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ABSTRACT 

We discuss the representation and use of justification structures  
as an aid to knowledge base refinement. We show how justifica-
tions can be used by a system to generate explanations – for its  
own use – of potential causes of observed failures. We discuss 
specific information that is usefully included in these justifications  
to allow the system to isolate potential faulty supporting beliefs for  
its rules and to effect repairs. 

This research is part of a larger effort to develop a Learning Ap-
prentice System (LAS) that partially automates initial construction  
of a knowledge base from first-principle domain knowledge as well 
as knowledge base refinement during routine use. A simple im-
plementation has been constructed that demonstrates the  
feasibility of building such a system. 

I. INTRODUCTION 

A Learning Apprentice System [6] is an interactive aid for building 
and refining a knowledge base. Its aims are twofold: (i) to partially 
automate initial construction of a knowledge base by generating 
shallow rules automatically from an approximate domain theory: 
and, (ii) to interact with users to help refine the knowledge through 
experience gained during normal problem solving. In this paper,  
we concentrate on knowledge base refinement. In our scenario,  
for problems where the Performance Program (i.e., the com- 
ponent of the knowledge-based system that performs the problem 
solving) fails to make an important inference, or makes an incor- 
rect inference, the user advises the LAS of the failure. The system 
tries to explain why the failure has occurred (perhaps via a  
focussed interaction with the user), and repairs or extends its 
knowledge base as required. 
This type of "knowledge acquisition in context” has previously  
been used to advantage in TEIRESIAS [3, 1], in the context of the 
MYCIN system. Its advantages include: (i) it happens in the normal 
course of use of the system, driven by failures, and therefore has 
the potential of tapping the knowledge of specialists without plac- 
ing large additional demands on their time: and, (ii) because the 
specialist and system are working step by step through a specific 
problem, the learning is focussed on a relatively small portion of  
the knowledge base. 

Our main focus here is explanation of failures – assignment of 
blame to specific items in the knowledge base. In terms of the  
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general model of learning systems presented in [2], this is the task  
of the Critic. Like TEIRESIAS, we use the reasoning trace exhibited 
by the Performance Program to help focus the interaction be- 
tween the LAS and the user. However, instead of relying on the  
user to explain why a particular rule or set of rules might have  
failed, the LAS uses a type of dependency network – a justification 
structure – to construct possible explanations for the observed 
failure. 

The reasoning trace provides support for conclusions drawn by  
the Performance Program. The content of that support is the chain  
of rule firings that led to the conclusions. A justification structure,  
on the other hand, goes one step further. It records the support  
for an individual rule. The content of the justification is the deeper 
domain knowledge from which the rule is derived, together with  
the assumptions and approximations that have been used in the 
derivation. For the purpose of refinement, the primary information 
captured in a justification structure is the manner in which errors 
propagate across dependency links. By using this information in 
concert with a taxonomy of error types, it is possible for the LAS to 
determine a constrained set of suspect supporting beliefs that can 
explain an observed failure of some supported belief. This infor-
mation is useful for focussing a dialogue between the LAS and the 
specialist. It is also essential input to an automated revision sys- 
tem. 

Several researchers [5. 8] have studied methods for recording 
logical dependencies between beliefs, and for using such depen-
dencies to guide inference. The current work extends the con- 
cepts of truth maintenance and dependency-directed backtrack- 
ing in that domain-specific knowledge about how to propagate 
errors through a dependency network is used in addition to 
knowledge of the logical structure of the network itself. 

The XPLAIN system of Swartout [10] also used justifications to 
generate explanations of its behavior for human users. By con-
strast, we focus here on using justifications to generate explana-
tions for the system itself of potential causes of observed failures. 
This has led us to concentrate on determining precisely which 
information is usefully included in the justifications to allow the 
system to isolate potential faulty supporting beliefs for its rules  
and to effect repairs. 

We are using the Dipmeter Advisor* system in order to test our 
ideas in the context of a task (and Performance Program) that is 
already well understood [9]. We have implemented subprograms  
to extend this system and have undertaken some analysis of the 
generality of the method. 
___________________ 
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A. GEOLOGICAL INTERPRETATION: THE 
DIPMETER ADVISOR SYSTEM 

The general task of the Dipmeter Advisor system is to infer the 
geological structures penetrated by a single borehole. For ex-
ample, it might conclude that a late fault with strike 92°, has been 
penetrated at a depth of 1050 feet. Its primary input data is the dip 
or tilt of rock formations penetrated by the borehole, indexed by 
depth. It also uses data from a variety of other logging tools as  
well as information about the local geology. 

The system divides the interpretation task into an ordered series of 
subtasks involving pattern detection, data aggregation, and 
abstraction. After each subtask has been completed, the user is 
given the opportunity to examine, delete, or modify conclusions 
reached by the system. He can also add his own conclusions. In 
addition, he can revert to earlier stages of the analysis and repeat 
various subtask chains with different assumptions or data. 

The rules in the system are empirical associations applied by the 
rule interpreter in distinct rule sets using a forward-chaining con- 
trol strategy. A simplified version of a rule used to determine that  
a previously detected normal fault is a late fault is shown in Figure  
I-1. 

Rule: NFR12 
 
IF 

there exists a normal fault pattern (p), and 
there exists a red pattern (p1). 
such that the length of p1 < 50 ft., and 
such that p1 is above the fault plane pattern of p. 

THEN 
specialize p to be a late fault pattern 

Figure I-1: Late Fault Rule 

The geometry and dip patterns upon which NFR12 is based are 
shown in Figure 1-2. A rough justification for the rule is as follows:  
A late fault typically has a distortion region directly above the fault 
plane. The distortion region for a late fault is generally thin be- 
cause the surrounding rock has been compacted, and is therefore 
not very plastic, at the time of faulting. The thin distortion region, 
projected onto the borehole, is manifested in dipmeter data as a 
short red pattern. The 50 ft. threshold is dependent upon as- 
sumed values for the distortion, region thickness and the fault  
angle. The rule assumes that dipmeter patterns can be detected  
in the vicinity of the fault. This will be true if bedding is preserved, 
the borehole is not washed out (caved in), and if the tool is operat-
ing correctly. If, for example, the borehole were washed out over 
part of the distortion region, the length of the measured red pat- 
tern would be less than expected. 

We use this rule as an example throughout the paper. We show  
how its detailed justification can be used to isolate faulty support- 
ing beliefs that can prevent it from firing in some situations. 
 
II. DESCRIBING ERROR TYPES AND RULE JUSTIFICATIONS 

The Critic uses the type of error that the Performance Program  
has made, along with its reasoning trace, the current rule base, 
and justification structures to guide generation of plausible ex-
planations of a failure and to focus on plausible repairs. 

 

 

 
Figure I-2: Late Fault Geometry 

A. ERROR TYPES 
In examining the justification of an incorrect rule, it is useful for  
the Critic to distinguish among several classes of errors because: 
(i) it provides an additional constraint on the search for suspected 
supporting beliefs; and, (ii) different classes of errors suggest dif-
ferent repair strategies. The error classes currently used by our 
prototype LAS for beliefs are shown in Figure II-1, and break down 
into three main classes: 

 

Figure II-1: Types of Belief Errors 

Rule Belief Error: Beliefs that are implications may suffer from  
one of the following classes of error: OverGeneraiLeftHandSide 
(OGLHS) – the rule applies in situations in which it should not: 
OverSpecificLeftHandSide (OGLHS) – the rule does not apply in 
situations in which it should: OverGeneralRightHandSide  
(OGRHS) – the rule fails to make assertions when it should or 
makes assertions that are too general (e.g., drawing a conclu- 
sion about a normal fault where a conclusion about a late fault, a 
specialization of normal fault. is warranted); and, 
OverSpecificRightHandSide (OSRHS) – the rule either makes 
assertions when it should not or makes assertions that are too 
specific (e.g., drawing a conclusion about a late fault where only  
a conclusion about a normal fault is warranted). 
 
Numeric Parameter Error: A belief about the value of a numeric 
parameter may be incorrect by being an OverEstimate (OE) or 
UnderEstimate (UE) of the correct value of the parameter. 
 
Symbolic Parameter Error (SPE): This is an error regarding 
beliefs which are neither implications nor assertions about 
numerical parameters. They simply have a truth value. For ex-
ample, an erroneous assertion that a comparator is "<" when it 
should be ">" is a symbolic parameter error. 
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We believe this error taxonomy to be useful in a variety of 
domains. It is also incomplete. We have not yet formalized, for 
example, errors in symbolic parameters for which a partial order 
can be established. In such cases, OverSpecific and 
UnderSpecific may be appropriately added as subclasses of 
SymbolicParameterError. 

B. JUSTIFICATION STRUCTURES 
We define a justification structure to be a network of Beliefs con-
nected by Justification Links. Beliefs represent assertions and 
Justification Links record the derivational dependencies between 
beliefs. 

A Belief contains Assertion, Type Of Belief, and Degree Of Belief 
slots (in addition to its links in the justification structure). The 
Assertion is the actual statement of the belief. The Type Of Belief  
is one of definitional (i.e., no further justification is required), 
theoretical (i.e., based on the half-order theory – could be incor- 
rect if the theory is incorrect), statistical (i.e., justified by statistical 
experience), or default (i.e., cannot be estimated without infor-
mation either typically unavailable to the system or expensive to 
obtain). The manner in which the Type Of Belief of a justified  
belief is propagated from its justifier beliefs is determined from the 
Linkage Rule (below) that enables the justification. 

The Degree Of Belief is a numerical measure of the validity of 
beliefs whose Type Of Belief is statistical or default. We have not 
yet explored its use. 

A Justification Link contains Linkage Rule and Error Propagation 
slots (in addition to its links in the justification structure). 

The Linkage Rule points to the rule of inference that enables the 
justified belief to be derived from the justifier beliefs (e.g., modus 
ponens). It is described in more detail in the next section. 

The Error Propagation specifies the way in which errors in justifier 
beliefs propagate to the justified belief. This form of this infor-
mation for a particular link is inherited from the Linkage Rule for  
the link. It allows the Critic to focus on particular justifier beliefs  
that might be responsible for an error of a specific type in the 
justified belief. 

This slot is filled with a list of the form 

((<error-type> <clause> 
 (<error-type> <clause> <justifier>) ...) ...) 

For example, suppose the Error Propagation slot for the Justifica-
tion Link of the rule Belief17 has the value ((OSLHS Clause1 
(OSLHS Clause2 Belief161)). This structure states that if the rule 
asserted by Belief16 suffers from an OverSpecificLeftHandSide er-
ror in Clause2 of its left-hand side then Clause1 of the left-hand 
side of Belief17 could suffer from the same type of error. 

C. LINKAGE RULES 
A linkage rule specifies the rationale that allows a justified belief to 
be derived from its justifier beliefs. It can be either  
Truth-Preserving or Non-Truth-Preserving. The only type of truth-
preserving rule is Deductive. It is essentially a logical proof of the 
validity of the derivation. 

While we hypothesize a number of Non-Truth-Preserving linkage 
rules, the only one we have used to date is the Abductive rule. 
Abductive inference allows the conclusion of A→B to be drawn 
from B→A and A. For example, from the quasi-theoretical state- 
 

ment that meningitis causes fever and an observation of fever in a 
patient, abductive inference permits the conclusion that the  
patient is suffering from meningitis. Because is commonly 
associated with a number of other causes as well. the backward 
(interpretive) form of the causal rule can only be used to suggest 
the cause when the manifestation is observed. (For a general 
discussion of Abduction, see [7].) 

A linkage rule also contains Type of Belief Propagation and Error 
Propagation slots. 

The Type of Belief Propagation slot specifies the way that the 
Types of Belief of justifier beliefs are propagated to beliefs justified 
via the rule. Deductive rules, for example, propagate the minimum 
of Type Of Belief of the justifier beliefs, according to the following 
partial order: definitional, theoretical, statistical, default. The Ab-
ductive rule is a default-producing rule. Regardless of the Type Of 
Belief associated with the justifier beliefs, default is propagated as 
the Type Of Belief of the justified belief. 

The Error Propagation slot specifies a template for propagating 
errors from justifier beliefs to justified beliefs. 

D. EXAMPLE: THE NFR1 2 JUSTIFICATION 
The hand-generated NFR12 justification structure is shown in 
Figure II-2. Beliefs are indicated by nodes with names Bi. Jus-
tification Links are shown between beliefs, but are not explicitly 
named. A capsule summary of some of the beliefs is shown. We 
show the entire justification structure to give some feel for its com-
plexity. The actual number of nodes should not be taken too 
seriously because there is considerable latitude available with 
respect to what constitutes a belief and what constitutes a linkage 
rule. We have inserted knowledge of the task domain as beliefs 
and knowledge that is not specific to the domain as linkage rules 
(e.g., geometry and algebra).3

The general form of the justification is that it is based on the rela-
tive positions of three-dimensional regions associated with a fault. 
When these regions are penetrated by a borehole, measured data 
will be related to the zones that are the projections of the regions 
on the borehole, as manifested in patterns seen by a particular  
tool (e.g., the dipmeter tool). 

Nodes that are boxed in the figure are described in detail in the 
following. Most linkage rules are Deductive. We only note a  
linkage rule when it has some special significance (e.g., if it is  
Non-Truth-Preserving). The logic encoding of each belief  
assertion is shown. The reader may find it helpful to simply scan 
the justification at this point and refer back to it while following the 
example presented in Section A. We only show Error Propagation 
information that is relevant to the example. The complete justifica-
tion for NFR12 is found in [11]. 

B1: If p is a Normal Fault Pattern and there exists a Red Pattern, 
p1, such that the length of p1 is less than 50 ft. and p1 is Above 
the fault plane pattern of p, then p is a Late Fault Pattern. 
∀p ∃p1 [[NFP(p) ∧ (RP(p1) ∧ (lengthp (p1) < 50) ∧ 

Abovep(p1, fpp(p)))] LFP(p)] 
Type Of Belief: default 

 
3
Rule justifications provide support for the inferences made in the 

reasoning trace. Similarly, we might consider construction of another layer of  
justification – support for the inferences made in linking beliefs in the rule 
justitica-tion. We have not yet examined this sort of multi-layer justification. 
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Figure II-2.  Justification for NFR12 

 
 
Linkage Rule: Abductive 
Error Propagation: ((OSLHS C2 (OSRHS C2 B2)) ...) 
Note: This belief is supported by a non-truth-preserving linkage 
rule. 

B2: If p is a Late Fault Pattern, then p is also a Normal Fault 
Pattern and there exists a Red Pattern p1 such that the length of 
p1 is less than 50 ft. and p1 is Above the fault plane pattern of p. 
∀p ∃p1 [LFP(p) → [NFP(p) ∧ (RP(p1) ∧ (lengthp(p1) < 50) ∧ 

Abovep(p1, fpp(p)))] 
Type Of Belief: default 
Error Propagation: 
   ((OSRHS C2 (OSRHS C2 B4) (OSRHS C1 B3)) ...) 

B3: The Distortion Pattern of a pattern is called a Red Pattern 
∀p,q [DPofP(p, q) → RP(p)] 
Type Of Belief: definitional 

B4: If p is a Late Fault Pattern, then p is also a Normal Fault 
Pattern and there exists a p1 such that p1 is the Distortion Pattern 
of p, the length of p1 is less than 50 ft., and p1 is Above the fault  
 

plane pattern of p. 
∀p ∃p1 [LFP(p) → NFP(p) ∧ [DPofP(p1, p) ∧ (lengthp(p1) < 50) 

∧ Abovep(p1, fpp(p))]] 
Type Of Belief: default 
Error Propagation: 

((OSRHS C2 (OSRHS C1 B6) (OSRHS C1 B7) 
  (OSRHS C1 B8)) ...) 

B6: The length of the distortion pattern of any Late Fault Pattern is 
less than 50 ft. 
∀p [LFP(p) → (lengthp(dp(p)) < 50)] 
Type Of Belief: default 
Error Propagation: 

((OSRHS C1 (OSRHS C1 B65) (OSRHS C1 B72)) 
 (OSRHS C1 (OSRHS C1 B69) (OSRHS C1 B70) 

  (OSRHS C1 B71)) ...) 
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B7: ∀P [LFP(p) → NFP(p)] 
Type Of Belief: definitional 
Note: This is supported by beliefs that relate regions to zones and 
zones to patterns. 

B8: If p is a Late Fault Pattern, the distortion pattern of p is Above 
the fault plane pattern of p. 
∀p [LFP(p) → Abovep(dp(p), fpp(p))] 
Type Of Belief: theoretical 

B65: If p is a Late Fault Pattern, the length of the distortion pat. 
tern of p is equal to the length of the corresponding distortion  
zone minus the sum of the lengths of the distortion zone's wash-
outs, mirror images, and unpreserved bedding zones. 
∀p [LFP(p) → lengthp(dp(p)) = lengthz(dz(zp(p))) − 

Iengthz(w(dz(zp(p)))) − lengthz(m(dz(zp(p)))) − 

Iengthz(ub(dz(zp(p)))) 
Type Of Belief: theoretical 

B69: If p is a Late Fault Pattern, the length of the washout zones of 
the distortion zone of the zone associated with p is 0.  
∀p [LFP(p) → Iengthz(w (dz(zp(p)))) = 0)] 
Type Of Belief: default 

B70: If p is a Late Fault Pattern, the length of the mirror image 
zones (i.e., zones where the tool is not operating correctly) of the 
distortion zone of the zone associated with p is 0. 
∀p [LFP(p) → (lengthz(m(dz(zp(p)))) = 0)] 
Type Of Belief: default 

B71: If p is a Late Fault Pattern, the length of the unpreserved 
bedding zones of the distortion zone of the zone associated with p 
is 0. 
∀p [LFP(p) → (length,(u(dz(zp(p)))) = 0)] 
Type Of Belief: default 

B72: If p is a Late Fault Pattern, the length of the distortion zone  
of the zone of p is less than 50 ft. 
∀p [LFP(p) → (lengthz(dz(zp(p))) < 50)] 
Type Of Belief: statistical 
Error Propagation: ((OSRHS C1 (OSRHS C1 859)) ...) 

B59: If r is a Late Fault Region, the length of the distortion zone of 
the zone of r is less than 50 ft. 
∀r [LFR(r) → (lengthz(dz(zr(r))) < 50)] 
Type Of Belief: statistical 
Error Propagation: ((OSRHS C1 (OSRHS C1 B41)  

(OSRHS C1 B44) 
(OSRHS C1 B54)) ...) 

B41: The thickness of the distortion region of any Late Fault 
Region is less than 13 ft. 
∀r [LFR(r) → (t(dr(r)) < 13)] 
Type Of Belief: statistical 
Error Propagation: ((OSRHS C1 (OSRHS C1 B36)) ...) 

B44: The orientation of the distortion region of every Late Fault 
Region is less than 75o. 
∀r [LFR(r) → (o(dr(r)) < 75)] 
Type Of Belief: statistical 
Error Propagation: ((OSRHS C1 (OSRHS C1 B42)) ...) 

B42: The orientation of every Late Fault Region is less than 75°. 
∀r [LFR(r) → (o(r) < 75)] 

Type Of Belief: statistical 
Error Propagation: ((OSRHS C1 (OSRHS C1 B37)) ...) 

B54: If r is a Late Fault Region, the length of the zone of the 
distortion region of r is equal to the thickness of the distortion 
region of r divided by the cosine of the orientation of the distortion 
region. 
∀r [LFR(r) → (lengthz(zr(dr(r))) = t(dr(r))/cos(o(dr(r))))] 
Type Of Belief: definitional 

B36: If r is a Late Fault Region in the Gulf Coast, the thickness of r 
is less than 13 ft. 
∀r [LFR(r) ∧ G(r) → (t(dr(r)) < 13)] 
Type Of Belief: statistical 
Error Propagation: ((OSRHS C1 (UE B75) (SPE B78)) ...) 
Note: Either the threshold (13 ft.) or the comparator (<) could be 
incorrect. 

B39: ∀r [R(r) ∧ (G(r) → (t(dr(r)) < 13))] → (t(dr(r)) < 10)  
Type Of Belief: definitional 
Note: This is an instantiation of P in B38 to be the distortion 
region thickness condition. 

B40:  ∀r [R(r) ∧ (G(r) → (o(r) < 75))] → (o(r) < 75) 
Type Of Belief: definitional 
Note: As in B39 with P the orientation condition. 

B37: If r is a Late Fault Region in the Gulf Coast, its orientation is 
less than 75°. 
∀r [LFR(r) ∧ G(r) → (o(r) < 75)] 
Type Of Belief: statistical 
Error Propagation: ((OSRHS C1 (UE B77) (SPE B79)) ...) 
Note: Analogous to B36. 

B38: For all regions r and predicates P, if r being in the Gulf Coast 
implies P(r), then P(r). 
∀r,P [R(r) ∧ (G(r) → P(r))] → P(r) 
Type Of Belief: definitional 
Note: This is a second order axiom. It is used to eliminate the Gulf 
Coast precondition. This precondition is not carried over into 
NFR12 because it rarely fails, and when it does fail, the effect is 
not disastrous. The justification records the way in which it is 
important (i.e., through the default values for distortion region 
thickness and fault orientation). 

B74: The thickness of the distortion region of a Late Fault Region 
in the Gulf Coast has relation R1 to the parameter  τ. 

∀r [LFR(r) ∧ G(r) → R1(t(dr(r)), τ)] 

Type Of Belief: definitional 

B75:  τ = 13 
Type Of Belief: statistical 

B78:  R1 = < 
Type Of Belief: theoretical 

B76: The orientation of a Late Fault Region in the Gulf Coast has 
the relation R2 to the parameter θ. 
∀r [LFR(r) ∧ G(r) → R2(o(r), θ)] 
Type Of Belief: definitional 

B77:  θ = 75 
Type Of Belief: statistical  

B79: R2 = < 
Type Of Belief: theoretical 
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III. REASONING FROM ERROR TYPES 
AND JUSTIFICATION STRUCTURES 

The Critic begins by considering a specific instance in which the 
user corrects or augments the Performance Program's conclu-
sions. Given any such failure, the first step is to determine specific 
types of errors in specific rules. that could have produced this 
failure. For example, if the user deletes a system-generated con-
clusion, then the rule that suggested this conclusion may be 
suspected to be in error4, with the possible error types Over-
GeneralLeftHandSide and OverSpecificRightHandSide (either of 
these error types could have led this rule to suggest the incorrect 
conclusion). Similarly, if the user adds a conclusion, then those 
rules whose right-hand side mentions that conclusion but which  
did not trigger are identified as possible errors of type Over-
SpecificLeftHandSide, while rules that did apply but did not make 
the indicated conclusion may be suspected of OverGeneralRight-
HandSide errors. (Of course, another plausible explanation for a 
failure of this type is absence of an appropriate rule.) 

At this point, given a suspected belief (e.g., a rule), and a list of 
possible error types for the belief, the Critic examines the justifica-
tion for that belief in order to generate a list of candidate 
hypotheses regarding possible causes of the error (i.e., bugs in  
the supporting beliefs, or approximations in the justification links 
relating the belief to its supporting beliefs). The method for 
generating and pruning hypotheses about the cause of the error is 
summarized below: 

Explain(possible-errors, belief) 
begin 
<for each possible error, enumerate supporting 

beliefs that could have caused the error, 
along with their suspected error type> 

<prune these suspects> 
<attempt to determine the correctness of each 
 suspect in the current situation, removing 
 those shown to be correct.> 
<rank remaining suspects according to their 
 Type Of Belief, and remove suspects whose  
 Type Of Belief is "definitional".> 

<recursively Explain each remaining suspect> 
end 

This method for identifying suspect beliefs makes use of several 
kinds of information recorded in the justification structure for the 
offending rule, as well as knowledge of the context in which the 
rule failure occurred. These kinds of information and their use  
may-be summarized as follows: 

The logical dependencies of one belief on another, recorded in  
the justification structure, provide the basis for generating can- 
didate suspects. The justification structure is the basis for a 
"complete" generation of suspects. in the sense that the only 
possible errors in the underlying domain knowledge that could 
produce the detected rule error are those involving beliefs men-
tioned in the rule's justification structure. All the other sources of 
knowledge that enter into the process serve to constrain the 
suspects generated on this basis. 

                                                                  
4
Of course it is possible that this rule is correct, that it should not have been  

applied, but that its preconditions were satisfied only because of an error in an  
earlier rule. Thus, in general there will be several alternative rule suspects. The 
Critic weighs the alternative suspect rules by examining their justifications, and 
determining the plausible causes of errors for each.  

The additional knowledge about error types, together with the 
Error Propagation knowledge associated with each justification 
link, allows the Critic to prune the set of suspects.  In other  
words, certain supporting beliefs on which the offending rule is 
based can be pruned as suspects when it can be shown that no 
error in those beliefs could produce the detected rule error. 

Knowledge of the situation in which the failure occurred may 
allow the system to separately verify the correctness of  
suspected supporting beliefs. For example, rule NFR12  
depends, among other things, upon the assumption that normal 
faults have associated distortion regions. If this rule is suspected 
of a failure, that supporting assumption may become suspect.  
But if there is strong direct evidence in the current situation that  
a distortion region is present, then that suspect may be pruned. 

Type Of Belief knowledge propagated from supporting beliefs as 
specified by the associated linkage rule allows further ranking  
and pruning of suspects. 

A. EXAMPLE: USE OF THE NFR12 JUSTIFICATION 

As an example, we assume a scenario in which the user has in-
dicated that a particular hypothesized "normal fault" should be 
specialized to a "late fault." The LAS takes this as an indication 
that it has committed an error of omission by failing to make this 
specialization on its own, and invokes the Critic to explain the 
failure. 

The Critic begins by examining the reasoning trace of the Perfor-
mance Program and determines that rule NFR12 could have 
drawn the correct conclusion, but failed to match. For simplicity 
we will assume that NFR12 is the only rule that could have drawn 
the correct conclusion5 The Critic examines the situation in  
which the rule was attempted and, through interaction with the 
user determines that: (i) the user agrees that the normal fault con- 
clusion drawn by the Performance Program is correct; and (ii) the 
Performance Program detected a satisfactory red pattern that is 
above the fault plane pattern of the normal fault. but is longer than 
50 ft. In general, the Critic uses a combination of the reasoning 
trace and the rule justifications to track down the source of the 
failure. If, for example, the red pattern had been found to be 
unacceptable to the user, then attention would have been 
focussed on the detector for that pattern. 

As a result of this preliminary analysis, the Critic hypothesizes that 
rule NFR12 has committed an error of type OverSpecificLeftHand-
Side, specifically in clause 2. The Critic now attempts to explain 
this error in terms of the justification for NFR12 (i.e., for B1 in 
Figure II-2), in order to determine which types of errors in its sup-
porting beliefs could have caused this error. The following 
paragraphs summarize the generation and pruning of suspect 
beliefs generated by the procedure Explain described above. 

In the first step of this procedure, the justification of B1 is ex- 
amined to find that it depends upon B2, and that the OverSpecific-
LeftHandSide error in B1 can only be explained by an Over- 
 
 

 
5
Of course if other rules are available which could have drawn the correct 

conclusion, then their justifications must be examined to generate additional 
hypotheses. While this may add substantially to the number of hypotheses that 
the Critic must consider, it does not change the reasoning that the Critic goes 
through in considering each hypothesis. 
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SpecificRightHandSide error in B2, as a result of the Abductive 
linkage rule. 

The Error Propagation information associated with B1 follows  
from the linkage rule, and is used to determine the error type for 
B2. 

By propagating the error in B1 in this way, the problem of explain-
ing the OverSpecificLeftHandSide error in B1 is reduced to the 
problem of explaining the corresponding OverSpecificRightHand-
Side error in B2; specifically, in clause 2 of B2. Note once more 
that the exact identification of the error type for B2 is deter- 
mined by a combination of propagating the error type from B1,  
and checking the left-hand side of the implication B1 against the 
known facts in the current situation. 

The OverSpecificRightHandSide error in B2 is explained in turn  
by examining its justification. As shown in the figure, B2 is  
derived from B3 and B4. This step in the justification cor- 
responds to a renaming of terms, and the beliefs themselves are 
not particularly interesting. However, one important point is worth 
noting: while the error in B2 can be explained by an OverSpecific-
RightHandSide error in either B3 or B4, the first of these suspect 
beliefs is eliminated because its Type Of Belief is  
definitional – hence above suspicion. 

The remaining error hypothesis, that B4 has committed an Over-
SpecificRightHandSide error, is next propagated to its supporting 
beliefs. Although any of the supporting beliefs could lead to an 
OverSpecificRightHandSide error in B4, B7 is pruned because its 
Type Of Belief of B7 is definitional. 

The Type Of Belief of B8 is theoretical (i.e., it can only be incor-
rect if the approximate domain theory is incorrect). Our current 
Critic ranks suspects that would require a change to the ap-
proximate theory lower in likelihood than suspects that would not 
require such a change. It will only consider making a change to  
the approximate theory if it cannot explain the failure in any other 
way. As a result, B8 is noted for later examination if another 
explanation cannot be found. As a result of this pruning, the Critic 
focusses its attention on an OverSpecificRightHandSide error in 
B6. 

The further error propagation from B6 to its supporting beliefs 
illustrates the importance of distinguishing error types to the task 
of eliminating suspects. In this case, while there are five beliefs 
that directly support B6, only two of these become suspects for 
explaining the detected error. This is because the error propaga-
tion information associated with B6 indicates that no kinds of er-
rors in the other three beliefs could result in the present error. 
Thus, the two candidate suspects at this point are OverSpecific-
RightHandSide errors in B65 and B72. 

Continuing in this manner, the Critic finally arrives at two plausible 
explanations for the original rule error, corresponding to nodes 
B75 – an underestimate of the distortion region thickness and  
B77 – an underestimate of the orientation. In order to resolve be-
tween these hypotheses, the Critic will attempt to observe or infer 
the orientation and distortion region thickness from other case-
specific data. If this course of action fails, it will rank these  
suspect hypotheses based on the relative Degree of Belief of the  
two default value assumptions. 

 

Now that the Critic has isolated the possible explanations of the 
detected error, a decision must be made regarding whether and 
how to alter the offending rule. In cases where the explanation 
indicates that the training instance is a statistical outlier (i.e., that 
the orientation is several standard deviations above the mean in 
this case), it may be best to leave the rule as is and simply update 
the statistics supporting the default value of the orientation. If the 
current case suggests instead that the default value is often incor-
rect (e.g., that in fact in most cases the assumption is violated), 
then the default may be changed and the rule revised accordingly 
(e.g., change the maximum length of the red pattern in this rule to 
a larger number). In general, the decision of whether and how to 
change the rule must depend on a cost benefit analysis which 
takes into account benefits of changing the rule (e.g., increased 
accuracy) as well as the costs (e.g., referring to parameters such 
as orientation which may not often be known, and which therefore 
make the rule unusable in many cases). At present we plan for an 
interactive rule editor that will present the results of the Critic's 
analysis to the user to consider alternative rule repairs. 

IV. CONCLUSIONS AND DIRECTIONS 

We have shown the utility of a particular linkage of shallow rules to 
underlying domain knowledge as an aid to knowledge base refine-
ment in the context of a Learning Apprentice System. The linkage, 
called a justification structure, explicitly records the assumptions 
and approximations involved in the derivation of a shallow rule 
Furthermore, we have demonstrated the utility of maintaining a 
taxonomy of error types. Information about the type of error that 
has been observed, together with the justification structure, can 
help focus the Critic's search for plausible suspect beliefs. 

The work reported here represents the initial results of our efforts  
to explore the representation and use of justifications to support 
automatic refinement of knowledge bases. While several recent 
research efforts have focused on constructing explanations, or 
justifications, to guide generalization learning [4, 6, 12], this work 
complements those efforts by considering complex explanations 
involving default assumptions, and non-truth preserving justifica-
tion rules. 

While the importance of constructing and using justifications in 
learning is clear, there are several serious issues that remain to be 
understood. These include: 

It is still not clear precisely what statement about a rule should 
be justified. In this paper the focus is on justifying the logical 
correctness of the rule. However, in many cases the Dipmeter 
Advisor system rules are not, strictly speaking, correct. Instead, 
they are convenient approximations to the truth. For example, 
the rule NFR12 is not correct since its preconditions are not 
logically sufficient conditions for assuring the existence of a late 
fault. To be correct it would require many more preconditions, 
including the condition that the borehole is not washed out, and 
that the fault angle is less than 75°. Unfortunately, such a logi-
cally correct version of the rule would not be very useful be-
cause one rarely knows enough about a given situation to as-
sure that all the necessary preconditions actually are satisfied 
(e.g., one typically does not know the angle of the fault). There-
fore, we create and use rules that are convenient  
falsehoods – simple enough to be useful in a broad range of 
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situations, and close enough to the truth to keep from creating 
disaster when they are incorrect. An appropriate justification  
for rules should therefore take into account tradeoffs between 
correctness, applicability, cost of application, cost of different 
types of failure, and utility of a rule. We intend to explore  
various criteria for characterizing the appropriateness of rules, 
and to extend our formalism to accommodate these criteria. 

We have only developed weak methods for dealing with the ex-
pected interaction of rule refinement and extension of the un-
derlying domain theory. We have assumed, for the most part, 
that the underlying theory is correct and that failures are due to 
violated assumptions and approximations used in deriving the 
rules. When this is not true, our only recourse is to engage in a 
dialogue with the specialist. 

Another fundamental issue lies in the difficulty of acquiring rule 
justifications. The justification of NFR12 involves some 65 sup-
porting beliefs. Acquisition of large numbers of justifications  
with this complexity, along with acquisition of the rules them-
selves, could place a significant additional burden on our  
domain specialists. Such a burden could have serious negative 
implications for practical use of justifications in knowledge base 
refinement. We have, however, succeeded in constructing a 
prototype system for generating interpretation rules from an ap-
proximate domain theory, and associated procedures for con-
structing the rule justifications based on the trace of the 
generation procedure. Although this is provocative and en-
couraging, we do not yet understand the complexity of justifica-
tions, and we have much to learn about the difficulties of con-
structing complex justifications in domains with imperfect 
theoretical underpinnings (such as geology). 
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