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For several decades, statisticians have advocated using a combination of labeled and un-
labeled data to train classifiers by estimating parameters of a generative model through
iterative Expectation-Maximization (EM) techniques. This chapter explores the effective-
ness of this approach when applied to the domain of text classification. Text documents
are represented here with a bag-of-words model, which leadsto a generative classification
model based on a mixture of multinomials. This model is an extremely simplistic repre-
sentation of the complexities of written text. This chapterexplains and illustrates three
key points about semi-supervised learning for text classification with generative models.
First, despite the simplistic representation, some text domains have a high positive corre-
lation between generative model probability and classification accuracy. In these domains,
a straightforward application of EM with the naive Bayes text model works well. Second,
some text domains do not have this correlation. Here we can adopt a more expressive
and appropriate generative model that does have a positive correlation. In these domains,
semi-supervised learning again improves classification accuracy. Finally, EM suffers from
the problem of local maxima, especially in high dimension domains such as text classifica-
tion. We demonstrate that deterministic annealing, a variant of EM, can help overcome the
problem of local maxima and increase classification accuracy further when the generative
model is appropriate.

3.1 Introduction

The idea of learning classifiers from a combination of labeled and unlabeled data is an old
one in the statistics community. At least as early as 1968, itwas suggested that labeled
and unlabeled data could be combined to build classifiers with likelihood maximization
by testing all possible class assignments [Hartley and Rao,1968]. The seminal paper by
Day [1969] presents an iterative EM-like approach for parameters of a mixture of two nor-
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mals with known covariances from unlabeled data alone. Similar iterative algorithms for
building maximum likelihood classifiers from labeled and unlabeled data with an explicit
generative model followed, primarily for mixtures of normal distributions [McLachlan,
1975, Titterington, 1976].

Dempster et al. [1977] presented the theory of the EM framework, bringing together
and formalizing many of the commonalities of previously suggested iterative techniques
for likelihood maximization with missing data. Its applicability to estimating maximum
likelihood (or maximum a posteriori) parameters for mixture models from labeled and
unlabeled data [Murray and Titterington, 1978] and then using this for classification
[Little, 1977] was recognized immediately. Since then, this approach continues to be
used and studied [McLachlan and Ganesalingam, 1982, Ganesalingam, 1989, Shahshahani
and Landgrebe, 1994]. Using likelihood maximization of mixture models for combining
labeled and unlabeled data for classification has more recently made its way to the machine
learning community [Miller and Uyar, 1996, Nigam et al., 1998, Baluja, 1999].

The theoretical basis for Expectation-Maximization showsthat with sufficiently large
amounts of unlabeled data generated by the model class in question, a more probable model
can be found than if using just the labeled data alone. If the classification task is to predict
the latent variable of the generative model, then with sufficient data a more probable model
will also result in a more accurate classifier.

This approach rests on the assumption that the generative model is correct. When the
classification task is one of classifying human-authored texts (as we consider here) the true
generative model is impossible to parameterize, and instead practitioners tend to use very
simple representations. For example, the commonly-used naive Bayes classifier represents
each authored document as a bag of words, discarding all wordordering information.
The generative model for this classifier asserts that documents are created by a draw
from a class-conditional multinomial. As this is an extremesimplification of the authoring
process, it is interesting to ask whether such a generative modeling approach to semi-
supervised learning is appropriate or beneficial in the domain of text classification.

This chapter demonstrates that generative approaches are appropriate for semi-supervised
text classification when the selected generative model probabilities are well-correlated with
classification accuracy, and when suboptimal local maxima can be mostly avoided. In some
cases, the naive Bayes generative model, despite its simplicity, is sufficient. We find that
model probability is strongly correlated with classification accuracy, and Expectation-
Maximization techniques yield classifiers with unlabeled data that are significantly more
accurate then those built with labeled data alone. In other cases, the naive Bayes generative
model is not well-correlated with classification accuracy.By adopting a more expressive
generative model, accuracy and model probability correlations are restored, and again EM
yields good results.

One of the pitfalls of EM is that it only guarantees the discovery of a local maxima and
not a global maxima in model probability space. In domains like text classification, with
a very large number of parameters, this effect can be very significant. We show that when
model probability and classification are well-correlated,the use of deterministic annealing,
an alternate modeling estimation process, finds more probable and thus more accurate
classifiers.
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Non-generative approaches have also been used for semi-supervised text classification.
Joachims [1999] uses transductive support vector machinesto build discriminative clas-
sifiers for several text classification tasks. Blum and Mitchell [1998] use the co-training
setting to build naive Bayes classifiers for web pages, usinganchor text and the page itself
as two different sources of information about an instance. Zelikovitz and Hirsh [2000] use
unlabeled data as background knowledge to augment a nearest-neighbor classifier. Instead
of matching a test example directly to its closest labeled example, they instead match a test
example to a labeled example by measuring their similarity to a common set of unlabeled
examples.

This chapter proceeds as follows. Section 3.2 presents the generative model used for text
classification and shows how to perform semi-supervised learning with EM. Section 3.3
shows an example where this approach works well. Section 3.4presents a more expressive
generative model that works when the naive Bayes assumptionis not sufficient, and exper-
imental results from a domain that needs it. Section 3.5 presents deterministic annealing
and shows that this finds model parameterizations that are much more probable than those
found by EM, especially when labeled data are sparse.

3.2 A Generative Model for Text

This section presents a framework for characterizing text documents and shows how to use
this to train a classifier from labeled and unlabeled data. The framework defines a prob-
abilistic generative model, and embodies three assumptions about the generative process:
(1) the data are produced by a mixture model, (2) there is a one-to-one correspondence
between mixture components and classes, and (3) the mixturecomponents are multino-
mial distributions of individual words. These are the assumptions used by the naive Bayes
classifier, a commonly-used tool for standard supervised text categorization [Lewis, 1998,
McCallum and Nigam, 1998a].

We assume documents are generated by amixture of multinomialsmodel, where each
mixture component corresponds to a class. Let there beM classes and a vocabulary of
size|X|; each documentxi has|xi| words in it. How do we create a document using this
model? First, we roll a biasedM -sided die to determine the class of our document. Then,
we pick up the biased|X|-sided die that corresponds to the chosen class. We roll thisdie
|xi| times, and count how many times each word occurs. These word counts form the
generated document.

Formally, every document is generated according to a probability distribution defined by
the parameters for the mixture model, denotedθ. The probability distribution consists of a
mixture of componentscj ∈ [M ].1 A document,xi, is created by first selecting a mixture
component according to the mixture weights (or class probabilities), P(cj |θ), then using
this selected mixture component to generate a document according to its own parameters,
with distributionP(xi|cj ; θ). Thus, the likelihood of seeing documentxi is a sum of total

1. We use the notation[M ] to refer to the set{1, . . . , M}.
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probability over all mixture components:

P(xi|θ) =
∑

j∈[M ]

P(cj |θ)P(xi|cj ; θ). (3.1)

Each document has a class label. We assume a one-to-one correspondence between mix-
ture model components and classes, and thus usecj to indicate thejth mixture component,
as well as thejth class. The class label for a particular documentxi is writtenyi. If docu-
mentxi was generated by mixture componentcj we sayyi = cj .

A document,xi, is a vector of word counts. We writexit to be the number of times
word wt occurs in documentxi. When a document is to be generated by a particular
mixture component a document length,|xi| =

∑|X|
t=1 xit, is first chosen independently

of the component2. Then, the selected mixture component is used to generate a document
of the specified length, by drawing from its multinomial distribution.

From this we can expand the second term from Equation 3.1, andexpress the probability
of a document given a mixture component in terms of its constituent features: the document
length and the words in the document3.

P(xi|cj ; θ) ∝ P(|xi|)
∏

wt∈X

P(wt|cj ; θ)xit . (3.2)

This formulation embodies the standard naive Bayes assumption: that the words of a
document are conditionally independent of the other words in the same document, given
the class label.

Thus the parameters of an individual mixture component define a multinomial distri-
bution over words,i.e. the collection of word probabilities, each writtenθwt|cj

, such that
θwt|cj

≡ P(wt|cj ; θ), wheret ∈ [|X|] and
∑

t P(wt|cj ; θ) = 1. Since we assume that for
all classes, document length is identically distributed, it does not need to be parameterized
for classification. The only other parameters of the model are the mixture weights (class
probabilities),θcj

≡ P(cj|θ), which indicate the probabilities of selecting the different
mixture components. Thus the complete collection of model parameters,θ, defines a set of
multinomials and class probabilities:θ = {θwt|cj

: wt ∈ X, cj ∈ [M ] ; θcj
: cj ∈ [M ]}.

To summarize, the full generative model, given by combiningequation (3.1) and (3.2),
assigns probabilityP (xi|θ) to generating documentxi as follows:

P(xi|θ) ∝ P(|xi|)
∑

j∈[M ]

P(cj |θ)
∏

wt∈X

P(wt|cj ; θ)xit (3.3)

where the set of word countsxit is a sufficient statistic for the parameter vectorθ in this

2. This assumes that document length is independent of class, though length could also be modeled
and parameterized on a class-by-class basis.
3. We omit here the multinomial coefficients for notational simplicity. For classification purposes,
these coefficients cancel out.
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generative model.

3.2.1 Supervised Text Classification with Generative Models

Learning a naive Bayes text classifier from a set of labeled documents consists of es-
timating the parameters of the generative model. The estimate of the parametersθ is
written θ̂. Naive Bayes uses the maximum a posteriori (MAP) estimate, thus finding
argmaxθ P(θ|X,Y ). This is the value ofθ that is most probable given the evidence of
the training data and a prior.

Our prior distribution is formed with the product of Dirichlet distributions—one for
each class multinomial and one for the overall class probabilities. The Dirichlet is the
commonly-used conjugate prior distribution for multinomial distributions. The form of the
Dirichlet is:

P(θwt|cj
|α) ∝

∏

wt∈X

P(wt|cj)αt−1 (3.4)

where theαt are constants greater than zero. We set allαt = 2, which corresponds to
a prior that favors the uniform distribution. This is identical to Laplace and m-estimate
smoothing. A well-presented introduction to Dirichlet distributions is given by Stolcke and
Omohundro [1994].

The parameter estimation formulae that result from maximization with the data and our
prior are the familiar smoothed ratios of empirical counts.The word probability estimates
θ̂wt|cj

are:

θ̂wt|cj
≡ P(wt|cj ; θ̂) =

1 +
∑

xi∈X δijxit

|X|+∑|X|
s=1

∑
xi∈X δijxis

, (3.5)

whereδij is given by the class label: 1 whenyi = cj and 0 otherwise.
The class probabilities,̂θcj

, are estimated in the same manner, and also involve a ratio
of counts with smoothing:

θ̂cj
≡ P(cj |θ̂) =

1 +
∑|X|
i=1 δij

M + |X | . (3.6)

The derivation of these ratios-of-counts formulae comes directly from maximum a pos-
teriori parameter estimation. Finding theθ that maximizesP(θ|X,Y ) is accomplished by
first breaking this expression into two terms by Bayes’ rule:P(θ|X,Y ) ∝ P(X,Y |θ)P(θ).
The first term is calculated by the product of all the documentlikelihoods (from Equa-
tion 3.1). The second term, the prior distribution over parameters, is the product of Dirich-
lets. The whole expression is maximized by solving the system of partial derivatives of
log(P(θ|X,Y )), using Lagrange multipliers to enforce the constraint thatthe word prob-
abilities in a class must sum to one. This maximization yields the ratio of counts seen
above.
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Given estimates of these parameters calculated from labeled training documents, it
is possible to turn the generative model backwards and calculate the probability that a
particular mixture component generated a given document toperform classification. This
follows from an application of Bayes’ rule:

P(yi = cj |xi; θ̂) =
P(cj|θ̂)P(xi|cj ; θ̂)

P(xi|θ̂)

=
P(cj|θ̂)

∏
wt∈X

P(wt|cj; θ̂)xit

∑M
k=1 P(ck|θ̂)

∏
wt∈X

P(wt|ck; θ̂)xit

(3.7)

If the task is to classify a test documentxi into a single class, then the class with the highest
posterior probability,arg maxj P(yi = cj |xi; θ̂), is selected.

3.2.2 Semi-Supervised Text Classification with EM

In the semi-supervised setting with labeled and unlabeled data, we would still like to
find MAP parameter estimates, as in the supervised setting above. Because there are no
labels for the unlabeled data, the closed-form equations from the previous section are not
applicable. However, using the Expectation-Maximization(EM) technique, we can find
locally MAP parameter estimates for the generative model.

The EM technique as applied to the case of labeled and unlabeled data with naive Bayes
yields a straightforward and appealing algorithm. First, anaive Bayes classifier is built in
the standard supervised fashion from the limited amount of labeled training data. Then,
we perform classification of the unlabeled data with the naive Bayes model, noting not the
most likely class but the probabilities associated with each class. Then, we rebuild a new
naive Bayes classifier using all the data—labeled and unlabeled—using the estimated class
probabilities as true class labels. This means that the unlabeled documents are treated as
several fractional documents according to these estimatedclass probabilities. We iterate
this process of classifying the unlabeled data and rebuilding the naive Bayes model until it
converges to a stable classifier and set of labels for the data. This algorithm is summarized
in Table 3.1.

More formally, learning a classifier is approached as calculating a maximum a posteriori
estimate ofθ, i.e. argmaxθ P(θ)P(X,Y |θ), which is equivalent to maximizing the log of
the same. Consider the second term of the maximization, the probability of all the observ-
able data. The probability of an individual unlabeled document is a sum of total probability
over all the classes, as in Equation 3.1. For the labeled data, the generating component is
already given by labelyi and we do not need to refer to all mixture components—just the
one corresponding to the class. UsingXu to refer to the unlabeled examples, andXl to
refer to the examples for which labels are given, the expected log probability of the full
data is:
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• Inputs: CollectionsXl of labeled documents andXu of unlabeled documents.

• Build an initial naive Bayes classifier,̂θ, from the labeled documents,Xl, only. Use maximum a
posteriori parameter estimation to findθ̂ = arg maxθ P(Xl|θ)P(θ) (see Equations 3.5 and 3.6).

• Loop while classifier parameters improve, as measured by thechange inl(θ|X, Y ) (the log
probability of the labeled and unlabeled data, and the prior) (see Equation 3.8):

• (E-step)Use the current classifier,̂θ, to estimate component membership of each unlabeled
document,i.e., the probability that each mixture component (and class) generated each docu-
ment,P(cj |xi; θ̂) (see Equation 3.7).

• (M-step) Re-estimate the classifier,̂θ, given the estimated component membership
of each document. Use maximum a posteriori parameter estimation to find θ̂ =
arg maxθ P(X, Y |θ)P(θ) (see Equations 3.5 and 3.6).

• Output: A classifier,θ̂, that takes an unlabeled document and predicts a class label.

Table 3.1 The basic EM algorithm for semi-supervised learning of a text classifier.

l(θ|X,Y ) = log(P(θ)) +
∑

xi∈Xu

log
∑

j∈[M ]

P(cj|θ)P(xi|cj ; θ)

+
∑

xi∈Xl

log (P(yi = cj |θ)P(xi|yi = cj ; θ)) . (3.8)

(We have dropped the constant terms for convenience.) Notice that this equation contains
a log of sums for the unlabeled data, which makes a maximization by partial derivatives
computationally intractable. The formalism of Expectation-Maximization (EM) [Dempster
et al., 1977] provides an iterative hill-climbing approachto finding a local maxima of model
probability in parameter space. The E-step of the algorithmestimates the expectations
of the missing values (i.e. unlabeled class information) given the latest iteration of the
model parameters. The M-step maximizes the likelihood of the model parameters using
the previously-computed expectations of the missing values as if they were the true ones.

In practice, the E-step corresponds to performing classification of each unlabeled docu-
ment using Equation 3.7. The M-step corresponds to calculating a new maximum a poste-
riori estimate for the parameters,θ̂, using Equations 3.5 and 3.6 with the current estimates
for P(cj |xi; θ̂).

Essentially all initializations of the parameters lead to some local maxima with EM.
Many instantiations of EM begin by choosing a starting modelparameterization randomly.
In our case, we can be more selective about the starting pointsince we have not only
unlabeled data, but also some labeled data. Our iteration process is initialized with a
priming M-step, in which only the labeled documents are usedto estimate the classifier
parameters,̂θ, as in Equations 3.5 and 3.6. Then the cycle begins with an E-step that uses
this classifier to probabilistically label the unlabeled documents for the first time.

The algorithm iterates until it converges to a point whereθ̂ does not change from one
iteration to the next. Algorithmically, we determine that convergence has occurred by ob-
serving a below-threshold change in the log-probability ofthe parameters (Equation 3.8),
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which is the height of the surface on which EM is hill-climbing.

3.2.3 Discussion

The justifications for this approach depend on the assumptions stated in Section 3.2,
namely, that the data are produced by a mixture model, and that there is a one-to-one
correspondence between mixture components and classes. Ifthe generative modeling as-
sumptions were correct, then maximizing model probabilitywould be a good criteria in-
deed for training a classifier. In this case the Bayes optimalclassifier, when the number of
training examples approaches infinity, corresponds to the MAP parameter estimates of the
model. When these assumptions do not hold—as certainly is the case in real-world tex-
tual data—the benefits of unlabeled data are less clear. Withonly labeled data, the Naive
Bayes classifier does a good job of classifying text documents [Lewis and Ringuette, 1994,
Craven et al., 2000, Yang and Pedersen, 1997, Joachims, 1997, McCallum et al., 1998].
This observation is explained in part by the fact that classification estimation is only a
function of the sign (in binary classification) of the function estimation [Domingos and
Pazzani, 1997, Friedman, 1997]. The faulty word independence assumption exacerbates
the tendency of naive Bayes to produce extreme (almost 0 or 1)class probability estimates.
However, classification accuracy can be quite high even whenthese estimates are inappro-
priately extreme.

Semi-supervised learning leans more heavily on the correctness of the modeling assump-
tions than supervised learning. The next section will show empirically that this method can
indeed dramatically improve the accuracy of a document classifier, especially when there
are only a few labeled documents.

3.3 Experimental Results with Basic EM

In this section we demonstrate that semi-supervised learning with labeled and unlabeled
data provides text classifiers that are more accurate than those provided by supervised
learning using only the labeled data. This is an interestingresult as the mixture of multino-
mials generative model is a dramatic simplification of the true authoring process. However,
we demonstrate that for some domains, the optimization criteria of model probability is
strongly correlated with classification accuracy.

Experiments in this section use the well-known20 Newsgroups text classification
dataset [Mitchell, 1997], consisting of about 20,000 Usenet articles evenly distributed
across twenty newsgroups. The task is to classify an articleinto the newsgroup to which it
was posted. For preprocessing, stopwords are removed and word counts of each document
are scaled such that each document has constant length, withpotentially fractional word
counts. As the data have timestamps, a test set is formed fromthe last 20% of articles from
each newsgroup. An unlabeled set is formed by randomly selecting 10,000 articles from
those remaining. Labeled training sets are formed by partitioning the remaining documents
into non-overlapping sets. We create up to ten training setsper size of the set, as data
are available. When posterior model probability is reported and shown on graphs, some
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Figure 3.1 Classification accuracy on the20 Newsgroups data set, both with and without 10,000
unlabeled documents. With small amounts of training data, using EM yields more accurate classifiers.
With large amounts of labeled training data, accurate parameter estimates can be obtained without
the use of unlabeled data, and classification accuracies of the two methods begin to converge.

additive and multiplicative constants are dropped, but therelative values are maintained.
Figure 3.1 shows the effect of using EM with unlabeled data onthis data set. The vertical

axis indicates average classifier accuracy on test sets, andthe horizontal axis indicates the
amount of labeled training data on a log scale. We vary the amount of labeled training
data, and compare the classification accuracy of traditional naive Bayes (no unlabeled
documents) with an EM learner that has access to 10000 unlabeled documents.

EM performs significantly better than traditional naive Bayes. For example, with 300
labeled documents (15 documents per class), naive Bayes reaches 52% accuracy while
EM achieves 66%. This represents a 30% reduction in classification error. Note that EM
also performs well even with a very small number of labeled documents; with only 20
documents (a single labeled document per class), naive Bayes obtains 20%, EM 35%. As
expected, when there is a lot of labeled data, and the naive Bayes learning curve is close
to a plateau, having unlabeled data does not help nearly as much, because there is already
enough labeled data to accurately estimate the classifier parameters. With 5500 labeled
documents (275 per class), classification accuracy increases from 76% to 78%. Each of
these results is statistically significant (p < 0.05).4

How does EM find more accurate classifiers? It does so by optimizing on posterior model
probability, not classification accuracy directly. If our generative model were perfect then
we would expect model probability and accuracy to be correlated and EM to be helpful.

4. When the number of labeled examples is small, we have multiple trials, and use paired t-tests.
When the number of labeled examples is large, we have a singletrial, and report results instead with
a McNemar test. These tests are discussed further by Dietterich [1998].
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Figure 3.2 A scatterplot showing the correlation between the posterior model probability and the
accuracy of a model trained with labeled and unlabeled data.The strong correlation implies that
model probability is a good optimization criteria for the20 Newsgroups dataset.

But, we know that our simple generative model does not capture many of the properties
contained in the text. Our20 Newsgroups results show that we do not need a perfect
model for EM to help text classification. Generative models are representative enough
for the purposes of text classification if model probabilityand accuracy are correlated,
allowing EM to indirectly optimize accuracy.

To illustrate this more definitively, let us look again at the20 Newsgroups experiments,
and empirically measure this correlation. Figure 3.2 demonstrates the correlation—each
point in the scatterplot is one of the labeled and unlabeled splits from Figure 3.1. The
labeled data here are used only for setting the EM initialization and are not used during
iterations. We plot classification performance as accuracyon the test data and show the
posterior model probability.

For this dataset, classification accuracy and model probability are in good correspon-
dence. The correlation coefficient between accuracy and model probability is0.9798, a
very strong correlation indeed. We can take this as a post-hoc verification that this dataset
is amenable to using unlabeled data via a generative model approach. The optimization
criteria of model probability is applicable here because itis in tandem with accuracy.

3.4 Using a More Expressive Generative Model

The second assumption of the generative model of Section 3.2states that there is a one-to-
one correspondence between classes and components in the mixture model. In some text
domains, it is clear that such an assumption is a dangerous one. Consider the task of text
filtering, where we want to identify a small well-defined class of documents from a very
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large pool or stream of documents. One example might be a system that watches a network
administrator’s incoming emails to identify the rare emergency situation that would require
paging her on vacation. Modeling the non-emergencyemails as the negative class with only
one multinomial distribution will result in an unrepresentative model. The negative class
contains emails with a variety of sub-topics: personal emails, non-emergency requests,
spam, and many more.

What would be a more representative model? Instead of modeling a sea of negative
examples with a single mixture component, it might be betterto model it with many
components. In this way, each negative component could, after maximization, capture one
clump of the sea of examples. This section takes exactly the approach suggested by this
example for text data, and relaxes the assumption of a one-to-one correspondence between
mixture components and classes. We replace it with a less restrictive assumption: amany-
to-one correspondence between mixture components and classes. This allows us to model
the sub-topic structure of a class.

3.4.1 Multiple Mixture Components per Class

The new generative model must account for a many-to-one correspondence between mix-
ture components and classes. As in the old model, we first picka class with a biased die
roll. Each class has several sub-topics; we next pick one of these sub-topics, again with a
biased die roll. Now that the sub-topic is determined, the document’s words are generated.
We do this by first picking a length (independently of sub-topic and class) and then draw
the words from the sub-topic’s multinomial distribution.

Unlike previously, there are now two missing values for eachunlabeled document—
its class and its sub-topic. Even for the labeled data there are missing values; although
the class is known, its sub-topic is not. Since we do not have access to these missing
class and sub-topic labels, we must use a technique such as EMto estimate local MAP
generative parameters. As in Section 3.2.2, EM is instantiated as an iterative algorithm
that alternates between estimating the values of missing class and sub-topic labels, and
calculating the MAP parameters using the estimated labels.After EM converges to high-
probability parameter estimates the generative model can be used for text classification by
turning it around with Bayes’ rule.

The new generative model specifies a separation between mixture components and
classes. Instead of usingcj to denote both of these,cj ∈ [N ] now denotes only thejth
mixture component (sub-topic). We writeta ∈ [M ] for the ath class; when component
cj belongs to classta, thenqaj = 1, and otherwise 0. This represents the pre-determined,
deterministic, many-to-one mapping between mixture components and classes. We indicate
the class label and sub-topic label of a document byyi and zi, respectively. Thus if
documentxi was generated by mixture componentcj we sayzi = cj , and if the document
belongs to classta then we sayyi = ta.

If all the class and sub-topic labels were known for our dataset, finding MAP estimates
for the generative parameters would be a straightforward application of closed-form equa-
tions similar to those for naive Bayes seen in Section 3.2.1.The formula for the word
probability parameters is identical to Equation 3.5 for naive Bayes:
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θ̂wt|cj
≡ P(wt|cj ; θ̂) =

1 +
∑

xi∈X δijxit

|X|+∑|X|
s=1

∑
xi∈X δijxis

. (3.9)

The class probabilities are analogous to Equation 3.6, but using the new notation for classes
instead of components:

θ̂ta ≡ P(ta|θ̂) =
1 +

∑|X|
i=1 δia

M + |X | . (3.10)

The sub-topic probabilities are similar, except they are estimated only with reference to
other documents in that component’s class:

θ̂cj |ta ≡ P(cj|ta; θ̂) =
1 +

∑|X|
i=1 δijδia∑N

j=1 qaj +
∑|X|
i=1 δia

. (3.11)

At classification time, we must estimate class membership probabilities for an unlabeled
document. This is done by first calculating sub-topic membership and then summing
over sub-topics to get overall class probabilities. Sub-topic membership is calculated
analogously to mixture component membership for naive Bayes, with a small adjustment
to account for the presence of two priors (class and sub-topic) instead of just one:

P(zi = cj |xi; θ̂) =

∑
a∈[M ] qajP(ta|θ̂)P(cj |ta; θ̂)

∏
wt∈X

P(wt|cj ; θ̂)xit

∑
r∈[N ]

∑
b∈[M ] qbrP(tb|θ̂)P(cr|tb; θ̂)

∏
wt∈X

P(wt|cr; θ̂)xit

. (3.12)

Overall class membership is calculated with a sum of probability over all of the class’s
sub-topics:

P(yi = ta|xi; θ̂) =
∑

j∈[N ]

qajP(zi = cj |xi; θ̂) (3.13)

These equations for supervised learning are applicable only when all the training doc-
uments have both class and sub-topic labels. Without these we use EM. The M-step, as
with basic EM, builds maximum a posteriori parameter estimates for the multinomials
and priors. This is done with Equations 3.9, 3.10, and 3.11, using the probabilistic class
and sub-topic memberships estimated in the previous E-step. In the E-step, for the unla-
beled documents we calculate probabilistically-weightedsub-topic and class memberships
(Equations 3.12 and 3.13). For labeled documents, we must estimate sub-topic member-
ship. But, we know from its given class label that many of the sub-topic memberships must
be zero—those sub-topics that belong to other classes. Thuswe calculate sub-topic mem-
berships as for the unlabeled data, but setting the appropriate ones to zero, and normalizing
the non-zero ones over only those topics that belong to its class.

If we are given a set of class-labeled data, and a set of unlabeled data, we can now apply
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EM if there is some specification of the number of sub-topics for each class. However,
this information is not typically available. As a result we must resort to some techniques
for model selection. There are many commonly-used approaches to model selection such
as cross-validation, AIC, BIC and others. Since we do have the availability of a limited
number of labeled documents, we use cross-validation to select the number of sub-topics
for classification performance.

3.4.2 Experimental Results

Here, we provide empirical evidence that to use unlabeled data with a generative modeling
approach, more expressive generative models are sometime necessary. With the original
generative model, classification accuracy and model probability can be negatively corre-
lated, leading to lower classification accuracy when unlabeled data are used. With a more
expressive generative model, a moderate positive correlation is achieved, leading to im-
proved classification accuracies.

TheReuters 21578 Distribution 1.0 dataset consists of about 13,000 news articles from
the Reuters newswire labeled with 90 topic categories. Documents in this data set have
multiple class labels, and each category is traditionally evaluated with a binary classifier.
Following several other studies [Joachims, 1998, Liere andTadepalli, 1997] we build
binary classifiers for each of the ten most populous classes to identify the topic. We use
a stoplist, but do not stem. The vocabulary size for eachReuters trial is selected by
optimizing accuracy as measured by leave-one-out cross-validation on the labeled training
set. The standard ModApte train/test split is used, which istime-sensitive. Seven thousand
of the 9603 documents available for training are left unlabeled. From the remaining,
we randomly select up to ten non-overlapping training sets of just ten positively labeled
documents and 40 negatively labeled documents.

The first two columns of results in Table 3.2 repeat the experiments of Section 3.3 with
basic EM on theReuters dataset. Here we see that for most categories, classification accu-
racy decreases with the introduction of unlabeled data. Foreach of the Reuters categories
EM finds a significantly more probable model, given the evidence of the labeled and un-
labeled data. But frequently this more probable model corresponds to a lower-accuracy
classifier—not what we would hope for.

The first graph in Figure 3.3 provides insight into why unlabeled data hurts. With one
mixture component per class, the correlation between classification accuracy and model
probability is very strong (r = −0.9906), but in the wrong direction! Models with higher
probability have significantly lower classification accuracy. By examining the solutions
found by EM, we find that the most probable clustering of the data has one component with
the majority ofnegative documents and the second with most of thepositive documents,
but significantly morenegative documents. Thus, the classes do not separate with high-
probability models.

The documents in this dataset often have multiple class labels. With the basic generative
model, thenegative class covers up to 89 distinct categories. Thus, it is unreasonable
to expect to capture such a broad base of text with a single mixture component. For this
reason, we relax the generative model and model thepositive class with a single mixture
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Category NB1 EM1 NB* EM*

acq 86.9 81.3 88.0 (4) 93.1(10)

corn 94.6 93.2 96.0 (10) 97.2(40)

crude 94.3 94.9 95.7 (13) 96.3(10)

earn 94.9 95.2 95.9(5) 95.7 (10)

grain 94.1 93.6 96.2 (3) 96.9(20)

interest 91.8 87.6 95.3 (5) 95.8(10)

money-fx 93.0 90.4 94.1 (5) 95.0(15)

ship 94.9 94.1 96.3(3) 95.9 (3)

trade 91.8 90.2 94.3 (5) 95.0(20)

wheat 94.0 94.5 96.2 (4) 97.8(40)
Table 3.2 Classification accuracy of binary classifiers onReuters with traditional naive Bayes
(NB1), basic EM (EM1) with labeled and unlabeled data, multiple mixture components using just
labeled data (NB*), and multiple mixture components EM withlabeled and unlabeled data (EM*).
For NB* and EM*, the number of components is selected optimally for each trial, and the median
number of components across the trials used for thenegative class is shown in parentheses. Note that
the multi-component model is more natural forReuters, where thenegative class consists of many
topics. Using both unlabeled data and multiple mixture components per class increases performance
over either alone, and over naive Bayes.

component and thenegative class with between one and forty mixture components, both
with and without unlabeled data.

The second half of Table 3.2 shows results of using a multiplemixtures per class gener-
ative model. Note two different results. First, with labeled data alone (NB*) classification
accuracy improves over the single component per class case (NB1). Second, with unla-
beled data, the new generative model results (EM*) are generally better than the other re-
sults. This increase with unlabeled data, measured over alltrials ofReuters, is statistically
significant (p < 0.05).

With ten mixture components the correlation between accuracy and model probability is
quite different. Figure 3.3 on the right shows the correlation between accuracy and model
probability when using ten mixture components to model thenegative class. Here, there is
a moderate correlation between model probability and classification accuracy in the right
direction (r = 0.5474). For these solutions, one component covers nearly all thepositive
documents and some, but not many,negatives. The other ten components are distributed
through the remainingnegative documents. This model is more representative of the
data for our classification task because classification accuracy and model probability are
correlated. This allows the beneficial use of unlabeled datathrough the generative model
approach.

One obvious question is how to automatically select the bestnumber of mixture com-
ponents without having access to the test set labels. We use leave-one-out cross-validation.
Results from this technique (EM*CV), compared to naive Bayes (NB1) and the best EM
(EM*), are shown in Table 3.3. Note that cross-validation does not perfectly select the
number of components that perform best on the test set. The results consistently show that
selection by cross-validation chooses a smaller number of components than is best.
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Figure 3.3 Scatterplots showing the relationship between model probability and classification
accuracy for theReuters acq task. On the left, with only one mixture component for thenegative
class, probability and accuracy are inversely proportional, exactly what we would not want. On the
right, with ten mixture components fornegative, there is a moderate positive correlation between
model probability and classification accuracy.

Category NB1 EM* EM*CV EM*CV vs NB1

acq 86.9 93.1 (10) 91.1 (5) +4.2

corn 94.6 97.2 (40) 93.2 (3) -1.4

crude 94.3 96.3 (10) 95.4 (3) +1.1

earn 94.9 95.7 (10) 95.2 (1) +0.3

grain 94.1 96.9 (20) 94.7 (3) +0.6

interest 91.8 95.8 (10) 92.0 (3) +0.2

money-fx 93.0 95.0 (15) 92.3 (3) -0.7

ship 94.9 95.9 (3) 94.4 (3) -0.5

trade 91.8 95.0 (20) 90.7 (3) -1.1

wheat 94.0 97.8 (40) 96.3 (6) +2.3
Table 3.3 Performance of using multiple mixture components when the number of components is
selection via cross-validation (EM*CV) compared to the optimal selection (EM*) and straight naive
Bayes (NB1). Note that cross-validation usually selects too few components.

3.4.3 Discussion

There is tension in this model selection process between complexity of the model and
data sparsity. With as many sub-topics as there are documents, we can perfectly model
the training data—each sub-topic covers one training document. With still a large number
of sub-topics, we can accurately model existing data, but generalization performance will
be poor. This is because each multinomial will have its many parameters estimated from
only a few documents and will suffer from sparse data. With very few sub-topics, the
opposite problem will arise. We will very accurately estimate the multinomials, but the
model will be overly restrictive, and not representative ofthe true document distribution.
Cross-validation should help in selecting a good compromise between these tensions with
specific regard to classification performance.
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Note that our use of multiple mixture components per class allows us to capture some
dependencies between words on the class-level. For example, consider asports class
consisting of documents about both hockey and baseball. In these documents, the wordsice
andpuckare likely to co-occur, and the wordsbatandbaseare likely to co-occur. However,
these dependencies cannot be captured by a single multinomial distribution over words in
thesports class. With multiple mixture components per class, one multinomial can cover
the hockey sub-topic, and another the baseball sub-topic. In the hockey sub-topic, the word
probability for ice andpuckwill be significantly higher than they would be for the whole
class. This makes their co-occurrence more likely in hockeydocuments than it would be
under a single multinomial assumption.

3.5 Overcoming the Challenges of Local Maxima

In cases where the likelihood in parameter space is well-correlated with classification
accuracy, our optimization yields good classifiers. However, local maxima significantly
hinder our progress. For example, the local maxima we discover with just a few labeled
examples in Section 3.3 are more than 40 percentage points below the classification
accuracy provided when labeled data are plentiful. Thus it is important to consider alternate
approaches that can help bridge this gap, especially when labeled data are sparse.

Typically variants of, or alternatives to, EM are created for the purpose of speeding up
the rate of convergence [McLachlan and Krishnan, 1997]. In the domain of text classifi-
cation however, we have seen that convergence is very fast. Thus, we can easily consider
alternatives to EM that improve the local maxima situation at the expense of slower con-
vergence. Deterministic annealing makes exactly this tradeoff.

3.5.1 Deterministic Annealing

The intuition behind deterministic annealing is that it begins by maximizing on a very
smooth, convex surface that is only remotely related to our true probability surface of
interest. Initially we can find the global maximum of this simple surface. Ever-so-slowly,
we change the surface to become both more bumpy, and more close to the true probability
surface. If we follow the original maximum as the surface gets more complex, then when
the original surface is given, we’ll still have a highly probable maximum. In this way, it
avoids many of the local maxima that EM would otherwise get caught in.

One can think of our application of EM in the previous sections as an optimization prob-
lem where the loss function is the negation of the likelihoodfunction (Equation 3.8). The
iterations of EM are a hill-climbing algorithm in parameterspace that locally minimizes
this loss.

Consider the closely related set of loss functions:
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l(θ|X,Y ) =
∑

xi∈Xu

log
∑

cj∈[M ]

[P(cj|θ)P(xi|cj ; θ)]β

+
∑

xi∈Xl

log([P(yi = cj |θ)P(xi|yi = cj ; θ)]
β), (3.14)

whereβ varies between zero and one. Whenβ = 1 we have our familiar probability
surface of the previous sections, with good correlation to classification accuracy, but with
many harmful local maxima. In the limit asβ approaches zero, the surface value of the
loss function in parameter space becomes convex with just a single global maxima. But, at
this extreme, the provided data have no effect on the loss function, so the correlation with
classification accuracy is poor. Values in between zero and one represent various points
in the tradeoff between smoothness of the parameter space and the similarity to the well-
correlated probability surface provided by the data.

This insight is the one that drives the approach called deterministic annealing [Rose
et al., 1992], first used as a way to construct a hierarchy during unsupervised clustering.
It has also been used to estimate the parameters of a mixture of Gaussians from unlabeled
data [Ueda and Nakano, 1995] and to construct a text hierarchy from unlabeled data
[Hofmann and Puzicha, 1998].

For a fixed value ofβ, we can find a local maxima given the loss function by iterating
the following steps:

E-step: Calculate the expected value of the class assignments,

ẑ
(k+1)
ij = E[yi = cj |xi; θ̂k] =

[P(cj |θ̂k)P(xi|cj ; θ̂k)]β∑

cr∈[M ]

[P(cr|θ̂k)P(xi|cr; θ̂k)]β
. (3.15)

M-step: Find the most likely model using the expected class assignments,

θ̂(k+1) = arg maxθP(θ|X ;Y ; ẑ(k+1)). (3.16)

The M-step is identical to that of Section 3.2.2, while the E-step includes reference to the
loss constraint throughβ.

Formally,β is a Lagrange multiplier when solving for a fixed loss in the likelihood space
subject to an optimization criteria of maximum entropy (or minimum relative entropy
to the prior distribution). Aβ near zero corresponds to finding the maximum entropy
parameterization for a model with a very large allowable loss.

Consider how model likelihood (Equation 3.14) is affected by different target losses.
When the target loss is very large,β will be very close to zero; the probability of each
model will very nearly be its prior probability as the influence of the data will be negligible.
In the limit asβ goes to zero, the probability surface will be convex with a single global
maximum. For a somewhat smaller loss target,β will be small but not negligible. Here,
the probability of the data will have a stronger influence. There will no longer be a single
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global maximum, but several. Whenβ = 1 we have our familiar probability surface of the
previous chapters, with many local maxima.

These observations suggest an annealing-like process for finding a low-loss model. If
we initialize β to be very small, we can easily find the global maximum a posteriori
solution with EM, as the surface is convex. When we raiseβ the probability surface will get
slightly more bumpy and complex, as the data likelihood willhave a larger impact on the
probability of the model. Although more complex, the new maximum will be very close
to the old maximum if we have lowered the temperature (1/β) only slightly. Thus, when
searching for the maximum with EM, we can initialize it with the old maximum and will
converge to a good maximum for the new probability surface. In this way, we can gradually
raiseβ, while tracking a highly probable solution. Eventually, whenβ becomes1, we will
have a good local maximum for our generative model assumptions. Thus, we will have
found a high-probability local maximum from labeled and unlabeled data that we can then
use for classification.

Note that the computational cost of deterministic annealing is significantly higher than
EM. While each iteration takes the same computation, there are many more iterations
with deterministic annealing, as the temperature is reduced very slowly. For example, in
our experiments, we performed 390 iterations for deterministic annealing, and only seven
for EM. When this extra computation can be afforded, the benefit may be more accurate
classifiers.

3.5.2 Experimental Results

In this section we see empirically that deterministic annealing finds more probable param-
eters and more accurate classifiers than EM when labeled training data are sparse.

For the experimental results, we use theNews5 dataset, a subset of20 Newsgroups
containing the five confusablecomp.* classes. We fix a single vocabulary for all experi-
ments as the top 4000 words as measured by mutual informationover the entire labeled
dataset. For running the deterministic annealing, we initializeβ to 0.02, and at each itera-
tion we increaseβ by a multiplicative factor of 1.01 untilβ = 1. We made little effort to
tune these parameters. Since each time we increaseβ the probability surface changes only
slightly, we run only one iteration of EM at each temperaturesetting. Six hundred random
documents per class (3000 total) are treated as unlabeled. Afixed number of labeled ex-
amples per class are also randomly selected. The remaining documents are used as a test
set.

Figure 3.4 compares classification accuracy achieved with deterministic annealing to
that achieved by regular EM. The initial results indicate that the two methods perform
essentially the same when labeled data are plentiful, but deterministic annealing actually
performs worse when labeled data are sparse. For example with two labeled examples per
class (10 total) EM gives 58% accuracy where deterministic annealing gives only 51%. A
close investigation of the confusion matrices shows that there is a significant detrimental
effect of incorrect class-to-component correspondence with deterministic annealing when
labeled data are sparse. This occurs because, when the temperature is very high, the
global maximum will have each multinomial mixture component very close to its prior,
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Figure 3.4 The performance of deterministic annealing compared to EM.If class-to-component
assignment was done perfectly deterministic annealing would be considerably more accurate than
EM when labeled data are sparse. Although the default correspondence is poor, this can be corrected
with a small amount of domain knowledge.

and the influence of the labeled data is minimal. Since the priors are the same, each
mixture component will be essentially identical. As the temperature lowers and the mixture
components become more distinct, one component can easily track the cluster associated
with the wrong class, when there is insufficient labeled datato pull it toward the correct
class.

In an attempt to remedy this, we alter the class-to-cluster correspondence based on the
classification of each labeled example after deterministicannealing is complete. Figure 3.4
shows both the accuracy obtained by empirically selected correspondence, and also the
optimal accuracy achieved by perfect correspondence. We see that by empirically setting
the correspondence, deterministic annealing improves accuracy only marginally. Where
before it got 51%, by changing the correspondence we increase this to 55%, still not better
than EM at 58%. However if we could perform perfect class correspondence, accuracy
with deterministic annealing would be 67%, considerably higher than EM.

To verify that the higher accuracy of deterministic annealing comes from finding more
probable models, Figure 3.5 shows a scatterplot of model probability versus accuracy for
deterministic annealing (with optimal class assignment) and EM. Two results of note stand
out. The first is that indeed deterministic annealing finds much more probable models, even
with a small amount of labeled data. This accounts for the added accuracy of deterministic
annealing. A second note of interest is that models found by deterministic annealing still
lie along the same probability-accuracy correlation line.This provides further evidence
that model probability and accuracy are strongly correlated for this dataset, and that the
correlation is not just an artifact of EM.
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Figure 3.5 A scatterplot comparing the model probabilities and accuracies of EM and deterministic
annealing. The results show that deterministic annealing succeeds because it finds models with
significantly higher probability.
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Table 3.4 The top ten words per class of theNews5 dataset, Usenet groups in the comp hierarchy.
The words are sorted by the weighted log-likelihood ratio. Note that from just these ten top words,
any person with domain knowledge could correctly correspond clusters and classes.

3.5.3 Discussion

The experimental results show that deterministic annealing indeed could help classification
considerably if class-to-component correspondence were solved. Deterministic annealing
successfully avoids getting trapped in some poor local maxima and instead finds more
probable models. Since these high-probability models are correlated with high-accuracy
classifiers, deterministic annealing makes good use of unlabeled data for text classification.

The class-correspondence problem is most severe when thereare only limited labeled
data. This is because with fewer labeled examples, it is morelikely that small perturbations
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can lead the correspondence astray. However, with just a little bit of human knowledge,
the class-correspondence problem can typically be solved trivially. In all but the largest
and most confusing classification tasks, it is straightforward to identify a class given
its most indicative words, as measured by a metric such as theweighted log-likelihood
ratio. For example, the top ten words per class of our datasetby this metric are shown in
Table 3.4. From just these ten words, any person with even theslightest bit of domain
knowledge would have no problem perfectly assigning classes to components. Thus,
it is not unreasonable to require a small amount of human effort to correct the class
correspondence after deterministic annealing has finished. This effort can be positioned
within the active learning framework. Thus, when labeled training data are sparsest, and
a modest investment by a trainer is available to map class labels to cluster components,
deterministic annealing will successfully find more probable and more accurate models
than traditional EM.

Even when this limited domain knowledge or human effort is not available, it should
be possible to estimate the class correspondence automatically. One could perform both
EM and deterministic annealing on the data. Since EM solutions generally have the
correct class correspondence, this model could be used to fixthe correspondence of the
deterministic annealing model. That is, one could measure the distance between each
EM class multinomial and each deterministic annealing class multinomial (with KL-
divergence, for example). Then, this matrix of distances could be used to assign the class
labels of the EM multinomials to their closest match to a multinomial in the deterministic
annealing model.

3.6 Conclusions and Summary

This chapter has explored the use of generative models for semi-supervised learning with
labeled and unlabeled data in domains of text classification. The widely-used naive Bayes
classifier for supervised learning defines a mixture of multinomials mixture model. In
some domains, model likelihood and classification accuracyare strongly correlated, despite
the overly-simplified generative model. Here, Expectation-Maximization finds more likely
models and improved classification accuracy. In other domains, likelihood and accuracy
are not well correlated with the naive Bayes model. Here, we can use a more expressive
generative model that allows for multiple mixture components per class. This helps restore
a moderate correlation between model likelihood and classification accuracy, and again,
EM finds more accurate models. Finally, even with a well-correlated generative model,
local maxima are a significant hindrance with EM. Here, the approach of deterministic
annealing does provide much higher likelihood models, but often loses the correspondence
with the class labels. When class label correspondence is easily corrected, high accuracy
models result.


