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Abstract

Whereas people learn many different types of knowledge
from diverse experiences over many years, most current ma-
chine learning systems acquire just a single function or data
model from just a single data set. We propose a never-
ending learning paradigm for machine learning, to better re-
flect the more ambitious and encompassing type of learn-
ing performed by humans. As a case study, we describe
the Never-Ending Language Learner (NELL), which achieves
some of the desired properties of a never-ending learner, and
we discuss lessons learned. NELL has been learning to read
the web 24 hours/day since January 2010, and so far has ac-
quired a knowledge base with over 80 million confidence-
weighted beliefs (e.g., servedWith(tea, biscuits)). NELL has
also learned millions of features and parameters that enable it
to read these beliefs from the web. Additionally, it has learned
to reason over these beliefs to infer new beliefs, and is able
to extend its ontology by synthesizing new relational predi-
cates. NELL can be tracked online at http://rtw.ml.cmu.edu,
and followed on Twitter at @CMUNELL.

Introduction
Machine learning is a highly successful branch of AI, and
machine learning software is now widely used for tasks from
spam filtering, to speech recognition, to credit card fraud
detection, to face recognition. Despite this success, the ways
in which computers learn today remain surprisingly narrow
when compared to human learning. This paper explores an
alternative paradigm for machine learning that more closely
models the diversity, competence and cumulative nature of
human learning. We call this alternative paradigm never-
ending learning.

To illustrate, note that in each of the above examples the
computer learns only a single function to perform a single
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task in isolation, usually from human labeled training exam-
ples of inputs and outputs of that function. In spam filtering,
for instance, training examples consist of specific emails and
spam or not-spam labels for each. This style of learning
is often called supervised function approximation, because
the abstract learning problem is to approximate some un-
known function f : X → Y (e.g., the spam filter) given a
training set of input/output pairs {〈xi, yi〉} of that function.
Other machine learning paradigms exist as well (e.g., un-
supervised clustering, topic modeling) but these paradigms
also typically acquire only a single function or data model
from a single dataset.

In contrast to these paradigms for learning single func-
tions from well organized data sets over short time-frames,
humans learn many different functions (i.e., different types
of knowledge) over years of accumulated diverse experi-
ence, using extensive background knowledge learned from
earlier experiences to guide subsequent learning.

The thesis of this paper is that we will never truly under-
stand machine or human learning until we can build com-
puter programs that, like people,
• learn many different types of knowledge or functions,
• from years of diverse, mostly self-supervised experience,
• in a staged curricular fashion, where previously learned

knowledge enables learning further types of knowledge,
• where self-reflection and the ability to formulate new rep-

resentations and new learning tasks enable the learner to
avoid stagnation and performance plateaus.
We refer to this learning paradigm as “never-ending learn-

ing.” The contributions of this paper are to (1) define more
precisely the never-ending learning paradigm, (2) present as
a case study a computer program called the Never-Ending
Language Learner (NELL) which implements several of
these capabilities, and which has been learning to read the
web 24 hours/day for over four years, and (3) identify from
NELL’s strengths and weaknesses a number of key design
features important to any never-ending learning system.

Related Work
Previous research has considered the problem of design-
ing machine learning agents that persist over long peri-
ods of time (e.g., life long learning (Thrun and Mitchell
1995)), and that learn to learn (Thrun and Pratt 1998), yet
there remain few if any working systems that demonstrate



this style of learning in practice. General architectures for
problem solving and learning (e.g., SOAR (Laird, Newell,
and Rosenbloom 1987), ICARUS (Langley et al. 1991),
PRODIGY (Donmez and Carbonell 2008), THEO (Mitchell
et al. 1991)) have been applied to problems from many do-
mains, but again none of these programs has been allowed to
learn continuously for any sustained period of time. Lenat’s
work on AM and Eurisko (Lenat 1983) represents an attempt
to build a system that invents concepts, then uses these as
primitives for inventing more complex concepts, but again
this system was never allowed to run for a sustained pe-
riod, because the author determined it would quickly reach
a plateau in its performance.

Beyond such work on integrated agent architectures, there
has also been much research on individual subproblems cru-
cial to never-ending learning. For example, work on multi-
task transfer learning (Caruana 1997) suggests mechanisms
by which learning of one type of knowledge can guide learn-
ing of another type. Work on active and proactive learning
(Tong and Koller 2001; Donmez and Carbonell 2008) and
on exploitation/exploration tradeoffs (Brunskill et al. 2012)
presents strategies by which learning agents can collect op-
timal training data from their environment. Work on learn-
ing of latent representations (Bengio 2009; Muggleton and
Buntine 1992) provides methods that might enable never-
ending learners to expand their internal knowledge represen-
tations over time, thereby avoiding plateaus in performance
due to lack of adequate representations. Work on curriculum
learning (Bengio et al. 2009) explores potential synergies
across sets or sequences of learning tasks. Theoretical char-
acterizations of cotraining (Blum and Mitchell 1998) and
other multitask learning methods (Balcan and Blum 2004;
Platanios, Blum, and Mitchell 2014) have provided insights
into when and how the sample complexity of learning prob-
lems can be improved via multitask learning.

Despite this relevant previous research, we remain in the
very early stages in studying never-ending learning meth-
ods. We have almost no working systems to point to, and lit-
tle understanding of how to architect a computer system that
successfully learns over a prolonged period of time, while
avoiding plateaus in learning due to saturation of learned
knowledge. The key contributions of this paper are first, to
present a working case study system, an extended version of
an early prototype reported in (Carlson et al. 2010a), which
successfully integrates a number of key competencies; sec-
ond, an empirical evaluation of the prototype’s performance
over time; and third, an analysis of the prototype’s key de-
sign features and shortcomings, relative to the goal of under-
standing never-ending learning.

Never-Ending Learning
Informally, we define a never-ending learning agent to be
a system that, like humans, learns many types of knowl-
edge, from years of diverse and primarily self-supervised
experience, using previously learned knowledge to improve
subsequent learning, with sufficient self-reflection to avoid
plateaus in performance as it learns. The never-ending learn-
ing problem faced by the agent consists of a collection of
learning tasks, and constraints that couple their solutions.

To be precise, we define a never-ending learning problem
L to be an ordered pair consisting of: (1) a set L = {Li} of
learning tasks, where the ith learning task Li = 〈Ti, Pi, Ei〉
is to improve the agent’s performance, as measured by met-
ric Pi, on a given performance task Ti, through a given
type of experience Ei; and (2) a set of coupling constraints
C = {〈φk, Vk〉} among the solutions to these learning tasks,
where φk is a real-valued function over two or more learning
tasks, specifying the degree of satisfaction of the constraint,
and Vk is a vector of indices over learning tasks, specifying
the arguments to φk.

L = (L,C) (1)
where, L = {〈Ti, Pi, Ei〉}

C = {〈φk, Vk〉}
Above, each performance task Ti is a pair Ti ≡ 〈Xi, Yi〉
defining the domain and range of a function to be learned
f∗i : Xi → Yi. The performance metric Pi : f → R defines
the optimal learned function f∗i for the ith learning task:

f∗i ≡ argmax
f∈Fi

Pi(f)

where Fi is the set of all possible functions from Xi to Yi.
Given such a learning problem containing n learning

tasks, a never-ending learning agent A outputs a sequence
of solutions to these learning tasks. As time passes, the qual-
ity of these n learned functions should improve, as measured
by the individual performance metrics P1 . . . Pn and the de-
gree to which the coupling constraints C are satisfied.

To illustrate, consider a mobile robot with sensor in-
puts S and available actions A. One performance task,
〈S,A〉, might be for the robot to choose actions to per-
form from any given state, and the corresponding learning
task 〈〈S,A〉, P1, E1〉 might be to learn the specific function
f1 : S → A that leads most quickly to a goal state defined
by performance metric P1, from training experience E1 ob-
tained via human teleoperation. A second performance task
for the same robot may be to predict the outcome of any
given action in any given state: 〈S ×A,S〉. Here, the learn-
ing task 〈〈S × A,S〉, P2, E2〉 might be to learn this predic-
tion function f2 : S × A → S with high accuracy as speci-
fied by performance metric P2, from experience E2 consist-
ing of the robot wandering autonomously through its envi-
ronment.

Note these two robot learning tasks can be coupled by
enforcing the constraint that the learned function f1 must
choose actions that do indeed lead optimally to the goal
state according to the predictions of learned function f2.
By defining this coupling constraint φ(L1, L2) between the
solutions to these two learning tasks, we give the learning
agent a chance to improve its ability to learn one function
by success in learning the other.

We are interested in never-ending Learning agents that ad-
dress such never-ending learning problems L = (L,C), es-
pecially in which the learning agent
• learns many different types of knowledge; that is, L con-

tains many learning tasks
• from years of diverse, primarily self-supervised experi-

ence; that is, the experiences {Ei} on which learning is



based are realistically diverse, and largely provided by the
system itself,

• in a staged, curricular fashion where previously learned
knowledge supports learning subsequent knowledge; that
is, the different learning tasks {Li} need not be solved
simultaneously – solving one helps solve the next, and

• where self-reflection and the ability to formulate new rep-
resentations, new learning tasks, and new coupling con-
straints enables the learner to avoid becoming stuck in
performance plateaus; that is, where the learner may it-
self add new learning tasks and new coupling constraints
that help it address the given learning problem L .

Case Study: Never Ending Language Learner
The Never Ending Language Learner (NELL), an early pro-
totype of which was reported in (Carlson et al. 2010a), is a
learning agent whose task is to learn to read the web. The
input-output specification of NELL’s task is:
Given:
• an initial ontology defining categories (e.g., Sport, Ath-

lete) and binary relations (e.g., AthletePlaysSport(x,y)),

• approximately a dozen labeled training examples for each
category and relation (e.g., examples of Sport might in-
clude the noun phrases “baseball” and “soccer”),

• the web (an initial 500 million web pages from the
ClueWeb 2009 collection (Callan and Hoy 2009), and ac-
cess to 100,000 Google API search queries each day),

• occasional interaction with humans (e.g., through NELL’s
public website http://rtw.ml.cmu.edu);

Do: Run 24 hours/day, forever, and each day:

1. read (extract) more beliefs from the web, and remove old
incorrect beliefs, to populate a growing knowledge base
containing a confidence and provenance for each belief,

2. learn to read better than the previous day.

NELL has been running since January 2010, each day ex-
tracting more beliefs from the web, then retraining itself to
improve its competence. The result so far is a knowledge
base (KB) with over 80 million interconnected beliefs (see
Figure 1), along with millions of learned phrasings, morpho-
logical features, and web page structures NELL now uses to
extract beliefs from the web. NELL is also now learning to
reason over its extracted knowledge to infer new beliefs it
has not yet read, and it is now able to propose extensions to
its initial manually-provided ontology.

NELL’s Never Ending Learning Problem
Above we described the input-output specification of the
NELL system. Here we describe NELL’s never-ending
learning problem 〈L,C〉 in terms of the general formal-
ism introduced in section 2, first describing NELL’s learning
tasksL, then its coupling constraintsC. The subsequent sec-
tion describes NELL’s approach to this never-ending learn-
ing problem, including NELL’s mechanisms for adding its
own new learning tasks and coupling constraints.
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Figure 1: Fragment of the 80 million beliefs NELL has
read from the web. Each edge represents a belief triple
(e.g., play(MapleLeafs, hockey), with an associated confi-
dence and provenance not shown here. This figure contains
only correct beliefs from NELL’s KB – it has many incorrect
beliefs as well since NELL is still learning.

NELL’s Learning Tasks: Following the notation in Equa-
tion 1, each of NELL’s learning tasks consists of a per-
formance task, performance metric, and type of experience
〈Ti, Pi, Ei〉. NELL faces over 2500 distinct learning tasks,
corresponding to distinct functions fi : Xi → Yi it is try-
ing to learn for its distinct performance tasks Ti = 〈Xi, Yi〉.
These tasks fall into several broad groups:

• Category Classification: Functions that classify noun
phrases by semantic category (e.g., a boolean valued func-
tion that classifies whether any given noun phrase refers
to a food). NELL learns different boolean functions for
each of the 280 categories in its ontology, allowing noun
phrases to refer to entities in multiple semantic categories
(e.g., “apple” can refer to a “Food” as well as a “Com-
pany”). For each category Yi NELL learns up to five
distinct functions that predict Yi, based on five different
views of the noun phrase (five different Xi’s), which are:

1. Character string features of the noun phrase (e.g.,
whether the noun phrase ends with the character string
“...burgh”). This is performed by the CML system
(Carlson et al. 2010b), which represents the noun
phrase by a vector with thousands of string features.

2. The distribution of text contexts found around this
noun phrase in 500M English web pages from the
ClueWeb2009 text corpus (Callan and Hoy 2009) (e.g.,
how frequently the noun phraseN occurs in the context
“mayor of N”). This is performed by the CPL system
(Carlson et al. 2010b).

3. The distribution of text contexts found around this noun
phrase through active web search. This is performed
by the OpenEval system (Samadi, Veloso, and Blum
2013), which uses somewhat different context features
from the above CPL system, and uses real time web
search to collect this information.



4. HTML structure of web pages containing the noun
phrase (e.g., whether the noun phrase appears in an
HTML list, alongside other known cities). This is per-
formed by the SEAL system (Wang and Cohen 2007).

5. Visual images associated with this noun phrase, when
the noun phrase is given to an image search engine.
This is performed by the NEIL system (Chen, Shrivas-
tava, and Gupta 2013), and applies only to a subset of
NELL’s ontology categories (e.g., not to MusicGenre).

• Relation Classification: These functions classify pairs
of noun phrases by whether or not they satisfy
a given relation (e.g., classifying whether the pair
〈“Pittsburgh”,”U.S.”〉 satisfies the relation “CityLocated-
InCountry(x,y)”). NELL learns distinct boolean-valued
classification functions for each of the 327 relations in its
ontology. For each relation, NELL learns three distinct
classification functions based on different feature views
of the input noun phrase pair. Specifically, it uses the two
classification methods CPL and OpenEval based on the
distribution of text contexts found between the two noun
phrases on web pages, and it uses the SEAL classification
method based on HTML structure of web pages.

• Entity Resolution: Functions that classify noun phrase
pairs by whether or not they are synonyms (e.g., whether
“NYC” and “Big Apple” can refer to the same entity).
This classification method is described in (Krishnamurthy
and Mitchell 2011). For each of NELL’s 280 categories,
it co-trains two synonym classifiers: one based on string
similarity between the two noun phrases, and a second
based on similarities in their extracted beliefs.

• Inference Rules among belief triples: Functions that map
from NELL’s current KB, to new beliefs it should add to
its KB. For each relation in NELL’s ontology, the cor-
responding function is represented by a collection of re-
stricted Horn Clause rules learned by the PRA system
(Lao, Mitchell, and Cohen 2011; Gardner et al. 2014).
Each of the above functions f : X → Y represents a

performance task Ti = 〈X,Y 〉 for NELL, and each maps
to the learning task of acquiring that function, given some
type of experience Ei and a performance metric Pi to be op-
timized during learning. In NELL, the performance metric
Pi to optimize is simply the accuracy of the learned func-
tion. In all cases except one, the experience Ei is a com-
bination of human-labeled training examples (the dozen or
so labeled examples provided for each category and relation
in NELL’s ontology, plus labeled examples contributed over
time through NELL’s website), a set of NELL self-labeled
training examples corresponding to NELL’s current knowl-
edge base, and a huge volume of unlabeled web text. The
one exception is learning over visual images, which is han-
dled by the NEIL system with its own training procedures.

NELL’s Coupling Constraints: The second component
of NELL’s never-ending learning task is the set of coupling
constraints which link its learning tasks. NELL’s coupling
constraints fall into five groups:
• Multi-view co-training coupling. NELL’s multiple meth-

ods for classifying noun phrases into categories (and noun

phrase pairs into relations) provide a natural co-training
setting (Blum and Mitchell 1998), in which alternative
classifiers for the same category should agree on the pre-
dicted label whenever they are given the same input,
even though their predictions are based on different noun
phrase features. To be precise, let vk(z) be the feature
vector used by the kth function, when considering input
noun phrase z. For any pair of functions fi : vi(Z) → Y
and fj : vj(Z) → Y that predict the same Y from the
same Z using the two different feature views vi and vj ,
NELL uses the coupling constraint (∀z)fi(z) = fj(z).
This couples the tasks of learning fi and fj .

• Subset/superset coupling. When a new category is added
to NELL’s ontology, the categories which are its immedi-
ate parents (supersets) are specified (e.g., “Beverage” is
declared to be a subset of “Food.”). When category C1
is added as a subset of category C2, NELL uses the cou-
pling constraint that (∀x)C1(x) → C2(x). This couples
learning tasks that learn to predict C1 to those that learn
to predict C2.

• Multi-label mutual exclusion coupling. When a category
C is added to NELL’s ontology, the categories that are
known to be disjoint from (mutually exclusive with) C
are specified (e.g., “Beverage” is declared to be mutually
exclusive with “Emotion,” “City”, etc.). These mutual ex-
clusion constraints are typically inherited from more gen-
eral classes, but can be overridden by explicit assertions.
When category C1 is declared to be mutually exclusive
with C2, NELL adopts the constraint that (∀x)C1(x) →
¬C2(x).

• Coupling relations to their argument types. When a rela-
tion is added to NELL’s ontology, the editor must specify
the types of its arguments (e.g., that “zooInCity(x,y)” re-
quires arguments of types “Zoo” and “City” respectively).
NELL uses these argument type declarations as coupling
constraints between its category and relation classifiers.

• Horn clause coupling. Whenever NELL learns a Horn
clause rule to infer new KB beliefs from existing be-
liefs, that rule serves as a coupling constraint to aug-
ment NELL’s never ending learning problem 〈L,C〉.
For example, when NELL learns a rule of the form
(∀x, y, z)R1(x, y) ∧R2(y, z)→ R3(x, z) with probabil-
ity p, this rule serves as a new probabilistic coupling con-
straint over the functions that learn relations R1, R2, and
R3. Each learned Horn clause requires that learned func-
tions mapping from noun phrase pairs to relations labels
for R1, R2, and R3 are consistent with this Horn clause;
hence, they are analogous to NELL’s subset/superset cou-
pling constraints, which require that functions mapping
from noun phrases to category labels should be consistent
with the subset/superset constraint.

NELL’s never ending learning problem thus contains over
2500 learning tasks, inter-related by over a million coupling
constraints. In fact, NELL’s never ending learning problem
〈L,C〉 is open ended, in that NELL has the ability to add
both new consistency constraints in the form of learned Horn
clauses (as discussed above) and new learning tasks, by in-
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Figure 2: NELL’s software architecture. NELL’s grow-
ing knowledge base (KB) serves as a shared blackboard
through which its various reading and inference modules in-
teract. NELL’s learning cycle iteratively retrains these soft-
ware modules using the current KB, then updates the KB
using these refined modules.

venting new predicates for its ontology (as discussed below).

NELL’s Learning Methods and Architecture
The software architecture for NELL, depicted in Figure 2,
includes a knowledge base (KB) which acts as a blackboard
through which NELL’s various learning and inference mod-
ules communicate.1 As shown in the figure, these software
modules map closely to the learning methods (CPL, CML,
SEAL, OpenEval, PRA, NEIL) for the different types of
functions mentioned in the previous section, so that NELL’s
various learning tasks are partitioned across these modules.

Learning in NELL as an Approximation To EM: NELL
is in an infinite loop analogous to an EM algorithm for semi-
supervised learning, performing an E-like step and an M-like
step on each iteration. During the E-like step, each read-
ing and inference module proposes updates to the KB (ad-
ditions and deletions of specific beliefs, with specific confi-
dences and provenance information). The Knowledge Inte-
grator (KI) both records these individual recommendations
and makes a final decision about the confidence assigned to
each potential belief in the KB. Then, during the M-like step,
this refined KB is used to retrain each of these software mod-
ules, employing module-specific learning algorithms. The
result is a large-scale coupled training system in which thou-
sands of learning tasks are guided by one another’s results,
through the shared KB and coupling constraints.

Notice that a full EM algorithm is impractical in NELL’s
case; NELL routinely considers tens of millions of noun
phrases, yielding 1017 potential relational assertions among

1The KB is implemented as a frame-based knowledge represen-
tation which represents language tokens (e.g., NounPhrase:bank)
distinct from non-linguistic entities to which they can refer (e.g.,
Company:bank, LandscapeFeature:bank), and relates the two by
separate CanReferTo(noun phrase, entity) assertions.

noun phrase pairs. It is impractical to estimate the probabil-
ity of each of these potential latent assertions on each E-like
step. Instead, NELL constructs and considers only the be-
liefs in which it has highest confidence, limiting each soft-
ware module to suggest only a bounded number of new can-
didate beliefs for any given predicate on any given iteration.
This enables NELL to operate tractably, while retaining the
ability to add millions of new beliefs over many iterations.

Knowledge Integrator in NELL: The Knowledge Inte-
grator (KI) integrates the incoming proposals for KB up-
dates. For efficiency, the KI considers only moderate-
confidence candidate beliefs, and re-assesses confidence us-
ing a limited subgraph of the full graph of consistency con-
straints and beliefs. As an example, the KI considers all
beliefs in the current KB to assure that argument types are
satisfied for new relational assertions, but does not consider
possible updates to beliefs about these argument types in the
same iteration. Over multiple iterations, the effects of con-
straints propagate more widely through this graph of beliefs
and constraints. Recently, (Pujara et al. 2013) has demon-
strated a more effective algorithm for the joint inference
problem faced by the KI; we are now in the process of up-
grading NELL’s KI to use this implementation.

Adding Learning Tasks and Ontology Extension in
NELL: NELL has the ability to extend its ontology by
inventing new relational predicates using the OntExt sys-
tem (Mohamed, Hruschka Jr., and Mitchell 2011). OntExt
considers every pair of categories in NELL’s current ontol-
ogy, to search for evidence of a frequently discussed relation
between members of the category pair, in a three step pro-
cess: (1) Extract sentences mentioning known instances of
both categories (e.g., for the category pair 〈drug,disease〉 the
sentence Prozac may cause migraines might be extracted if
prozac and migraines were already present in NELL’s KB).
(2) From the extracted sentences, build a context by con-
text co-occurrence matrix, then cluster the related contexts
together. Each cluster corresponds to a possible new rela-
tion between the two input category instances. (3) Employ a
trained classifier, and a final stage of manual filtering, before
allowing the new relation (e.g., DrugHasSideEffect(x,y)) to
be added to NELL’s ontology. OntExt has added 62 new re-
lations to NELL’s ontology. Note each new relation spawns
associated new learning tasks, including three new tasks of
learning to classify which noun phrase pairs satisfy the rela-
tion (based on different views of the noun phrase pair), and
a task of learning Horn clause rules to infer this new relation
from others.

Empirical Evaluation
Our primary goal in experimentally evaluating NELL is to
understand the degree to which NELL improves over time
through learning, both in its reading competence, and in the
size and quality of its KB.

First, consider the growth of NELL’s KB over time, from
its inception in January 2010 through November 2014, dur-
ing which NELL has completed 886 iterations. The left
panel of Figure 3 shows the number of beliefs in NELL’s KB



Figure 3: NELL KB size over time. Total number of beliefs
(left) and number of high confidence beliefs (right) versus
iterations. Left plot vertical axis is tens of millions, right
plot vertical axis is in millions.

over time, and the right panel of this figure shows the num-
ber of beliefs for which NELL holds high confidence. Note
in November 2014, NELL has approximately 89 million be-
liefs with varying levels of confidence, 2 million of which it
holds in high confidence. Here, ”high confidence” indicates
either that one of NELL’s modules assigns a confidence of
at least 0.9 to the belief, or that multiple modules indepen-
dently propose the belief. NELL’s KB is clearly growing,
though its high confidence beliefs are growing more slowly
than its total set of beliefs. Note also the growth in high con-
fidence beliefs has diminished somewhat in the most recent
iterations. This is in part due to the fact that NELL has sat-
urated some of the categories and relations in its ontology.
For example, for the category “Country” it extracted most
actual country names in the first few hundred iterations.

Second, consider the accuracy of NELL’s reading compe-
tence over time. To evaluate this, we applied different ver-
sions of NELL obtained at different iterations in its history,
to extract beliefs from a fixed set of text data consisting of
the 500 million English web pages from the ClueWeb2009
corpus, plus the world wide web as of November 14, 2014.
We then manually evaluated the accuracy of the beliefs ex-
tracted by these different historical versions of NELL, to
measure NELL’s evolving reading competence. To obtain
different versions of NELL over time, we relied on the fact
that NELL’s state at any given time is fully determined by its
KB. In particular, given NELL’s KB at iteration iwe first had
NELL train itself on that KB plus unlabeled text, then had
it apply its trained methods to a fixed set of unlabeled web
text to propose a rank-ordered set of confidence-weighted
beliefs. We evaluated the accuracy of these beliefs to mea-
sure NELL’s evolving competence at different points in time.

In greater detail, we first selected 10 different points in
time to test NELL’s KB: iterations 166, 261, 337, 447, 490,
561, 641, 731, 791, and 886. For each of those iterations, we
trained NELL using the KB from that iteration, then evalu-
ated its reading competence over a representative sample of
18 categories and 13 relations (31 predicates in total) from
NELL’s current ontology of 280 categories and 327 rela-
tions. Each iteration-specific version of NELL’s readers was

Figure 4: NELL reading accuracy over time. Left plot
shows accuracy of 310 novel predictions, consisting of the
10 most confident predictions for each of 31 predicates,
omitting any that correspond to human labeled examples.
Right plot shows the Mean Average Precision over 1000
most confident predictions for the same 31 predicates.

applied to produce a ranked list of the top 1000 novel predic-
tions for each predicate over all of ClueWeb (i.e., ignoring
any instance for which NELL has received human input).
We then created a pool of instances to manually annotate.
For each iteration, we included the top 10 ranked predictions
for each predicate, 20 more predications sampled uniformly
at random from ranks 11–100, and an additional 20 from
ranks 101–1000. This provided 50 (potentially overlapping)
instances per predicate from each iteration, averaging about
350 instances per predicate over all iterations. We manu-
ally annotated each of these instances as correct or incor-
rect, yielding approximately 11,000 total annotated beliefs
regarding 31 predicates, which we used to evaluate NELL at
each iteration.

First consider the mean precision of NELL’s 10 highest
ranked novel predictions for each of the 31 predicates (310
predictions in total), at each of these 10 points in time. As
shown in Figure 4, this measure of NELL’s precision shows
a gradual upward trend over time, with NELL’s recent iter-
ations yielding the highest precision, currently at 0.85 (pre-
cision of the top 25 predictions is 0.84). Note that iteration
166 also has relatively high precision compared to iterations
261 through 731. This is likely to be the result of an ab-
normally high rate of human feedback to NELL during it-
erations 100 through 166, resulting in a temporary boost in
accuracy. During these 67 iterations NELL received 31% of
the total human feedback it has received over its 866 iter-
ations. A second measure of NELL’s accuracy , shown in
the right panel of this figure, is the mean average precision
(MAP) over the sample of data drawn from the top 1000
predications for the same 31 predicates. Here again, we see
a gradual improvement in NELL’s accuracy over its top 1000
novel predications per predicate, indicating that NELL is in-
deed improving its reading competence over time.

Next, we summarize feedback from humans to NELL,
which over time has been dominated by negative feedback
identifying NELL’s incorrect beliefs. Over the 58 months



Figure 5: Human feedback to NELL over time. Each bar
in this histogram shows the number of NELL beliefs for
which humans provided negative feedback, during a 78 it-
eration interval. This averages out to 2.4 items of feedback
per month, per predicate in NELL’s ontology, over NELL’s
58 months of operation.

of NELL’s existence, it has averaged 2.4 negative feedbacks
per predicate, per month, for a total of 85,088 items of neg-
ative feedback, or 1,467 per month. Figure 5 shows the dis-
tribution of this feedback over time. Note the large burst
of feedback from iteration 100 to 177. During the first two
years, the bulk of feedback was provided by members of the
NELL research project, though in more recent years much of
the feedback is now crowdsourced, i.e., provided by external
visitors to the NELL website.

In addition to the above aggregate measures of NELL’s
behavior, it is interesting to consider its detailed behavior for
specific predicates. Here we find that NELL’s performance
varies dramatically across predicates: the precision over
NELL’s 1000 highest confidence predictions for categories
such as ”river,” ”body part,” and ”physiological condition” is
well above 0.95, whereas for ”machine learning author” and
”city capital of country(x,y)” accuracies are well below 0.5.
One factor influencing NELL’s ability to learn well is having
other mutually exclusive categories to learn, which provide
nearby negative examples. For instance, many of NELL’s
errors for the category ”machine learning author” are com-
puter science researchers (e.g., ”Robert Kraut”) who do not
happen to work in the area of machine learning – NELL
would presumably learn this category better if we added cat-
egories such as ”HCI author” to provide examples that are
usually mutually exclusive. Another factor is the number of
actual members of the category: for example, the category
”planet” has only a small number of actual members, but
NELL is searching for more, so it proposes members such
as ”counter earth” and ”asteroid ida.” In some cases, NELL
fails on a predicate due to a particular error which propa-
gates due to its bootstrap learning. For example, for the
category ”sports team position” NELL has numerous cor-
rect members such as ”quarterback” and ”first base,” but
it has acquired a systematic error in having a strong belief
that phrases ending with ”layer” (e.g., ”defence layer” and
”cloud layer”) refer to sports positions. While some do, most
do not, yet NELL has no easy way to determine this.

Based on the above empirical analysis, it is clear that
NELL is successfully learning to improve its reading com-
petence over time, and is using this increasing competence

to build an ever larger KB of beliefs about the world. Impor-
tantly, this evaluation also shows a slowing of NELL’s KB
growth rate, at least for high confidence beliefs. In part this
is due to the fact that as NELL matures, the task of adding
new knowledge to the KB naturally becomes more difficult:
NELL’s redundancy-based reading methods tend to extract
the most frequently-mentioned beliefs earlier (e.g., emotions
such as ’gladness’ and ’loneliness’) so that later it can only
grow the KB by extracting less frequently mentioned be-
liefs which are more difficult to extract (e.g., emotions such
as ’incredible lightness,’ ’cavilingness,’ and ’ ”nonopprobri-
ousness’). Meeting this challenge of increasing difficulty
over time in adding new KB beliefs suggests several oppor-
tunities for future research: (1) add a self-reflection capa-
bility to NELL to enable it to detect where it is doing well,
where it is doing poorly, when it has sufficiently populated
any given category or relation, enabling it to allocate its ef-
forts in a more intelligently targeted fashion, (2) broaden
the scope of data NELL uses to extract beliefs, for exam-
ple by including languages beyond English, image data, and
Twitter, (3) expand NELL’s ontology dramatically, both by
relying more heavily on automated algorithms for inventing
new relations and categories, and by merging other open-
source ontologies such as DBpedia into NELL’s ontology
(?), and (4) add a new generation of ”micro-reading” meth-
ods to NELL – methods that perform deep semantic analysis
of individual sentences and text passages, and which there-
fore do not need to rely on redundancy across the web to
achieve accurate reading. We are currently actively explor-
ing each of these directions.

Discussion
NELL is a learning agent that demonstrates some of the
properties we believe will be important to any never-ending
learning system, though it has limitations as well. Our expe-
rience with NELL suggests four useful design features that
we recommend for any never-ending learning system:

• To achieve successful semi-supervised learning, couple
the training of many different learning tasks. The pri-
mary reason NELL has succeeded in learning thousands
of functions from only a small amount of supervision is
that it has been designed to simultaneously learn thou-
sands of different functions that are densely connected by
a large number of coupling constraints. As progress be-
gins to be made on one of these learning tasks, the cou-
pling constraints allow the learned information to con-
strain subsequent learning for other tasks.

• Allow the agent to learn additional coupling constraints.
Given the critical importance of coupling the training of
many functions, great gains can be had by automatically
learning additional coupling constraints. In NELL, this
is accomplished by learning restricted-form probabilis-
tic Horn clauses by data-mining NELL’s KB. NELL has
learned tens of thousands of probabilistic Horn clauses
which it uses to infer new KB beliefs it has not yet read.
As a side effect of creating new beliefs which are subse-
quently used to retrain NELL’s reading functions, these
Horn clauses also act as coupling constraints to further



constrain and guide subsequent learning of NELL’s read-
ing functions for relations mentioned by the Horn clause.

• Learn new representations that cover relevant phenom-
ena beyond the initial representation. To continuously
improve, and to avoid reaching a plateau in performance,
a never-ending learning system may need to extend its
representation beyond what is initially provided. NELL
has a primitive but already-useful ability to extend its
representation by suggesting new relational predicates
(e.g., RiverFlowsThroughCity(x,y)) between existing cat-
egories (e.g., river, city). Each new relation NELL intro-
duces leads to new learning tasks such as learning to ex-
tract the relation from text, and learning to infer instances
of the relation from other beliefs.

• Organize the set of learning tasks into an easy-to-
increasingly-difficult curriculum. Given a complex set of
learning tasks, it will often be the case that some learning
tasks are easier, and some produce pre-requisite knowl-
edge for others. In NELL, we have evolved the system
by manually introducing new types of learning tasks over
time. During NELL’s first six months, its only tasks were
to classify noun phrases into categories, and noun phrase
pairs into relations. Later, once it achieved some level of
competence at these, and grew its KB accordingly, it be-
came feasible for it to confront more challenging tasks. At
that point, we introduced the task of datamining the KB
to discover useful Horn clause rules, as well as the task
of discovering new relational predicates based on NELL’s
knowledge of category instances. A key open research
question is how the learning agent might itself evolve a
useful curriculum of learning tasks.

NELL also has many limitations, which suggest addi-
tional areas for research into never-ending learning agents:

• Self reflection and an explicit agenda of learning sub-
goals. At present, NELL suffers from the fact that it
has a very weak ability to monitor its own performance
and progress. It does not notice, for example, that it has
learned no useful new members of the ”country” category
for the past year, and it continues to work on this problem
although its knowledge in this area is saturated. Further-
more, it makes no attempt to allocate its learning effort
to tasks that will be especially productive (e.g., collect-
ing new web text describing entities about which it has
only low confidence beliefs). It is clear that developing a
self-reflection capability to monitor and estimate its own
accuracy, and to plan specific learning actions in response
to perceived needs, would allow the system to use its com-
putational effort more productively.

• Pervasive plasticity. Although NELL is able to modify
many aspects of its behavior through learning, other parts
of its behavior are cast in stone, unmodifiable. For ex-
ample, NELL’s method for detecting noun phrases in text
is a fixed procedure not open to learning. In designing
never-ending learning agents, it will be important to un-
derstand how to architect the agent so that as many as-
pects of its behavior as possible are plastic–i.e., open to
learning. Otherwise, the agent runs the risk of reaching

a performance plateau in which further improvement re-
quires modifications to a part of the system that is not
itself modifiable.

• Representation and reasoning. At present, NELL uses a
simple frame based knowledge representation, augmented
by the PRA reasoning system which performs tractable
but limited types of reasoning based on restricted Horn
clauses. NELL’s competence is already limited in part
by its lack of more powerful reasoning components: cur-
rently lacks methods for representing and reasoning about
time and space. Hence, core AI problems of representa-
tion and tractable reasoning are also core research prob-
lems for never-ending learning agents.

The study of never-ending learning raises important con-
ceptual and theoretical problems as well, including:

• The relationship between consistency and correctness.
An autonomous learning agent can never truly perceive
whether it is correct – it can at best detect only that it
is internally consistent. For example, even if it observes
that its predictions (e.g., new beliefs predicted by NELL’s
learned Horn clauses) are consistent with what it per-
ceives (e.g., what NELL reads from text), it cannot distin-
guish whether that observed consistency is due to correct
predictions, or incorrect perceptions. This is important in
understanding never-ending learning, because it suggests
organizing the learning agent to become increasingly con-
sistent over time, which is precisely how NELL uses its
consistency constraints to guide learning. A key open
theoretical question therefore is “under what conditions
can one guarantee that an increasingly consistent learning
agent is also an increasingly correct agent?” (Platanios,
Blum, and Mitchell 2014) provides one step in this direc-
tion, by providing an approach that will soon allow NELL
to estimate its accuracy based on the observed consistency
rate among its learned functions, but much remains to be
understood about this fundamental theoretical question.

• Convergence guarantees in principle and in practice. A
second fundamental question for never-ending learning
agents is “what agent architecture is sufficient to guar-
antee that the agent can in principle generate a sequence
of self-modifications that will transform it from its initial
state to an increasingly high performance agent, without
hitting performance plateaus?” Note this may require that
the architecture support pervasive plasticity, the ability to
change its representations, etc. One issue here is whether
the architecture has sufficient self-modification operations
to allow it to produce ever-improving modifications to it-
self in principle. A second, related issue is whether its
learning mechanisms will make these potential changes,
converging in practice given a tractable amount of com-
putation and training experience.
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