
[24]

From Encyclopedia of Computer Science and Technology, volume 11, pp. 24-
51. Marcel Dekker, New York, NY, 1978.

MODELS OF LEARNING SYSTEMS
INTRODUCTION

Giving a machine the ability to learn, adapt, organize, or repair itself are
among the oldest and most ambitious goals of computer science. In the early days
of computing, these goals were central to the new discipline called cybernetics [2,
127]. Over the past two decades, progress toward these goals has come from a
variety of fields—notably computer science, psychology, adaptive control theory,
pattern recognition, and philosophy. Substantial progress has been made in devel-
oping techniques for machine learning in highly restricted environments. Computer
programs have been written which can learn to play good checkers [93, 94], learn
to filter out the strong heartbeat of a mother in order to pick out the weaker heart-
beat of the fetus [125], and learn to predict the mass spectra of complex molecules
[13]. Each of these programs, however, is tailored to its particular task, taking
advantage of particular assumptions and characteristics associated with its domain.
The search for efficient, powerful, and general methods for machine learning has
come only a short way.

The terms adaptation, learning, concept-formation, induction, self-organization,
and self-repair have all been used in the context of learning system (LS) research.
The research has been conducted within many different scientific communities,
however, and these terms have come to have a variety of meanings. It is therefore
often difficult to recognize that problems which are described differently may in
fact be identical. Learning system models as well are often tuned to the require-
ments of a particular discipline and are not suitable for application in related
disciplines.

The term “learning system” is very broad, and often misleading. In the context
of this article, a learning system is considered to be any system which uses infor-
mtion obtained during one interaction with its environment to improve its perform-
ance during future interactions. This rough characterization may include man/
machine systems (see Ref. 64) in which humans take on active roles as required
functional components. In some systems there is continuous interaction with the
environment, with feedback and subsequent improvement. In other systems there
is a sharp distinction between the interactions that constitute training and subse-
quent performance or predictions with no further training. Another way of differen-
tiating between various learning systems is on the basis of what kinds of alterations
they perform.

http://www.amazon.com/exec/obidos/redirect?link_code=ur2&tag=rgsmiass-20&camp=1789&creative=9325&path=http%3A%2F%2Fwww.amazon.com%2Fgp%2Fproduct%2F0824722116%2F

[25]
MODELS OF LEARNING SYSTEMS

 Data base Adaptive Concept
 Management control formation
 systems systems systems

 | | |
 | | |

 alter alter alter
 assertions parameters structures

FIG. 1. Spectrum of learning systems.

Figure 1 shows several classes of systems that fit the above characterization,

and lists the kinds of alterations which they perform. Data base systems are among
the earliest kinds of systems which fit our definition. Such systems represent infor-
mation about their environment by sets of alterable assertions. In the late 1950s
and early 1960s, adaptive control techniques were first used to build programs which
alter parameters in equations which model some aspect of the external world [93,
125]. The perceptrons of the early 1960s [71, 90] represent an attempt to use adap-
tive control techniques to train recognition networks by altering weighting param-
eters. More recently, concept formation (and other) systems have been written
which build and alter structural representations as their model of the external world.
In short, an important difference to be noted in LS’s is in their internal represent-
tations of the outer environment: some are mathematical models, some are linguis-
tic assertions, and still others are structures encoding symbolic relations.

In this article, three distinct approaches to machine learning and adaptation
are considered:

1. The adaptive control approach
2. The pattern recognition approach
3. The artificial intelligence approach

Progress in each of these areas is summarized in the first part of the article.

In the next part a general model for learning systems is presented which allows
characterization and comparison of individual algorithms and programs in all of
these areas. Specific examples of learning systems are described in terms of the
model.

ADAPTIVE SYSTEM APPROACH TO LEARNING

In the control literature, learning is generally assumed to be synonymous with
adaptation. It is often viewed as estimation or successive approximation of the
unknown parameters of a mathematical structure which is chosen by the LS designer
to represent the system under study [18, 30]. Once this has been done, control tech-
niques known to be suitable for the particular chosen structure can be applied. Thus
the emphasis has been on parameter learning, and the achievement of stable, reli-
able performance [106]. Problems are commonly formulated in stochastic terms,
and the use of statistical procedures to achieve optimal performance with respect
to some performance criterion such as mean square error, is standard [130].

[26]
MODELS OF LEARNING SYSTEMS

There are many overlapping and sometimes contradictory definitions of the
terms related to adaptive systems. The following set, formulated by Glorioso [34],
serves to illustrate the main features. An “adaptive system” is defined as a system
which responds acceptably with respect to some performance criterion in the face
of changes in the environment or its own internal structure. A “learning system”
is an adaptive system that responds acceptably within some time interval following
a change in its environment, and a “self-repairing system” is one that responds
acceptably within some time interval following a change in its internal structure.
Finally, a “self-organizing system” is an adaptive or learning system in which the
initial state is unknown, random, or unimportant.

Adaptive control is an outgrowth of automatic control that has attracted signifi-
cant research effort since the mid-1950s [3]. These investigations have been moti-
vated by a desire for development of real-time control of incompletely known
systems or “plants.” Limited plant specification is normally assumed to entail
unknown, drifting parameters in a prescribed mathematical description. Various
methods of adaptive control have been implemented for control of aerospace and
industrial processes, as well as man-machine and socioeconomic systems.

Adaptive controllers have been coarsely divided into two large classes of active
and passive adaptivity [113]. “Active adaptive” controllers are based on dual con-
trol theory [25]. In addition to the available real-time information, they utilize the
knowledge that future observations will be made which will provide further possible
performance evaluation and regulate their learning accordingly. “Passive adaptive”
controllers utilize the available real-time measurements but ignore the availability
of future observations. This limitation results in much simpler adaptive algorithms.
Thus passive techniques have been much more extensively investigated.

Passive Controllers

Passive adaptive controllers can be subdivided into two classes: indirect and
direct, denoting the primary focus of the adaptation mechanism either on plant
parameter determination or control parameter determination, respectively.

Indirect adaptive control, originally suggested in Ref. 51, arbitrarily separates
the control task into plant identification and control law calculation from the plant
parameter estimates. This approach was designed to utilize the existing arsenal of
control techniques requiring exact specification of the plant. Acceptance of this
method has led to considerable interest in system identification [4]. Most parameter
estimation schemes, however, are inherently open loop and suffer consistency and
identifiability constraints when encompassed by feedback. This limitation can be
circumvented by the injection of a perturbation input [95].

The alternative, which avoids the necessity of proper plant identification, is
direct adaptive control, in which the available control parameters themselves are
adjusted in order to improve the overall performance of the control system. Two
broad techniques exist for establishment of convergent control parameter adaptation
schemes: search methods and stability analysis. Search techniques generally suffer
local convergence, whether based on gradient [40] or heuristic [30] methods. Alter-
natively, adaptive control algorithms arising from stability analysis can guarantee
global asymptotic stability as a by-product. The widest application of stability theory

[27]
MODELS OF LEARNING SYSTEMS

to adaptive control design has utilized Liapunov’s second method [63]. The earliest
application of Liapunov function synthesis for designing adaptive loops [98] utilized
a model reference approach.

Model reference adaptive control techniques (see example in the Appendix)
implement adjustment of reachable parameters in the overall controlled system so
that its response to some reference signal exactly matches that of a predetermined
model due to the same reference. Such a structural arrangement, in general,
requires the ability to adjust each parameter independently in the overall controlled
system. Assumption of this capability hampers the current sophisticated schemes
of adapting feedforward and feedback parameters solely from plant input and output
measurements [58, 74] by occasionally necessitating an unbounded control effort.
Control effort boundedness is encouraged by abandoning exact output matching for
input matching [48] which requires nonparametric, a posteriori determination of
the optimal input.

No single adaptive control approach mentioned is without limitations in attempt-
ing to provide adequate control of a plant known only to be describable within a
general structural class. The primary focus of adaptive control on parameter selec-
tion has led to provably convergent single level schemes. The ongoing merger of
heuristic, layerable learning system concepts (as described below) with these
convergent parameter adjustment algorithms of restricted applicability should
improve the efficacy of adaptive control.

PATTERN RECOGNITION APPROACH TO LEARNING

Pattern recognition techniques are primarily employed at the interface of
intelligent agents and the real world of physical measurements and processes. The
interface attempts to provide some sensory capability to the agent, such as vision,
touch, or some other nonhuman sensory modality. In this context, a “pattern” may
be an image, a spoken word, a radar return from an aircraft, or whatever is appro-
priate to describe or classify a physical environment that is viewed through a par-
ticular set of sensors.

The problem of pattern recognition is often viewed as the development of a set
of rules which can be used to assign observed patterns to particular known classes
by examination of a set of patterns of known class membership. There are, how-
ever, a variety of related problems that can be discussed in the same framework.
These include pattern classification, in which the classification rules are known,
and the problem is simply assignment of patterns to classes, pattern formation, in
which the classes themselves must be defined, and pattern description, in which
the problem is to form descriptions (which are often symbolic in form) of the
observed patterns, rather than assign them to classes.

The major concerns in pattern recognition are:

Convergence: the learning system should eventually settle on a stable set of rules,
classes, or descriptions.

Optimality: the objective is minimization of some cost functional, such as the
average risk associated with classification.

[28]
MODELS OF LEARNING SYSTEMS

Computational complexity: the objective is minimization of the difficulty of using an
algorithm, measured in terms of computation time, memory requirements, or
programming complexity.

Pattern Recognition Subclasses

Pattern recognition is presently characterized by two major approaches. These
are the statistical decision-theoretic or discriminant approach, which employs a
classification model, and the linguistic (syntactic) or structural approach, which
employs a description model. The first approach has been more extensively studied
and a modestly large body of theory has been constructed, whereas the second
approach is relatively new and many unsolved problems remain.

The decision-theoretic approach commonly involves the extraction of a set of
characteristic (typically low-level) measurements, or “features,” from a set of
patterns. Each pattern is thus represented as a feature vector in a feature space,
and the task of the pattern recognition device is to partition the feature space in
such a way as to classify the individual patterns. Features, then, are usually chosen
so that the “distance” (on some suitable metric) between patterns in the feature
space is maximized [89]. This approach has been successful for applications such as
communication of a known set of signal waveforms corrupted by some form of dis-
tortion, such as noise or multipath interference. However, it has been criticized
because it is concerned only with statistical relationships between features, and
tends to ignore other structural relationships which may characterize patterns [52].

The linguistic or structural approach has been developed in part to correct
some of the difficulties seen in the decision-theoretic approach. With this paradigm,
patterns are viewed as compositions of components, called subpatterns or pattern
primitives, that are typically higher-level objects than the features of the decision-
theoretic model. Patterns are often viewed as sentences in a language defined by a
formal grammar (sometimes called a pattern grammar). Segmentation of patterns
into primitives and formation of structural descriptions are thus the primary issues.
This approach embodies an attempt to use other sources of information as aids to
pattern recognition (e.g., in a speech-understanding system [21, 62, 87, 88, 91], syn-
tax, semantics, and context act as powerful sources of information in addition
to the recorded information).

In that both parametric and structural techniques are applied, pattern recog-
nition effects a bridge between the adaptive systems and concept formation approaches
to learning system design. We have recently begun to see a merger of the two
approaches (see, for example Stockman [111]) which may result in more powerful
systems. For a review of the current state-of-the-art, see Refs. 14, 53, 81, and 86.

The remainder of this section contains brief descriptions of major approaches
to pattern recognition. Specific techniques are grouped according to their bias
toward one of the two primary models: the classification model and the description
model. Artificial intelligence research, discussed in the next section, has been a
major factor involved in the movement away from complete adherence to the classi-
fication model and toward exploration of the description model.

Classification Model
In this model, patterns (feature vectors) are viewed as members of a class,

and the aim is to assign observed patterns to classes. The classification may be

[29]
MODELS OF LEARNING SYSTEMS

either statistical, wherein the patterns are thought to belong to one of a number of
classes according to some set of probability density functions, or “fuzzy,” wherein
patterns are thought to have differing degrees of membership in a number of
classes [131].

Variations
Classifiers may be categorized in a number of ways, depending on the type of

classification rule and the sampling procedure they employ [45].
Classifiers may be categorized as parallel or sequential: parallel classifiers

base their classifications upon the complete set of features extracted simultaneously
during a single observation of a pattern, whereas sequential classifiers assign a
pattern to a class on the basis of a sequence of observations. After each observation is
made and integrated with past observations, a decision is made as to whether
sufficient information has been gathered upon which to base a classification, or
whether another observation must be made according to a test like the Wald Sequen-
tial Likelihood Ratio Test [119].

Classifiers may be further categorized as adaptive or nonadaptive. Adaptive
classifiers (see example in the Appendix) are distinguished by the fact that their
classification rules are themselves adjusted to improve performance as experience
is gained with patterns drawn from the various classes of interest (a variety of
procedures have been developed to adjust the rules—see, for example, Ref. 126).
Nonadaptive classifiers, on the other hand, use a fixed set of classification rules
and, in the language of this paper, are not considered to be learning systems.

Bayesian Classification
This type of classification is optimal in the probability of error sense. The

strategy is minimization of the average risk of a classification, and complete
knowledge of the a priori and conditional probability densities is assumed (where
the a priori probability is the probability that a pattern is drawn from a particular
class, regardless of its observed characteristics, and the conditional probability
is the probability that a pattern with the observed characteristics could have been
drawn from a particular class). The notion of “risk” arises because costs are
assumed to be associated with different types of classification errors. When equal
costs are assumed for all types of error, the result is the maximum a posteriori
(MAP) classifier (where the a posteriori probability is the probability that a pattern
has been drawn from a particular class, based on its observed characteristics).

Maximum Likelihood Classification
Likelihood is the conditional probability that the observed characteristics of a

pattern indicate that the pattern should be assigned to a particular class. No
knowledge of a priori probabilities is assumed, but the method does assume knowl-
edge of the form of the density functions (e.g., Gaussian).

Nonparametric Classification
This type of classification does not guarantee the best possible performance

but requires no knowledge of the underlying probability density functions that govern
the generation of patterns. Techniques used in nonparametric classification include
the K Nearest Neighbor Rule, which bypasses probabilities altogether, and assigns
patterns to classes based on the proximity of their observed characteristics to
those of neighboring patterns of known class membership, and the Fisher Linear

[30]
MODELS OF LEARNING SYSTEMS

Discriminant, which is used to transform the feature space into another (decision)
space (typically of lower dimensionality), in which parametric procedures can be
employed [19].

Description Model

With this model, emphasis is placed on segmentation of the patterns into a set
of meaningful primitives, and on generation of structural descriptions (generally
symbolic in form) of the patterns. It is further assumed that a great deal of a priori
knowledge of the pattern types that are of interest is available.

The approach is useful in applications like scene analysis [19, 65] where classi-
fication is clearly inappropriate. It also tends to be useful when the patterns them-
selves are complex [32], as it emphasizes hierarchical decomposition of patterns
into their constituent components.

There is a variety of descriptive formalisms in which to express the structural
descriptions. These include pattern grammars [31] and relational graphs [129].
Pattern grammars embody an attempt to carry over a large body of theory from the
study of natural and programming languages. A variety of pattern grammars have
been developed [52], both deterministic and stochastic in form. Relational graphs
have been used in pattern recognition systems developed by the artificial intelligence
community (see, for example, Winston [128]). Pattern primitives are taken as
nodes in a directed graph whose edges indicate the relations between the primitives.
Such graphs form a convenient representation for patterns with a high degree of
hierarchical structure.

The text by Duda and Hart [19] serves as an excellent introduction to the
methods used in the structural approach.

ARTIFICIAL INTELLIGENCE APPROACH TO LEARNING

In the 1950s and early 1960s there was considerable discussion of learning
programs in the artificial intelligence (AI) literature (e.g., Refs. 23, 29, 70, 76,
80, 96, 102). It was hoped at the time that a general learning program could be
written to accumulate and refine a large, detailed knowledge base about a domain
[71]. That knowledge base, then, could be used by ever-improving high performance
programs that reason in that domain. Samuel’s programs that learn to play excellent
checkers [93] were an early demonstration of success, but also demonstrated the
amount of effort necessary to achieve success. On the reasons why learning tasks
have been central in AI, Newell wrote [77]:

Inductive tasks have always been a prominent part of the artificial intelligence

landscape. The reasons for this seem to be twofold. For one, we have inherited
a classic distinction between deduction and induction, so that the search for
intelligent action should clearly look to induction. Second, American psychology
has largely identified the central problem of conceptual behavior with the
acquisition or formation of concepts—which in practice has turned out to mean
the induction of concepts from a set of presented exemplars.

This tendency, shaped strongly by Bruner, Goodnow, and Austin’s Study of
Thinking [11], derives fundamentally from the emphasis on learning that has
characterized American psychology since the rise of behaviorism.

[31]
MODELS OF LEARNING SYSTEMS

The motivation for writing these programs is diverse. Some are written as
testable psychological models of how human subjects perform a learning task (e.g.,
Refs. 23, 46, 47, and 104); others are written to demonstrate the feasibility of a
method (e.g., Ref. 109), and still others are written with the express purpose of
aiding human problem solvers codify and explain data (e.g., Ref. 13). Insofar as
all the programs mentioned below perform well at their stated tasks, they all illus-
trate the emerging power of heuristic programming methods for improving the
problem-solving power of computer programs.

All the AI learning programs written to date have strong limitations on their
generality. Some are applicable to just one kind of problem, others work with sev-
eral types of problems within a larger class defined by the representation of objects
and relations in the domain.

Early AI research was closely tied to pattern recognition and the adaptive
systems approach (see, for example, Refs. 97, 116, and 117). For example, much
work has been performed on learning automata [79] (see also Ref. 75) and neural
networks that grow in response to stimuli [71]. All of these efforts have aimed at
defining simple machines that learn to respond to their environments [27]. Newell
[77] traces one line of growth from stimulus-response learning in psychology to
(1) pattern recognition and self-organizing systems, as well as to (2) concept
formation, induction, and other AI work. The two fields diverged in the 1960s,
and are now quite distinct. Whereas pattern recognition and control research empha-
sizes adjustment of parameters, AI research emphasizes construction of symbolic
structures, based on conceptual relations. For example, Feigenbaum’s EPAM pro-
gram [23] used a discrimination net (i.e., a tree of tests and branches) to store
the relations required to recall nonsense syllables in a rote learning experiment
(see Refs. 26, 112, and 129 for further examples).

In AI it is commonly believed that a learning system should have sufficient
internal structure to develop a “strong theory” of its environment [24, 64, 72].
Much emphasis has therefore been placed on building “knowledge-based” or “expert”
systems that not only have the capacity for high performance but can also explain
their performance in symbolic terms [17].

Winston [129] describes various levels of sophistication in learning systems:
learning by being programmed, learning by being told, learning from a series of
examples, and finally learning by discovery. We see in this categorization a
gradual shift in responsibility from the designer/teacher to the learning system/
student. At the highest level, the system is able to find its own examples and carry
on autonomously; at the lowest level the system is learning only in the sense that
a programmer is explicitly programming it to do something.

The formalism of inductive inference has captured much attention also (e.g.,
Refs. 38, 44, 66, 67, 84, and 108). The purpose of much of the work on abstract
formalisms is to find general principles of induction that can be mechanized. This
was also a goal of Bacon and Leibniz centuries ago.

Considerable work is still expended on the Leibnizian dream of an abstract
formalism for scientific inference. Some of this work is done specifically with
computer programs in mind. Much of it, however, is done in abstraction. Programs
based on these formalisms form hypotheses from data without any special knowledge
of the domain from which the data were collected. The drawback of very general
methods is that, while they may produce some interesting empirical generalizations,
they are likely to produce many generalizations that experts in the domain would

[32]
MODELS OF LEARNING SYSTEMS

regard as trivial or meaningless. In short, they lack a working model of the domain
to guide judgments of plausibility.

Some recent programs explicitly recognize the need for problem-specific con-
straints. The Meta-DENDRAL program [13] discovers general rules about the
behavior of chemical compounds in an analytic instrument known as a mass spec-
trometer. The data are noisy, they do not come already classified, the space of
possible explanations is very large, and there is no single correct answer. Never-
theless, the program finds regularities in these data and formulates general rules
to explain them.

The AQVAL program [60] accepts a set of descriptions of objects, and produces
rules that can correctly classify these objects and others like them. For example,
for descriptions of eastbound and westbound railroad cars containing circles, tri-
angles, rectangles, etc., the program is able to find the shapes and relations
among shapes that discriminate the two trains.

Still another program, named Thoth-pb [118], is able to learn rules for
(1) extending letter sequences, (2) recognizing geometric analogies, (3) relating
“before and after” situations, and (4) relating sequences of situations. It uses
background knowledge about the domain to help it recognize important relations
among features of the objects themselves.

Game Playing

Much of the work with learning systems in AI research has been done in the
context of games. Improvement of the game-playing program is the ostensive goal,
but the learning task itself is often the reason for the work (see, for example,
Ref. 78). The nature of the learned information ranges from parameters governing
the evaluation of moves (and ultimately their selection) to symbolic rules expressing
how to play well in different situations.

Samuel’s work is best known in this field [93, 94]. In the context of a checker-
playing program, he has explored rote learning, parameter tuning, and building
“signature tables” which are clusters of dependent features with weights that can
be used to evaluate moves (cf. Refs. 37, 124). Waterman [121] compared the perform-
ance of a poker-playing program after learning with a human teacher and automated
learning. The program represented its heuristics of good play in a table of condi-
tional rules, or productions, which the learning system altered in light of mistakes.
Waterman has generalized many of these ideas to other tasks [122]. Findler [28]
has also studied the game of poker. Pitrat’s work on learning patterns in chess [83]
applies many heuristic search ideas to learning useful combinations from examples
of given games. Programs have also been written to learn dominoes [107], go-moku
[20], and rules of tic-tac-toe [85]. Banerji [7] has studied learning processes for
several classes of games and puzzles from a more formal point of view. Koffman
[54] has also related game playing to pattern recognition.

Concept Formation

In concept formation tasks, a computer program (or human subject) is pre-
sented with objects, or descriptions of objects, which exhibit a common concept.
The program (or subject) is expected to generalize from these instances well

[33]
MODELS OF LEARNING SYSTEMS

enough to classify new objects accurately. Negative instances—i.e., objects which
fail to exhibit the concept—are sometimes presented to the program (and identified
as negative instances) in addition to the exemplars of the concept. When training
includes negative instances, learning is faster and more accurate. Concept formation
has long interested psychologists as a learning task. As with other learning tasks,
computer programs have been written to simulate the performance of human sub-
jects—and thus test a psychological model [104]. Or they have been written to learn
mechanisms other than those humans use—and thus demonstrate some modicum of
intelligence on the part of computers.

Two frequently cited AI concept formation programs are those written by Evans
[22] and Winston [129]. Evans’ program finds analogies among geometric figures to
solve standard intelligence test problems of the form A is to B as C is to _ (pick
one of Dl, D2, D3, D4, D5). The concept here is a transformation or rule which
maps figure A into B and also maps figure C into one of the answer choices.

For Winston’s program the task is to produce a correct description of a concept
exhibited in a set of line drawings of block figures. An important feature is the intro-
duction of “near misses,” i.e., figures that fail to exhibit the concept because they
differ with respect to a small number of essential properties. The program learns
the correct description of an arch, for example, from descriptions of two posts and
a lintel (exemplar), and of near misses such as T’s and posts with a fallen lintel.

Another recent program learns concepts, such as hit and out, for the game of
baseball [109] from a set of descriptions of events over the span of a game. Other
concept formation programs are described in Refs. 13, 41-43, 45, 50, 59, 60, 73,
92, 104, and 132.

Grammatical Inference and Sequence Extrapolation

Grammatical inference and sequence extrapolation have often been taken as
prototype induction problems. The task is to find a rule (or set of rules) that can
serve as the generating principle of a training set of symbol strings. For example,
the training instances may be the following allowable “sentences” in a hypothetical
language: A, AB, ABB, ABBB. An uninteresting set of rules is just the training
instances themselves. Without some generalization from the training instances,
prediction of new sentences is impossible. The following two rules, then, will
serve to define the grammar of which these strings are correct sentences:

(R1) A [“A” alone is a sentence]

(R2) A → AB [“A” can be replaced by “AB”]

The sequence extrapolation task is similar: given a sequence of symbols

(usually but not always numerals) such as 1, 3, 5, 7, 9, find a rule which allows
correct prediction of the next member of the ordered sequence. In this case, the
generating principle is

(R3) n-th member = 2n – 1

Both of these problems exhibit many characteristics of scientific hypothesis

formation. Regularities in the data must be found and characterized, different
generating principles must be proposed and tested, and alternative hypotheses
must be ranked, for example by simplicity. Most programs [10, 82] assume the

[34]
MODELS OF LEARNING SYSTEMS

initial data are free of errors. Many of these programs explicitly search a space of
hypotheses (e.g., Cook’s grammatical inference program [16]), but most recent
work on grammatical inference emphasizes more formal methods [10, 33, 35].

Inferring natural language [100] and simple computer programs from examples
are other induction tasks that have been studied [39, 99, 122, 123] using AI tech-
niques. The training instances are often input-output pairs, and the task of the
induction system is to find the rule (procedure) that will produce the specified out-
put symbols for each associated input. While the tasks are similar to concept for-
mation and grammatical inference, the languages are so much richer that progress
is slow.

A MODEL OF LEARNING SYSTEMS

This section is concerned with a simple functional model that is useful for
characterizing, comparing, and designing learning systems (LS’s). Many of the func-
tional components of an LS are essential to intelligent problem-solving systems in
general, as noted by Simon and Lea [105]; that is, learning (induction, concept for-
mation, etc.) is problem solving of one kind, which means that AI problem-solving
methods and representations can be expected to apply to this task as well as to
others.

Effects of the Environment

The environment from which training instances are drawn, and in which an LS
operates, may have a profound effect upon the LS design. LS environments can be
divided into two major categories: those that provide the correct response for each
training instance (supervised learning) and those that do not (unsupervised learning).
Supervised learning systems operate within a stimulus-response environment in
which the desired LS output is supplied with each training instance. Examples
include Samuel’s “book move” checkers program [93, 94] and grammatical infer-
ence programs [45].

Unsupervised LS’s operate within an environment of instances for which the
correct response is not directly available. The version of Samuel’s program which
learns by playing checkers against an opponent falls into this category [93] since
moves are not classified by opponents as, say, excellent, good, poor, or terrible.
Learning systems operating within this type of environment must themselves infer
the correct response to each training instance by observation of system perform-
ance for a series of instances. As a result, assignment of credit or blame for
overall performance to individual responses is generally a problem for these sys-
tems [70]. Tsypkin [115] has pointed out that unsupervised learning is somewhat of
an illusion in the sense that a teacher/designer defines the standards which deter-
mine the quality of operation of the LS at the outset, whether or not he is present
during the actual operation of the system.

Environments can be further categorized as “noise-free” or “noisy.” Noise-free
environments, such as that of Winston’s structural description learning program
[129], provide instances paired with correct responses which the system assumes
to be perfectly reliable. Most AI systems assume noise-free environments. (One
exception is described in Ref. 13.) Noisy environments, on the other hand, do not

[35]
MODELS OF LEARNING SYSTEMS

provide such perfect information, as is usually the case when empirical data are
involved. Pattern recognition and control systems frequently operate within noisy
environments [8, 18, 19].

The Model—Overview

The proposed LS model is shown in Fig. 2. The “performance element” is
responsible for generating an output in response to each new stimulus. The “instance
selector” selects suitable training instances from the environment to present to the
performance element. The “critic” analyzes the output of the performance element
in terms of some standard of performance. The “learning element” makes specific
changes to the system in response to the analysis of the critic. Communication
among the functional components is shown via a “blackboard” to ensure that each
functional component has access to all required system information, such as the
emerging knowledge base. Finally, the LS operates within the constraints of a
“world model” which contains the general assumptions and methods that define the
domain of activity of the system.

The components of the model are conceptual entities which specify functions
that must be performed to effect learning. They simplify the characterization of
existing systems, and will assist designers in the construction of new systems.
Although the functional decomposition suggested by the model is not necessarily
reflected in the physical decomposition of many existing systems, the model is use-
ful for comparing systems and may aid in future learning system designs.

The following sections present detailed discussions of the LS model components
shown in Fig. 2. In addition, the Appendix contains detailed characterizations of
representative Al, pattern recognition, and control systems in terms of the model.
The reader may find it helpful to refer occasionally to the Appendix while reading
the following sections.

FIG. 2. The components of a learning system.

[36]
MODELS OF LEARNING SYSTEMS

Performance Element

The performance element uses the learned information to perform the stated
task. It has been included in the LS model because of the intimate relationship be-
tween what information is to be learned and how this learned information is to be
used.

Performance elements are usually tailored more to the requirements of the
task domain than to the architecture of the LS. In general, the performance element
can be run in a stand-alone mode without learning, independent of the rest of the LS.
In any LS, however, the ability to improve performance presupposes a method of
communicating learned information to the performance element. Since its architec-
ture must allow learned information to affect its decisions, additional constraints
are placed on the performance element within an LS. The performance element
should be constructed so that information about its internal machinations is readily
available to the other system components. This information can be used to make
possible detailed criticism of performance, and intelligent selection of further
instances to be examined by the system.

The performance elements of existing systems also vary in the ways they may
be altered by learning. For example, systems whose operation is determined by a
set of production rules [121, 122] have the potential to exhibit richer variations than
systems whose operations are keyed only to the adjustment of parameter values [57,
69].

Instance Selector

The instance selector selects training instances from the environment that are
to be used by the LS. It is a functional component not clearly isolated in earlier
adaptive system models.

In existing LS’s, methods for instance selection vary mainly along the dimen-
sions of responsibility and sophistication. The responsibility for instance selection
varies between the extremes of completely external (“passive”) selection and com-
pletely internal (“active”) selection. In psychological experiments on concept forma-
tion, instance selection is closely controlled by the experimenter and the subject is
completely passive in this respect. Instance selection in Samuel’s book move check-
ers program [93] is externally controlled, whereas Popplestone’s program [85],
which learns the features that characterize a winning position in tic-tac-toe, gen-
erates its own training instances. It forms alternate hypotheses and then generates
instances to choose among them (relying upon an external critic to evaluate these
instances). (See also Ref. 105.) In the adaptive systems literature, Tse and Bar-
Shalom [114] use a form of active instance selection known as “dual-control.” They
adjust the input to a system in such a way as to simultaneously control its output
and obtain information about its internal structure.

The degree of sophistication used for LS instance selection is also an important
consideration. In order to qualify as sophisticated, an instance selector must be
sensitive to the current abilities and deficiencies of the performance element and
must construct or select instances which are designed to improve performance.
Winston [129] has shown the advantages to be accrued through presenting carefully
constructed examples and “near-misses” of the concepts to be acquired by an LS.
In general, careful instance selection can improve the reliability and efficiency of

[37]
MODELS OF LEARNING SYSTEMS

an LS. It is important to note, however, that this may not always be permitted by the
environment in which the LS operates, as is generally the case for adaptive
control systems [18].

Critic

The critic analyzes the current abilities of the performance element. It may
play three roles: evaluation, localization, and recommendation. The critic always
operates as an evaluator in that it embodies a standard by which to assess the behav-
ior of the performance element. This is the role that has been emphasized in earlier
adaptive system models [30, 34, 106]. Feedback from a critic, at least as evaluator,
is essential for learning.

The critic may also localize errors and localize the reasons for poor perform-
ance. This type of behavior is essential for resolution of the credit assignment
problem described by Minsky [70]. In its diagnostic role, the critic is exemplified
by the bug classifier and summarizer in Sussman’s HACKER [112].

Finally, the critic may recommend repairs by making specific recommenda-
tions for improvement or suggestions about future instances. In Waterman’s poker
player [121], the critic in his role suggests the bet that should have been made by
the performance element for a particular training instance. The critic not only
recognizes poor play and isolates the production rules responsible for it, but sug-
gests specific corrections so the program will not play as poorly in similar future
situations.

The dividing line between critic and learning element is not sharp, and it is
certainly possible to view therapy as a function of either the learning element or the
critic. However, in mapping existing LS’s into this model, we have adopted the
convention that the critic’s recommendations to the learning element are at an ab-
stract level removed from the implementation considerations such as data repre-
sentation. This clearly separates the two different functions of deciding what kind
of change is needed and deciding how to implement that change.

In some LS’s the functions of the critic have been left to humans. For example,
MYCIN/TEIRESIAS [17] uses a human critic for evaluation, localization, and recom-
mendation. The performance program applies rules (to cases selected by humans)
and a human supplies criticism of results, localization of blame, and suggestions
for altering the rule base. Because the computer program assists the user in these
tasks, the learning can be said to be semiautomated.

Learning Element

The learning element is an interface between the critic and the performance
element, responsible for translating the abstract recommendations of the critic
into specific changes in the rules or parameters used by the performance element.

Representations for learned information exhibit great variety. They include,
for example, production rules [121], parameterized polynomials [93], executable
procedures [112], signature tables [94], stored facts [23], and graphs or networks

[38]
MODELS OF LEARNING SYSTEMS

[129]. The method of incorporating new learned information is dependent upon the
representation, and even among systems which use similar representations, com-
peting methods are found (contrast, for example, Refs. 13 and 121).

The extent to which the learned information is altered in response to each
training instance is an important LS design consideration. In some systems the
learning element incorporates exactly the information supplied by the critic [129].
Were the same training instance to occur later, the response of the performance
element would be exactly as the critic advised for the first occurrence. This type
of learning is well suited to environments which provide perfect data and to systems
with reliable critics. Under these conditions the LS will converge rapidly to the
desired behavior. If such a system were provided with an incorrect classification by
the environment or less than reliable advice by the critic, however, it might commit
itself to incorrect assumptions from which it could not recover. Systems which
make less drastic changes to the learned knowledge on the basis of a single training
instance are less vulnerable to imperfect information, but consequently require
more training instances to converge to the desired behavior. Many statistical LS’s
fall into this category [79]. Other systems consider several training instances at a
time in order to minimize the effect of occasional noisy instances [13].

Blackboard

The blackboard of this model is a global data base which also functions as a
system communications mechanism. It is similar to the concept introduced in the
HEARSAY system [62]. The blackboard holds two types of information: the information
usually associated with the “knowledge base” in AI programs and the
temporary information used by the LS components. The knowledge base often con-
tains the set of rules, parameter values, symbolic structures, and so on, currently
being used by the performance element. Such information can be used as an aid to
sophisticated instance selection if it is readily available. The temporary, system-
oriented information includes, for example, the intermediate decisions made by
the performance element in selecting a particular response. Detailed criticism by
the critic is dependent upon the availability of this information.

In many existing systems this information is not so clearly separated or
defined. The communication links between functional components, especially, are
often programmed directly. Because the same information is required by many of
the individual functional components of any LS, however, a blackboard is a more
transparent communications mechanism.

World Model

Whereas the blackboard contains information that can be altered by the LS
components, the world model contains the fixed conceptual framework within which
the system operates [15]. The contents of the world model include definitions of
objects and relations in the task domain, the syntax and semantics of the informa-
tion to be learned, and the methods to be used by the LS. Among task domain defi-
nitions are, for example, the rules of a game and the representation of inputs and
outputs for the performance element. This part of the world model simply defines
the task of the performance element and the standard of performance (the evaluation

[39]
MODELS OF LEARNING SYSTEMS

function) to be applied by the critic. Domain specific heuristics are also commonly
added to the world model of AI systems to guide inferences made by the LS (e.g.,
heuristics about the world of blocks in Winston’s program [129]). Definitions of the
syntax and semantics of information to be learned define the mode of communication
between the learning and performance elements.

The assumptions and constraints from which the world model is composed are
of critical importance in the design and characterization of LS’s. Although many of
these assumptions are often hidden in the various functional components, the LS
designer and user must both be aware of each of them. We believe that, where
possible, world model constraints should be made explicit in order to allow for their
modification during the design process.

Multilayer Learning Systems

Although the world model cannot be altered by the LS that uses it, the designer
can alter its contents in order to improve LS performance. He often changes param-
eters and procedures of the basic LS after observing and criticizing its behavior
for some carefully chosen training set. These alterations result in a new version of
the LS, which is then tested on some training set, and so on. The designer views the
whole LS as a system whose performance needs improvement, and he selects in-
stances, criticizes performance, and makes changes accordingly. In other words,
the designer’s activities can be modeled by a system whose components are just
those of Fig. 2. This leads us to the concept of layered LS’s, each higher layer
able to change the world model (vocabulary, assumptions, etc.) of the next lower
layer on the basis of criticizing its performance on a chosen set of instances. Thus
adjustments can be made to the world model of some learning system LS1 by another
learning system, LS2, which has its own functional components (critic, world model,
etc.), as shown in Fig. 3. In turn, it is conceivable that a third system, LS3, could
adjust the world model of LS2, and so on. The designer constitutes the final critic
of course, operating above the “top-level” LS. Each lower layer constitutes the
performance element of the next higher layer, and interlayer communication is
effected through the blackboards of the various layers. The use of a blackboard in
the single layer LS model was partly motivated by its attractiveness in the multi-
layer context.

FIG. 3. Layering of learning systems. (Components are labeled as in Fig. 2.)

[40]
MODELS OF LEARNING SYSTEMS

This multilayer architecture involves bidirectional information passing; that is,
the effects of adjustments made in a layer may propagate both to lower and higher
level layers. It is a hierarchical architecture, in the general sense [103], and
includes as a specific case the bottom-to-top hierarchical architecture used, for
example, by Soloway [110].

One existing LS which may be viewed as a layered system is the version of
Samuel’s program [94] which learns a polynomial evaluation function for selecting
checkers moves (see the Appendix for details). The lower layer (LS1) in this system
adjusts the coefficients of a given set of game board features in order to improve
performance of the move selection program. The second layer system (LS2) adjusts
the set of board features used in the evaluation function in order to improve the
performance of LS1. Since LS1 is contained in LS2 as the performance element, all
the assumptions necessary for its operation also belong to the LS2 world model. In
addition, the LS2 world model contains assumptions about the set of allowable game
board features and the standard for evaluating LS1 performance.

A single layer LS, then, can never move outside its world model to make
radical revisions to its way of viewing the task to achieve a “paradigm shift,” as
discussed by Kuhn [56]. However, a shift in the conceptual framework of LS1 could
be made by a properly programmed LS2 [12]. We believe that a layered approach
such as that described above provides a useful system organization for learning at
various levels of abstraction in complex domains. Although there are examples of
this kind of layering in the literature [93, 110, 117], no one has carried it as far
as the model suggests. In fact, single layer learning systems are just now becoming
well enough understood to consider developing more sophisticated systems.

Implications of the Model

The LS model described here provides a common language for characterization
and comparison of different types of learning systems which operate in a variety of
task domains. The model is a useful conceptual guide for LS design because it iso-
lates the essential functional components and the information that must be available
to these components.

A number of desirable features for future learning system designs are brought
out by this model. First, the design should be modular, with individual modules
corresponding to the functional components shown in the model. The knowledge
used by the system should be made explicit and collected, as much as efficiency
considerations permit, in a world model component. Especially the parts of the LS
that are to be adjustable must be explicitly exposed. Intelligent criticism is impor-
tant, as is active instance selection, although neither has been isolated as a sepa-
rate object of study. Finally, a multilayer architecture for learning at different
levels of abstraction is suggested by the model as a way of introducing still more
intelligence into the whole learning system.

APPENDIX: CHARACTERIZATION OF EXISTING SYSTEMS

In this appendix several existing LS’s are characterized using the framework
provided by the model described in the section entitled A Model of Learning Sys-
tems. The systems selected are representative of several approaches to machine

[41]
MODELS OF LEARNING SYSTEMS

learning. Because the blackboard contains information in a state of flux, its contents
are not specified explicitly for the systems characterized below.

Model Reference Adaptive Control [57]

Purpose. Construct a “controller” which preprocesses inputs to an existing
system (called the “plant”). The behavior of the combined controller-plant system
is to mimic the behavior of a third system (called the “reference model”) on the
training data.

Environment. The plant to be controlled and the set of possible inputs
(including disturbances).

Performance element. The controller is a system whose output is used as input
to the plant. Its behavior is a function of the input signal, past I/O behavior of the
plant, and a set of adjustable parameters.

Instance selector. Accepts data sequence (as input to the controller) from the en-
vironment.

Critic. Evaluation: Applies a measure of performance which is some function
of the arithmetic difference between the plant and reference model outputs. In some
cases the reference model is mathematically defined, and can therefore be consid-
ered part of the critic. In other cases the reference model is an actual system, and
is considered part of the environment.

Learning element. Modifies the parameters of the performance element (con-
troller), depending on the performance measure supplied by the critic.

World model. Control theory assumptions (time invariance, linearity, etc.)
and techniques, and the standard of performance embodied in the critic.

Adaptive Pattern Classifier [55]

Purpose. Learn the parameters of a classifier that can classify a set of pat-
terns in such a way as to minimize a specified cost functional.

Environment. Patterns drawn from a prespecified set of classes. Each pattern
is represented as a feature vector.

Performance element. A linear pattern classifier which forms the inner prod-
uct of a pattern feature vector (which constitutes the input) and a weight vector
(where the weights constitute the adjustable parameters of the classifier). Based
on the resultant scalar value, the classifier assigns the pattern to a class.

Instance selector. Accepts instances from a human trainer. The classifier
uses a set of patterns of known class membership to tune the weights. Thereafter,
the weights are held constant.

Critic. Evaluation: Computes the difference between the output value of the
classifier and the known acceptable output (the learning in this example is super-
vised).

Learning element. Modifies the weights used by the classifier according to the
LMS algorithm [126], based on the information received from the critic. This
algorithm attempts to adjust the set of weights so as to minimize the mean-square
error between the output of the classifier and the desired output.

World model. Pattern recognition assumptions concerning the suitability of
representing the patterns as feature vectors, the suitability of a statistical formu-

[42]
MODELS OF LEARNING SYSTEMS

lation of the classification problem, the suitability of a linear pattern classifier, the
suitability of the selected performance measure, and the specific adaptation algorithm.

Checker Player [93, 94]

Purpose. Learn to play a good game of checkers [here we discuss only the
version of the program which learns a linear polynomial evaluation function by exam-
ination of moves suggested by experts (“book moves”)].

Environment. Set of all legal game boards.

LS1 (lower layer)

Purpose. Learn a good set of coefficients for combining board features in a
linear polynomial evaluation function.

Performance element. Uses the learned evaluation function to rank plausible
moves for a given board position.

Instance selector. Reads instances from a list of predefined game-board/
recommended-move pairs.

Critic. Evaluation: Examines the ranking given to the book move by the per-
formance element. Diagnosis: Suggests that the book move should be ranked above
all other moves.

Learning element. Adjusts weights of linear polynomial to make move selection
correspond to the critic’s recommendation.

World model. Syntax of game board, form and features of linear polynomial
evaluation function, method for adjusting evaluation function, and rules of checkers.

LS2

Purpose. Improve the performance of LS1 by selection of a good set of board
features.

Performance element. LS1.
Instance selector. The entire set of possible training instances is simply

passed to LS1 (via the blackboard).
Critic. Evaluation: Analyzes the learning ability of LS1 (i.e., the LS2 per-

formance element) with the current set of evaluation function features. Diagnosis:
Singles out features which are not useful. Therapy: Selects new features from a
predefined list to replace useless features.

Learning element. Redefines the current set of features as recommended by
the critic.

World model. The LS1 world model, plus the set of features which may be
considered, and the performance standard employed by the LS2 critic.

Poker Player [121]

Purpose. Learn a good strategy for making bets in draw poker.
Environment. Set of all legal poker game states.
Performance element. Applies the learned production rules to generate actions

in a poker game, e.g., bets.

[43]
MODELS OF LEARNING SYSTEMS

Instance selector. Selects each game state derived by play against an opponent
as a training instance.

Critic. Two versions of the program use two different critics. In both cases
the critic performs the following functions. Evaluation: Decides whether the poker
bet made by the performance element was acceptable. Diagnosis: Gives important
state variables for deciding the correct bet. Therapy: Provides the bet which the
performance element should have made. In “explicit” learning the critic is an expert
poker player, either human or programmed. In “implicit” learning the evaluation
and therapy are deduced from the next action of the opponent and a set of predefined
axioms, while diagnosis is read from a predefined “decision matrix.”

Learning element. Modifies and adds production rules to the system. Mistakes
are corrected by adding a new rule in front of the rule responsible for the incorrect
response.

World model. Rules of poker, features used to describe the game state, the
language of production rules, heuristics for updating the rule base, the model of an
opponent.

Meta-DENDRAL [13]

Purpose. Learn to predict data points in the mass spectra of molecules.
Environment. Set of all known molecule/data-point pairs.
Performance element. Predicts peaks (data points) in mass spectra of mole-

cules using learned production rules. Employs a model of mass spectrometry for
translating between mass-spectral processes (predicted by the rules) and data
points in the spectrum.

Instance selector. Accepts a set of known molecule/spectrum pairs from the
user.

Critic. Evaluation: Determines the suitability of the set of predictions gener-
ated by a rule. Diagnosis: States whether the rule is acceptable, too specific, or
too general. Therapy: Recommends adding or deleting features to the left-hand sides
of rules.

Learning element. Conducts a heuristic search through the space of plausible
rules using a predefined rule generator. At each step in the search the potential
rule’s performance is reviewed by the critic.

World model. Representation of molecules as graphs, production rule model
of mass spectrometry, vocabulary of rules used to represent learned information;
heuristics used by the critic in directing the rule search.

Learning Structural Descriptions from Examples [128, 129]

Purpose. Learn to identify blocks world structures (such as arches and
towers).

Environment. Set of possible line drawing/structure-classification pairs.
Performance element. Decides class of structures to which the input structure

belongs. Uses a model of the structure class supplied by the learning element.
Instance selector. Accepts training instances supplied individually by the user.
Critic. Evaluation: Compares the classification made by the performance ele-

ment against the correct classification as supplied with each training instance.

[44]
MODELS OF LEARNING SYSTEMS

Diagnosis: Generates a comparison description pointing out differences between the
model and the structure description.

Learning element. Constructs a model of the class of structures under consid-
eration. Examines the comparison description supplied by the critic, and modifies
the model to strengthen or weaken the correspondence between the model and the
training instance.

World model. Representation of scenes as line drawings, method of translating
line drawings to graphical descriptions, grammar for drawings to graphical descrip-
tions, grammar for representing the learned information, domain-specific heuris-
tics for resolving among possible changes to each structure class model.

ACKNOWLEDGMENTS

Supported in part by the National Institutes of Health, the Advanced Research
Projects Agency, and the Department of National Defence of Canada.

REFERENCES

1. Arkadev, A. C., and E. M. Braverman, Learning in Pattern Classification
Machines, Nauka, Moscow, 1971.

2. Ashby, W. IL, An Introduction to Cybernetics, Wiley, New York, 1963 (first
published 1956).

3. Asher, R. B., D. Andrisani, II, and P. Dorato, Bibliography on adaptive
control systems, Proc. IEEE 64(8), 1226-1240 (1976).

4. Astrom, K. J., and P. Eykhoff, System identification—A survey, Automatica
7(2), 123-162 (March 1971).

5. Astrom, K. J., and B. Wittenmark, On self-tuning regulators, Automatica
9(2), 185-199 (March 1973).

6. Aubin, B., Strategies for mechanizing structural induction, in Proceedings of
the 5th International Joint Conference on Artificial Intelligence, Vol. 1, M.I.T.,
Cambridge, Massachusetts, August 1977, pp. 363-369.

7. Banerji, R., Learning to solve games and puzzles, in Computer Oriented
Learning Processes (J. C. Simon, ed.), Noordhoff, Leyden, 1976, pp. 341-368.

8. Barrow, H. G., and R. J. Popplestone, Relational descriptions in picture
processing, in Machine Intelligence, Vol. 7 (B. Meltzer and D. Michie, eds.),
American Elsevier, New York, 1972, pp. 377-396.

9. Bauer, M., A basis for the acquisition of procedures from protocols, in Pro-
ceedings of the 4th International Joint Conference on Artificial Intelligence,
Vol. 1, M.I.T., Cambridge, Massachusetts, September 1975, pp. 226-231.

10. Bierman, A. W., and J. A. Feldman, A survey of results in grammatical
inference, in Frontiers of Pattern Recognition (S. Watanabe, ed.), Academic,
New York, 1972, pp. 31-54.

11. Bruner, J. S., J. J. Goodnow, and G. A. Austin, A Study of Thinking, Wiley,
New York, 1956.

12. Buchanan, B. G., Scientific theory formation by computer, in Computer Ori-
ented Learning Processes (J. C. Simon, ed.), Noordhoff, Leyden, 1976, pp. 515-534.

13. Buchanan, B. G., and T. M. Mitchell, Model-directed learning of production
rules, in Pattern-Directed Inference Systems (D. A. Waterman and F. Hayes-
Roth, eds.), Academic, New York, forthcoming.

[45]
MODELS OF LEARNING SYSTEMS

14. Chen, C. H., Statistical pattern—Review and outlook, IEEE Syst., Man Cybern.
Newsl. 6(4), 7-8 (August 1977).

15. Churchman, C. W., The role of Weltanschauung in problem solving and inquiry,
in Theoretical Approaches to Non-Numerical Problem Solving (R. B. Banerji
and M. D. Mesarovic, eds.), Springer, New York, 1970, pp. 141-151.

16. Cook, C. M., and A. Rosenfeld, Some experiments in grammatical inference,
in Computer Oriented Learning Processes (J. C. Simon, ed.), Noordhoff,
Leyden, 1976, pp. 157-174.

17. Davis, R., Applications of Meta-Level Knowledge to the Construction, Main-
tenance, and Use of Large Knowledge Bases, STAN-CS-76-552, Computer
Science Department, Stanford University, July 1976.

18. Donalson, D. D., and F. H. Kishi, Review of adaptive control theories and
techniques, in Modern Control Systems Theory (C. T. Leondes, ed.), McGraw-
Hill, New York, 1965, pp. 228-284.

19. Duda, R. O., and P. E. Hart, Pattern Classification and Scene Analysis,
Wiley, New York, 1973.

20. Elcock, E. W., and A. M. Murray, Experiments with a learning component in
a go-moku playing program, in Machine Intelligence 1 (Collins and Michie,
eds.), Oliver & Boyd, London, 1967, pp. 87-103.

21. Erman, L. D., R. D. Fennell, V. R. Lesser, and D. R. Reddy, System
organization for speech understanding., in International Joint Conference on
Artificial Intelligence-3, Advance Papers, Stanford, California, August 1973,
pp. 194-199.

22. Evans, T. G., A program for the solution of a class of geometric analogy
intelligence test questions, in Semantic Information Processing (M. Minsky,
ed.), M.I.T. Press, Cambridge, Massachusetts, 1968, pp. 271-353.

23. Feigenbaum, E. A., The simulation of verbal learning behaviour, in Computers
and Thought (E. A. Feigenbaum and J. Feldman, eds.), McGraw-Hill, New
York, 1963, pp. 297-309.

24. Feigenbaum, E. A., B. G. Buchanan, and J. Lederberg, On generality and
problem solving: A case study using the DENDRAL program, in Machine Intel-
ligence 6 (B. Meltzer and D. Michie, eds.), American Elsevier, New York,
1971, pp. 165-190.

25. Fel'dbaum, A. A., Dual control theory I-IV, Autom. Remote Control 21(9),
874-880 (April 1961); 21(11), 1033-1039 (June 1961); 22(1), 1-12 (August 1961);
22(2), 109-121 (September 1961). Also collected in R. Oldenburger (ed.),
Optimal and Self-Optimizing Control, M.I.T. Press, Cambridge, Massachu-
setts, 1966, pp. 458-496.

26. Fikes, R., P. Hart, and N. J. Nilsson, Learning and executing generalized
robot plans, Artif. Intell. 3, 251-288 (1972).

27. Findler, N. V., and W. R. McKinsie, Computer simulation of a self-
preserving and learning organism, Bull. Math. Biophys. 31, 247-253 (1969).

28. Findler, N. V., Studies in machine cognition using the game of poker, Commun.
ACM 20(4), 230-245 (1977).

29. Friedberg, R. M., A learning machine: Part 1, IBM J. 2, 2-13 (January
1958)

30. Fu, K. S., Learning control systems—Review and outlook, IEEE Trans.
Autom. Control 15(2), 210-221 (April 1970).

31. Fu, K. S., Syntactic Methods in Pattern Recognition, Academic, New York,
1974.

[46]
MODELS OF LEARNING SYSTEMS

32. Fu, K. S., A brief review of pattern recognition, IEEE Syst., Man Cybern.
Newsl. 6(4), 3-5 (August 1977).

33. Fu, K. S., and T. L. Booth, Grammatical inference: Introduction and survey–
Part I, IEEE Trans. Syst., Man Cybern. SMC-5(1), 95-111 (1975); Part II,
IEEE Trans. Syst., Man Cybern. SMC-5(4), 409-423 (July 1975).

34. Glorioso, R. M., Engineering Cybernetics, Prentice-Hall, Englewood Cliffs,
New Jersey, 1975.

35. Gold, E. M., Language identification in the limit, Inf. Control 10, 447-474 (1967).
36. Green, C. C., The design of the PSI program synthesis system, in Proceedings

of the Second International Conference on Software Engineering, San Francisco,
October 1976, pp. 4-18.

37. Griffith, A. K., A comparison and evaluation of three machine learning pro-
cedures as applied to the game of checkers, Artif. Intell. 5, 137-148 (1974).

38. Hajek, P., On logics of discovery, in Lecture Notes in Computer Science,
Vol. 32 (J. Becvar, ed.), Springer, 1975, pp. 30-45.

39. Hardy, S., Synthesis of LISP functions from examples, in Proceedings of the
4th International Joint Conference on Artificial Intelligence, Vol. 1, M. I. T.,
Cambridge, Massachusetts, September 1975, pp. 240-245.

40. Hasdorff, L., Gradient Optimization and Nonlinear Control, Wiley, New York,
1976.

41. Hayes-Roth, F., and J. McDermott, Knowledge acquisition from structural
descriptions, in Proceedings of the 5th International Joint Conference on Arti-
ficial Intelligence, Vol. 1, M. I. T., Cambridge, Massachusetts, August 1977,
pp. 356-362.

42. Hayes-Roth, F., and D. Mostow, An automatically compilable recognition
network for structured patterns, in Proceedings of the 4th International Joint
Conference on Artificial Intelligence, Vol. 1, M.I.T., Cambridge, Massachu-
setts, September 1975, pp. 246-251.

43. Hedrick, C., Learning production-systems from examples, Artif. Intell. 7,
21-49 (1976).

44. Holland, J. H., Outline for a logical theory of adaptive systems, in Essays on
Cellular Automata (A. W. Burks, ed.), University of Illinois Press, Chicago,
1970.

45. Hunt, E. B., Artificial Intelligence, Academic, New York, 1975.
46. Hunt, E. B., and C. I. Hovland, Programming a model of human concept

formation, in Computers and Thought (E. Feigenbaum and J. Feldman, eds.),
McGraw-Hill, New York, 1963, pp. 310-325.

47. Hunt, E. B., J. Marin, and P. T. Stone, Experiments in Induction, Academic,
New York, 1966.

48. Johnson, C. R., Jr., A new procedure for adaptive control design, in Proceed-
ings of the 11th Asilomar Conference on Circuits, Systems, and Computers,
Pacific Grove, California, November 1977, pp. 130-133.

49. Johnson, D. L., and D. C. Holden, Computer learning in theorem proving,
IEEE Trans. Syst., Sci. Cybern. SSC-2, 115-123 (1966).

50. Johnson, E. S., An information processing model of one kind of problem
solving, Psychol. Monogr. Whole No. 581 (1964).

51. Kalman, R. E., Design of a self-optimizing control system, Trans. ASME
80(2), 468-478 (1958). Also in R. Oldenburger (ed.), Optimal and Self-
Optimizing Control, M.I.T. Press, Cambridge, Massachusetts, 1966,
pp. 440-449.

52. Kanal, L., Patterns in pattern recognition: 1968-1974, IEEE Trans. Inf.
Theory IT-20(6), 697-722 (November 1974).

[47]
MODELS OF LEARNING SYSTEMS

53. Kanal, L., Current status, problem and prospects of pattern recognition, IEEE
Syst., Man Cybern. Newsl. 6(4), 9-11 (August 1977).

54. Koffman, E. B., Learning games through pattern recognition, IEEE Trans. Sy-
st., Sci. Cybern. SSC-4, 12-16 (1968).

55. Koford, J. S., and G. F. Groner, The use of an adaption threshold elements
to design a linear optimal pattern classifier, IEEE Trans. Inf. Theory 12(1),
42-50 (1966).

56. Kuhn, T. S., The Structure of Scientific Revolutions, rev. ed., University of
Chicago Press, Chicago, 1970.

57. Landau, I. D., A survey of model reference adaptive techniques—Theory and
applications, Automatica 10(4), 353-379 (July 1974).

58. Landau, I. D., and B. Courtiol, Design and multivariable adaptive model
following control systems, Automatica 10(5), 483-494 (September 1974).

59. Langley, P. W., BACON: A production system that discovers- empirical laws,
in Proceedings of the 5th International Joint Conference on Artificial Intelli-
gence, Vol. 1, M. I. T., Cambridge, Massachusetts, August 1977, pp. 344-346.

60. Larson, J., and R. S. Michalski, Inductive inference of VL decision rules, in
Pattern-Directed Inference Systems (D. A. Waterman and F. Hayes-Roth, eds.),
Academic, New York, forthcoming.

61. Lenat, D. B., AM: An Artificial Intelligence Approach to Discovery in Mathe-
matics as Heuristic Search, Ph.D. Thesis, Stanford University, 1976. See
also Automated theory formation in mathematics, in Proceedings of the 5th
International Joint Conference on Artificial Intelligence, Vol. 2, M. I. T.,
Cambridge, Massachusetts, August 1977, pp. 833-841.

62. Lesser, V. R., R. D. Fennell, L. D. Erman, and D. R. Reddy, Organization
of the HEARSAY II speech understanding system, IEEE Trans. Acoust., Speech,
Signal Process. ASSP-23(1), 11-23 (February 1975).

63. Lindorff, D. P., and R. L. Carroll, Survey of adaptive control using Liapunov
design, Int. J. Control 18(5), 897-914 (November 1973).

64. McCarthy, J., Programs with common sense, in Semantic Information Process-
ing (M. Minsky, ed.), M.I.T. Press, Cambridge, Massachusetts, 1968,
pp. 403-418.

65. McCarthy, J., Book review of J. Lighthill AI Investigation, Artif. Intell. 5(3),
317-322 (Fall 1974).

66. Meltzer, B., Generation of hypotheses and theories, Nature 225, 972 (March 7,
1970).

67. Meltzer, B., The programming of deduction and induction, in Artificial and
Human Thinking (A. Elithorn and D. Jones, eds.), San Francisco, 1973,
pp. 19-33.

68. Mendel, J. M., and K. S. Fu (eds.), Adaptive, Learning and Pattern Recog-
nition Systems: Theory and Applications, Academic, New York, 1970.

69. Michie, D., On Machine Intelligence, Wiley, New York, 1974.
70. Minsky, M., Steps toward artificial intelligence, in Computers and Thought

(E. A. Feigenbaum and J. Feldman, eds.), McGraw-Hill, New York, 1963,
pp. 406-450.

71. Minsky, M., and S. Papert, Perceptrons, M.I.T. Press, Cambridge, Massa-
chusetts, 1969.

72. Minsky, M., and S. Papert, Artificial Intelligence—Progress Report, A.I.
MIT AI Memo 252, M. I. T., Cambridge, Massachusetts, January 1972.

73. Mitchell, T. M., Version spaces: A candidate elimination approach to rule
learning, in Proceedings of the 5th International Joint Conference on Artificial
Intelligence, Vol. 1, M. I. T., Cambridge, Massachusetts, August 1977,
pp. 305-310.

[48]
MODELS OF LEARNING SYSTEMS

74. Monopoli, R. V., Model reference adaptive control with an augmented error
signal, IEEE Trans. Autom. Control AC-19(5), 474-484 (October 1974).

75. Narendra, K. S., and M. A. L. Thathachar, Learning automata—A survey,
IEEE Trans. Syst., Man Cybern. SMC-4(4), 323-333 (July 1974).

76. Newell, A., Learning, generality and problem solving, in Proceedings of the
YFIP Congress 62 (C. M. Popplewell, ed.), North Holland, Amsterdam, 1963,
pp. 407-412.

77. Newell, A., Artificial intelligence and the concept of mind, in Computer Models
of Thought and Language (R. Schank and K. Colby, eds.), Freeman, San Fran-
cisco, 1973, pp. 1-60.

78. Newman, C., and L. Uhr, BOGART: A discovery and induction program for
games, in Proceedings of ACM 20th National Conference (L. Winner, ed.),
Winner, New York, pp. 176-185.

79. Nilsson, N. J., Learning Machines, McGraw-Hill, New York, 1965.
80. Oettinger, A. G., Programming a digital computer to learn, Philos. Mag. 43,

1243-1263 (1952).
81. Pavlidis, T., Comments on current perspectives in pattern recognition, IEEE

Syst., Man Cybern. Newsl. 6(4), 8-9 (August 1977).
82. Persson, S., Some Sequence Extrapolating Problems, Ph.D. Thesis, University

of California, Berkeley, 1966 (see also Stanford AI Memo No. 44).
83. Pitrat, J., Realization of a program learning to find combinations at chess, in

Computer Oriented Learning Processes (J. C. Simon, ed.), Noordhoff, Leyden,
1976, pp. 397-423.

84. Plotkin, G. D., A further note on inductive generalization, in Machine Intelli-
ence, Vol. 6 (B. Meltzer and D. Michie, eds.), Edinburgh University Press,
Edinburgh, 1971, pp. 101-124. Machine Intelligence, Vol. 5

85. Popplestone, R. J., An experiment in automatic induction, in Machine Intelli-
gence, Vol. 5 (B. Meltzer and D. Michie, eds.), Edinburgh University Press,
Edinburgh, 1970, pp. 203-215.

86. Proceedings of International Joint Conference on Pattern Recognition (First:
Washington, D.C., October 1973; Second: Copenhagen, Denmark, August 1974;
Third: Coronado, California, November 1976).

87. Reddy, D. R., Speech Recognition, Academic, New York, 1975.
88. Reddy, D. R., L. D. Erman and R. B. Neily, A model and a system for

machine recognition of speech, IEEE Trans. Audio Electroacoust. AII-21(3),
229-238 (June 1973).

89. Roche, C., Application of multilevel clustering to the automatic generation of
recognition operators. A link between feature extraction and classification,
in Second International Joint Conference on Pattern Recognition, Copenhagen,
August 1974, pp. 540-546.

90. Rosenblatt, F., The pereeptron, a probabilistic model for information organi-
zation and storage in the brain, Psychol. Rev. 65, 368-408 (1958).

91. Rovner, P., B. Nash-Webber, and W. A. Woods, Control concepts in a speech
understanding system, IEEE Trans. Acoust., Speech, Signal Process. ASSP-
23(1), 136-140 (February 1975).

92. Rychener, M. D., and A. Newell, An instructable production system: Basic
design issues, in Pattern-Directed Inference Systems (D. A. Waterman and
F. Hayes-Roth, eds.), Academic, New York, forthcoming.

93. Samuel, A. L., Some studies in machine learning using the game of checkers,
in Computers and Thought (E. A. Feigenbaum and J. Feldman, eds.),
McGraw-Hill, New York, 1963, pp. 71-105.

[49]
MODELS OF LEARNING SYSTEMS

94. Samuel, A. L., Some studies in machine learning using the game of checkers
II—Recent progress, IBM J. Res. Dev. 11(6), 601-617 (November 1967).

95. Saridis, G. N., and R. N. Lobbia, Parameter identification and control of
linear discrete-time systems, IEEE Trans. Autom. Control AC-17(1), 52-60
(February 1972). Comments on “Parameter identification and control of linear
discrete-time systems, “ IEEE Trans. Autom. Control AC-20(3), 442-443
(June 1975).

96. Selfridge, O. G., Pandemonium: A paradigm for learning, in Proceedings of
the Symposium of Mechanization of Thought Processes, HMSO, London, 1959,
pp. 511-529.

97. Selfridge, O. G., and U. Neisser, Pattern recognition by machine, in Com-
puters and Thought (E. A. Feigenbaum and J. Feldman, eds.), McGraw-Hill,
New York, 1963, pp. 237-268.

98. Shackcloth, B., and R. L. Butchart, Synthesis of model reference adaptive
systems by Liapunov’s second method, in Theory of Self-Adaptive Control
Systems (P. H. Hammond, ed.), Plenum, New York, 1966, pp. 145-152.

99. Shaw, D., W. Swartout, and C. Green, Inferring LISP programs from
examples, in Proceedings of the 4th International Joint Conference on Arti-
ficial Intelligence, Vol. 1, M.I.T., Cambridge, Massachusetts, 1975,
pp. 260-267.

100. Siklossy, L., Natural language learning by computer, in Representation and
Meaning (H. A. Simon and L. Siklossy, eds.), Prentice-Hall, Englewood
Cliffs, New Jersey, 1972, pp. 288-328.

101. Siklossy, L., Procedural learning in worlds of robots, in Computer Oriented
Learning Processes (J. C. Simon, ed.), Noordhoff, Leyden, 1976, pp. 427-440.

102. Simon, H. A., Scientific discovery and the psychology of problem solving, in
Mind and Cosmos (R. G. Colodny, ed.), University of Pittsburgh Press,
Pittsburgh, 1966, pp. 22-40.

103. Simon, H. A., The Sciences of the Artificial, M.I.T. Press, Cambridge,
Massachusetts, 1969.

104. Simon, H. A., and K. Kotovsky, Human acquisition of concepts for sequential
patterns, Psyched. Rev. 70, 534-546 (1963).

105. Simon, H. A., and G. Lea, Problem solving and rule induction: A unified
view, in Knowledge and Cognition (L. W. Gregg, ed.), Lawrence Erlbaum
Associates, Potomac, Maryland, 1974, pp. 105-127.

106. Sklansky, J., Adaptation, learning, self-repair, and feedback, IEEE Spectrum
1(5), 172-174 (1964).

107. Smith, M. H., A learning program which plays partnership dominoes, Com-
mun. ACM 16, 462-467 (August 1973).

108. Solomonoff, R., Inductive inference theory—A unified approach to problems
in pattern recognition and artificial intelligence, in Proceedings of the 4th
International Joint Conference on Artificial Intelligence, Vol. 1, M. I. T.,
Cambridge, Massachusetts, 1975, pp. 274-280.

109. Soloway, E. M., and E. M. Riseman, Knowledge-directed learning, in
Pattern-Directed Inference Systems (D. A. Waterman and F. Hayes-Roth,
eds.), Academic, New York, forthcoming.

110. Soloway; E. M., and E. M. Riseman, Levels of pattern description in
learning, in Proceedings of the 5th International Joint Conference on Artificial
Intelligence, Vol. 2, M.I.T., Cambridge, Massachusetts, 1977, pp. 801-811.

[50]
MODELS OF LEARNING SYSTEMS

111. Stockman, G. C., A Problem-Reduction Approach to the Linguistic Analysis
of Waveforms, TR-538, Department of Computer Science, University of
Maryland, May 1977.

112. Sussman, G. J., A Computational Model of Skill Acquisition, MIT AI-TR-
297, Al Laboratory, M. I. T., August 1973.

113. Tse, E., and Y. Bar-Shalom, An actively adaptive control for linear systems
with random parameters via the dual control approach, IEEE Trans. Autom.
Control AC-18(2), 109-117 (April 1973).

114. Tse, E., and Y. Bar-Shalom, Actively adaptive control for nonlinear sto-
chastic systems, Proc. IEEE 64(7), 1172-1181 (August 1976).

115. Tsypkin, Ya. Z., Self learning—What is it?, IEEE Trans. Autom. Control
AC-13(6), 608-612 (December 1968).

116. Uhr, L., Pattern Recognition, Learning and Thought, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1973.

117. Uhr, L., and C. Vossler, A pattern-recognition program that generates,
evaluates, and adjusts its own operators, in Computers and Thought (E. A.
Feigenbaum and J. Feldman, eds.), McGraw-Hill, New York, 1963,
pp. 251-268.

118. Vere, S. A., Inductive learning of relational productions, in Pattern-Directed
Inference Systems (D. A. Waterman and F. Hayes-Roth, eds.), Academic,
New York, forthcoming.

119. Wald, A., Sequential-Analysis, Wiley, New York, 1947.
120. Watanabe, S. (ed.), Methodologies of Pattern Recognition, Academic, New

York, 1969.
121. Waterman, D. A., Generalization learning techniques for automating the

learning of heuristics, Artif. Intell. 1(1-2), 121-170 (1970).
122. Waterman, D. A., Adaptive production systems, in Proceedings of the 4th

International Joint Conference on Artificial Intelligence, M. I. T., Cambridge,
Massachusetts, 1975, pp. 296-303.

123. Waterman, D. A., Exemplary programming in RITA, in Pattern-Directed
Inference Systems (D. A. Waterman and F. Hayes-Roth, eds.), Academic,
New York, forthcoming.

124. White, G. M., Machine Learning through Signature Trees. Application to
Human Speech, AI Memo 136 (CS-183), Stanford AI Laboratory, Stanford
University, October 1970 (AD-717 600).

125. Widrow, B., The “rubber-mask” technique—H. Pattern storage and recog-
nition, Pattern Recognition 5, 199-211 (1973).

126. Widrow, B., and M. E. Hoff, Adaptive switching circuits, 1960 IRE WESCON
Conv. Record, Part 4, 96-104 (August 1960).

127. Wiener, N., Cybernetics, Wiley, New York, 1948.
128. Winston, P. H., Learning Structural Descriptions from Examples, MIT AI-

TR-231, AI Laboratory, M.I.T., September 1970.
129. Winston, P. H. (ed.), The Psychology of Computer Vision, McGraw-Hill,

New York, 1975.
130. Wittenmark, B., Stochastic adaptive control methods: A survey, Int. J.

Control 21(5), 705-730 (1975).
131. Zadeh, L. A., Outline of a new approach to the analysis of complex systems

and decision processes, IEEE Trans. Syst., Man Cybern. SMC-3, 28-44
(January 1973).

[51]
MODELS OF LEARNING SYSTEMS

132. Zagoruiko, N., Empirical prediction algorithms, in Computer Oriented
Learning Processes (J. C. Simon, ed.), Noordhoff, Leyden, 1976, pp. 581-595.

Bruce G. Buchanan

Tom M. Mitchell
Reid G. Smith

C. Richard Johnson Jr.

	INTRODUCTION
	ADAPTIVE SYSTEM APPROACH TO LEARNING
	Passive Controllers

	PATTERN RECOGNITION APPROACH TO LEARNING
	Pattern Recognition Subclasses
	Classification Model
	Description Model

	ARTIFICIAL INTELLIGENCE APPROACH TO LEARNING
	Game Playing
	Concept Formation
	Grammatical Inference and Sequence Extrapolation

	A MODEL OF LEARNING SYSTEMS
	Effects of the Environment
	The Model—Overview
	 Performance Element
	Instance Selector
	Critic
	Learning Element
	Blackboard
	World Model
	Multilayer Learning Systems
	Implications of the Model

	APPENDIX: CHARACTERIZATION OF EXISTING SYSTEMS
	Model Reference Adaptive Control [57]
	Adaptive Pattern Classifier [55]
	Checker Player [93, 94]
	LS1 (lower layer)
	LS2

	Poker Player [121]
	Meta-DENDRAL [13]
	Learning Structural Descriptions from Examples [128, 129]

	ACKNOWLEDGMENTS
	REFERENCES

