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MODELS OF LEARNING SYSTEMS 
INTRODUCTION 

Giving a machine the ability to learn, adapt, organize, or repair itself are  
among the oldest and most ambitious goals of computer science. In the early days  
of computing, these goals were central to the new discipline called cybernetics [2, 
127]. Over the past two decades, progress toward these goals has come from a  
variety of fields—notably computer science, psychology, adaptive control theory, 
pattern recognition, and philosophy. Substantial progress has been made in devel-
oping techniques for machine learning in highly restricted environments. Computer 
programs have been written which can learn to play good checkers [93, 94], learn 
to filter out the strong heartbeat of a mother in order to pick out the weaker heart- 
beat of the fetus [125], and learn to predict the mass spectra of complex molecules 
[13]. Each of these programs, however, is tailored to its particular task, taking  
advantage of particular assumptions and characteristics associated with its domain. 
The search for efficient, powerful, and general methods for machine learning has 
come only a short way. 

The terms adaptation, learning, concept-formation, induction, self-organization, 
and self-repair have all been used in the context of learning system (LS) research.  
The research has been conducted within many different scientific communities,  
however, and these terms have come to have a variety of meanings. It is therefore  
often difficult to recognize that problems which are described differently may in  
fact be identical. Learning system models as well are often tuned to the require- 
ments of a particular discipline and are not suitable for application in related  
disciplines. 

The term “learning system” is very broad, and often misleading. In the context 
of this article, a learning system is considered to be any system which uses infor-
mtion obtained during one interaction with its environment to improve its perform-
ance during future interactions. This rough characterization may include man/ 
machine systems (see Ref. 64) in which humans take on active roles as required  
functional components. In some systems there is continuous interaction with the  
environment, with feedback and subsequent improvement. In other systems there  
is a sharp distinction between the interactions that constitute training and subse- 
quent performance or predictions with no further training. Another way of differen-
tiating between various learning systems is on the basis of what kinds of alterations 
they perform. 

http://www.amazon.com/exec/obidos/redirect?link_code=ur2&tag=rgsmiass-20&camp=1789&creative=9325&path=http%3A%2F%2Fwww.amazon.com%2Fgp%2Fproduct%2F0824722116%2F


[25] 
MODELS OF LEARNING SYSTEMS 

 Data base Adaptive Concept 
 Management control formation 
 systems systems systems 

 | | | 
 | | | 

 alter alter alter 
 assertions parameters structures 
 
FIG. 1.  Spectrum of learning systems. 
 
 
Figure 1 shows several classes of systems that fit the above characterization,  

and lists the kinds of alterations which they perform. Data base systems are among  
the earliest kinds of systems which fit our definition. Such systems represent infor- 
mation about their environment by sets of alterable assertions. In the late 1950s  
and early 1960s, adaptive control techniques were first used to build programs which  
alter parameters in equations which model some aspect of the external world [93,  
125]. The perceptrons of the early 1960s [71, 90] represent an attempt to use adap- 
tive control techniques to train recognition networks by altering weighting param- 
eters. More recently, concept formation (and other) systems have been written  
which build and alter structural representations as their model of the external world.  
In short, an important difference to be noted in LS’s is in their internal represent- 
tations of the outer environment: some are mathematical models, some are linguis- 
tic assertions, and still others are structures encoding symbolic relations. 

In this article, three distinct approaches to machine learning and adaptation  
are considered: 

 
1. The adaptive control approach 
2. The pattern recognition approach 
3. The artificial intelligence approach 

 
Progress in each of these areas is summarized in the first part of the article.  

In the next part a general model for learning systems is presented which allows  
characterization and comparison of individual algorithms and programs in all of  
these areas. Specific examples of learning systems are described in terms of the 
model. 

ADAPTIVE SYSTEM APPROACH TO LEARNING 

In the control literature, learning is generally assumed to be synonymous with  
adaptation. It is often viewed as estimation or successive approximation of the  
unknown parameters of a mathematical structure which is chosen by the LS designer  
to represent the system under study [18, 30]. Once this has been done, control tech- 
niques known to be suitable for the particular chosen structure can be applied. Thus  
the emphasis has been on parameter learning, and the achievement of stable, reli- 
able performance [106]. Problems are commonly formulated in stochastic terms,  
and the use of statistical procedures to achieve optimal performance with respect  
to some performance criterion such as mean square error, is standard [130]. 
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There are many overlapping and sometimes contradictory definitions of the 
terms related to adaptive systems. The following set, formulated by Glorioso [34], 
serves to illustrate the main features. An “adaptive system” is defined as a system 
which responds acceptably with respect to some performance criterion in the face  
of changes in the environment or its own internal structure. A “learning system”  
is an adaptive system that responds acceptably within some time interval following  
a change in its environment, and a “self-repairing system” is one that responds  
acceptably within some time interval following a change in its internal structure.  
Finally, a “self-organizing system” is an adaptive or learning system in which the 
initial state is unknown, random, or unimportant. 

Adaptive control is an outgrowth of automatic control that has attracted signifi- 
cant research effort since the mid-1950s [3]. These investigations have been moti- 
vated by a desire for development of real-time control of incompletely known  
systems or “plants.” Limited plant specification is normally assumed to entail  
unknown, drifting parameters in a prescribed mathematical description. Various  
methods of adaptive control have been implemented for control of aerospace and  
industrial processes, as well as man-machine and socioeconomic systems. 

Adaptive controllers have been coarsely divided into two large classes of active 
and passive adaptivity [113]. “Active adaptive” controllers are based on dual con- 
trol theory [25]. In addition to the available real-time information, they utilize the 
knowledge that future observations will be made which will provide further possible 
performance evaluation and regulate their learning accordingly. “Passive adaptive” 
controllers utilize the available real-time measurements but ignore the availability  
of future observations. This limitation results in much simpler adaptive algorithms. 
Thus passive techniques have been much more extensively investigated. 

Passive Controllers 

Passive adaptive controllers can be subdivided into two classes: indirect and  
direct, denoting the primary focus of the adaptation mechanism either on plant  
parameter determination or control parameter determination, respectively. 

Indirect adaptive control, originally suggested in Ref. 51, arbitrarily separates 
the control task into plant identification and control law calculation from the plant 
parameter estimates. This approach was designed to utilize the existing arsenal of 
control techniques requiring exact specification of the plant. Acceptance of this 
method has led to considerable interest in system identification [4]. Most parameter 
estimation schemes, however, are inherently open loop and suffer consistency and 
identifiability constraints when encompassed by feedback. This limitation can be  
circumvented by the injection of a perturbation input [95]. 

The alternative, which avoids the necessity of proper plant identification, is  
direct adaptive control, in which the available control parameters themselves are  
adjusted in order to improve the overall performance of the control system. Two  
broad techniques exist for establishment of convergent control parameter adaptation 
schemes: search methods and stability analysis. Search techniques generally suffer  
local convergence, whether based on gradient [40] or heuristic [30] methods. Alter-
natively, adaptive control algorithms arising from stability analysis can guarantee 
global asymptotic stability as a by-product. The widest application of stability theory 
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to adaptive control design has utilized Liapunov’s second method [63]. The earliest  
application of Liapunov function synthesis for designing adaptive loops [98] utilized  
a model reference approach. 

Model reference adaptive control techniques (see example in the Appendix)  
implement adjustment of reachable parameters in the overall controlled system so  
that its response to some reference signal exactly matches that of a predetermined 
model due to the same reference. Such a structural arrangement, in general,  
requires the ability to adjust each parameter independently in the overall controlled  
system. Assumption of this capability hampers the current sophisticated schemes  
of adapting feedforward and feedback parameters solely from plant input and output 
measurements [58, 74] by occasionally necessitating an unbounded control effort.  
Control effort boundedness is encouraged by abandoning exact output matching for 
input matching [48] which requires nonparametric, a posteriori determination of  
the optimal input. 

No single adaptive control approach mentioned is without limitations in attempt-
ing to provide adequate control of a plant known only to be describable within a  
general structural class. The primary focus of adaptive control on parameter selec- 
tion has led to provably convergent single level schemes. The ongoing merger of  
heuristic, layerable learning system concepts (as described below) with these  
convergent parameter adjustment algorithms of restricted applicability should  
improve the efficacy of adaptive control. 

PATTERN RECOGNITION APPROACH TO LEARNING 

Pattern recognition techniques are primarily employed at the interface of  
intelligent agents and the real world of physical measurements and processes. The 
interface attempts to provide some sensory capability to the agent, such as vision, 
touch, or some other nonhuman sensory modality. In this context, a “pattern” may  
be an image, a spoken word, a radar return from an aircraft, or whatever is appro-
priate to describe or classify a physical environment that is viewed through a par-
ticular set of sensors. 

The problem of pattern recognition is often viewed as the development of a set 
of rules which can be used to assign observed patterns to particular known classes  
by examination of a set of patterns of known class membership. There are, how- 
ever, a variety of related problems that can be discussed in the same framework. 
These include pattern classification, in which the classification rules are known,  
and the problem is simply assignment of patterns to classes, pattern formation, in 
which the classes themselves must be defined, and pattern description, in which  
the problem is to form descriptions (which are often symbolic in form) of the  
observed patterns, rather than assign them to classes. 

The major concerns in pattern recognition are: 
 

Convergence: the learning system should eventually settle on a stable set of rules, 
classes, or descriptions. 

Optimality: the objective is minimization of some cost functional, such as the  
average risk associated with classification. 
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Computational complexity: the objective is minimization of the difficulty of using an 
algorithm, measured in terms of computation time, memory requirements, or 
programming complexity. 

Pattern Recognition Subclasses 

Pattern recognition is presently characterized by two major approaches. These 
are the statistical decision-theoretic or discriminant approach, which employs a  
classification model, and the linguistic (syntactic) or structural approach, which  
employs a description model. The first approach has been more extensively studied 
and a modestly large body of theory has been constructed, whereas the second  
approach is relatively new and many unsolved problems remain. 

The decision-theoretic approach commonly involves the extraction of a set of 
characteristic (typically low-level) measurements, or “features,” from a set of  
patterns. Each pattern is thus represented as a feature vector in a feature space,  
and the task of the pattern recognition device is to partition the feature space in  
such a way as to classify the individual patterns. Features, then, are usually chosen  
so that the “distance” (on some suitable metric) between patterns in the feature  
space is maximized [89]. This approach has been successful for applications such as 
communication of a known set of signal waveforms corrupted by some form of dis-
tortion, such as noise or multipath interference. However, it has been criticized  
because it is concerned only with statistical relationships between features, and  
tends to ignore other structural relationships which may characterize patterns [52]. 

The linguistic or structural approach has been developed in part to correct  
some of the difficulties seen in the decision-theoretic approach. With this paradigm, 
patterns are viewed as compositions of components, called subpatterns or pattern 
primitives, that are typically higher-level objects than the features of the decision-
theoretic model. Patterns are often viewed as sentences in a language defined by a 
formal grammar (sometimes called a pattern grammar). Segmentation of patterns  
into primitives and formation of structural descriptions are thus the primary issues. 
This approach embodies an attempt to use other sources of information as aids to  
pattern recognition (e.g., in a speech-understanding system [21, 62, 87, 88, 91], syn-
tax, semantics, and context act as powerful sources of information in addition  
to the recorded information). 

In that both parametric and structural techniques are applied, pattern recog- 
nition effects a bridge between the adaptive systems and concept formation approaches  
to learning system design. We have recently begun to see a merger of the two  
approaches (see, for example Stockman [111]) which may result in more powerful  
systems. For a review of the current state-of-the-art, see Refs. 14, 53, 81, and 86. 

The remainder of this section contains brief descriptions of major approaches  
to pattern recognition. Specific techniques are grouped according to their bias  
toward one of the two primary models: the classification model and the description 
model. Artificial intelligence research, discussed in the next section, has been a  
major factor involved in the movement away from complete adherence to the classi-
fication model and toward exploration of the description model. 

Classification Model 
In this model, patterns (feature vectors) are viewed as members of a class,  

and the aim is to assign observed patterns to classes. The classification may be 



[29] 
MODELS OF LEARNING SYSTEMS 

either statistical, wherein the patterns are thought to belong to one of a number of 
classes according to some set of probability density functions, or “fuzzy,” wherein 
patterns are thought to have differing degrees of membership in a number of  
classes [131]. 

 

Variations 
Classifiers may be categorized in a number of ways, depending on the type of 

classification rule and the sampling procedure they employ [45]. 
Classifiers may be categorized as parallel or sequential: parallel classifiers  

base their classifications upon the complete set of features extracted simultaneously 
during a single observation of a pattern, whereas sequential classifiers assign a  
pattern to a class on the basis of a sequence of observations. After each observation is 
made and integrated with past observations, a decision is made as to whether  
sufficient information has been gathered upon which to base a classification, or  
whether another observation must be made according to a test like the Wald Sequen- 
tial Likelihood Ratio Test [119]. 

Classifiers may be further categorized as adaptive or nonadaptive. Adaptive 
classifiers (see example in the Appendix) are distinguished by the fact that their  
classification rules are themselves adjusted to improve performance as experience  
is gained with patterns drawn from the various classes of interest (a variety of  
procedures have been developed to adjust the rules—see, for example, Ref. 126). 
Nonadaptive classifiers, on the other hand, use a fixed set of classification rules  
and, in the language of this paper, are not considered to be learning systems. 

 

Bayesian Classification 
This type of classification is optimal in the probability of error sense. The  

strategy is minimization of the average risk of a classification, and complete  
knowledge of the a priori and conditional probability densities is assumed (where  
the a priori probability is the probability that a pattern is drawn from a particular 
class, regardless of its observed characteristics, and the conditional probability  
is the probability that a pattern with the observed characteristics could have been 
drawn from a particular class). The notion of “risk” arises because costs are  
assumed to be associated with different types of classification errors. When equal 
costs are assumed for all types of error, the result is the maximum a posteriori  
(MAP) classifier (where the a posteriori probability is the probability that a pattern 
has been drawn from a particular class, based on its observed characteristics). 

 

Maximum Likelihood Classification 
Likelihood is the conditional probability that the observed characteristics of a 

pattern indicate that the pattern should be assigned to a particular class. No  
knowledge of a priori probabilities is assumed, but the method does assume knowl-
edge of the form of the density functions (e.g., Gaussian). 

 

Nonparametric Classification 
This type of classification does not guarantee the best possible performance  

but requires no knowledge of the underlying probability density functions that govern  
the generation of patterns. Techniques used in nonparametric classification include  
the K Nearest Neighbor Rule, which bypasses probabilities altogether, and assigns  
patterns to classes based on the proximity of their observed characteristics to  
those of neighboring patterns of known class membership, and the Fisher Linear  
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Discriminant, which is used to transform the feature space into another (decision) 
space (typically of lower dimensionality), in which parametric procedures can be 
employed [19]. 

Description Model 

With this model, emphasis is placed on segmentation of the patterns into a set  
of meaningful primitives, and on generation of structural descriptions (generally 
symbolic in form) of the patterns. It is further assumed that a great deal of a priori 
knowledge of the pattern types that are of interest is available. 

The approach is useful in applications like scene analysis [19, 65] where classi-
fication is clearly inappropriate. It also tends to be useful when the patterns them-
selves are complex [32], as it emphasizes hierarchical decomposition of patterns  
into their constituent components. 

There is a variety of descriptive formalisms in which to express the structural  
descriptions. These include pattern grammars [31] and relational graphs [129].  
Pattern grammars embody an attempt to carry over a large body of theory from the  
study of natural and programming languages. A variety of pattern grammars have  
been developed [52], both deterministic and stochastic in form. Relational graphs  
have been used in pattern recognition systems developed by the artificial intelligence  
community (see, for example, Winston [128]). Pattern primitives are taken as  
nodes in a directed graph whose edges indicate the relations between the primitives.  
Such graphs form a convenient representation for patterns with a high degree of  
hierarchical structure. 

The text by Duda and Hart [19] serves as an excellent introduction to the  
methods used in the structural approach. 

ARTIFICIAL INTELLIGENCE APPROACH TO LEARNING 

In the 1950s and early 1960s there was considerable discussion of learning  
programs in the artificial intelligence (AI) literature (e.g., Refs. 23, 29, 70, 76,  
80, 96, 102). It was hoped at the time that a general learning program could be  
written to accumulate and refine a large, detailed knowledge base about a domain  
[71]. That knowledge base, then, could be used by ever-improving high performance 
programs that reason in that domain. Samuel’s programs that learn to play excellent 
checkers [93] were an early demonstration of success, but also demonstrated the 
amount of effort necessary to achieve success. On the reasons why learning tasks  
have been central in AI, Newell wrote [77]: 

 
Inductive tasks have always been a prominent part of the artificial intelligence 

landscape. The reasons for this seem to be twofold. For one, we have inherited  
a classic distinction between deduction and induction, so that the search for  
intelligent action should clearly look to induction. Second, American psychology 
has largely identified the central problem of conceptual behavior with the  
acquisition or formation of concepts—which in practice has turned out to mean 
the induction of concepts from a set of presented exemplars. 

This tendency, shaped strongly by Bruner, Goodnow, and Austin’s Study of 
Thinking [11], derives fundamentally from the emphasis on learning that has 
characterized American psychology since the rise of behaviorism. 
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The motivation for writing these programs is diverse. Some are written as  
testable psychological models of how human subjects perform a learning task (e.g., 
Refs. 23, 46, 47, and 104); others are written to demonstrate the feasibility of a 
method (e.g., Ref. 109), and still others are written with the express purpose of  
aiding human problem solvers codify and explain data (e.g., Ref. 13). Insofar as  
all the programs mentioned below perform well at their stated tasks, they all illus- 
trate the emerging power of heuristic programming methods for improving the  
problem-solving power of computer programs. 

All the AI learning programs written to date have strong limitations on their 
generality. Some are applicable to just one kind of problem, others work with sev- 
eral types of problems within a larger class defined by the representation of objects 
and relations in the domain. 

Early AI research was closely tied to pattern recognition and the adaptive  
systems approach (see, for example, Refs. 97, 116, and 117). For example, much 
work has been performed on learning automata [79] (see also Ref. 75) and neural 
networks that grow in response to stimuli [71]. All of these efforts have aimed at  
defining simple machines that learn to respond to their environments [27]. Newell 
[77] traces one line of growth from stimulus-response learning in psychology to  
(1) pattern recognition and self-organizing systems, as well as to (2) concept  
formation, induction, and other AI work. The two fields diverged in the 1960s,  
and are now quite distinct. Whereas pattern recognition and control research empha-
sizes adjustment of parameters, AI research emphasizes construction of symbolic 
structures, based on conceptual relations. For example, Feigenbaum’s EPAM pro-
gram [23] used a discrimination net (i.e., a tree of tests and branches) to store  
the relations required to recall nonsense syllables in a rote learning experiment  
(see Refs. 26, 112, and 129 for further examples). 

In AI it is commonly believed that a learning system should have sufficient  
internal structure to develop a “strong theory” of its environment [24, 64, 72].  
Much emphasis has therefore been placed on building “knowledge-based” or “expert” 
systems that not only have the capacity for high performance but can also explain  
their performance in symbolic terms [17]. 

Winston [129] describes various levels of sophistication in learning systems: 
learning by being programmed, learning by being told, learning from a series of  
examples, and finally learning by discovery. We see in this categorization a  
gradual shift in responsibility from the designer/teacher to the learning system/  
student. At the highest level, the system is able to find its own examples and carry  
on autonomously; at the lowest level the system is learning only in the sense that  
a programmer is explicitly programming it to do something. 

The formalism of inductive inference has captured much attention also (e.g., 
Refs. 38, 44, 66, 67, 84, and 108). The purpose of much of the work on abstract  
formalisms is to find general principles of induction that can be mechanized. This 
was also a goal of Bacon and Leibniz centuries ago. 

Considerable work is still expended on the Leibnizian dream of an abstract  
formalism for scientific inference. Some of this work is done specifically with  
computer programs in mind. Much of it, however, is done in abstraction. Programs  
based on these formalisms form hypotheses from data without any special knowledge  
of the domain from which the data were collected. The drawback of very general  
methods is that, while they may produce some interesting empirical generalizations,  
they are likely to produce many generalizations that experts in the domain would 
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regard as trivial or meaningless. In short, they lack a working model of the domain  
to guide judgments of plausibility. 

Some recent programs explicitly recognize the need for problem-specific con-
straints. The Meta-DENDRAL program [13] discovers general rules about the  
behavior of chemical compounds in an analytic instrument known as a mass spec-
trometer. The data are noisy, they do not come already classified, the space of  
possible explanations is very large, and there is no single correct answer. Never-
theless, the program finds regularities in these data and formulates general rules  
to explain them. 

The AQVAL program [60] accepts a set of descriptions of objects, and produces 
rules that can correctly classify these objects and others like them. For example,  
for descriptions of eastbound and westbound railroad cars containing circles, tri- 
angles, rectangles, etc., the program is able to find the shapes and relations  
among shapes that discriminate the two trains. 

Still another program, named Thoth-pb [118], is able to learn rules for  
(1) extending letter sequences, (2) recognizing geometric analogies, (3) relating  
“before and after” situations, and (4) relating sequences of situations. It uses  
background knowledge about the domain to help it recognize important relations 
among features of the objects themselves. 

Game Playing 

Much of the work with learning systems in AI research has been done in the  
context of games. Improvement of the game-playing program is the ostensive goal,  
but the learning task itself is often the reason for the work (see, for example,  
Ref. 78). The nature of the learned information ranges from parameters governing  
the evaluation of moves (and ultimately their selection) to symbolic rules expressing 
how to play well in different situations. 

Samuel’s work is best known in this field [93, 94]. In the context of a checker-
playing program, he has explored rote learning, parameter tuning, and building  
“signature tables” which are clusters of dependent features with weights that can  
be used to evaluate moves (cf. Refs. 37, 124). Waterman [121] compared the perform-
ance of a poker-playing program after learning with a human teacher and automated 
learning. The program represented its heuristics of good play in a table of condi- 
tional rules, or productions, which the learning system altered in light of mistakes. 
Waterman has generalized many of these ideas to other tasks [122]. Findler [28]  
has also studied the game of poker. Pitrat’s work on learning patterns in chess [83]  
applies many heuristic search ideas to learning useful combinations from examples  
of given games. Programs have also been written to learn dominoes [107], go-moku 
[20], and rules of tic-tac-toe [85]. Banerji [7] has studied learning processes for  
several classes of games and puzzles from a more formal point of view. Koffman  
[54] has also related game playing to pattern recognition. 

Concept Formation 

In concept formation tasks, a computer program (or human subject) is pre- 
sented with objects, or descriptions of objects, which exhibit a common concept.  
The program (or subject) is expected to generalize from these instances well 
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enough to classify new objects accurately. Negative instances—i.e., objects which 
fail to exhibit the concept—are sometimes presented to the program (and identified 
as negative instances) in addition to the exemplars of the concept. When training  
includes negative instances, learning is faster and more accurate. Concept formation 
has long interested psychologists as a learning task. As with other learning tasks, 
computer programs have been written to simulate the performance of human sub-
jects—and thus test a psychological model [104]. Or they have been written to learn 
mechanisms other than those humans use—and thus demonstrate some modicum of 
intelligence on the part of computers. 

Two frequently cited AI concept formation programs are those written by Evans 
[22] and Winston [129]. Evans’ program finds analogies among geometric figures to 
solve standard intelligence test problems of the form A is to B as C is to _ (pick  
one of Dl, D2, D3, D4, D5). The concept here is a transformation or rule which  
maps figure A into B and also maps figure C into one of the answer choices. 

For Winston’s program the task is to produce a correct description of a concept  
exhibited in a set of line drawings of block figures. An important feature is the intro-
duction of “near misses,” i.e., figures that fail to exhibit the concept because they  
differ with respect to a small number of essential properties. The program learns  
the correct description of an arch, for example, from descriptions of two posts and  
a lintel (exemplar), and of near misses such as T’s and posts with a fallen lintel. 

Another recent program learns concepts, such as hit and out, for the game of 
baseball [109] from a set of descriptions of events over the span of a game. Other 
concept formation programs are described in Refs. 13, 41-43, 45, 50, 59, 60, 73,  
92, 104, and 132. 

Grammatical Inference and Sequence Extrapolation 

Grammatical inference and sequence extrapolation have often been taken as 
prototype induction problems. The task is to find a rule (or set of rules) that can  
serve as the generating principle of a training set of symbol strings. For example,  
the training instances may be the following allowable “sentences” in a hypothetical 
language: A, AB, ABB, ABBB. An uninteresting set of rules is just the training  
instances themselves. Without some generalization from the training instances,  
prediction of new sentences is impossible. The following two rules, then, will  
serve to define the grammar of which these strings are correct sentences: 

 
(R1) A [“A” alone is a sentence] 

 

(R2) A → AB [“A” can be replaced by “AB”] 
 
The sequence extrapolation task is similar: given a sequence of symbols  

(usually but not always numerals) such as 1, 3, 5, 7, 9, find a rule which allows  
correct prediction of the next member of the ordered sequence. In this case, the  
generating principle is 

 
(R3) n-th member = 2n – 1 

 
Both of these problems exhibit many characteristics of scientific hypothesis 

formation. Regularities in the data must be found and characterized, different  
generating principles must be proposed and tested, and alternative hypotheses  
must be ranked, for example by simplicity. Most programs [10, 82] assume the 
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initial data are free of errors. Many of these programs explicitly search a space of 
hypotheses (e.g., Cook’s grammatical inference program [16]), but most recent  
work on grammatical inference emphasizes more formal methods [10, 33, 35]. 

Inferring natural language [100] and simple computer programs from examples 
are other induction tasks that have been studied [39, 99, 122, 123] using AI tech-
niques. The training instances are often input-output pairs, and the task of the  
induction system is to find the rule (procedure) that will produce the specified out- 
put symbols for each associated input. While the tasks are similar to concept for-
mation and grammatical inference, the languages are so much richer that progress  
is slow. 

A MODEL OF LEARNING SYSTEMS 

This section is concerned with a simple functional model that is useful for  
characterizing, comparing, and designing learning systems (LS’s). Many of the func-
tional components of an LS are essential to intelligent problem-solving systems in 
general, as noted by Simon and Lea [105]; that is, learning (induction, concept for-
mation, etc.) is problem solving of one kind, which means that AI problem-solving 
methods and representations can be expected to apply to this task as well as to  
others. 

Effects of the Environment 

The environment from which training instances are drawn, and in which an LS  
operates, may have a profound effect upon the LS design. LS environments can be  
divided into two major categories: those that provide the correct response for each  
training instance (supervised learning) and those that do not (unsupervised learning).  
Supervised learning systems operate within a stimulus-response environment in  
which the desired LS output is supplied with each training instance. Examples  
include Samuel’s “book move” checkers program [93, 94] and grammatical infer- 
ence programs [45]. 

Unsupervised LS’s operate within an environment of instances for which the 
correct response is not directly available. The version of Samuel’s program which 
learns by playing checkers against an opponent falls into this category [93] since 
moves are not classified by opponents as, say, excellent, good, poor, or terrible. 
Learning systems operating within this type of environment must themselves infer 
the correct response to each training instance by observation of system perform- 
ance for a series of instances. As a result, assignment of credit or blame for  
overall performance to individual responses is generally a problem for these sys- 
tems [70]. Tsypkin [115] has pointed out that unsupervised learning is somewhat of 
an illusion in the sense that a teacher/designer defines the standards which deter- 
mine the quality of operation of the LS at the outset, whether or not he is present  
during the actual operation of the system. 

Environments can be further categorized as “noise-free” or “noisy.” Noise-free  
environments, such as that of Winston’s structural description learning program  
[129], provide instances paired with correct responses which the system assumes  
to be perfectly reliable. Most AI systems assume noise-free environments. (One  
exception is described in Ref. 13.) Noisy environments, on the other hand, do not 
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provide such perfect information, as is usually the case when empirical data are  
involved. Pattern recognition and control systems frequently operate within noisy  
environments [8, 18, 19]. 

The Model—Overview 

The proposed LS model is shown in Fig. 2. The “performance element” is  
responsible for generating an output in response to each new stimulus. The “instance  
selector” selects suitable training instances from the environment to present to the  
performance element. The “critic” analyzes the output of the performance element  
in terms of some standard of performance. The “learning element” makes specific  
changes to the system in response to the analysis of the critic. Communication  
among the functional components is shown via a “blackboard” to ensure that each  
functional component has access to all required system information, such as the  
emerging knowledge base. Finally, the LS operates within the constraints of a  
“world model” which contains the general assumptions and methods that define the  
domain of activity of the system. 

The components of the model are conceptual entities which specify functions 
that must be performed to effect learning. They simplify the characterization of  
existing systems, and will assist designers in the construction of new systems.  
Although the functional decomposition suggested by the model is not necessarily 
reflected in the physical decomposition of many existing systems, the model is use-
ful for comparing systems and may aid in future learning system designs. 

The following sections present detailed discussions of the LS model components 
shown in Fig. 2. In addition, the Appendix contains detailed characterizations of  
representative Al, pattern recognition, and control systems in terms of the model.  
The reader may find it helpful to refer occasionally to the Appendix while reading  
the following sections. 

 

 
 
FIG. 2.  The components of a learning system. 
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Performance Element 

The performance element uses the learned information to perform the stated 
task. It has been included in the LS model because of the intimate relationship be-
tween what information is to be learned and how this learned information is to be 
used. 

Performance elements are usually tailored more to the requirements of the  
task domain than to the architecture of the LS. In general, the performance element  
can be run in a stand-alone mode without learning, independent of the rest of the LS.  
In any LS, however, the ability to improve performance presupposes a method of  
communicating learned information to the performance element. Since its architec- 
ture must allow learned information to affect its decisions, additional constraints  
are placed on the performance element within an LS. The performance element  
should be constructed so that information about its internal machinations is readily  
available to the other system components. This information can be used to make  
possible detailed criticism of performance, and intelligent selection of further  
instances to be examined by the system. 

The performance elements of existing systems also vary in the ways they may 
be altered by learning. For example, systems whose operation is determined by a  
set of production rules [121, 122] have the potential to exhibit richer variations than 
systems whose operations are keyed only to the adjustment of parameter values [57, 
69]. 

Instance Selector 

The instance selector selects training instances from the environment that are  
to be used by the LS. It is a functional component not clearly isolated in earlier  
adaptive system models. 

In existing LS’s, methods for instance selection vary mainly along the dimen- 
sions of responsibility and sophistication. The responsibility for instance selection  
varies between the extremes of completely external (“passive”) selection and com- 
pletely internal (“active”) selection. In psychological experiments on concept forma- 
tion, instance selection is closely controlled by the experimenter and the subject is  
completely passive in this respect. Instance selection in Samuel’s book move check- 
ers program [93] is externally controlled, whereas Popplestone’s program [85],  
which learns the features that characterize a winning position in tic-tac-toe, gen- 
erates its own training instances. It forms alternate hypotheses and then generates  
instances to choose among them (relying upon an external critic to evaluate these  
instances). (See also Ref. 105.) In the adaptive systems literature, Tse and Bar- 
Shalom [114] use a form of active instance selection known as “dual-control.” They  
adjust the input to a system in such a way as to simultaneously control its output  
and obtain information about its internal structure. 

The degree of sophistication used for LS instance selection is also an important 
consideration. In order to qualify as sophisticated, an instance selector must be  
sensitive to the current abilities and deficiencies of the performance element and 
must construct or select instances which are designed to improve performance. 
Winston [129] has shown the advantages to be accrued through presenting carefully 
constructed examples and “near-misses” of the concepts to be acquired by an LS.  
In general, careful instance selection can improve the reliability and efficiency of 
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an LS. It is important to note, however, that this may not always be permitted by the 
environment in which the LS operates, as is generally the case for adaptive  
control systems [18]. 

Critic 

The critic analyzes the current abilities of the performance element. It may  
play three roles: evaluation, localization, and recommendation. The critic always  
operates as an evaluator in that it embodies a standard by which to assess the behav- 
ior of the performance element. This is the role that has been emphasized in earlier  
adaptive system models [30, 34, 106]. Feedback from a critic, at least as evaluator,  
is essential for learning. 

The critic may also localize errors and localize the reasons for poor perform-
ance. This type of behavior is essential for resolution of the credit assignment  
problem described by Minsky [70]. In its diagnostic role, the critic is exemplified  
by the bug classifier and summarizer in Sussman’s HACKER [112]. 

Finally, the critic may recommend repairs by making specific recommenda- 
tions for improvement or suggestions about future instances. In Waterman’s poker  
player [121], the critic in his role suggests the bet that should have been made by  
the performance element for a particular training instance. The critic not only  
recognizes poor play and isolates the production rules responsible for it, but sug- 
gests specific corrections so the program will not play as poorly in similar future  
situations. 

The dividing line between critic and learning element is not sharp, and it is  
certainly possible to view therapy as a function of either the learning element or the 
critic. However, in mapping existing LS’s into this model, we have adopted the  
convention that the critic’s recommendations to the learning element are at an ab-
stract level removed from the implementation considerations such as data repre-
sentation. This clearly separates the two different functions of deciding what kind  
of change is needed and deciding how to implement that change. 

In some LS’s the functions of the critic have been left to humans. For example, 
MYCIN/TEIRESIAS [17] uses a human critic for evaluation, localization, and recom-
mendation. The performance program applies rules (to cases selected by humans)  
and a human supplies criticism of results, localization of blame, and suggestions  
for altering the rule base. Because the computer program assists the user in these  
tasks, the learning can be said to be semiautomated. 

Learning Element 

The learning element is an interface between the critic and the performance 
element, responsible for translating the abstract recommendations of the critic  
into specific changes in the rules or parameters used by the performance element. 

Representations for learned information exhibit great variety. They include,  
for example, production rules [121], parameterized polynomials [93], executable  
procedures [112], signature tables [94], stored facts [23], and graphs or networks 
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[129]. The method of incorporating new learned information is dependent upon the 
representation, and even among systems which use similar representations, com-
peting methods are found (contrast, for example, Refs. 13 and 121). 

The extent to which the learned information is altered in response to each  
training instance is an important LS design consideration. In some systems the  
learning element incorporates exactly the information supplied by the critic [129].  
Were the same training instance to occur later, the response of the performance  
element would be exactly as the critic advised for the first occurrence. This type  
of learning is well suited to environments which provide perfect data and to systems 
with reliable critics. Under these conditions the LS will converge rapidly to the  
desired behavior. If such a system were provided with an incorrect classification by  
the environment or less than reliable advice by the critic, however, it might commit  
itself to incorrect assumptions from which it could not recover. Systems which  
make less drastic changes to the learned knowledge on the basis of a single training  
instance are less vulnerable to imperfect information, but consequently require  
more training instances to converge to the desired behavior. Many statistical LS’s  
fall into this category [79]. Other systems consider several training instances at a  
time in order to minimize the effect of occasional noisy instances [13]. 

Blackboard 

The blackboard of this model is a global data base which also functions as a  
system communications mechanism. It is similar to the concept introduced in the 
HEARSAY system [62]. The blackboard holds two types of information: the information 
usually associated with the “knowledge base” in AI programs and the  
temporary information used by the LS components. The knowledge base often con- 
tains the set of rules, parameter values, symbolic structures, and so on, currently  
being used by the performance element. Such information can be used as an aid to  
sophisticated instance selection if it is readily available. The temporary, system- 
oriented information includes, for example, the intermediate decisions made by  
the performance element in selecting a particular response. Detailed criticism by  
the critic is dependent upon the availability of this information. 

In many existing systems this information is not so clearly separated or  
defined. The communication links between functional components, especially, are 
often programmed directly. Because the same information is required by many of  
the individual functional components of any LS, however, a blackboard is a more 
transparent communications mechanism. 

World Model 

Whereas the blackboard contains information that can be altered by the LS  
components, the world model contains the fixed conceptual framework within which  
the system operates [15]. The contents of the world model include definitions of  
objects and relations in the task domain, the syntax and semantics of the informa- 
tion to be learned, and the methods to be used by the LS. Among task domain defi- 
nitions are, for example, the rules of a game and the representation of inputs and  
outputs for the performance element. This part of the world model simply defines  
the task of the performance element and the standard of performance (the evaluation 
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function) to be applied by the critic. Domain specific heuristics are also commonly  
added to the world model of AI systems to guide inferences made by the LS (e.g.,  
heuristics about the world of blocks in Winston’s program [129]). Definitions of the  
syntax and semantics of information to be learned define the mode of communication 
between the learning and performance elements. 

The assumptions and constraints from which the world model is composed are 
of critical importance in the design and characterization of LS’s. Although many of 
these assumptions are often hidden in the various functional components, the LS  
designer and user must both be aware of each of them. We believe that, where  
possible, world model constraints should be made explicit in order to allow for their 
modification during the design process. 

Multilayer Learning Systems 

Although the world model cannot be altered by the LS that uses it, the designer  
can alter its contents in order to improve LS performance. He often changes param- 
eters and procedures of the basic LS after observing and criticizing its behavior  
for some carefully chosen training set. These alterations result in a new version of  
the LS, which is then tested on some training set, and so on. The designer views the 
whole LS as a system whose performance needs improvement, and he selects in- 
stances, criticizes performance, and makes changes accordingly. In other words,  
the designer’s activities can be modeled by a system whose components are just  
those of Fig. 2. This leads us to the concept of layered LS’s, each higher layer  
able to change the world model (vocabulary, assumptions, etc.) of the next lower  
layer on the basis of criticizing its performance on a chosen set of instances. Thus  
adjustments can be made to the world model of some learning system LS1 by another 
learning system, LS2, which has its own functional components (critic, world model, 
etc.), as shown in Fig. 3. In turn, it is conceivable that a third system, LS3, could  
adjust the world model of LS2, and so on. The designer constitutes the final critic  
of course, operating above the “top-level” LS. Each lower layer constitutes the  
performance element of the next higher layer, and interlayer communication is  
effected through the blackboards of the various layers. The use of a blackboard in  
the single layer LS model was partly motivated by its attractiveness in the multi- 
layer context. 

 

 
 
FIG. 3.  Layering of learning systems. (Components are labeled as in Fig. 2.) 
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This multilayer architecture involves bidirectional information passing; that is, 
the effects of adjustments made in a layer may propagate both to lower and higher 
level layers. It is a hierarchical architecture, in the general sense [103], and  
includes as a specific case the bottom-to-top hierarchical architecture used, for  
example, by Soloway [110]. 

One existing LS which may be viewed as a layered system is the version of  
Samuel’s program [94] which learns a polynomial evaluation function for selecting  
checkers moves (see the Appendix for details). The lower layer (LS1) in this system  
adjusts the coefficients of a given set of game board features in order to improve  
performance of the move selection program. The second layer system (LS2) adjusts  
the set of board features used in the evaluation function in order to improve the  
performance of LS1. Since LS1 is contained in LS2 as the performance element, all  
the assumptions necessary for its operation also belong to the LS2 world model. In  
addition, the LS2 world model contains assumptions about the set of allowable game 
board features and the standard for evaluating LS1 performance. 

A single layer LS, then, can never move outside its world model to make  
radical revisions to its way of viewing the task to achieve a “paradigm shift,” as  
discussed by Kuhn [56]. However, a shift in the conceptual framework of LS1 could  
be made by a properly programmed LS2 [12]. We believe that a layered approach  
such as that described above provides a useful system organization for learning at  
various levels of abstraction in complex domains. Although there are examples of  
this kind of layering in the literature [93, 110, 117], no one has carried it as far  
as the model suggests. In fact, single layer learning systems are just now becoming  
well enough understood to consider developing more sophisticated systems. 

Implications of the Model 

The LS model described here provides a common language for characterization  
and comparison of different types of learning systems which operate in a variety of  
task domains. The model is a useful conceptual guide for LS design because it iso- 
lates the essential functional components and the information that must be available  
to these components. 

A number of desirable features for future learning system designs are brought 
out by this model. First, the design should be modular, with individual modules  
corresponding to the functional components shown in the model. The knowledge 
used by the system should be made explicit and collected, as much as efficiency  
considerations permit, in a world model component. Especially the parts of the LS 
that are to be adjustable must be explicitly exposed. Intelligent criticism is impor-
tant, as is active instance selection, although neither has been isolated as a sepa- 
rate object of study. Finally, a multilayer architecture for learning at different  
levels of abstraction is suggested by the model as a way of introducing still more  
intelligence into the whole learning system. 

APPENDIX: CHARACTERIZATION OF EXISTING SYSTEMS 

In this appendix several existing LS’s are characterized using the framework 
provided by the model described in the section entitled A Model of Learning Sys-
tems. The systems selected are representative of several approaches to machine 
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learning. Because the blackboard contains information in a state of flux, its contents 
are not specified explicitly for the systems characterized below. 

Model Reference Adaptive Control [57] 

Purpose. Construct a “controller” which preprocesses inputs to an existing  
system (called the “plant”). The behavior of the combined controller-plant system  
is to mimic the behavior of a third system (called the “reference model”) on the  
training data. 

Environment. The plant to be controlled and the set of possible inputs  
(including disturbances). 

Performance element. The controller is a system whose output is used as input 
to the plant. Its behavior is a function of the input signal, past I/O behavior of the 
plant, and a set of adjustable parameters. 

Instance selector. Accepts data sequence (as input to the controller) from the en-
vironment. 

Critic. Evaluation: Applies a measure of performance which is some function  
of the arithmetic difference between the plant and reference model outputs. In some 
cases the reference model is mathematically defined, and can therefore be consid-
ered part of the critic. In other cases the reference model is an actual system, and  
is considered part of the environment. 

Learning element. Modifies the parameters of the performance element (con-
troller), depending on the performance measure supplied by the critic. 

World model. Control theory assumptions (time invariance, linearity, etc.)  
and techniques, and the standard of performance embodied in the critic. 

Adaptive Pattern Classifier [55] 

Purpose. Learn the parameters of a classifier that can classify a set of pat- 
terns in such a way as to minimize a specified cost functional. 

Environment. Patterns drawn from a prespecified set of classes. Each pattern  
is represented as a feature vector. 

Performance element. A linear pattern classifier which forms the inner prod- 
uct of a pattern feature vector (which constitutes the input) and a weight vector 
(where the weights constitute the adjustable parameters of the classifier). Based  
on the resultant scalar value, the classifier assigns the pattern to a class. 

Instance selector. Accepts instances from a human trainer. The classifier  
uses a set of patterns of known class membership to tune the weights. Thereafter,  
the weights are held constant. 

Critic. Evaluation: Computes the difference between the output value of the 
classifier and the known acceptable output (the learning in this example is super-
vised). 

Learning element. Modifies the weights used by the classifier according to the 
LMS algorithm [126], based on the information received from the critic. This  
algorithm attempts to adjust the set of weights so as to minimize the mean-square 
error between the output of the classifier and the desired output. 

World model. Pattern recognition assumptions concerning the suitability of  
representing the patterns as feature vectors, the suitability of a statistical formu- 
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lation of the classification problem, the suitability of a linear pattern classifier, the  
suitability of the selected performance measure, and the specific adaptation algorithm. 

Checker Player [93, 94] 

Purpose. Learn to play a good game of checkers [here we discuss only the  
version of the program which learns a linear polynomial evaluation function by exam- 
ination of moves suggested by experts (“book moves”)]. 

Environment. Set of all legal game boards. 

LS1 (lower layer) 

Purpose. Learn a good set of coefficients for combining board features in a  
linear polynomial evaluation function. 

Performance element. Uses the learned evaluation function to rank plausible 
moves for a given board position. 

Instance selector. Reads instances from a list of predefined game-board/  
recommended-move pairs. 

Critic. Evaluation: Examines the ranking given to the book move by the per-
formance element. Diagnosis: Suggests that the book move should be ranked above 
all other moves. 

Learning element. Adjusts weights of linear polynomial to make move selection  
correspond to the critic’s recommendation. 

World model. Syntax of game board, form and features of linear polynomial 
evaluation function, method for adjusting evaluation function, and rules of checkers. 

LS2 

Purpose. Improve the performance of LS1 by selection of a good set of board 
features. 

Performance element. LS1. 
Instance selector. The entire set of possible training instances is simply  

passed to LS1 (via the blackboard). 
Critic. Evaluation: Analyzes the learning ability of LS1 (i.e., the LS2 per- 

formance element) with the current set of evaluation function features. Diagnosis:  
Singles out features which are not useful. Therapy: Selects new features from a  
predefined list to replace useless features. 

Learning element. Redefines the current set of features as recommended by  
the critic. 

World model. The LS1 world model, plus the set of features which may be  
considered, and the performance standard employed by the LS2 critic. 

Poker Player [121] 

Purpose. Learn a good strategy for making bets in draw poker. 
Environment. Set of all legal poker game states. 
Performance element. Applies the learned production rules to generate actions 

in a poker game, e.g., bets. 
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Instance selector. Selects each game state derived by play against an opponent  
as a training instance. 

Critic. Two versions of the program use two different critics. In both cases  
the critic performs the following functions. Evaluation: Decides whether the poker  
bet made by the performance element was acceptable. Diagnosis: Gives important  
state variables for deciding the correct bet. Therapy: Provides the bet which the  
performance element should have made. In “explicit” learning the critic is an expert 
poker player, either human or programmed. In “implicit” learning the evaluation  
and therapy are deduced from the next action of the opponent and a set of predefined 
axioms, while diagnosis is read from a predefined “decision matrix.” 

Learning element. Modifies and adds production rules to the system. Mistakes  
are corrected by adding a new rule in front of the rule responsible for the incorrect  
response. 

World model. Rules of poker, features used to describe the game state, the  
language of production rules, heuristics for updating the rule base, the model of an 
opponent. 

Meta-DENDRAL [13] 

Purpose. Learn to predict data points in the mass spectra of molecules.  
Environment. Set of all known molecule/data-point pairs. 
Performance element. Predicts peaks (data points) in mass spectra of mole- 

cules using learned production rules. Employs a model of mass spectrometry for 
translating between mass-spectral processes (predicted by the rules) and data  
points in the spectrum. 

Instance selector. Accepts a set of known molecule/spectrum pairs from the 
user. 

Critic. Evaluation: Determines the suitability of the set of predictions gener- 
ated by a rule. Diagnosis: States whether the rule is acceptable, too specific, or  
too general. Therapy: Recommends adding or deleting features to the left-hand sides  
of rules. 

Learning element. Conducts a heuristic search through the space of plausible 
rules using a predefined rule generator. At each step in the search the potential  
rule’s performance is reviewed by the critic. 

World model. Representation of molecules as graphs, production rule model  
of mass spectrometry, vocabulary of rules used to represent learned information;  
heuristics used by the critic in directing the rule search. 

Learning Structural Descriptions from Examples [128, 129] 

Purpose. Learn to identify blocks world structures (such as arches and  
towers). 

Environment. Set of possible line drawing/structure-classification pairs. 
Performance element. Decides class of structures to which the input structure 

belongs. Uses a model of the structure class supplied by the learning element. 
Instance selector. Accepts training instances supplied individually by the user. 
Critic. Evaluation: Compares the classification made by the performance ele-

ment against the correct classification as supplied with each training instance. 
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Diagnosis: Generates a comparison description pointing out differences between the  
model and the structure description. 

Learning element. Constructs a model of the class of structures under consid-
eration. Examines the comparison description supplied by the critic, and modifies  
the model to strengthen or weaken the correspondence between the model and the 
training instance. 

World model. Representation of scenes as line drawings, method of translating 
line drawings to graphical descriptions, grammar for drawings to graphical descrip-
tions, grammar for representing the learned information, domain-specific heuris- 
tics for resolving among possible changes to each structure class model. 
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