
6

LEARNING BY

EXPERIMENTATION:

ACQUIRING AND REFINING

PROBLEM-SOLVING HEURISTICS

ABSTRACT

Tom M. Mitchell
Paul E. Utgoff

Rutgers University

Ranan Banerji
St. Joseph's University

This chapter concerns learning heuristic problem-solving strategies through
experience. In particular, we focus on the issue of learning heuristics to guide a
forward-search problem solver, and describe a computer program called LEX,

which acquires problem-solving heuristics in the domain of symbolic integration.
LEX acquires and modifies heuristics by iteratively applying the following
process: (i) generate a practice problem; (ii) use available heuristics to solve this
problem; (iii) analyze the search steps performed in obtaining the solution; and
(iv) propose and refine new domain-specific heuristics to improve performance
on subsequent problems. We describe the methods currently used by LEX,

analyze strengths and weaknesses of these methods, and discuss our current
research toward more powerful approaches to learning heuristics.

6.1 INTRODUCTION

Efforts to build powerful, specialized, heuristic problem solvers have met
with increasing success over the past decade. However, identifying and encod-
ing the domain-specific heuristics necessary for high performance of these sys-
tems is a painstaking, difficult process. As the complexity of a heuristic

164 CHAPTER 6: LEARNING BY EXPERIMENTATION

program grows, it becomes increasingly difficult for the system builder to predict
how the addition of a particular new heuristic or operator will affect overall sys-
tem performance. In response to this problem, there has been increased interest
over the past several years in developing semi-automated and fully-automated
methods to help construct expert heuristic problem solvers [Waterman, 1970;
Davis, 1981; Buchanan, 1978; Politakis, 1979] (See also Chapter 7 of this
book). At the same time, in the Cognitive Psychology literature there have been
several attempts to model acquisition of problem-solving skills in humans
[Anzai, 1979; Neves, 1978] (See also Chapter 7 of this book).

The research presented here is directed toward devising methods by which
heuristic problem-solving programs improve their problem-solving expertise
through experience, by generating selected problems in the domain, solving
them, and learning by analyzing their solutions. As part of this research we
have designed and constructed a computer program, called LEX, that incorporates
general methods for discovering domain-dependent problem-solving heuristics.

The organization of this chapter is as follows. The learning problem con-
sidered by LEX is described, followed by a discussion of the methods employed
by the current system. This includes methods for (i) solving practice problems,
(ii) performing the credit assignment task of isolating appropriate and in-
appropriate search steps, (iii) proposing and generalizing heuristics, and (iv)
generating new practice problems with which to experiment. The final sections
of the chapter discuss augmenting the system by giving it knowledge to conduct
detailed analyses of problem solutions. This knowledge can be used to provide
strong guidance for the generalization process, and to generate new terms in the
language with which heuristics are described. Some of the material from this
chapter is drawn from a collection of previously published articles, including
[Mitchell, 1981; Mitchell, 1982a; Mitchell, 1982b; Utgoff, 1982].

6.2 THE PROBLEM

LEX begins with a heuristic search problem solver without the heuristics. It
is given a set of operators for solving problems in symbolic integration, and it
learns a set of heuristics that recommend in which situations the various
operators should be applied. Whereas each operator given to LEX contains a set
of preconditions that characterize a class of problem states to which that operator
can validly be applied, learned heuristics characterize the more restrictive sub-
class of problem states to which the operator should be applied; that is, the sub-
class of problem states for which application of the operator leads to an accept-
able solution. Heuristics are learned by generalizing from examples of problem
states to which the operator is applied in solving practice problems. These train-
ing examples are generated by the program, by proposing, solving, and analyz-
ing practice problems.

LEX operates in the domain of symbolic integration. It solves integration

MITCHELL, UTGOFF AND BANERJI 165

problems by searching through a space of mathematical expressions containing
indefinite integrals. The operators for traversing the search space are the stan-
dard rules of integration (for instance, integration by parts) as well as transfor-
mations that characterize algebraic equivalence of expressions (such as the as-
sociative and distributive laws). The problem-solving goal is to derive a problem
state that contains no integrals.

OP1 I r· f (x) dx r I f(x) dx

OP2 Integration by parts:

OP3

OP4

OP5

OP6

OP7

I u dv uv - I v du
(the precondition is internally represented
as I f1 (x) f2(x) dx, where f1 (x) corresponds
to u and f2(x)dx corresponds to dv)

1·f (x) . - f (x)

I f1 (x) +f2 (x) dx - I f1 (x) dx + J f2(x) dx

I sin (x) dx - -cos (x) + C

I cos (x) dx - sin (x) + C

I x"r dx - [x" (r+1)] / (r+1) + C

Figure 6-1: Some of the operators for symbolic integration.

Over 40 problem-solving operators are currently provided to LEX, some of
which are shown in Figure 6-1. Each operator is interpreted as follows: If the
general pattern on the left hand side of the operator is found within the problem
state, then that pattern may be replaced by the pattern specified on the right hand
side of the operator. For example, opt indicates that if the problem state con-
tains a subexpression of the form "J r·f(x) dx" (here "r" stands for any real num-
ber, and "f(x)" for any function of x), then that subexpression may be rewritten
with the real number outside the integral.

In addition to its problem solver, representation for problem states, and
problem-solving operators, LEX also begins with a language for describing
heuristics. Each heuristic learned by LEX is of the form: .

IF the current problem state matches the applicability condition P,
THEN apply operator 0, with variable binding B.

166 CHAPTER 6: LEARNING BY EXPERIMENTATION

Thus, the generalization task that LEX faces is that of determining the ap-
propriate applicability condition, P, for each heuristic. Learning this ap-
plicability condition corresponds to learning the concept "situations in which
operator 0 should be applied, with variable binding B."

The language for describing generalizations, or applicability conditions,. of
heuristics is based on a grammar for algebraic expressions containing indefinite
integrals. The sentences derivable by this grammar are the expressions that form
legal problem states. The sentential forms derivable by the grammar constitute
legal generalizations. Briefly, the grammar contains non-terminal symbols that
correspond to classes of functions (for example, trigonometric, polynomial) and
classes of operators (such as function composition, multiplication, integration).
These can be combined to form generalized algebraic expressions. Figure
6-2 shows this grammar in the form of a hierarchy. Each node in the hierarchy
represents some substring of a sentential form, and each edge corresponds to a
rule in the grammar.

expr

)\"'1
/\ loT "I

(op expr

+ - ,., I 1\

expr)

J Der u v w x y

.... ,., ·1 0 I 2., ,

tr i 9 exp 1 09 monom (+ monom po 1 y)

,1.1, (. " kll

Figure 6-2: A grammar for a concept description language for symbolic integration.

Below is an example of the kind of heuristics that LEX can describe and
learn. This heuristic may be interpreted as "If the current problem state contains
an integrand which is the product of x and any transcendental function of x,
Then try integration by parts, with u and dv bound to the indicated
subexpressions. "

I x transc(x) dx op2 (Integration by parts),
with u = x
and dv = transc(x) dx

The language used to describe applicability conditions of heuristics deter-

MITCHELL, UTGOFF AND BANERJI 167

mines, to a great extent, the range of heuristics that can be learned by the sys-
tem. In the current system, this language is fixed. Section 6.4 discusses an
approach to dynamically altering the language when necessary.

6.3 DESIGN OF LEX

practice
problem

trace of
problem

solving
behavior

Figure 6-3: The major components of LEX.

part i all y
learned
heuristics

training
instances

LEX is based on four program modules, as shown in Figure 6-3. These
modules are summarized below, and described in more detail in the following
subsections.

1. Problem Solver- This module utilizes whatever operators and heuristics
are currently available, to solve a given practice problem. The output of
this module is a solution to the given problem, along with a detailed trace
of the search performed in attempting to solve the problem.

2. Critic-This module analyzes the search performed by the Problem Solver.
The output of this module is a set of positive and negative training in-
stances from which heuristics will be inferred. Positive instances cor-
respond to desirable search steps executed in solving the problem, whereas
negative instances correspond to undesirable steps.

168 CHAPTER 6: LEARNING BY EXPERIMENTATION

3 . Generalizer-This module proposes and refines general heuristics intended
to produce more effective problem-solving behavior on subsequent
problems. It formulates heuristics by generalizing from the training in-
stances provided by the Critic.

4. Problem Generator-This module generates practice problems to be con-
sidered by the other modules. It attempts to generate practice problems
that will be informative (that is, problems that will lead to training data
useful for proposing and refining heuristics), yet easy enough to be solved
using existing heuristics.

6.3.1 Representing Incompletely-learned Heuristics

LEX learns heuristics incrementally, requiring many positive and negative
training instances before converging to a final definition of any given heuristic.
Therefore, at any given stage in the system's development, there are typically
many partially-learned heuristics whose exact description is underdetermined by
the data, knowledge, and assumptions currently held by the system. It is essen-
tial that the system have a way of describing what the system does and does not
know about each such partially-learned heuristic. This information is important
(i) to the Problem Solver, which must use the partially-learned heuristics in try-
ing to solve problems, (ii) to the Generalizer, which must revise partially-learned
heuristics as new training data become available, and (iii) to the Problem Gener-
ator, which must choose practice problems that will lead to refinements of
partially-learned heuristics.

LEX represents each partially-learned heuristic by representing the range of
all alternative plausible descriptions of the heuristic. A description is considered
plausible if it applies to all the known positive instances associated with the
heuristic, but to none of the negative instances. Thus, for each partially-learned
heuristic, we refer to the set of all plausible descriptions of the heuristic as the
version space of the partially-learned heuristic, relative to the observed instances
and the language in which heuristics are described.

While, in principle, the version space of a partially-learned heuristic could
be represented by listing all of its members, there are typically far too many
plausible descriptions of a heuristic for this to be feasible. Fortunately, a much
more compact method for representing version spaces is possible. Any version
space can be represented compactly by storing only its maximally-specific and
maximally-general elements, according to the following definition of "more
specific".

MITCHELL, UTGOFF AND BANERJI

Heuristic HI is more specific than or equal to heuristic H2 if and only if
both of the following conditions hold:

169

1. The applicability condition of H2 matches every instance matched by the applicability
condition of HI (that is, the applicability condition of HI is more specific than or
equal to the applicability condition of H 1).

2. In each case where both HI and H2 apply, their recommendations are identical (that
is, they recommend the same operator and the same binding of operator arguments).

s: J 3x cos (xl dx - Apply OP2

J kx cos (xl dx - Apply OP2 J 3x tr i 9 (xl dx - Apply OP2

/
"'"

/ '" J rx cos (xl dx - Apply OP2 J kx tr i 9 (xl dx - Apply OP2

/'" / \

.

J poly(xl f(xl dx - Apply OP2 '" / J f (xl transc(x) dx .. Apply OP2

G: J f1 (xl f2 (xl dx - Apply OP2

Figure 6-4: Representing a version space.

We will refer to the maximally-specific members of a version space as the
subset S of the version space, and to the maximally-general (minimally-specific)
members of the version space as the subset G. LEX represents the version space
of each partially-learned heuristic by storing the subsets S and G of that version
space, as illustrated in Figure 6-4. In this figure, some of the members of a
particular version space are shown, with the more-specific-than relationship
among them indicated. While there are very many plausible heuristic descrip-
tions in this version space, the (singleton) sets Sand G completely determine the
version space by the following rule: a heuristic description is contained in the
version space if and only if it is both (i) more specific than or equal to some
member of G, and (ii) more general than or equal to some member of S.

This representation and use of version spaces for generalizing from ex-

170 CHAPTER 6: LEARNING BY EXPERIMENTATION

amples has been used previously in the META-DENDRAL program for inferring
rules of mass spectroscopy, and is described more fully in [Mitchell, 1978] and
[Mitchell, 1982a]. In [Mitchell, 1978] a more formal definition of version

spaces is given, along with proofs that the algorithm for incrementally updating
the sets Sand G is correct.

f 3x cos (x) dx

cos (x) dx

\

OP2 with
u = 3x.
dv = cos (x) dx

3x sin (x) - f 3s i n (x) dx

OP1! \

3x sin (x) - 3 J sin (x) dx

0"1
3x sin (x) + 3cos(x) + c

Figure 6·5: The learning cycle in LEX.

Version space of a proposed heuristic
s: f 3x cos (x) dx -> Apply OP2

with u = 3x. and
dv c cos (x) dx

f2(x) dx -> Apply OP2
wi th u = f1(x)
and dv = f2

One of the suggested
positive training instances:

J 3x cos (x) dx -> Apply OP2
with u = 3x. and
dv = cos (x) dx

The remainder of this section presents the methods used by the four
modules of LEX, in formulating and refining heuristics. The discussion centers
around the example shown in Figure 6-5, which illustrates one particular practice
problem considered by LEX, and the resulting version space of one heuristic.
This figure shows the search tree generated by the Problem Solver, one of the
training instances produced by the Critic, and the sets Sand G computed by the
Generalizer to describe the resulting proposed heuristic.

MITCHELL, UTGOFF AND BANERJI 171

6.3.2 The Problem Solver

The Problem Solver uses a forward-search strategy guided by whatever
heuristics are available during the current propose-solve-criticize-generalize
cycle. The Problem Solver accepts as input a problem to be solved, along with
a resource limit on the CPU time and memory space that it may expend in at-
tempting to solve that problem. If the problem is not solved within the allocated
resources, the Problem Solver stops and waits for a new problem.IUnsolved
problems do not lead to any learning, because the credit assignment strategy of
the Critic depends upon knowing the problem solution.

The Problem Solver generates a search tree, repeatedly choosing a node to
expand and an operator with which to expand it, as shown below.

DO UNTIL problem is solved OR resource allocation is expended

BEGIN

IF no heuristics are applicable to any open node

THEN expand the lowest cost open node, using any applicable operator

ELSE IF exactly one heuristic applies to exactly one open node,

THEN execute the step recommended by that heuristic,

ELSE follow the recommendation of one of the applicable heuristics,
choosing that heuristic which applies with the highest estimated
degree of match (see explanation below).

END.

Here, the "cost" of a node refers to the sum of CPU time expended for
each step leading from the root of the tree to that node. An open node refers to
any node in the search tree with at least one applicable operator that has not yet
been applied. The notion of "estimated degree of match" of a heuristic to a node
is introduced to allow using partially-Ieamed heuristics in a reasonable fashion.
Notice that for a given partially-learned heuristic and search node, it is possible
that some of the alternative plausible descriptions of the heuristic will match the
node while others will not. Because of this we define the degree of match of a
partially-Ieamed heuristic to a given node as the proportion of the members of its
version space that match the node. Because the degree of match is difficult to
compute exactly, it is estimated by the proportion of members in the union of S
and G that match the given problem state.

The ability of the Problem Solver to use partially-Ieamed heuristics to con-

ILEX makes no distinction between problems that are unsolvable in principle, and those that are
solvable in principle but unsolvable within the given resource limits.

172 CHAPTER 6: LEARNING BY EXPERIMENTATION

trol search is important in allowing it to solve problems that will provide ad-
ditional training data. In experiments with LEX, it has typically been the case
that the majority of available heuristics are only partially learned. Even so, it is
quite common that a partially-learned heuristic will apply to a particular node
with a degree of match of 1. In such cases, even though the exact identity of
the heuristic is not yet determined, the applicability of the heuristic to this par-
ticular node is fully determined (that is, it does not matter which of the alter-
native heuristic descriptions is correct, since they all apply to the node in
question). The ability to distinguish such cases from those in which there is
ambiguity regarding the heuristic recommendation is an important capability in
the Problem Solver's use of partially-learned heuristics.

6.3.3 The Critic

After a solution has been determined, the Critic faces the task of assigning
credit (or blame) to individual search steps for their role in leading to (or away
from) a solution. The Critic examines the detailed search trace recorded by the
Problem Solver, and selects certain search steps to be classified as positive or
negative training instances for forming general heuristics. Each training instance
corresponds to a single search step; that is, the application of a single operator to
a given problem state, with a particular binding of operator arguments.

Figure 6-5 illustrates part of the search tree generated by the Problem Sol-
ver for a given practice problem, and one of the associated positive training in-
stances produced by the Critic. The positive instance shown there corresponds to
the first step along the path to the solution.

The criterion used by the Critic to produce training instances may be sum-
marized as follows:

1. The Critic labels as a positive instance every search step along the lowest
cost solution path found. Here, the cost of a solution is taken to be the
sum of the execution times of all operators applied along the solution path.

2. The Critic labels as a negative instance every search step that (i) leads
away from a node on the lowest cost solution path found, to a node not on
this path, and (ii) when its resulting problem state is given anew to the
Problem Solver, leads either to no solution or to a higher cost solution.
Here a solution is considered higher cost if its cost is more than a certain
factor times the cost of the lowest cost known solution (currently this fac-
tor is set to 1.15). The resource allocation given to the Problem Solver in
this case is equal to the resources spent in obtaining the known solution.

Notice that the Critic is not infallible. It is possible for the Critic to
produce positive training instances that are not on the minimum cost solution
path, but are rather on the lowest cost solution path found by the Problem Sol-
ver. Also, it is possible for the Critic to label as negative a search step that is in
fact part of the true (but never discovered) minimum cost solution path. Both

MITCHELL, UTGOFF AND BANERJI 173

kinds of errors can arise because the heuristic Problem Solver is not assured of
finding the minimum cost solution. Criterion 2(U) above is included in order to
reduce the likelihood that such errors will occur. Here, the Critic reinvokes the
Problem Solver, giving it a problem state associated with a potential negative
instance, in order to explore a portion of the problem space that may not have
been sufficiently considered during the solution of the original problem. If the
Problem Solver is unable to find an appropriate solution from the given state
within the specified resource limits, the confidence that this is a negative in-
stance is increased. If the Problem Solver finds a lower cost solution when it is
reinvoked, this new solution is used in determining positive training instances.
Of course, the only completely error-free strategy for labeling training instances
requires a full breadth-first or uniform-cost search, which is usually prohibitively
time consuming.

The Critic typically produces between two and twenty training instances
from each solved problem, depending upon the length of the problem solution
and the branching factor of the search (the search trees produced by the Problem
Solver typically contain from a few to a few hundred search nodes). We have
found empirically that even though the Critic cannot guarantee correct classifica-
tions, it rarely produces incorrect training instances. We have also found thllt in
a significant number of cases, when the Critic calls the Problem Solver to con-
sider a possible negative instance (see criterion 2(U) above) an improved solution
is found. For example, in one run of LEX for a sequence of 12 training
problems, this occurred 4 times. In those cases in which the Problem Solver
does not find the best solution during its first attempt, the cause is usually a
misleading recommendation by an incompletely-learned heuristic.

6.3.4 The Generalizer

The Generalizer considers the positive and negative training instances sup-
plied by the Critic within the current learning cycle, in order to propose and
refine heuristics to improve problem-solving performance. The generalization
problem faced by this module is one of learning from examples. Given a se-
quence of training instances corresponding to search steps involving a given
operator, the generalization problem here is to infer the general class of problem
states for which this operator will be useful, along with the range of appropriate
bindings for operator variables.

The Generalizer describes the version space for each propost(d heuristic, by
computing the sets S and G that delimit the plausible versions of that heuristic.
For example, Figure 6-5 shows a positive training instance associated with op2
as input to the Generalizer. The output of the Generalizer in this case is a ver-
sion space corresponding to a partially-learned heuristic, and represented by the
(singleton) sets Sand G shown in Figure 6-5. This partially-learned heuristic is
proposed on the basis of the single training instance shown, and will be refined
as subsequent instances become available. Below, we describe the procedures
for proposing and refining problem-solving heuristics in LEX.

174 CHAPTER 6: LEARNING BY EXPERIMENTATION

Proposing a new heuristic-When the Generalizer is given a new positive
instance, it determines whether any member of the version space of any current
heuristic applies to this instance. If not, a new heuristic is formed to cover the
positive instance. This is the case in the example of Figure 6-5. In forming a
new heuristic, the set S is initialized to the very specific version of the heuristic,
that applies only to the current positive training instance (this is the most specific
possible version consistent with the single observed training instance). G is in-
itialized to the version of the heuristic that suggests the operator will prove use-
ful in every situation where it can validly be applied; that is, it is initialized to
the given precondition of the operator being recommended. Thus, in the ex-
ample of Figure 6-5, G is initialized to the version whose precondition is the
precondition for op2. Here, J f1(x) f2(x) dx represents the integral of the
product of any two real functions of x, and corresponds to the precondition J u
dv as it is stated in the system's generalization language.

At this point, S and G delimit a broad range of alternative versions of the
proposed heuristic, corresponding to all the generalizations expressible in the
given language that are consistent with this single training instance. As sub-
sequent positive instances are considered, S becomes more general to include
newly-observed instances in which op2 is found to be useful. Likewise, as sub-
sequent negative instances are considered, G becomes more specific in order to
exclude negative instances in which op2 may validly be applied, but in which it
does not lead to an acceptable solution path. Thus, the range of alternative
plausible versions of the heuristic delimited by Sand G will narrow as new in-
formation is acquired through subsequent practice problems, and the uncertainty
regarding the correct description of the heuristic is thereby reduced.

Refining incompletely-learned heuristics--If the Generalizer finds that an
existing heuristic applies to a newly-presented positive or negative instance (that
is, if its degree of match to the instance is nonzero), then that heuristic is revised
by eliminating from its version space any version that is inconsistent with this
training instance. In the current example, the next practice problem that is con-
sidered is J 3x sin (x) dx (the following section explains why). The solution to
this problem leads to both a positive and a negative training instance for the
heuristic from Figure 6-5. Figure 6-6 shows these two new training instances,
and the way in which they lead to a refinement of the version space of this
heuristic. In the revised version space shown there, the most specific version, S,
of the heuristic has been generalized just enough to allow it to apply to the new
positive training. instance. Here trig(x) replaces cos(x) so that the heuristic will
apply to integrals containing any trigonometric function of x. The program deter-
mines this revision by first noting that the term cos(x) in the old S prevents that
generalization from applying to the new instance. It then consults the grammar
for expressing heuristics (shown in Figure 6-2) to determine the next more

MITCHELL, UTGOFF AND BANERJI

Version Space of Heuristic

S: f 3x cos (x) dx -> Apply OP2 with
u = 3x, and
dv = cos (x) dx

G: f f 1 (x) f 2 (x) dx -> Apply OP2 with
u = f 1 (x) , and
dv = f2 (x) dx

New Training Instances:

Positive training instance:

f 3x sin (x) dx -> Apply OP2 with
u = 3x, and
dv = sin (x) dx

Negative training instance:

f 3x sin (x) dx -> Apply OP2 with
u = sin (x), and
dv = 3x dx

Revised Version Space:

S: f 3x trig(x) dx -> Apply OP2 with
u = 3x, and

G:

dv = trig(x) dx

g1: f poly(x) f2(x) dx -> Apply OP2 with
u = po I y (x), and
dv = f2(x) dx

g2: f f1 (x) transc (x) dx -> Apply OP2
with u = f1 (x), and
dv = transc(x) dx

Figure 6·6: Revising the version space of a heuristic.

175

176 CHAPTER 6: LEARNING BY EXPERIMENTATION

general term that can be substituted in order to include this new instance.2

The general boundary of the revised version space of Figure 6-6 has also
been altered so that it does not apply to the new negative training instance. In
this case, there are two maximally-general versions (gl and g2) of the heuristic
consistent with the three observed training instances. Here, "poly(x)" refers to
any polynomial function of x, and "transc(x)" denotes any transcendental func-
tion of x. As with revising the set S, revisions to G depend upon the generaliza-
tion language being used. For instance, gl is computed by replacing flex)
(which represents "any real-valued function") by the next more specific accept-
able expression. Notice in the hierarchy of Figure 6-2, this expression is "poly".

As subsequent training instances are considered, this partially-learned
heuristic is further refined, and Sand G converge to the heuristic description
shown below. Notice that this description is contained in the version space
represented in Figure 6-6, since it is more general than the S boundary set and
more specific than the G boundary set of the version space.

f rx transc(x) dx apply op2 with u = rx, and dv = transc(x) dx

Although the Generalizer attempts to form a single conjunctive heuristic for
each operator known to the system, sometimes it is not possible to cover all the
positive instances and exclude all the negative instances with a single conjunctive
generalization. The Generalizer deals with learning disjunctions in the following
straightforward manner: if a positive instance associated with operator ° is not
consistent with any current heuristic that recommends operator 0, then it
proposes a new heuristic (that is, disjunct) for operator ° that covers this in-
stance. This new heuristic will be updated by all subsequent negative instances
associated with operator 0, and by any subsequent positive instances associated
with operator ° and to which at least some member of its version space applies.
This technique for learning disjunctive concepts is similar to several described
previously (for example, [Mitchell, 1978; Iba, 1979; Vere, 1978]).

How effective is the Generalizer at producing useful heuristics? One way
to answer this question is to measure the improvement in problem-solving perfor-
mance due to learned heuristics. In one experiment that illustrates typical be-
havior of LEX, a sequence of twelve hand-selected3 training problems was
presented to the Problem Solver, Critic, and Generalizer, and performance of the
Problem Solver was measured at various stages in the training sequence. Perfor-

2Although the disjunction "cos(x) OR sin(x)" would be a more specific generalization than "trig", this
disjunction is not currently in the generalization language, and therefore cannot be stated by the
program. Of course if this disjunction were defined a priori as a separate term in the language, then
it would be considered by the Generalizer.

3At the time that this experiment was conducted, we had not implemented the Problem Generator
module.

MITCHELL, UTGOFF AND BANERJI 177

Total 200
Search *
Steps

Executed
in 100 *

Solving • Set of Test
Problems * •

o

Number of Training Problems Completed

Figure 6·7: Performance Results

mance was measured by testing the Problem Solver on a set of five test problems
before any training had occurred, and again after every second training problem.
The five test problems were different from the set of twelve training problems,
though the two sets were chosen to be similar enough that learned heuristics
would be relevant to the test problems. This experiment is reported in greater
detail in [Mitchell, 1981], and is summarized in Figure 6-7.

Fourteen heuristics were formed by LEX during this training session, cover-
ing thirteen of the 32 operators available to the system at that time. Twelve of
these fourteen heuristics remained incompletely learned at the end of the training
sequence (that is, their version space still contained mUltiple plausible descrip-
tions of the heuristic).

Figure 6-7 shows the improvement in problem-solving performance
(roughly two orders of magnitude) for this experiment, as measured by the total
number of search steps required in attempting to solve the five test problems. At
certain points during the training, the Problem Solver could not solve all five test
problems within the given resource allocation.4 Such points are shown as a "*,,
in Figure 6-7, and the number of search steps recorded in those cases is the num-
ber of steps executed before the solution attempt was aborted. While the exact
values of the points on this curve would be different for different sets of training
and test problems, the general form of the curve is quite repeatable, given
reasonable test problems and a well-chosen sequence of training problems.

In addition to observing that problem-solving performance improved sig- .
nificantly using the learned heuristics, it is interesting to note that problem-
solving performance did not improve monotonically as a function of training. In
particular, while all five test problems could be solved following the fourth train-

4The Problem Solver was allowed four CPU minutes and 800,000 cons cells per test problem,
running in RUCILISP on a DEC2060.

178 CHAPTER 6: LEARNING BY EXPERIMENTATION

ing problem, only four of the test problems could be solved after the sixth train-
ing problem. This phenomenon was due to the proposal of new, partially-
learned heuristics that led the Problem Solver to consider new (and not very
useful) branches of the search in one of the test problems. Subsequent training
refined these heuristics and the Problem Solver became able again to solve (this
time more efficiently) all five test problems by the completion of the eighth
training problem.

6.3.5 The Problem Generator

After a practice problem has been solved and analyzed, and the resulting
training data has been used to propose and refine heuristics, the Problem Gener-
ator must propose a new practice problem. This module is responsible for focus-
ing the system's efforts on useful activity, by choosing useful experiments. Its
task is very different from that of a teacher of symbolic integration, or an outside
trainer in most work· on learning from examples. In contrast to an expert tea-
cher, the Problem Generator must choose appropriate practice problems without
knowing the heuristics that it is trying to teach. While the Problem Generator
lacks this important information, it has other information that an expert teacher
may not have: very detailed knowledge about the learner's current state
(including knowledge of alternative versions of heuristics under consideration).
As a result of these characteristics, the experimentation strategy of the Problem
Generator is based primarily on generating problems designed to eliminate
known ambiguities in LEX'S heuristic knowledge.

The major criteria for generating problems are (i) to generate training
problems whose solutions will provide informative new training data, and (ii) to
generate training problems that can be solved using the available operators and
current set of heuristics. The current implementation of the Problem Generator
is based mainly on the first of these considerations, and consists of two different
problem generation tactics.

The first problem generation tactic is to produce problems that will allow
refinement of existing, partially-learned heuristics. This is done by selecting a
partially-learned heuristic, then generating a problem state that matches some,
but not all, of the members of the version space of that heuristic. For example,
consider the partially-learned heuristic described by the version space at the top
of Figure 6-6. The problem state J 3x sin(x) dx matches some, but not all, of
the alternative generalizations in this version space, and is therefore a useful
problem to attempt to solve. By solving the problem, LEX will find out whether
or not the heuristic should cover this problem state. If the answer is yes, a posi-
tive instance will be produced for this heuristic, and the S boundary of the ver-
sion space will be generalized. If the answer is no, a negative instance will be
produced, and the G boundary of the version space will be specialized. As it
turns out, this problem leads to both a positive and a negative instance
(corresponding to different bindings of operator arguments), and both version
space boundaries are refined as shown in Figure 6-6.

MITCHELL, UTGOFF AND BANERJI 179

How does the Problem Generator create a problem that matches part of a
given version space? It begins by selecting a single member, sl, of the S
boundary, and a more general member, g 1, of the G boundary. (In the version
space at the top of Figure 6-6 both boundary sets happen to be singleton sets.) It
then creates, as follows, a problem state that matches gl, but does not match s1.
One term in the generalization sl is selected (in this case cos(x)), and the cor-
responding term in gl is found (in this case f2(x)). The generalization hierarchy
(see Figure 6-2) is then examined to determine a sibling of the term from sl, that
is more specific than the corresponding term from g1. In this case, sin(x) is a
sibling of cos(x) that is more specific than f2(x). This sibling is then substituted
into sl, and the resulting generalization is fully instantiated to produce a problem
state that matches gl, but not the original s1. In the current example, this leads
to the problem state I 3x sin(x) dx. Notice that if the term 3x were chosen,
rather than cos(x), as the basis for forming a new problem state, the new
problem might instead be I 7x cos(x) dx. Furthermore, both of these terms
could be replaced to produce the problem state I 7x sin (x) dx. Because of the
need to create a problem that can be solved, the Problem Generator attempts to
create a problem that is very similar to the most recently encountered positive
instance for the heuristic. Therefore, only a single term from sl is altered, and
the resulting generalization is instantiated to correspond as closely as possible to
the most recently encountered positive instance (a known solvable problem).

The second tactic for problem generation is to create a problem that will
lead to proposing a new heuristic. This is accomplished by looking for pairs of
operators whose preconditions intersect, but for which there is no current heuris-
tic. Should a problem be encountered for which both operators apply, a heuristic
will be needed to choose which of the two to apply. For example, consider opl
and op3 from Figure 6-1. The intersection of the preconditions of these
operators is I l·f(x) dx; that is, both opl and op3 will apply to any problem that
matches this applicability condition. This applicability condition is therefore in-
stantiated to produce a specific problem state (such as I l·cos(x) dx) which is
then output by the Problem Generator. When the Problem Solver, Critic, and
Generalizer consider this problem, a new heuristic will be proposed which will
be useful in selecting between opl and op3 in cases where they are both ap-
plicable.

The current Problem Generator incorporates the above two tactics for creat-
ing practice problems, and can employ any of several strategies for determining
which tactic to apply at any given step. One such experimentation strategy is to
apply the first tactic (refine an existing heuristic) whenever possible, and to ap-
ply the second tactic only when the first cannot be applied (for example, when
the system begins operation and has no heuristics at all). While we have not yet
done extensive testing of this module, it has been used to generate sequences of
practice problems that lead to useful heuristics. The main observations that have
come out of our preliminary experiments with this module are given below .

• It will be useful to extend the other system modules so that they can take

180 CHAPTER 6: LEARNING BY EXPERIMENTATION

into account the reason why the current problem has been suggested, and
focus their activity accordingly. For example, if a problem is suggested in
order to refine a particular heuristic, then the Problem Solver and Critic
should be sure to consider the search steps that become training instances
for that heuristic, and the Critic might allocate greater resources to obtain a
reliable classification of that training instance.

• While the tactics described above are generally successful at creating infor-
mative problems to consider, they are not always successful at creating
solvable problems. Some problems that are generated are simply not solv-
able with the set of operators known to the system. Other generated
problems are solvable in principle, but cannot be solved within the al-
located CPU time and space resources, using existing heuristics. In our
initial experiments, more than half the generated problems turned out to be
solved by the Problem Solver. Both of the current tactics produce a
generalization which can be instantiated in any fashion to produce an infor-
mative problem. The instantiation is then controlled by a single heuristic:
try to create a problem state that is as similar as possible to a previously-
solved problem. More reliable methods for creating solvable instances of
problems may require that the system have (or acquire) more appropriate
knowledge about the characteristics of solvable problems.

• It may be useful to introduce a new tactic that produces problems that are
guaranteed to be solvable, by beginning with a goal state, then applying
inverses of the known operators to produce a problem state with a known
solution. While the solution produced along with the problem will not
necessarily be the optimal solution, it will provide an upper bound on the
cost of the optimal solution. For this tactic to be useful, there must be a
way of selecting sequences of operators that produce informative as well as
solvable problems.

• There are also interesting questions to be considered regarding global
strategies for exploring the problem domain. For example, should the
Problem Generator focus first on refining existing heuristics, and then sug-
gest problems that lead to new heuristics? Or is it better to build up a
more broad set of heuristics, focusing at each step on problem types for
which no heuristics yet exist, leaving refinement of these heuristics until a
broad set of incompletely-determined heuristics are proposed?

6.4 NEW DIRECTIONS: ADDING KNOWLEDGE TO AUGMENT LEARNING

The current LEX system, as described in the previous section, is able to
learn useful problem-solving heuristics in the domain of symbolic integration, by
generalizing from self-generated examples. There are several features of the
design of LEX that have an important impact on its capabilities. The ability to
represent incompletely-learned heuristics is crucial; to the Problem Solver that

MITCHELL, UTGOFF AND BANERJI 181

must use these partially-learned heuristics in order to solve additional practice
problems to obtain additional training data; to the Generalizer that must refine
these heuristics; and to the Problem Generator that must be able to consider alter-
native plausible descriptions of a heuristic in order to suggest an informative
practice problem. The ability of the Critic to produce reliable training instances
is also crucial to system performance. In spite of the heuristic nature of the
Critic's credit assignment method (following from the fact that only part of the
search space is explored by the Problem Solver), the Critic fact performs quite
well in producing reliable classifications of training instances. Its ability to call
the Problem Solver in a controlled manner to explore selected portions of the
search space is important to increasing the reliability of its classifications of
training instll1lces. The Generalizer's use of the version space method for
generalizing from examples is also a major feature of LEX, which gives it the
capability to incrementally converge on heuristics consistent with a sequence of
training instances observed over the course of many practice problems.

While LEX is able to learn useful heuristics, it also has significant limita-
tions. One of the most fundamental difficulties is that learning is strongly tied to
the language used to describe heuristics-the system can only learn heuristics
that it can represent in the provided language. It is difficult to manually select
an appropriate language before ls:arning occurs, and LEX often fails to converge
on an acceptable heuristic for a given set of training instances, simply because it
does not have the appropriate vocabulary for stating the heuristic. For example,
we have found that the addition of terms such as "odd integer" and "twice in-
tegrable function" to the language shown in Figure 6-2, would allow LEX to
describe (and therefore learn) heuristics that it cannot currently represent. This
constraint imposed by a fixed representation language is one of the most fun-
damental difficulties associated with this and some other approaches to learning
from examples.

A second deficiency of LEX is its failure to take advantage of an important
source of information for chosing an appropriate generalization: analysis of why a
particular search step was useful in the context of the overall problem solution.
By analyzing the role of a particular search step in leading to a problem solution,
it is sometimes possible for humans to determine a very good general heuristic
after observing only a single training instance. If LEX were to conduct such an
analysis, it would converge much more quickly on appropriate heuristics, pos-
sibly with less sensitivity to classification errors by the Critic.

In this section, we describe our current research toward giving LEX new
knowledge and reasoning capabilities to overcome the above limitations. In par-
ticular, we consider how knowledge about heuristic search and about the in-
tended purpose of learned heuristics could allow LEX to (i) derive justifiable
generalizations of heuristics via analysis of individual training instances, and (ii)
respond to situations in which the vocabulary for describing heuristics is insuf-
ficient to characterize a given set of training instances. More detailed discus-
sions of this material can be found in [Mitchell, 1982b] and [Utgoff, 1982]. The

182 CHAPTER 6: LEARNING BY EXPERIMENTATION

kind of knowledge considered here, regarding the intended purpose of learned
heuristics, is one kind of meta-knowledge that can be useful in acquiring
problem-solving strategies. The importance of meta-knowledge in acquiring
problem-solving strategies is also discussed in other chapters of this book, such
as Chapters 9 and 12.

6.4.1 Describing the Learner's Goal

In order to reason about why a given training instance is positive, and to
determine which features of the training instance are relevant, it is necessary that
the system have a definition of the criterion by which the instance is labeled as
positive (that is, the criterion that determines the goal of its learning activity).
LEX is intended to learn heuristics that lead the Problem Solver to minimum cost
solutions of symbolic integration problems. This goal is implicit in the credit
assignment procedure used by the Critic, which attempts to classify individual
search steps as positive or negative according to this criterion. While this
criterion is currently defined procedurally within the Critic, it is not defined
declaratively, and the system therefore cannot reason symbolically about its
learning goal. Here we present a declarative representation of this credit assign-
ment criterion, then discuss in subsequent subsections how this knowledge
provides the starting point for analyzing training instances, and extending the
vocabulary of the language for describing heuristics.

To simplify the examples and discussion here, we assume a slightly
modified credit assignment criterion, for which the goal of LEX is to learn heuris-
tics that recommend problem-solving steps that lead to any solution (rather than
the minimum cost solution). In this case, any search step that applies some
operator, op, to some problem state, state, is a positive instance, provided it
satisfies the predicate PosInst defined as follows:

Poslnst(op, state) ¢:>

-Goal(state) /\ [Goal(Apply(op, state» V Solvable(Apply(op, state))].

Here, Goal is the predicate for recognizing solution states, Apply is the
function for applying operators to states, and Solvable is the predicate that tests
whether a state can be transformed to a Goal state with the available operators.

Solvable is defined as follows:
Solvable(state) ¢:>

(3 op) [Goal(Apply(op, state» V Solvable(Apply(op,state))]

6.4.2 Analyzing Training Instances to Guide Generalization

This section suggests how the declarative representation of the credit as-
signment criterion, PosInst, could be used by LEX to produce a justifiable
generalization of a heuristic based on analysis of a single training instance. The
key idea here is that by analyzing why the observed positive instance is classified
as positive, in the context of the overall problem solution, it is possible to deter-

MITCHELL, UTGOFF AND BANERJI 183

mine a logically sufficient condition for satisfying Poslnst. Such an analysis
leads to a justifiable generalization of the heuristic, that follows from the credit
assignment criterion, together with knowledge about search and the represen-
tation of operators and problem states. This process is related to the process of
operationalizing advice, as discussed by Mostow in Chapter 12 of this book and
by [Hayes-Roth, 1980]. The particular method for analyzing solution traces is a
generalization of the method of solution analysis presented in [Fikes et al.,
1972].

As an example, suppose that the system has just produced the problem
solution tree shown in Figure 6-8, and the generalizer is now considering the
first step along the solution path as a positive training instance for a heuristic that
is to recommend op 1. Assuming no heuristic yet exists for op 1, the empirical
generalization method described earlier will produce the following version space
for the new heuristic:

s: I 7 (x2) dx =? use opl

G: I r f(x) dx =? use opl

In this example, analysis of how this training instance satisfies the credit
assignment criterion will lead to additional information for refining the above
version space of alternative hypotheses. The trace of this analysis is broken into
four main stages, which attempt to determine some property of the integrand in
the training instance which is sufficient to assure that the credit assignment
criteria will be met. This sufficient condition for satisfying PosInst can then be
used to further generalize the S boundary of the version space for this heuristic.
The four main stages are (i) Generate an explanation that shows how the current
positive instance satisfies PosInst, (ii) Extract from this explanation a sufficient
condition for satisfying PosInst, (iii) Restate the sufficient condition in terms of
the generalization language (that is, the language of applicability conditions for
heuristics), as restrictions on various problem states in the solution tree, and (iv)
Propagate the restrictions on various problem states through the solution tree, and
combine them into a generalization that corresponds to a sufficient condition for
assuring PosInst will be satisfied.

Stage 1: Produce an explanation of how the current training instance
satisfies Poslnst. This explanation is produced by instantiating the definition of
PosInst for the instance in question. By determining which disjunctive
clauses in the definition of PosInst are satisfied by the current training instance,
and then by further expanding those clauses by instantiating predicates to which
they refer, a proof is produced that PosInst(opl, Statel). The result of this stage
is an And/Or proof tree, which we shall call the explanation tree for the training
instance. The tip nodes in the explanation tree are known to be satisfied because
of the observed solution tree to which the training instance belongs. This ex-
planation tree indicates how the training instance satisfies Poslnst, and forms the
basis for generalization by inferring sufficient conditions for satisfying PosInst.

The explanation tree for the positive training instance <op 1, State 1> is

184 CHAPTER 6: LEARNING BY EXPERIMENTATION

state1: J 7 (xI\2) dx

/

OP1:
J r f (x) dx ==> r Sf (x) dx

state2:

(xl\{r NEQ -1}) .. (xl\(r+1))/(r+1)

state3: 7 (xI\3) /3

Figure 6-8: The solution tree for example I.

Poslnst(OP1, State1)

State1))

(3 op) (Slab Ie (App I Y (oP. (App I Y OP1.

Goal (Apply (OP9, Apply (OP1 , State1»)

Figure 6-9: The explanation tree for PosInst(opl, State)).

-(Goal (State1»

State1»))

shown in Figure 6-9. Nodes in the explanation tree correspond to statements
about various problem states and operators in the associated solution tree. The
explanation tree for the current example indicates that <opl, State 1 > is a Posi-
tive instance because (i) Statel is not a Goal state, and (ii) by applying op9 to
the state resulting from the positive instance step, it is possible to reach a goal
state. Subsequent stages of analysis of this explanation tree, shown below, ex-
tract this explanation (at an appropriate level of generality), and to restate it in
the generalization language in which heuristics are expressed.

Stage 2: Extract a sufficient condition for satisfying PosInst. If the ex-
planation tree is viewed as a proof that PosInst is satisfied by the current training

MITCHELL, UTGOFF AND SANERJI 185

instance, then it is clear that any set of nodes that satisfy this And/Or tree cor-
respond to a sufficient condition for satisfying Poslnst. In the current example,
for instance, if all the tip nodes of the explanation tree are satisfied by a given
state, s, then PosInst will be satisfied by the training instance <opl, s>. In this
stage, a set of nodes that satisfy the And/Or tree is selected, and the correspond-
ing sufficient condition for PosInst is formulated by replacing the problem state
from the training instance by a universally-quantified variable. In the current
example, if the tip nodes of the explanation tree are selected, then the resulting
sufficient condition for PosInst may be stated as follows:

('1s) Poslnst(opl, s) ¢ (-Goal(s) 1\ Goal(Apply(op9, Apply(opl, s»»

Notice that there are many possible choices of sets of nodes to satisfy the
And/Or tree, and correspondingly many sufficient conditions. This choice of
nodes is one of the major control issues in the analysis of the training instance.
Generally, nodes close to the root of the explanation tree lead to more general
sufficient conditions. However, since the sufficient conditions formulated in this
stage must be transformed by subsequent stages to statements in the generaliza-
tion language for heuristics, the choice of covering nodes from the explanation
tree must trade off (i) the generality of the corresponding sufficient condition,
with (ii) the loss in generality that is likely when this sufficient condition is
transformed into the generalization language for heuristics. As an example, con-
sider the alternative choice of the two nodes at the second level of the' explana-
tion tree. This set of nodes leads to the following sufficient condition for
PosInst:

('Vs) Poslnst(opl, s) ¢ (-Goal(s) 1\ Solvable(AppJy(opJ, s»)

While this sufficient condition on satisfying PosInst is more general than
the earlier sufficient condition, it turns out that this added generality will be lost
when attempting to redescribe the sufficient condition in terms of the generaliza-
tion language. The difficulty in this case stems from the fact that there is no
straightforward translation from the predicate "Solvable" to a statement in the
generalization language of LEX. In contrast, the sufficient condition correspond-
ing to the tip nodes of the explanation tree involves only the predicate "Goal",
which is easily characterized in terms of the generalization language.

Stage 3: Restate the sufficient condition in terms of the generalization
language, as restrictions on various problem states involved in the solution
tree. In the current example, the sufficient condition corresponding to the tip
nodes of the explanation tree can be restated as follows:

('Vs) Poslnst(opJ, s) ¢
(Match(ff(x)dx, s) 1\ Match(f(x), AppJy(op9, Apply(opl, s))))

The predicate "Match" corresponds to the matching procedure used to com-
pare applicability conditions, or generalizations, with problem states (that is, it
tests whether the applicability conditions are satisfied in the problem state). The
first conjunct above expresses the fact that "s" is not a Goal state ("s" contains

186 CHAPTER 6: LEARNING BY EXPERIMENTATION

an integral), and the second conjunct expresses the fact that Apply(op9,
Apply(opl, s» is a goal state (it is some expression that does not contain an
integral sIgn). This second conjunct corresponds to a restriction on the state
labeled State3 in Figure 6-8.

In general, the goal of this stage is to translate the sufficient condition into
a conjunctive set of statements of the form Match(<generalization>, <problem-
state», where <generalization> can be any statement in the generalization lan-
guage used by the system, and <problem-state> can be any expression that cor-
responds to a particular problem state in the solution tree for the current ex-
ample.

The translation of sufficient conditions into the generalization language re-
quires knowledge about the correspondence between the representation language
in which the analysis is being done, and the generalization language used to
describe heuristics. For instance, in the current example the following
knowledge is used in the translation:

(\;/s) -Goal(s) Match(ff(x)dx, s)
and
(\;/s) Goal(s) Match(f(x)dx, s)

Unfortunately, some expressions generated by analyzing the explanation
tree may have no corresponding expression in the generalization language. For
example, in the current LEX generalization language, there is no way of charac-
terizing all "Solvable" functions. In this case, translating the sufficient condition
corresponding to the second level nodes in the explanation tree may require fur-
ther specializing the sufficient condition, by replacing Solvable(x) by sufficient
conditions for Solvable. An example of such knowledge is the knowledge that
all polynomial integrands are solvable. It is important to note that even if no
such knowledge is available, it will always be possible to translate the sufficient
condition into some weaker condition describable in the generalization language.
This can always be accomplished by using the fact that the solution tree provides
at least one problem state which satisfies the predicate, and the problem state is
itself describable in the generalization language. Thus, for example, the con-
dition Solvable(Apply(opl, s» may, if no other relevant knowledge is available,
be weakened and replaced by Match(7 f(x 2)dx, Apply(opl, s».

Stage 4: Propagate the restrictions on various problem states through
the solution tree to determine equivalent conditions on the problem state in-
volved in the current training instance. By examining the definitions of the
operators involved in reaching a given state, x, it is possible to propagate restric-
tions on x through the solution tree to deduce the corresponding constraints on an
earlier problem state. This back propagation of restrictions is necessary in order
to restate the sufficient condition on PosInst in terms of a generalization that ap-
plies to the training instance. This propagation requires using the operators in a
way different from the way in which they are used during forward search
problem-solving, and is similar to the process of goal regression discussed in the
literature on means-ends problem-solving and planning [Nilsson, 1980].

MITCHELL, UTGOFF AND BANERJI 187

As an example, consider the second expression in the sufficient condition
from stage 3: Match(f(x) , Apply(op9, Apply(opl, s))). This condition, when
back propagated through op9 becomes Match(f(x)f(x i (r=F -1)dx), Apply(opl,
s)). The new generalization corresponds to the class of problem states which can
be transformed using op9 into an expression that satisfies the original condition.
Similarly, this new expression can be propagated back through opt to yield an
equivalent condition on Statel: Match(f r(x i {r=F -1})dx, s). Thus, the suf-
ficient condition from stage 3 can be restated as:

(\;/s) Poslnst(opl, s) ¢
(Match(If(x)dx, s) 1\ Match(I rex t {r '* -l})dx, s»

Since the second conjunct is more specific than the first, the above expres-
sion can be simplified to:

(\;/s) IPoslnst(opl, s) ¢ Match(I rex t {r '* -l})dx, s)]

Finally, we have found sufficient conditions for Poslnst(op 1, s) which are
stated as a generalization that must match State 1. While the sufficient condition
determined by the above analysis is not the most general sufficient condition pos-
sible, it is satisfied by the current training instance and follows naturally from
analyzing that instance. If this training instance were the first instance encoun-
tered for this particular heuristic, the resulting version space would reflect the
extra information extracted from analyzing this instance, as shown below.

s: I r Ix t (r '* -I)] dx ::} Apply opl

G: I r f(x) dx ::} Apply opl

6.4.3 Automatically Extending the Vocabulary for Describing HeuristiCS

One of the most fundamental difficulties associated with current approaches
to machine learning is the problem of acquiring an appropriate vocabulary with
which to describe learned concepts. Nearly all existing systems assume some
fixed vocabulary of terms with which to represent learned concepts (for instance,
the LEX terms trigonometric, polynomial, exponential, and so on, as shown in
Figure 6-2). In cases where this vocabulary is inappropriate, it will be impos-
sible to describe (and hence to learn) the desired concept. In the LEX system, we
have found that there are many cases where the current language for describing
heuristics is insufficient to correctly characterize sets of training instances
produced by the Critic.

As an example, consider the solution path shown in Figure 6-10, and the
positive training instance corresponding to the first step of this solution path. If
this positive training instance is observed, together with the positive training in-
stance f cos7(x)dx, and the negative training instance f cos6(x)dx, then LEX will
be unable to produce a heuristic that matches these two positive instances, and
excludes the negative instance. The problem here is that the language in Figure
6-2 for describing heuristics has no term that includes both 5 and 7 while exclud-
ing 6.

188

statel: Jcos7(x)dx 1 opl:

state2: J cos6(x)cos(x)dx 1 op2:

state3: J(cos2(x»3cos(x)dx 1 op3:

state4: J (l-sin2(x»3cos(x)dx

CHAPTER 6: LEARNING BY EXPERIMENTATION

1 op4: J J g(u)du, u = f(x)

stateS: J(I-u2)3du, u = sin(x)

1 opS:

state6: JI-3u2+3u4-u6du, u=sin(x)

Figure 6·10: Solution path for J cos7(x)dx.

In this case, a solution analysis similar to that described in the previous
section can lead to the generation of a new term to be added to the language of
Figure 6-2. As in the previous case, the solution trace analysis first produces a
set of statements about various nodes in the search tree, which characterize why
the training instance is positive. These statements are then propagated through
the problem-solving operators in the search tree to determine which features of
the training instance were necessary to satisfy these statements. It is during this
propagation and combination of constraints that new descriptive terms may be
suggested.

For example, in the case of the solution path shown in Figure 6-10, sup-
pose that the analysis first determines that the solution path leads to a solution
because State6 is of the following form, which we assume satisfies the system's
definition of a solvable state.

J poly(x)*"'*kPoly(x)dx

Then the set of states, XI> for which application of op5 leads to such a solvable
state can be computed as:

x, {: opS-'(Jpoly(x)*"'*kpoly(x)dx)

giving

x, = Jpolyk(x)dx

In tum, we can compute the set of states, X2, for which application of op4
leads to such a solvable state, as shown below. Here, "range(op4) " indicates the
set of all problem states that can be reached by applying op4 to some other
problem state.

MITCHELL, UTGOFF AND BANERJI 189

X2 ¢ op4-I(intersection(range(op4),X1))·

By this repeated backward propagation of constraints through the solution
tree, it can be detennined that application of the solution method of Figure
6-10 leads to a solvable state when the initial state (in this case Statel) is of the
form I cosC(x)dx where c is constrained to satisfy the predicate "real(c) 1\
integer«c-l)/2)", better known as "odd integer". Thus, detailed analysis of the
solution path can suggest the need for new predicate terms in the language for
describing heuristics. These terms (such as "odd integer") arise from combina-
tions of existing terms, composed in a way that is determined by the particular
operator sequence in the solution path being analyzed.

6.5 SUMMARY

The LEX system is an experiment in learning by experimentation. The cur-
rent system, based on a generator of practice problems, problem solver, critic,
and generalizer, indicates that useful problem-solving heuristics can be learned
by employing empirical methods for generalizing from examples. It also in-
dicates that more powerful and more general approaches to learning will. be
needed before practical systems can be built that improve their strategies in sig-
nificant ways. One way of augmenting empirical learning methods by analytical
methods has been discussed, which is based on giving the system the ability to
reason about its goals, heuristic search, and the task domain. This research and
the research of others (for example, that described in Chapters 8, 9, and 12 of
this book) suggests that the addition of such meta-knowledge about the goals, the
learner, and the problem-solving methods in the domain, is a promising area for
further research.

ACKNOWLEDGMENTS

The LEX system has been developed over the past three years with the aid
of several researchers in addition to the authors. We gratefully acknowledge the
aid of William Bogdan, who helped implement the Critic; Bernard Nudel, who
helped implement the Critic and Problem Solver; and Adam lrgon, who imple-
mented the Problem Generator. Richard Keller has contributed to the newer
work on using the intended purpose of heuristics for analyzing training instances.
This research is supported by the National Science Foundation under Grant No.
MCS80-08889, and by the National Institutes of Health under Grant No.
RR-64309.

190 CHAPTER 6: LEARNING BY EXPERIMENTATION

REFERENCES

Anzai, Y. and Simon, H., "The theory of learning by doing," Psychological Review, Vol. 36, No.2,
pp. 124-140, 1979.

Buchanan, B. G. and Mitchell, T. M., "Model-Directed Learning of Production Rules," Pattern-
Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press,
New York, 1978.

Davis, R., "Applications of meta level knowledge to the construction and use of large knowledge
bases," Knowledge-based Systems in Artificial Intelligence, Davis, R. and Lenat, D. (Eds.),
McGraw-Hill, New York, 1981.

Fikes, R. E., Hart, P. E. and Nilsson, N. J., "Learning and executing generalized robot plans,"
Artificial Intelligence, Vol. 3, pp. 251-288, 1972.

Hayes-Roth, F., Klahr, P. and Mostow, D. J., "Knowledge acqUiSItIOn, knowledge programming,
and knowledge refinement", Technical Report R-2540-NSF, The Rand Corporation, Santa
Monica, CA., May 1980.

Iba, G. A., "Learning disjunctive concepts from examples," Master's thesis, M.I.T., Cambridge,
Mass., 1979, (also AI memo 548).

Mitchell, T. M., Version Spaces: An approach to concept learning, Ph.D. dissertation, Stanford
University, December 1978, (also Stanford CS report STAN-CS-78-71I, HPP-79-2).

Mitchell, T. M., Utgoff, P. E., NUdel, B. and Banerji, R., "Learning problem-solving heuristics
through practice," Proceedings of the Seventh International Joint Conference on Artificial
Intelligence, Vancouver, pp. 127-134, August 1981.

Mitchell, T. M., "Generalization as Search," Artificial Intelligence, Vol. 18, No.2, pp. 203-226,
March 1982.

Mitchell, T. M., "Toward Combining Empirical and Analytic Methods for Learning Heuristics,"
Human and Artificial Intelligence, Elithorn, A. and Banerji, R. (Eds.), Erlbaum, 1982.

Neves, D. M., "A computer program that learns algebraic procedures," Proceedings of the 2nd
Conference on Computational Studies of Intelligence, Toronto, 1978.

Nilsson, N. Principles of Artificial Intelligence, Tioga, Palo Alto, 1980.

Politakis, P., Weiss, S. and Kulikowski, C., "Designing consistent knowledge bases for expert
consultation systems", Technical Report DCS-TR-lOO, Department of Computer Science,
Rutgers University, 1979, (also 13th Annual Hawaii International Conference on System
Sciences).

Utgoff, P. E. and Mitchell, T. M., "Acquisition of Appropriate Bias for Inductive Concept
Learning," Proceedings of the 1982 National Conference on Artificial Intelligence, Pittsburgh,
August 1982.

Vere, S. A., "Inductive learning of relational productions," Pattern-Directed Inference Systems,
Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press, New York, 1978.

Waterman, D. A., "Generalization learning techniques for automating the learning of heuristics,"
Artificial Intelligence, Vol. I, No. 112, pp. 121-170, 1970.

