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Figure 1. Example structure of how PUMICE learns the concepts and procedures in the command “If it’s hot, order a cup of Iced Cappuccino.” The
numbers indicate the order of utterances. The screenshot on the right shows the conversational interface of PUMICE. In this interactive parsing process,
the agent learns how to query the current temperature, how to order any kind of drink from Starbucks, and the generalized concept of “hot” as “a

temperature (of something) is greater than another temperature”.

ABSTRACT

Natural language programming is a promising approach to
enable end users to instruct new tasks for intelligent agents.
However, our formative study found that end users would of-
ten use unclear, ambiguous or vague concepts when naturally
instructing tasks in natural language, especially when spec-
ifying conditionals. Existing systems have limited support
for letting the user teach agents new concepts or explaining
unclear concepts. In this paper, we describe a new multi-
modal domain-independent approach that combines natural
language programming and programming-by-demonstration
to allow users to first naturally describe tasks and associated
conditions at a high level, and then collaborate with the agent
to recursively resolve any ambiguities or vagueness through
conversations and demonstrations. Users can also define new
procedures and concepts by demonstrating and referring to
contents within GUIs of existing mobile apps. We demonstrate
this approach in PUMICE, an end-user programmable agent
that implements this approach. A lab study with 10 users
showed its usability.
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INTRODUCTION

The goal of end user development (EUD) is to empower
users with little or no programming expertise to program [43].
Among many EUD applications, a particularly useful one
would be task automation, through which users program
intelligent agents to perform tasks on their behalf [31].
To support such EUD activities, a major challenge is to
help non-programmers to specify conditional structures in
programs. Many common tasks involve conditional structures,
yet they are difficult for non-programmers to correctly specify
using existing EUD techniques due to the great distance
between how end users think about the conditional structures,
and how they are represented in programming languages [41].

According to Green and Petre’s cognitive dimensions of
notations [13], the closer the programming world is to the
problem world, the easier the problem-solving ought to be.
This closeness of mapping is usually low in conventional and
EUD programming languages, as they require users to think
about their tasks very differently from how they would think
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about them in familiar contexts [41], making programming
particularly difficult for end users who are not familiar with
programming languages and “computational thinking” [49].
To address this issue, the concept of natural programming [37,
38] has been proposed to create techniques and tools that
match more closely the ways users think.

Natural language programming is a promising technique for
bridging the gap between user mental models of tasks and pro-
gramming languages [34]. It should have a low learning barrier
for end users, under the assumption that the majority of end
users can already communicate procedures and structures for
familiar tasks through natural language conversations [25, 41].
Speech is also a natural input modality for users to describe
desired program behaviors [40]. However, existing natural
language programming systems are not adequate for support-
ing end user task automation in domain-general tasks. Some
prior systems (e.g., [44]) directly translate user instructions
in natural language into conventional programming languages
like Java. This approach requires users to use unambiguous
language with fixed structures similar to those in conventional
programming languages. Therefore, it does not match the
user’s existing mental model of tasks, imposing significant
learning barriers and high cognitive demands on end users.

Other natural language programming approaches (e.g., [3, 11,
17, 46]) restricted the problem space to specific task domains,
so that they could constrain the space and the complexity of
target program statements in order to enable the understanding
of flexible user utterances. Such restrictions are due to the
limited capabilities of existing natural language understanding
techniques — they do not yet support robust understanding of
utterances across diverse domains without extensive training
data and structured prior knowledge within each domain.

Another difficult problem in natural language programming
is supporting the instruction of concepts. In our study (details
below in the Formative Study section), we found that end users
often refer to ambiguous or vague concepts (e.g., cold weather,
heavy traffic) when naturally instructing a task. Moreover,
even if a concept may seem clear to a human, an agent may still
not understand it due to the limitations in its natural language
understanding techniques and pre-defined ontology.

In this paper, we address the research challenge of enabling
end users to augment domain-independent task automation
scripts with conditional structures and new concepts through
a combination of natural language programming and program-
ming by demonstration (PBD). To support programming for
tasks in diverse domains, we leverage the graphical user inter-
faces (GUISs) of existing third-party mobile apps as a medium,
where procedural actions are represented as sequences of
GUI operations, and declarative concepts can be represented
through references to GUI contents. This approach supports
EUD for a wide range of tasks, provided that these tasks can be
performed with one or more existing third-party mobile apps.

We took a user-centered design approach, first studying how
end users naturally describe tasks with conditionals in natural
language in the context of mobile apps, and what types of
tasks they are interested in automating. Based on insights

from this study, we designed and implemented an end-user-
programmable conversational agent named PUMICE! that al-
lows end users to program tasks with flexible conditional
structures and new concepts across diverse domains through
spoken natural language instructions and demonstrations.

PUMICE extends our previous SUGILITE [20] system. A key
novel aspect of PUMICE’s design is that it allows users to first
describe the desired program behaviors and conditional struc-
tures naturally in natural language at a high level, and then
collaborate with an intelligent agent through multi-turn conver-
sations to explain and to define any ambiguities, concepts and
procedures in the initial description as needed in a top-down
fashion. Users can explain new concepts by referring to either
previously defined concepts, or to the contents of the GUIs
of third-party mobile apps. Users can also define new proce-
dures by demonstrating using third-party apps [20]. Such an
approach facilitates effective program reuse in automation au-
thoring, and provides support for a wide range of application
domains, which are two major challenges in prior EUD sys-
tems. The results from the motivating study suggest that this
paradigm is not only feasible, but also natural for end users,
which was supported by our summative lab usability study.

We build upon recent advances in natural language processing
(NLP) to allow PUMICE’s semantic parser to learn from users’
flexible verbal expressions when describing desired program
behaviors. Through PUMICE’s mixed-initiative conversations
with users, an underlying persistent knowledge graph is dy-
namically updated with new procedural (i.e., actions) and
declarative (i.e., concepts and facts) knowledge introduced by
users, allowing the semantic parser to improve its understand-
ing of user utterances over time. This structure also allows for
effective reuse of user-defined procedures and concepts at a
fine granularity, reducing user effort in EUD.

PUMICE presents a multi-modal interface, through which users
interact with the system using a combination of demonstra-
tions, pointing, and spoken commands. Users may use any
modality that they choose, so they can leverage their prior
experience to minimize necessary training [30]. This interface
also provides users with guidance through a mix of visual aids
and verbal directions through various stages in the process to
help users overcome common challenges and pitfalls identified
in the formative study, such as the omission of else statements,
the difficulty in finding correct GUI objects for defining new
concepts, and the confusion in specifying proper data descrip-
tions for target GUI objects. A summative lab usability study
with 10 participants showed that users with little or no prior
programming expertise could use PUMICE to program au-
tomation scripts for 4 tasks derived from real-world scenarios.
Participants also found PUMICE easy and natural to use.

This paper presents the following three primary contributions:

1. A formative study showing the characteristics of end users’
natural language instructions for tasks with conditional
structures in the context of mobile apps.

'PUMICE is a type of volcanic rock. It is also an acronym for
Programming in a User-friendly Multimodal Interface through
Conversations and Examples



2. A multi-modal conversational approach for the EUD of
task automation motivated by the aforementioned formative
study, with the following major advantages:

(a) The top-down conversational structure allows users to
naturally start with describing the task and its con-
ditionals at a high-level, and then recursively clarify
ambiguities, explain unknown concepts and define new
procedures through conversations.

(b) The agent learns new procedural and declarative knowl-
edge through explicit instructions from users, and
stores them in a persistent knowledge graph, facil-
itating effective reusability and generalizability of
learned knowledge.

(c) The agent learns concepts and procedures in various
task domains while having a low learning barrier
through its multi-modal approach that supports ref-
erences and demonstrations using the contents of third-
party apps’ GUIs.

3. The PUMICE system: an implementation of this approach,
along with a user study evaluating its usability.

BACKGROUND AND RELATED WORK

This research builds upon prior work from many different
sub-disciplines across human-computer interaction (HCI), soft-
ware engineering (SE), and natural language processing (NLP).
In this section, we focus on related work on three topics: (1)
natural language programming; (2) programming by demon-
stration; and (3) the multi-modal approach that combines nat-
ural language inputs with demonstrations.

Natural Language Programming

PUMICE uses natural language as the primary modality for
users to program task automation. The idea of using natu-
ral language inputs for programming has been explored for
decades [4, 6]. In the NLP and Al communities, this idea is
also known as learning by instruction [3, 27].

The foremost challenge in supporting natural language pro-
gramming is dealing with the inherent ambiguities and vague-
ness in natural language [48]. To address this challenge, one
prior approach was to constrain the structures and expressions
in the user’s language to similar formulations of conventional
programming languages (e.g., [4, 44]), so that user inputs
can be directly translated into programming statements. This
approach is not adequate for EUD, as it has a high learning
barrier for users without programming expertise.

Another approach for handling ambiguities and vagueness in
natural language inputs is to seek user clarification through
conversations. For example, Iris [11] asks follow-up questions
and presents possible options through conversations when the
initial user input is incomplete or unclear. This approach low-
ers the learning barrier for end users, as it does not require
them to clearly define everything up front. It also allows
users to form complex commands by combining multiple nat-
ural language instructions in conversational turns under the
guidance of the system. PUMICE also adopts the use of multi-
turn conversations as a key strategy in handling ambiguities

and vagueness in user inputs. However, a key difference be-
tween PUMICE and other conversational instructable agents
is that PUMICE is domain-independent. All conversational
instructable agents need to map the user’s inputs onto existing
concepts, procedures and system functionalities supported by
the agent, and to have natural language understanding mecha-
nisms and training data in each task domain. Because of this
constraint, existing agents limit their supported tasks to one or
a few pre-defined domains, such as data science [11], email
processing [3, 46], or database queries [17].

PUMICE supports learning concepts and procedures from ex-
isting third-party mobile apps regardless of the task domains.
End users can create new concepts with PUMICE by refer-
encing relevant information shown in app GUIs, and define
new procedures by demonstrating with existing apps. This ap-
proach allows PUMICE to support a wide range of tasks from
diverse domains as long as the corresponding mobile apps
are available. This approach also has a low learning barrier
because end users are already familiar with the capabilities of
mobile apps and how to use them. In comparison, with prior
instructable agents, it is often unclear what concepts, proce-
dures and functionalities already exist to be used as “building
blocks” for developing new ones.

Programming by Demonstration

PUMICE uses the programming by demonstration (PBD) tech-
nique to enable end users to define concepts by referring to the
contents of GUISs of third-party mobile apps, and teach new
procedures through demonstrations with those apps. PBD is a
natural way of supporting EUD with a low learning barrier [10,
24]. Many domain-specific PBD tools have been developed in
the past in various domains, such as text editing (e.g., [18]),
photo editing (e.g., [12]), web scraping (e.g., [8]), smart home
control (e.g., [22]) and robot control (e.g., [2]).

PUMICE supports domain-independent PBD by using the
GUIs of third-party apps for task automation and data extrac-
tion. Similar approaches have also been used in prior systems.
For example, SUGILITE [20], KITE [23] and APPINITE [21]
use mobile app GUIs, CoScripter [19], d.mix [15], Veg-
emite [28] and PLOW [1] use web interfaces, and HILC [16]
and Sikuli [50] use desktop GUIs. Compared to those,
PUMICE is the only one that can learn concepts as generalized
knowledge, and the only one that supports creating condi-
tionals from natural language instructions. Sikuli [50] allows
users to create conditionals in a scripting language, which is
not suitable for end users without programming expertise.

The Multi-Modal Approach

A central challenge in PBD is generalization. A PBD agent
should go beyond literal record-and-replay macros, and be
able to perform similar tasks in new contexts [10, 24]. This
challenge is also a part of the program synthesis problem. An
effective way of addressing this challenge is through multi-
modal interaction [40]. Demonstrations can clearly communi-
cate what the user does, but not why the user does this and how
the user wants to do this in different contexts. On the other
hand, natural language instructions can often reflect the user’s
underlying intent (why) and preferences (how), but they are



usually ambiguous or unclear. This is where grounding natural
language instructions with concrete GUI demonstrations can
help.

This mutual disambiguation approach [39] in multi-modal
interaction has been proposed and used in many previous
systems. This approach leverages repetition in a different
modality for mediation [32]. Particularly for PBD general-
ization, SUGILITE [20] and PLOW [1] use natural language
inputs to identify parameterization in demonstrations, and
APPINITE [21] uses natural language explanations of intents to
resolve the “data description” [10] for demonstrated actions.

PUMICE builds upon this prior work, and extends the multi-
modal approach to support learning concepts involved in
demonstrated tasks. The learned concepts can also be general-
ized to new task domains, as described in later sections. The
prior multi-modal PBD systems also use demonstration as the
main modality. In comparison, PUMICE uses natural language
conversation as the main modality, and uses demonstration
for grounding unknown concepts, values, and procedures after
they have been broken down and explained in conversations.

FORMATIVE STUDY

We took a user-centered approach [36] for designing a natural
end-user development system [37]. We first studied how end
users naturally communicate tasks with declarative concepts
and control structures in natural language for various tasks in
the mobile app context through a formative study on Amazon
Mechanical Turk with 58 participants (41 of which are non-
programmers; 38 men, 19 women, 1 non-binary person).

Each participant was presented with a graphical description of
an everyday task for a conversational agent to complete in the
context of mobile apps. All tasks had distinct conditions for a
given task so that each task should be performed differently
under different conditions, such as playing different genres
of music based on the time of the day. Each participant was
assigned to one of 9 tasks. To avoid biasing the language used
in the responses, we used the Natural Programming Elicitation
method [36] by showing graphical representations of the tasks
with limited text in the prompts. Participants were asked
how they would verbally instruct the agent to perform the
tasks, so that the system could understand the differences
among the conditions and what to do in each condition. Each
participant was first trained using an example scenario and the
corresponding example verbal instructions.

To study whether having mobile app GUIs can affect users’
verbal instructions, we randomly assigned participants into
one of two groups. For the experimental group, participants
instructed agents to perform the tasks while looking at relevant
app GUIs. Each participant was presented with a mobile
app screenshot with arrows pointing to the screen component
that contained the information pertinent to the task condition.
Participants in the control group were not shown app GUIs. At
the end of each study session, we also asked the participants
to come up with another task scenario of their own where an
agent should perform differently in different conditions.

The participants’ responses were analyzed by two independent
coders using open coding [47]. The inter-rater agreement [9]

was k = 0.87, suggesting good agreement. 19% of responses
were excluded from the analysis for quality control due to the
lack of efforts in the responses, question misunderstandings,
and blank responses.

We report the most relevant findings which motivated the
design of PUMICE next.

App GUI Grounding Reduces Unclear Concept Usage

We analyzed whether each user’s verbal instruction for the
task provided a clear definition of the conditions in the task. In
the control group (instructing without seeing app screenshots),
33% of the participants used ambiguous, unclear or vague
concepts in the instructions, such as “If it is daytime, play
upbeat music...” which is ambiguous as to when the user
considers it to be “daytime.” This is despite the fact that the
example instructions they saw had clearly defined conditions.

Interestingly, for the experimental group, where each partici-
pant was provided an app screenshot displaying specific infor-
mation relevant to the task’s condition, fewer participants (9%)
used ambiguous or vague concepts (this difference is statisti-
cally significant with p < 0.05), while the rest clearly defined
the condition (e.g., “If the current time is before 7 pm...”).
These results suggest that end users naturally use ambigu-
ous and vague concepts when verbally instructing task logic,
but showing users relevant mobile app GUIs with concrete
instances of the values can help them ground the concepts,
leading to fewer ambiguities and vagueness in their descrip-
tions. The implication is that a potentially effective approach
to avoiding unclear utterances for agents is to guide users to
explain them in the context of app GUISs.

Unmet User Expectation of Common Sense Reasoning
We observed that participants often expected and assumed the
agent to have the capability of understanding and reasoning
with common sense knowledge when instructing tasks. For
example, one user said, “if the day is a weekend”. The agent
would therefore need to understand the concept of “weekend”
(i.e., how to know today’s day of the week, and what days
count as “weekend”) to resolve this condition. Similarly when
a user talked about “sunset time”, he expected the agent to
know what it meant, and how to find out its value.

However, the capability for common sense knowledge and
reasoning is very limited in current agents, especially across
many diverse domains, due to the spotty coverage and unreli-
able inference of existing common sense knowledge systems.
Managing user expectation and communicating the agent’s ca-
pability is also a long-standing unsolved challenge in building
interactive intelligent systems [26]. A feasible workaround
is to enable the agent to ask users to ground new concepts to
existing contents in apps when they come up, and to build up
knowledge of concepts over time through its interaction with
users.

Frequent Omission of Else Statements

In the study, despite all provided example responses containing
else statements, 18% of the 39 descriptions from users omitted
an else statement when it was expected. “Play upbeat music
until 8pm every day,” for instance, may imply that the user



desires an alternative genre of music to be played at other
times. Furthermore, 33% omitted an else statement when a
person would be expected to infer an else statement, such as:
“If a public transportation access point is more than half a
mile away, then request an Uber,” which implies using public
transportation otherwise. This might be a result of the user’s
expectation of common sense reasoning capabilities. The user
omits what they expect the agent can infer to avoid prolixity,
similar to patterns in human-human conversations [14].

These findings suggest that end users will often omit appro-
priate else statements in their natural language instructions for
conditionals. Therefore, the agent should proactively ask users
about alternative situations in conditionals when appropriate.

PUMICE

Motivated by the formative study results, we designed the
PUMICE agent that supports understanding ambiguous natural
language instructions for task automation by allowing users to
recursively define any new, ambiguous or vague concepts in a
multi-level top-down process.

Example Scenario

This section shows an example scenario to illustrate how
PUMICE works. Suppose a user starts teaching the agent
a new task automation rule by saying, “If it’s hot, order a cup
of Iced Cappuccino.” We also assume that the agent has no
prior knowledge about the relevant task domains (weather and
coffee ordering). Due to the lack of domain knowledge, the
agent does not understand “it’s hot” and “order a cup of Iced
Cappuccino”. However, the agent can recognize the condi-
tional structure in the utterance (the parse for Utterance 0 in
Figure 1) and can identify that “it’s hot” should represent a
Boolean expression while “order a cup of Iced Cappuccino”
represents the action to perform if the condition is true.

PUMICE’s semantic parser can mark unknown parts in user
utterances using typed resolve. .. () functions, as marked
in the yellow highlights in the parse for Utterance 0 in Figure 1.
The PUMICE agent then proceeds to ask the user to further
explain these concepts. It asks, “How do I tell whether it’s
hot?” since it has already figured out that “it’s hot” should be
a function that returns a Boolean value. The user answers “It
is hot when the temperature is above 85 degrees Fahrenheit.”,
as shown in Utterance 2 in Figure 1. PUMICE understands
the comparison (as shown in the parse for Utterance 2 in
Figure 1), but does not know the concept of “temperature”,
only knowing that it should be a numeric value comparable to
85 degrees Fahrenheit. Hence it asks, “How do I find out the
value for temperature?”, to which the user responds, “Let me
demonstrate for you.”

Here the user can demonstrate the procedure of finding the
current temperature by opening the weather app on the phone,
and pointing at the current reading of the weather. To assist
the user, PUMICE uses a visualization overlay to highlight any
GUI objects on the screen that fit into the comparison (i.e.,
those that display a value comparable to 85 degrees Fahren-
heit). The user can choose from these highlighted objects
(see Figure 2 for an example). Through this demonstration,
PUMICE learns a reusable procedure query_Temperature()

for getting the current value for the new concept remperature,
and stores it in a persistent knowledge graph so that it can be
used in other tasks. PUMICE confirms with the user every time
it learns a new concept or a new rule, so that the user is aware
of the current state of the system, and can correct any errors
(see the Error Recovery and Backtracking section for details).

For the next phase, PUMICE has already determined that
“order a cup of Iced Cappuccino” should be an action triggered
when the condition “it’s hot” is true, but does not know how
to perform this action (also known as intent fulfillment in
chatbots [23]). To learn how to perform this action, it asks,
“How do I order a cup of Iced Cappuccino?”’, to which the
user responds, “I can demonstrate.” The user then proceeds
to demonstrate the procedure of ordering a cup of Iced
Cappuccino using the existing app for Starbucks (a coffee
chain). From the user demonstration, PUMICE can figure out
that “Iced Cappuccino” is a task parameter, and can learn the
generalized procedure order_Starbucks () for ordering any
item in the Starbucks app, as well as a list of available items to
order in the Starbucks app by looking through the Starbucks
app’s menus, using the underlying SUGILITE framework [9]
for processing the task recording.

Finally, PUMICE asks the user about the else condition
by saying, “What should I do if it’s not hot?” Suppose
the user says “Order a cup of Hot Latte,” then the user
will not need to demonstrate again because PUMICE can
recognize “hot latte” as an available parameter for the known
order_Starbucks () procedure.

Design Features

In this section, we discuss several of PUMICE’s key design
features in its user interactions, and how they were motivated
by results of the formative study.

Support for Concept Learning

In the formative study, we identified two main challenges in
regards to concept learning. First, user often naturally use
intrinsically unclear or ambiguous concepts when instructing
intelligent agents (e.g., “register for easy courses”, where
the definition of “easy” depends on the context and the
user preference). Second, users expect agents to understand
common-sense concepts that the agents may not know. To
address these challenges, we designed and implemented
the support for concept learning in PUMICE. PUMICE can
detect and learn three kinds of unknown components in
user utterances: procedures, Boolean concepts, and value
concepts. Because PUMICE’s support for procedure learning
is unchanged from the underlying SUGILITE mechanisms [21,
20], in this section, we focus on discussing how PUMICE
learns Boolean concepts and value concepts.

When encountering an unknown or unclear concept in the utter-
ance parsing result, PUMICE first determines the concept type
based on the context. If the concept is used as a condition (e.g.,
“if it is hot”), then it should be of Boolean type. Similarly, if a
concept is used where a value is expected (e.g., “if the current
temperature is above 70°F” or “set the AC to the current
temperature”), then it will be marked as a value concept.
Both kinds of concepts are represented as typed resolve()



functions in the parsing result (shown in Figure 1), indicat-
ing that they need to be further resolved down the line. This
process is flexible. For example, if the user clearly defines a
condition without introducing unknown or unclear concepts,
then PUMICE will not need to ask follow-up questions for
concept resolution.

PUMICE recursively executes each resolve() function in
the parsing result in a depth-first fashion. After a concept is
fully resolved (i.e., all concepts used for defining it have been
resolved), it is added to a persistent knowledge graph (details
in the System Implementation section), and a link to it replaces
the resolve () function. From the user’s perspective, when a
resolve() function is executed, the agent asks a question to
prompt the user to further explain the concept. When resolving
a Boolean concept, PUMICE asks, “How do I know whether
[concept_name]?” For resolving a value concept, PUMICE
asks, “How do I find out the value of [concept_name]?”

To explain a new Boolean concept, the user may verbally refer
to another Boolean concept (e.g., “traffic is heavy” means
“commute takes a long time”’) or may describe a Boolean ex-
pression (e.g., “the commute time is longer than 30 minutes”).
When describing the Boolean expression, the user can use flex-
ible words (e.g., colder, further, more expensive) to describe
the relation (i.e., greater than, less than, and equal to). As ex-
plained previously, if any new Boolean or value concepts are
used in the explanation, PUMICE will recursively resolve them.
The user can also use more than one unknown value concepts,
such as “if the price of a Uber is greater than the price of a
Lyft” (Uber and Lyft are both popular ridesharing apps).

Similar to Boolean concepts, the user can refer to another
value concept when explaining a value concept. When a value
concept is concrete and available in a mobile app, the user
can also demonstrate how to query the value through app
GUIs. The formative study has suggested that this multi-modal
approach is effective and feasible for end users. After users
indicate that they want to demonstrate, PUMICE switches to the
home screen of the phone, and prompts the user to demonstrate
how to find out the value of the concept.

To help the user with value concept demonstrations, PUMICE
highlights possible items on the current app GUI if the type of
the target concept can be inferred from the type of the constant
value, or using the type of value concept to which it is being
compared (see Figure 2). For example, in the aforementioned
“commute time” example, PUMICE knows that “commute time”
should be a duration, because it is comparable to the constant
value “30 minutes”. Once the user finds the target value in an
app, they can long press on the target value to select it and
indicate it as the target value. PUMICE uses an interaction
proxy overlay [53] for recording, so that it can record all
values visible on the screen, not limited to the selectable or
clickable ones. PUMICE can extract these values from the
GUI using the screen scraping mechanism in the underlying
SUGILITE framework [20]. Once the target value is selected,
PUMICE stores the procedure of navigating to the screen where
the target value is displayed and finding the target value on the
screen into its persistent knowledge graph as a value query,
so that this query can be used whenever the underlying value
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Figure 2. The user teaches the value concept ‘“‘commute time” by demon-
strating querying the value in Google Maps. The red overlays highlight
all durations it was able to identify on the Google Maps GUI.

is needed. After the value concept demonstration, PUMICE
switches back to the conversational interface and continues to
resolve the next concept if needed.

Concept Generalization and Reuse

Once concepts are learned, another major challenge is to gen-
eralize them so that they can be reused correctly in differ-
ent contexts and task domains. This is a key design goal of
PUMICE. It should be able to learn concepts at a fine granular-
ity, and reuse parts of existing concepts as much as possible
to avoid asking users to make redundant demonstrations. In
our previous works on generalization for PBD, we focused on
generalizing procedures, specifically learning parameters [20]
and intents for underlying operations [21]. We have already de-
ployed these existing generalization mechanisms in PUMICE,
but in addition, we also explored the generalization of Boolean
concepts and value concepts.

When generalizing Boolean concepts, PUMICE assumes that
the Boolean operation stays the same, but the arguments may
differ. For example, for the concept “hot” in Figure 1, it should
still mean that a temperature (of something) is greater than
another temperature. But the two in comparison can be differ-
ent constants, or from different value queries. For example,
suppose after the interactions in Figure 1, the user instructs
a new rule “if the oven is hot, start the cook timer.” PUMICE
can recognize that “hot” is a concept that has been instructed
before in a different context, so it asks “I already know how
to tell whether it is hot when determining whether to order a
cup of Iced Cappuccino. Is it the same here when determining
whether to start the cook timer?” After responding “No”, the
user can instruct how to find out the temperature of the oven,
and the new threshold value for “hot” either by instructing a
new value concept, or using a constant value.

The generalization mechanism for value concepts works sim-
ilarly. PUMICE supports value concepts that share the same
name to have different query implementations for different



task contexts. For example, following the “if the oven is hot,
start the cook timer” example, suppose the user defines “hot”
for this new context as “The temperature is above 400 degrees.”
PUMICE realizes that there is already a value concept named
“temperature”, so it will ask “I already know how to find out the
value for temperature using the Weather app. Should I use that
for determining whether the oven is hot?”, to which the user
can say “No” and then demonstrate querying the temperature
of the oven using the corresponding app (assuming the user
has a smart oven with an in-app display of its temperature).

This mechanism allows concepts like “hot” to be reused
at three different levels: (1) exactly the same (e.g., the
temperature of the weather is greater than 85°F); (2) different
threshold (e.g., the temperature of the weather is greater than
x); and (3) different value query (e.g., the temperature of
something else is greater than x).

Error Recovery and Backtracking

Like all other interactive EUD systems, it is crucial for
PUMICE to properly handle errors, and to backtrack from er-
rors in speech recognition, semantic parsing, generalizations,
and inferences of intent. We iteratively tested early prototypes
of PUMICE with users through early usability testing, and de-
veloped the following mechanisms to support error recovery
and backtracking in PUMICE.

To mitigate semantic parsing errors, we implemented a mixed-
initiative mechanism where PUMICE can ask users about com-
ponents within the parsed expression if the parsing result is
considered incorrect by the user. Because parsing result candi-
dates are all typed expressions in PUMICE’s internal functional
domain-specific language (DSL) as a conditional, Boolean,
value, or procedure, PUMICE can identify components in a
parsing result that it is less confident about by comparing the
top candidate with the alternatives and confidence scores, and
ask the user about them.

For example, suppose the user defines a Boolean concept
“good restaurant” with the utterance “the rating is better than
2”. The parser is uncertain about the comparison operator
in this Boolean expression, since “better” can mean either
“greater than” or “less than” depending on the context. It
will ask the user “I understand you are trying to compare the
value concept ‘rating’ and the value ‘2°, should ‘rating’ be
greater than, or less than 2’ ?” The same technique can also
be used to disambiguate other parts of the parsing results, such
as the argument of resolve() functions (e.g., determining
whether the unknown procedure should be “order a cup of Iced
Cappuccino” or “order a cup” for Utterance 0 in Figure 1).

PUMICE also provides an “undo” function to allow the user to
backtrack to a previous conversational state in case of incorrect
speech recognition, incorrect generalization, or when the user
wants to modify a previous input. Users can either say that
they want to go back to the previous state, or click on an “undo”
option in PUMICE’s menu (activated from the option icon on
the top right corner on the screen shown in Figure 1).

System Implementation
We implemented the PUMICE agent as an Android app. The
app was developed and tested on a Google Pixel 2 XL phone

running Android 8.0. PUMICE does not require the root access
to the phone, and should run on any phone running Android
6.0 or higher. PUMICE is open-sourced on GitHub?.

Semantic Parsing

We built the semantic parser for PUMICE using the SEMPRE
framework [5]. The parser runs on a remote Linux server,
and communicates with the PUMICE client through an HTTP
REST(ul interface. It uses the Floating Parser architecture,
which is a grammar-based approach that provides more flex-
ibility without requiring hand-engineering of lexicalized rules
like synchronous CFG or CCG based semantic parsers [42].
This approach also provides more interpretable results and
requires less training data than neural network approaches
(e.g., [51, 52]). The parser parses user utterances into expres-
sions in a simple functional DSL we created for PUMICE.

A key feature we added to PUMICE’s parser is allowing typed
resolve() functions in the parsing results to indicate un-
known or unclear concepts and procedures. This feature adds
interactivity to the traditional semantic parsing process. When
this resolve () function is called at runtime, the front-end
PUMICE agent asks the user to verbally explain, or to demon-
strate how to fulfill this resolve () function. If an unknown
concept or procedure is resolved through verbal explanation,
the parser can parse the new explanation into an expression
of its original type in the target DSL (e.g., an explanation for
a Boolean concept is parsed into a Boolean expression), and
replace the original resolve () function with the new expres-
sion. The parser also adds relevant utterances for existing
concepts and procedures, and visible text labels from demon-
strations on third-party app GUISs to its set of lexicons, so that
it can understand user references to those existing knowledge
and in-app contents. PUMICE’s parser was trained on rich
features that associate lexical and syntactic patterns (e.g., uni-
grams, bigrams, skipgrams, part-of-speech tags, named entity
tags) of user utterances with semantics and structures of the
target DSL over a small number of training data (n = 905) that
were mostly collected and enriched from the formative study.

Demonstration Recording and Replaying

PUMICE uses our open-sourced SUGILITE [20] framework
to support its demonstration recording and replaying. SUG-
ILITE provides action recording and replaying capabilities on
third-party Android apps using the Android Accessibility API.
SUGILITE also provides the support for parameterization of
sequences of actions (e.g., identifying “Iced Cappuccino” as
a parameter and ‘“Hot Latte” as an alternative value in the
example in Figure 1), and the support for handling minor GUI
changes in apps. Through SUGILITE, PUMICE operates well
on most native Android apps, but may have problems working
with web apps and apps with special graphic engines (e.g.,
games). It currently does not support recording gestural and
sensory inputs (e.g., rotating the phone) either.

Knowledge Representations
PUMICE maintains two kinds of knowledge representations: a
continuously refreshing Ul snapshot graph representing third-

Zhttps://github.com/tobyli/Sugilite_development
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“This is the current
+ temperature of the city.”

(SET_VALUE “current temperature”
(EXTRACT VALUE hasText (AND (hasText (hasType temperature))
(below (hasText (hasType cityName)))))

Figure 3. An example showing how PUMICE parses the user’s demon-
strated action and verbal reference to an app’s GUI content into a
SET_VALUE statement with a query over the Ul snapshot graph when
resolving a new value concept “current temperature”

party app contexts for demonstration, and a persistent knowl-
edge base for storing learned procedures and concepts.

The purpose of the UI snapshot graph is to support under-
standing the user’s references to app GUI contents in their
verbal instructions. The UI snapshot graph mechanism used
in PUMICE was extended from APPINITE [21]. For every
state of an app’s GUI, a UI snapshot graph is constructed to
represent all visible and invisible GUI objects on the screen,
including their types, positions, accessibility labels, text labels,
various properties, and spatial relations among them. We used
a lightweight semantic parser from the Stanford CoreNLP [33]
to extract types of structured data (e.g., temperature, time, date,
phone number) and named entities (e.g., city names, people’s
names). When handling the user’s references to app GUI con-
tents, PUMICE parses the original utterances into queries over
the current UI snapshot graph (example in Figure 3). This
approach allows PUMICE to generate flexible queries for value
concepts and procedures that accurately reflect user intents,
and which can be reliably executed in future contexts.

The persistent knowledge base stores all procedures, concepts,
and facts PUMICE has learned from the user. Procedures are
stored as SUGILITE [20] scripts, with the corresponding trig-
ger utterances, parameters, and possible alternatives for each
parameter. Each Boolean concept is represented as a set of
trigger utterances, Boolean expressions with references to the
value concepts or constants involved, and contexts (i.e., the
apps and actions used) for each Boolean expression. Similarly,
the structure for each stored value concept includes its trigger-
ing utterances, demonstrated value queries for extracting target
values from app GUISs, and contexts for each value query.

USER STUDY

We conducted a lab study to evaluate the usability of PUMICE.
In each session, a user completed 4 tasks. For each task, the
user instructed PUMICE to create a new task automation, with
the required conditionals and new concepts. We used a task-
based method to specifically test the usability of PUMICE’s
design, since the motivation for the design derives from the
formative study results. We did not use a control condition, as
we could not find other tools that can feasibly support users
with little programming expertise to complete the target tasks.

Participants

We recruited 10 participants (5 women, 5 men, ages 19 to 35)
for our study. Each study session lasted 40 to 60 minutes. We
compensated each participant $15 for their time. 6 participants

were students in two local universities, and the other 4 worked
different technical, administrative or managerial jobs. All
participants were experienced smartphone users who had been
using smartphones for at least 3 years. 8 out of 10 participants
had some prior experience of interacting with conversational
agents like Siri, Alexa and Google Assistant.

We asked the participants to report their programming ex-
perience on a five-point scale from “never programmed” to
“experienced programmer”. Among our participants, there
were 1 who had never programmed, 5 who had only used end-
user programming tools (e.g., Excel functions, Office macros),
1 novice programmer with experience equivalent to 1-2 col-
lege level programming classes, 1 programmer with 1-2 years
of experience, and 2 programmers with more than 3 years of
experience. In our analysis, we will label the first two groups
“non-programmers’” and the last three groups “programmers”.

Procedure

At the beginning of each session, the participant received a
5-minute tutorial on how to use PUMICE. In the tutorial, the
experimenter demonstrated an example of teaching PUMICE to
check the bus schedule when “it is late”, and “late” was defined
as “current time is after 8pm” through a conversation with
PUMICE. The experimenter then showed how to demonstrate
to PUMICE finding out the current time using the Clock app.

Following the tutorial, the participant was provided a Google
Pixel 2 phone with PUMICE and relevant third-party apps in-
stalled. The experimenter showed the participant the available
apps, and made sure that the participant understood the func-
tionality of each third-party app. We did this because the un-
derlying assumption of the study (and the design of PUMICE)
is that users are familiar with the third-party apps, so we are
testing whether they can successfully use PUMICE, not the
apps. Then, the participant received 4 tasks in random order.
We asked participants to keep trying until they were able to cor-
rectly execute the automation, and that they were happy with
the resulting actions of the agent. We also checked the scripts
at the end of each study session to evaluate their correctness.

After completing the tasks, the participant filled out a post-
survey to report the perceived usefulness, ease of use and
naturalness of interactions with PUMICE. We ended each
session with a short informal interview with the participant on
their experiences with PUMICE.

Tasks

We assigned 4 tasks to each participant. These tasks were
designed by combining common themes observed in users’
proposed scenarios from the formative study. We ensured that
these tasks (1) covered key PUMICE features (i.e., concept
learning, value query demonstration, procedure demonstration,
concept generalization, procedure generalization and “else”
condition handling); (2) involved only app interfaces that most
users are familiar with; and (3) used conditions that we can
control so we can test the correctness of the scripts (we con-
trolled the temperature, the traffic condition, and the room
price by manipulating the GPS location of the phone).



Order different kinds of beverage based on the temperature

Figure 4. The graphical prompt used for Task 1 — A possible user com-

mand can be “Order Iced coffee when it’s hot outside, otherwise order hot
coffee when the weather is cold.”
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In order to minimize biasing users’ utterances, we used the
Natural Programming Elicitation method [36]. Task descrip-
tions were provided in the form of graphics, with minimal text
descriptions that could not be directly used in user instructions
(see Figure 4 for an example).

Task 1

In this task, the user instructs PUMICE to order iced coffee
when the weather is hot, and order hot coffee otherwise
(Figure 4). We pre-taught PUMICE the concept of “hot” in
the task domain of turning on the air conditioner. So the
user needs to utilize the concept generalization feature to
generalize the existing concept “hot” to the new domain of
coffee ordering. The user also needs to demonstrate ordering
iced coffee using the Starbucks app, and to provide “order hot
coffee” as the alternative for the “else” operation. The user
does not need to demonstrate again for ordering hot coffee,
as it can be automatically generalized from the previous
demonstration of ordering iced coffee.

Task 2

In this task, the user instructs PUMICE to set an alarm for
7:00am if the traffic is heavy on their commuting route. We
pre-stored “home” and “work” locations in Google Maps. The
user needs to define “heavy traffic” as prompted by PUMICE
by demonstrating how to find out the estimated commute time,
and explaining that “heavy traffic” means that the commute
takes more than 30 minutes. The user then needs to demon-
strate setting a 7:00am alarm using the built-in Clock app.

Task 3

In this task, the user instructs PUMICE to choose between
making a hotel reservation and requesting a Uber to go home
depending on whether the hotel price is cheap. The user should
verbally define "cheap" as "room price is below $100", and
demonstrate how to find out the hotel price using the Mar-
riott (a hotel chain) app. The user also needs to demonstrate
making the hotel reservation using the Marriott app, specify
"request an Uber" as the action for the “else” condition, and
demonstrate how to request an Uber using the Uber app.

Task 4

In this task, the user instructs PUMICE to order a pepperoni
pizza if there is enough money left in the food budget. The
user needs to define the concept of “enough budget”, demon-
strate finding out the balance of the budget using the Spending
Tracker app, and demonstrate ordering a pepperoni pizza using
the Papa Johns (a pizza chain) app.

“commute is less than 30 minutes.”
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Figure 5. The average task completion times for each task. The error
bars show one standard deviation in each direction.

Results

All participants were able to complete all 4 tasks. The total
time for tasks ranged from 19.4 minutes to 25 minutes for the
10 participants. Figure 5 shows the overall average task com-
pletion time of each task, as well as the comparison between
the non-programmers and the programmers. The average total
time-on-task for programmers (22.12 minutes, SD=2.40) was
slightly shorter than that for non-programmers (23.06 minutes,
SD=1.57), but the difference was not statistically significant.

Most of the issues encountered by participants were actually
from the Google Cloud speech recognition system used in
PUMICE. It would sometimes misrecognize the user’s voice
input, or cut off the user early. These errors were handled by
the participants using the “undo” feature in PUMICE. Some
participants also had parsing errors. PUMICE’s current seman-
tic parser has limited capabilities in understanding references
of pronouns (e.g., for an utterance “it takes longer than 30
minutes to get to work”, the parser would recognize it as “it”
instead of “the time it takes to get to work™ is greater than
30 minutes). Those errors were also handled by participants
through undoing and rephrasing. One participant ran into
the “confusion of Boolean operator” problem in Task 2 when
she used the phrase “commute [time is] worse than 30 min-
utes”, for which the parser initially recognized incorrectly as
She was able to correct
this using the mixed-initiative mechanism, as described in the
Error Recovery and Backtracking section.

Overall, no participant had major problem with the multi-
modal interaction approach and the top-down recursive con-
cept resolution conversational structure, which was encour-
aging. However, all participants had received a tutorial with
an example task demonstrated. We also emphasized in the
tutorial that they should try to use concepts that can be found
in mobile apps in their explanations of new concepts. These
factors might contributed to the successes of our participants.

In a post survey, we asked participants to rate statements about
the usability, naturalness and usefulness of PUMICE on a 7-
point Likert scale from “strongly disagree” to “strongly agree”.
PUMICE scored on average 6.2 on ““I feel PUMICE is easy to
use”, 6.1 on “I find my interactions with PUMICE natural”,
and 6.9 on “I think PUMICE is a useful tool for automating
tasks on smartphones,” indicating that our participants were
generally satisfied with their experience using PUMICE.



Discussion

In the informal interview after completing the tasks, partic-
ipants praised PUMICE for its naturalness and low learning
barriers. Non-programmers were particularly impressed by
the multi-modal interface. For example, P7 (who was a non-
programmer) said: “Teaching PUMICE feels similar to explain-
ing tasks to another person...[Pumice’s] support for demon-
stration is very easy to use since I'm already familiar with how
to use those apps.” Participants also considered PUMICE’s
top-down interactive concept resolution approach very useful,
as it does not require them to define everything clearly upfront.

Participants were excited about the usefulness of PUMICE. P6
said, “I have an Alexa assistant at home, but I only use them
for tasks like playing music and setting alarms. I tried some
more complicated commands before, but they all failed. If
it had the capability of PUMICE, I would definitely use it to
teach Alexa more tasks.” They also proposed many usage
scenarios based on their own needs in the interview, such as
paying off credit card balance early when it has reached a
certain amount, automatically closing background apps when
the available phone memory is low, monitoring promotions
for gifts saved in the wish list when approaching anniversaries,
and setting reminders for events in mobile games.

Several concerns were also raised by our participants. P4
commented that PUMICE should “just know” how to find out
weather conditions without requiring her to teach it since “all
other bots know how to do it”, indicating the need for a hybrid
approach that combines EUD with pre-programmed common
functionalities. P5 said that teaching the agent could be too
time-consuming unless the task was very repetitive since he
could just “do it with 5 taps.” Several users also expressed
privacy concerns after learning that PUMICE can see all screen
contents during demonstrations, while one user, on the other
hand, suggested having PUMICE observe him at all times so
that it can learn things in the background.

LIMITATIONS AND FUTURE WORK

The current version of PUMICE has no semantic understanding
of information involved in tasks, which prevents it from
dealing with implicit parameters (e.g., “when it snows”
means “the current weather condition is snowing”) and
understanding the relations between concepts (e.g., Iced
Cappuccino and Hot Latte are both instances of coffee; Iced
Cappuccino has the property of being cold). The parser also
does not process references, synonyms, antonyms, or implicit
conjunctions/disjunctions in utterances. We plan to address
these problems by leveraging more advanced NLP techniques.
Specifically, we are currently investigating bringing in external
sources of world knowledge (e.g., Wikipedia, Freebase [7],
ConceptNet [29], WikiBrain [45], or NELL [35]), which
can enable more intelligent generalizations, suggestions, and
error detection. The agent can also make better guesses when
dealing with ambiguous user inputs. As discussed previously,
PUMICE already uses relational structures to store the context
of app GUIs and its learned knowledge, which should make
it easier to incorporate external knowledge graphs.

In the future, we plan to expand PUMICE’s expressiveness
in representing conditionals and Boolean expressions. In the

current version, it only supports single basic Boolean opera-
tions (i.e., greater than, less than, equal to) without support for
logical operations (e.g., when the weather is cold and raining)
or arithmetic operations (e.g., if is at least $10 more expen-
sive than Lyft), or counting GUI elements (e.g., “highly rated”
means more than 3 stars are red) We plan to explore the design
space of new interactive interfaces to support these features in
future versions. Note that it will likely require more than just
adding grammar rules to the semantic parser and expanding
the DSL, since end users’ usage of words like “and” and “or”,
and their language for specifying computation are known to
often be ambiguous [41].

Further, although PUMICE supports generalization of proce-
dures, Boolean concepts and value concepts across different
task domains, all such generalizations are stored locally on the
phone and limited to one user. We plan to expand PUMICE
to support generalizing learned knowledge across multiple
users. The current version of PUMICE does not differentiate
between personal preferences and generalizable knowledge
in learned concepts and procedures. An important focus of
our future work is to distinguish these, and allow the sharing
and aggregation of generalizable components across multiple
users. To support this, we will also need to develop appropriate
mechanisms to help preserve user privacy.

In this prototype of PUMICE, the proposed technique is used
in conversations for performing immediate tasks instead of for
completely automated rules. We plan to add the support for
automated rules in the future. An implementation challenge
for supporting automated rules is to continuously poll val-
ues from GUIs. The current version of underlying SUGILITE
framework can only support foreground execution, which is
not feasible for background monitoring for triggers. We plan
to use techniques like virtual machine (VM) to support back-
ground execution of demonstrated scripts.

Lastly, we plan to conduct an open-ended field study to better
understand how users use PUMICE in real-life scenarios.
Although the design of PUMICE was motivated from results
of a formative study with users, and the usability of PUMICE
has been supported by an in-lab user study, we hope to further
understand what tasks users choose to program, how they
switch between different input modalities, and how useful
PUMICE is for users in realistic contexts.

CONCLUSION

We have presented PUMICE, an agent that can learn concepts
and conditionals from conversational natural language
instructions and demonstrations. Through PUMICE, we
showcased the idea of using multi-modal interactions to
support the learning of unknown, ambiguous or vague
concepts in users’ verbal commands, which were shown to
be common in our formative study.

In PUMICE’s approach, users can explain abstract concepts
in task conditions using more concrete smaller concepts, and
ground them by demonstrating with third-party mobile apps.
More broadly, our work demonstrates how combining conver-
sational interfaces and demonstrational interfaces can create
easy-to-use and natural end user development experiences.
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