar, except they atéreged only with reference to
other documents in that component’s class:

1+ Z‘l}:ql 0i;6ia
N X .
S aj + S Gia

At classification time, we must estimate class membersiuipadilities for an unlabeled
document. This is done by first calculating sub-topic mermsiigrand then summing
over sub-topics to get overall class probabilities. Suytietcanembership is calculated
analogously to mixture component membership for naive Bawéh a small adjustment
to account for the presence of two priors (class and sulztamstead of just one:

Oc,10. = Plcjlta; 0) =

(3.11)

P21 = oy ) — 2ol GagP(tal0)P(c; ta ) T, cxc Plwilej; 0)
T Zre[N] Zbe[M] Qor P (ts|0)P (cr[te; 0) [, e xc Pwiler; 0)7

Overall class membership is calculated with a sum of prdibaliver all of the class’s
sub-topics:

(3.12)

P(y; = ta|as; 0) = Z 0a;P (2 = c;|2:0) (3.13)
JE[N]

These equations for supervised learning are applicablewainén all the training doc-
uments have both class and sub-topic labels. Without thesese EM. The M-step, as
with basic EM, builds maximum a posteriori parameter estimdor the multinomials
and priors. This is done with Equations 3.9, 3.10, and 3.&hguthe probabilistic class
and sub-topic memberships estimated in the previous E-ktdpe E-step, for the unla-
beled documents we calculate probabilistically-weiglsiga-topic and class memberships
(Equations 3.12 and 3.13). For labeled documents, we mtistiae sub-topic member-
ship. But, we know from its given class label that many of thie-sopic memberships must
be zero—those sub-topics that belong to other classes.Waugslculate sub-topic mem-
berships as for the unlabeled data, but setting the apptemmnes to zero, and normalizing
the non-zero ones over only those topics that belong toatsscl

If we are given a set of class-labeled data, and a set of ueldbata, we can now apply

Chapelle, Scholkopf & Zien: Semi-Supervised Learning 500/18 18:05



3.4 Using a More Expressive Generative Model 43

EM if there is some specification of the number of sub-toparsefach class. However,
this information is not typically available. As a result weish resort to some techniques
for model selection. There are many commonly-used appesaichmodel selection such
as cross-validation, AIC, BIC and others. Since we do haeeatfailability of a limited
number of labeled documents, we use cross-validation exstie number of sub-topics
for classification performance.

3.4.2 Experimental Results

Here, we provide empirical evidence that to use unlabel&wi#h a generative modeling
approach, more expressive generative models are sometiogssary. With the original
generative model, classification accuracy and model piiityatan be negatively corre-
lated, leading to lower classification accuracy when ur&bdata are used. With a more
expressive generative model, a moderate positive coioelét achieved, leading to im-
proved classification accuracies.

TheReuters 21578 Distribution 1.0 dataset consists of about 13,00Greaticles from
the Reuters newswire labeled with 90 topic categories. Baus in this data set have
multiple class labels, and each category is traditionallweated with a binary classifier.
Following several other studies [Joachims, 1998, Liere &adepalli, 1997] we build
binary classifiers for each of the ten most populous classé@entify the topic. We use
a stoplist, but do not stem. The vocabulary size for eRelters trial is selected by
optimizing accuracy as measured by leave-one-out crdgtatian on the labeled training
set. The standard ModApte train/test split is used, whidhris-sensitive. Seven thousand
of the 9603 documents available for training are left unkatheFrom the remaining,
we randomly select up to ten non-overlapping training séfssi ten positively labeled
documents and 40 negatively labeled documents.

The first two columns of results in Table 3.2 repeat the expenis of Section 3.3 with
basic EM on thé&Reuters dataset. Here we see that for most categories, classificaticu-
racy decreases with the introduction of unlabeled dataeBoh of the Reuters categories
EM finds a significantly more probable model, given the evideof the labeled and un-
labeled data. But frequently this more probable model espwads to a lower-accuracy
classifier—not what we would hope for.

The first graph in Figure 3.3 provides insight into why unlebledata hurts. With one
mixture component per class, the correlation betweenititzgton accuracy and model
probability is very strongr( = —0.9906), but in the wrong direction! Models with higher
probability have significantly lower classification acayaBy examining the solutions
found by EM, we find that the most probable clustering of tha tias one component with
the majority ofnegative documents and the second with most oflesitive documents,
but significantly morenegative documents. Thus, the classes do not separate with high-
probability models.

The documents in this dataset often have multiple classdaléth the basic generative
model, thenegative class covers up to 89 distinct categories. Thus, it is uorede
to expect to capture such a broad base of text with a singleuneixxcomponent. For this
reason, we relax the generative model and modepdsitive class with a single mixture
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Category NB1 EM1 NB* EM*
acq 86.9 81.3 88.0 (4) 93.1(10)
corn 94.6 93.2 96.0 (10) 97.2(40)
crude 94.3 94.9 95.7 (13) 96.3(10)
earn 94.9 95.2 95.9(5) 95.7 (10)
grain 94.1 93.6 96.2 (3) 96.9(20)
interest 91.8 87.6 95.3 (5) 95.8(10)
money-fx 93.0 90.4 94.1 (5) 95.0(15)
ship 94.9 94.1 96.3(3) 95.9(3)
trade 91.8 90.2 94.3 (5) 95.0(20)
wheat 94.0 94.5 96.2 (4) 97.8(40)

Table 3.2 Classification accuracy of binary classifiers Reuters with traditional naive Bayes
(NB1), basic EM (EM1) with labeled and unlabeled data, mpldtimixture components using just
labeled data (NB*), and multiple mixture components EM witheled and unlabeled data (EM*).
For NB* and EM*, the number of components is selected optiyrfalr each trial, and the median
number of components across the trials used fondgative class is shown in parentheses. Note that
the multi-component model is more natural Reuters, where thenegative class consists of many
topics. Using both unlabeled data and multiple mixture congmts per class increases performance
over either alone, and over naive Bayes.

component and theegative class with between one and forty mixture components, both
with and without unlabeled data.

The second half of Table 3.2 shows results of using a multipiures per class gener-
ative model. Note two different results. First, with lalibiiata alone (NB*) classification
accuracy improves over the single component per class &8#)(Second, with unla-
beled data, the new generative model results (EM*) are gdlgdretter than the other re-
sults. This increase with unlabeled data, measured oveeieddl of Reuters, is statistically
significant ¢ < 0.05).

With ten mixture components the correlation between aoyuaad model probability is
quite different. Figure 3.3 on the right shows the correlatietween accuracy and model
probability when using ten mixture components to modehibgative class. Here, there is
a moderate correlation between model probability and iflesBon accuracy in the right
direction ¢ = 0.5474). For these solutions, one component covers nearly ajpdiséive
documents and some, but not manggatives. The other ten components are distributed
through the remainingiegative documents. This model is more representative of the
data for our classification task because classificationracguand model probability are
correlated. This allows the beneficial use of unlabeled thataugh the generative model
approach.

One obvious question is how to automatically select the bestber of mixture com-
ponents without having access to the test set labels. Weage-bne-out cross-validation.
Results from this technique (EM*CV), compared to naive BagdB1) and the best EM
(EM*), are shown in Table 3.3. Note that cross-validatioreslmot perfectly select the
number of components that perform best on the test set. Baéiseonsistently show that
selection by cross-validation chooses a smaller numbesmponents than is best.
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Figure 3.3 Scatterplots showing the relationship between model fiihhaand classification
accuracy for thdReuters acq task. On the left, with only one mixture component for tregative
class, probability and accuracy are inversely proportjagaactly what we would not want. On the
right, with ten mixture components foregative, there is a moderate positive correlation between

model probability and classification accuracy.

Category NB1 EM* EM*CV EM*CV vs NB1
acq 86.9 93.1 (10) 91.1 (5) +4.2
corn 94.6 97.2 (40) 93.2 (3) -1.4
crude 94.3 96.3 (10) 95.4 (3) +1.1
earn 94.9 95.7 (10) 95.2 (1) +0.3
grain 94.1 96.9 (20) 94.7 (3) +0.6
interest 91.8 95.8 (10) 92.0 (3) +0.2
money-fx 93.0 95.0 (15) 92.3 (3) -0.7
ship 94.9 95.9 (3) 94.4 (3) -0.5
trade 91.8 95.0 (20) 90.7 (3) -1.1
wheat 94.0 97.8 (40) 96.3 (6) +2.3

Table 3.3 Performance of using multiple mixture components when timaber of components is
selection via cross-validation (EM*CV) compared to theimat selection (EM*) and straight naive
Bayes (NB1). Note that cross-validation usually seleatsféa components.

3.4.3 Discussion

There is tension in this model selection process betweerplexity of the model and
data sparsity. With as many sub-topics as there are docsmeatcan perfectly model
the training data—each sub-topic covers one training decunwith still a large number
of sub-topics, we can accurately model existing data, boegdization performance will
be poor. This is because each multinomial will have its maamameters estimated from
only a few documents and will suffer from sparse data. Withy\few sub-topics, the
opposite problem will arise. We will very accurately esttmg¢he multinomials, but the
model will be overly restrictive, and not representativetd true document distribution.
Cross-validation should help in selecting a good comprerbeween these tensions with
specific regard to classification performance.
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Note that our use of multiple mixture components per clalssvalus to capture some
dependencies between words on the class-level. For exaegmeider asports class
consisting of documents about both hockey and basebafieBetdocuments, the woride
andpuckare likely to co-occur, and the wortatandbaseare likely to co-occur. However,
these dependencies cannot be captured by a single mul&hdisiribution over words in
thesports class. With multiple mixture components per class, oneimuttial can cover
the hockey sub-topic, and another the baseball sub-tapibel hockey sub-topic, the word
probability forice andpuckwill be significantly higher than they would be for the whole
class. This makes their co-occurrence more likely in hoad@yuments than it would be
under a single multinomial assumption.

3.5 Overcoming the Challenges of Local Maxima

In cases where the likelihood in parameter space is wefktated with classification
accuracy, our optimization yields good classifiers. Howelseal maxima significantly
hinder our progress. For example, the local maxima we descaith just a few labeled
examples in Section 3.3 are more than 40 percentage poiftw libe classification
accuracy provided when labeled data are plentiful. Thigsihportant to consider alternate
approaches that can help bridge this gap, especially wieted data are sparse.

Typically variants of, or alternatives to, EM are createdtfee purpose of speeding up
the rate of convergence [McLachlan and Krishnan, 1997]hindomain of text classifi-
cation however, we have seen that convergence is very fass, Tve can easily consider
alternatives to EM that improve the local maxima situatibthe expense of slower con-
vergence. Deterministic annealing makes exactly thistéd

3.5.1 Deterministic Annealing

The intuition behind deterministic annealing is that it isgby maximizing on a very
smooth, convex surface that is only remotely related to owe probability surface of
interest. Initially we can find the global maximum of this gil@ surface. Ever-so-slowly,
we change the surface to become both more bumpy, and moeetoltise true probability
surface. If we follow the original maximum as the surfacesgabre complex, then when
the original surface is given, we'll still have a highly patile maximum. In this way, it
avoids many of the local maxima that EM would otherwise gegtea in.

One can think of our application of EM in the previous sectiar an optimization prob-
lem where the loss function is the negation of the likelihéwaction (Equation 3.8). The
iterations of EM are a hill-climbing algorithm in parametgrace that locally minimizes
this loss.

Consider the closely related set of loss functions:
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01X, Y) = > log Y [P(c;0)P(xiles;0))°
T, €Xy c; €[M]
+ > log([P(ys = ¢[0)P(wslys = ¢;;0)]), (3.14)
z;€X)

where 5 varies between zero and one. When= 1 we have our familiar probability
surface of the previous sections, with good correlatiorldssification accuracy, but with
many harmful local maxima. In the limit a8 approaches zero, the surface value of the
loss function in parameter space becomes convex with jusgéesglobal maxima. But, at
this extreme, the provided data have no effect on the losgifim so the correlation with
classification accuracy is poor. Values in between zero an@drepresent various points
in the tradeoff between smoothness of the parameter spactaisimilarity to the well-
correlated probability surface provided by the data.

This insight is the one that drives the approach called detéstic annealing [Rose
et al., 1992], first used as a way to construct a hierarchyndurnsupervised clustering.
It has also been used to estimate the parameters of a mift@aussians from unlabeled
data [Ueda and Nakano, 1995] and to construct a text hieyairdm unlabeled data
[Hofmann and Puzicha, 1998].

For a fixed value of3, we can find a local maxima given the loss function by itegtin
the following steps:

» E-step: Calculate the expected value of the class assigsmen

[P(c;10%)P (aile;; 07))°

~(k+1) Nk
2, = E'[yZ = Cj|xi;9 ] = — — . (315)
’ > [P(er[6%)P(xiler; 04
cr€[M]
= M-step: Find the most likely model using the expected clasggaments,
0+ = arg max,P(0|X;Y;2(-HD). (3.16)

The M-step is identical to that of Section 3.2.2, while thetEp includes reference to the
loss constraint through.

Formally,3 is a Lagrange multiplier when solving for a fixed loss in ttkelihood space
subject to an optimization criteria of maximum entropy (cinimum relative entropy
to the prior distribution). AG near zero corresponds to finding the maximum entropy
parameterization for a model with a very large allowablelos

Consider how model likelihood (Equation 3.14) is affectgddifferent target losses.
When the target loss is very largé,will be very close to zero; the probability of each
model will very nearly be its prior probability as the influeof the data will be negligible.
In the limit asg goes to zero, the probability surface will be convex withragka global
maximum. For a somewhat smaller loss targetyill be small but not negligible. Here,
the probability of the data will have a stronger influenceefEwill no longer be a single
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global maximum, but several. Wheh= 1 we have our familiar probability surface of the
previous chapters, with many local maxima.

These observations suggest an annealing-like processtbndi a low-loss model. If
we initialize 3 to be very small, we can easily find the global maximum a pasier
solution with EM, as the surface is convex. When we rgifiee probability surface will get
slightly more bumpy and complex, as the data likelihood héile a larger impact on the
probability of the model. Although more complex, the new imaxm will be very close
to the old maximum if we have lowered the temperaturgj only slightly. Thus, when
searching for the maximum with EM, we can initialize it withetold maximum and will
converge to a good maximum for the new probability surfacéhils way, we can gradually
raise3, while tracking a highly probable solution. Eventually,evtis becomed, we will
have a good local maximum for our generative model assumgtidhus, we will have
found a high-probability local maximum from labeled andab#led data that we can then
use for classification.

Note that the computational cost of deterministic anngabrsignificantly higher than
EM. While each iteration takes the same computation, thexereny more iterations
with deterministic annealing, as the temperature is redivegy slowly. For example, in
our experiments, we performed 390 iterations for deterstimannealing, and only seven
for EM. When this extra computation can be afforded, the bemay be more accurate
classifiers.

3.5.2 Experimental Results

In this section we see empirically that deterministic afingdinds more probable param-
eters and more accurate classifiers than EM when labeledngadata are sparse.

For the experimental results, we use tews5 dataset, a subset @80 Newsgroups
containing the five confusabtamp.* classes. We fix a single vocabulary for all experi-
ments as the top 4000 words as measured by mutual informatiemthe entire labeled
dataset. For running the deterministic annealing, weailite 3 to 0.02, and at each itera-
tion we increase¢d by a multiplicative factor of 1.01 untjp = 1. We made little effort to
tune these parameters. Since each time we incre#se probability surface changes only
slightly, we run only one iteration of EM at each temperaseting. Six hundred random
documents per class (3000 total) are treated as unlabelédednumber of labeled ex-
amples per class are also randomly selected. The remainmgents are used as a test
set.

Figure 3.4 compares classification accuracy achieved véthrohinistic annealing to
that achieved by regular EM. The initial results indicatattthe two methods perform
essentially the same when labeled data are plentiful, therénistic annealing actually
performs worse when labeled data are sparse. For exampléwdtlabeled examples per
class (10 total) EM gives 58% accuracy where deterministitealing gives only 51%. A
close investigation of the confusion matrices shows thextetlis a significant detrimental
effect of incorrect class-to-component correspondente géterministic annealing when
labeled data are sparse. This occurs because, when thergurpes very high, the
global maximum will have each multinomial mixture componeery close to its prior,
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Figure 3.4 The performance of deterministic annealing compared to EMass-to-component
assignment was done perfectly deterministic annealingldvioe considerably more accurate than
EM when labeled data are sparse. Although the default qoureience is poor, this can be corrected
with a small amount of domain knowledge.

and the influence of the labeled data is minimal. Since therprare the same, each
mixture component will be essentially identical. As the pamrature lowers and the mixture
components become more distinct, one component can easilythe cluster associated
with the wrong class, when there is insufficient labeled dataull it toward the correct
class.

In an attempt to remedy this, we alter the class-to-clusiarespondence based on the
classification of each labeled example after determingstizealing is complete. Figure 3.4
shows both the accuracy obtained by empirically selectetespondence, and also the
optimal accuracy achieved by perfect correspondence. W/hse by empirically setting
the correspondence, deterministic annealing improvesracg only marginally. Where
before it got 51%, by changing the correspondence we inerbésto 55%, still not better
than EM at 58%. However if we could perform perfect class espondence, accuracy
with deterministic annealing would be 67%, considerabghler than EM.

To verify that the higher accuracy of deterministic anneattomes from finding more
probable models, Figure 3.5 shows a scatterplot of modélatritity versus accuracy for
deterministic annealing (with optimal class assignmemnd) BM. Two results of note stand
out. Thefirstis thatindeed deterministic annealing findsimaore probable models, even
with a small amount of labeled data. This accounts for theed@atcuracy of deterministic
annealing. A second note of interest is that models founddtgrchinistic annealing still
lie along the same probability-accuracy correlation lilkis provides further evidence
that model probability and accuracy are strongly correldte this dataset, and that the
correlation is not just an artifact of EM.

Chapelle, Scholkopf & Zien: Semi-Supervised Learning 500/18 18:05



50

Semi-Supervised Text Classification Using EM

100%

90% B

80%

70% s N i
+ oot
- 60% | * ety i
2 + o+ Tt
S 50% | N . o 1
g 1
40% AR g
30% [ " EM: One Regular Starting Point ~ + B

Deterministic Annealing o
20% R

10% b

0%

log Probability of Model

Figure 3.5 A scatterplot comparing the model probabilities and aadesof EM and deterministic
annealing. The results show that deterministic annealingceeds because it finds models with
significantly higher probability.
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Table 3.4 The top ten words per class of thiews5 dataset, Usenet groups in the comp hierarchy.
The words are sorted by the weighted log-likelihood ratioté\that from just these ten top words,
any person with domain knowledge could correctly corregpdinsters and classes.

3.5.3 Discussion

The experimental results show that deterministic anngalideed could help classification
considerably if class-to-component correspondence waved. Deterministic annealing
successfully avoids getting trapped in some poor local maxand instead finds more
probable models. Since these high-probability models areelated with high-accuracy
classifiers, deterministic annealing makes good use obeldd data for text classification.
The class-correspondence problem is most severe whenatrenly limited labeled
data. This is because with fewer labeled examples, it is fil@ky that small perturbations
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can lead the correspondence astray. However, with justie litt of human knowledge,
the class-correspondence problem can typically be sohgdlly. In all but the largest
and most confusing classification tasks, it is straightodvto identify a class given
its most indicative words, as measured by a metric such asdighted log-likelihood
ratio. For example, the top ten words per class of our datas#tis metric are shown in
Table 3.4. From just these ten words, any person with evesliktest bit of domain
knowledge would have no problem perfectly assigning ckdeecomponents. Thus,
it is not unreasonable to require a small amount of humarrtefifocorrect the class
correspondence after deterministic annealing has finishled effort can be positioned
within the active learning framework. Thus, when labeledning data are sparsest, and
a modest investment by a trainer is available to map classddab cluster components,
deterministic annealing will successfully find more proleadind more accurate models
than traditional EM.

Even when this limited domain knowledge or human effort is an@ilable, it should
be possible to estimate the class correspondence autaithatidne could perform both
EM and deterministic annealing on the data. Since EM satistigenerally have the
correct class correspondence, this model could be used tbeigorrespondence of the
deterministic annealing model. That is, one could meadsueedistance between each
EM class multinomial and each deterministic annealing sclasultinomial (with KL-
divergence, for example). Then, this matrix of distancadd:be used to assign the class
labels of the EM multinomials to their closest match to a moltial in the deterministic
annealing model.

3.6 Conclusions and Summary

This chapter has explored the use of generative models forsgpervised learning with
labeled and unlabeled data in domains of text classificalibe widely-used naive Bayes
classifier for supervised learning defines a mixture of mahiials mixture model. In
some domains, model likelihood and classification accuaeegtrongly correlated, despite
the overly-simplified generative model. Here, Expectatitexximization finds more likely
models and improved classification accuracy. In other dosjdikelihood and accuracy
are not well correlated with the naive Bayes model. Here, arewuse a more expressive
generative model that allows for multiple mixture compatsqrer class. This helps restore
a moderate correlation between model likelihood and diaatibn accuracy, and again,
EM finds more accurate models. Finally, even with a well-elated generative model,
local maxima are a significant hindrance with EM. Here, thprapch of deterministic
annealing does provide much higher likelihood models, Behdoses the correspondence
with the class labels. When class label correspondencssily earrected, high accuracy
models result.
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