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Abstract

We introduce Hidden Process Models (HPMs),
a class of probabilistic models for multivari-
ate time series data. The design of HPMs has
been motivated by the challenges of modeling
hidden cognitive processes in the brain, given
functional Magnetic Resonance Imaging (fMRI)
data. fMRI data is sparse, high-dimensional,
non-Markovian, and often involves prior knowl-
edge of the form “hidden event A occurs n times
within the interval [¢,t'].” HPMs provide a gen-
eralization of the widely used General Linear
Model approaches to fMRI analysis, and HPMs
can also be viewed as a subclass of Dynamic
Bayes Networks.

1. Introduction

We introduce the Hidden Process Model (HPM), a prob-
abilistic model for multivariate time series data. HPMs
assume the data is generated by a system of partially ob-
served, linearly additive processes that overlap in space and
time. While we present a general formalism for any domain
with similar modeling assumptions, HPMs are motivated
by our interest in studying cognitive processes in the brain,
given a time series of functional magnetic resonance imag-
ing (fMRI) data. We use HPMs to model fMRI data by
assuming there is an unobserved series of hidden, overlap-
ping cognitive processes in the brain that probabilistically
generate the observed fMRI time series.

Consider for example a study in which subjects in the scan-
ner repeatedly view a picture and read a sentence and indi-
cate whether the sentence correctly describes the picture. It
is natural to think of the observed fMRI sequence as aris-
ing from a set of hidden cognitive processes in the subject’s
brain, which we would like to track. To do this, we use
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HPMs to learn the probabilistic time series response signa-
ture for each type of cognitive process, and to estimate the
onset time of each instantiated cognitive process occurring
throughout the experiment.

There are significant challenges to this learning task in
the fMRI domain. The first is that fMRI data is high-
dimensional and sparse. A typical fMRI image measures
a correlate of neural activity at a resolution of a few mil-
limeters, providing an image with approximately 10,000
voxels (three dimensional pixels). Images are typically col-
lected once per second in experiments typically lasting 15-
20 minutes. Experiments often involve dozens of repeated
trials during which similar stimuli are presented. This re-
sults in a very large feature set (voxels at time points), for
which we may have only 10-40 training trials from which
to learn. A second challenge is due to the nature of the
fMRI signal: it is a highly noisy measurement of an indi-
rect and temporally blurred neural correlate. fMRI mea-
sures changes in the blood oxygenation level (also called
the hemodynamic response). The hemodynamic response
to a short burst of less than a second of neural activity lasts
for 10-12 seconds. This temporal blurring in fMRI makes it
problematic to model the time series as a first-order Markov
process. In short, our problem is to learn the parameters
and timing of potentially overlapping, partially observed
responses to cognitive processes in the brain using many
features and a small number of noisy training examples.

The most common approach to modeling fMRI data in the
neuroimaging community is to employ multiple regression
methods based on the General Linear Model (GLM) (e.g.,
(Dale, 1999)). While this GLM approach captures mod-
eling assumptions which have been found very useful for
fMRI analysis, it is restricted to the case where process
timings and identities are known. HPMs provide a gen-
eralization of this GLM approach to cover the case where
process timings and identities are not known in advance.

A second approach to modeling time series data, which
has not been widely used for fMRI analysis, is Dynamic
Bayesian Networks (DBNs) (Murphy, 2002; Ghahramani,
1998). HPMs provide a formalism which is more con-
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strained (e.g. HPMs do not allow arbitrary transitions
among hidden states) than general DBNs. In fact, HPMs
can be mapped into DBNs without requiring any new free
parameters, and thus can be considered a constrained sub-
class of DBNSs that reduce the sample complexity for learn-
ing by embedding additional assumptions.

Like GLM-based approaches, and like DBNs, HPMs as-
sume the observed multivariate time series is characterized
by some set of latent variables. The key modeling assump-
tions made by HPM are:

e HPMs model the latent time series as a set of pro-
cesses, each of which endures for some time inter-
val. This is in contrast to unconstrained DBNs which
would allow arbitrary hidden state transitions rather
than enforcing a boxcar shape on the timing.

e Process instances refer to general descriptions of pro-
cess types. Many of the parameters of the process
instance (e.g., constraints on its timing, its spatio-
temporal signature in the data) are inherited from
these general process descriptions. For example, a
general ReadSentence process might be instantiated
many times during an experiment, but each instance
shares the same signature.

e HPMs easily encode prior knowledge of the form
“process instance X occurs somewhere inside the time
interval [a,b].” For example, we know that an in-
stance of the ReadSentence process occurs sometime
between the sentence stimulus presentation and the
subject’s response. We give this information to the
HPM by restricting its hypothesis space to configu-
rations that are consistent with this constraint, rather
than allowing it to consider explanations of the data in
which, for example, the ReadSentence process begins
before the sentence stimulus.

2. Formalism

HPMs assume the observed time series data is generated
by a collection of hidden process instances, as depicted in
Figure 1. Each process instance is active during some time
interval, and influences the observed data only during this
interval. Process instances inherit properties from general
process descriptions. The timing of process instances de-
pends on timing parameters of the general process it in-
stantiates, plus a fixed timing landmark derived from input
stimuli. If multiple process instances are simultaneously
active at any point in time, then their contributions sum
linearly to determine their joint influence on the observed
data.

More formally, we consider the problem setting in which
we are given observed data Y and known input stimuli A.

StimulusTime(m,) StimulusType(x;) StimulusTime(n;) StimulusType(,)

ProcessType(n;)

() observed

StartTime{s,) © unobserved

X
contribution
toy,,

T,
contribution
toy,,

cbserved data Y, ,

Example =, contribution to Y, over tim;/\
Example =, contribution to Y, over time |— E

Predicted mean of ¥, over time/\ri

Figure 1. Top: A Hidden Process Model drawn as a graphical
model. The observed data Y, ¢ for voxel v at time ¢ depends on
contributions from some set of process instances (in this case m1
and 72). The contribution from a process instance depends on its
start time and its process type. The process type references a gen-
eral process description which specifies a response signature, du-
ration, and timing distribution for its instances. The process type
and the start time of a process instance depend on input stimuli.
Bottom: Hidden Process Models assume that the contributions of
process instances sum linearly to produce the mean of a normal
distribution governing Y, ¢. In this example, the response signa-
ture of the process type for 71 in voxel v is a triangle shape, and
the response signature of the process type for 72 in voxel v is a
square. These response shapes are placed in time according to
the start times for 771 and 72 and summed to obtain the predicted
mean in voxel v.

Voxel v, time t

The observed data Y is a 7' x V matrix consisting of V
time series, each of length 7. For example, these may be
the time series of fMRI activation at V' different locations in
the brain. The information about input stimuli, A,isa 7 x I
matrix, where matrix element é;; = 1 if an input stimulus
of type 7 is initiated at time ¢, and d;; = O otherwise. The
observed data Y is generated nondeterministically by some
system in response to the input stimuli A. We use an HPM
to model this system. Let us begin by defining processes:

Definition. A process h is a tuple (W,0,Q,d). d is a
scalar called the duration of h, which specifies the length
of the interval during which % is active. Wisad x V
matrix called the response signature of h, which specifies
the influence of h on the observed data at each of d time
points, in each of the V' observed time series. © is a vector
of parameters that defines the distribution over a discrete-
valued random variable which governs the timing of &, and
which takes on values from 2. The set of all processes is
denoted by H.

We will use the notation Q(h) to refer to the €2 for a par-
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ticular process h. More generally, we adopt the convention
that f(x) refers to the parameter f affiliated with entity x.

Each process represents a general procedure which may be
instantiated multiple times over the time series. For exam-
ple, in one of our fMRI studies (see Section 4) subjects had
to determine whether a sentence correctly described a pic-
ture, on each of 40 trials. We hypothesize general cognitive
processes such as ReadSentence, ViewPicture, and Decide,
each of which is instantiated once for each trial. The instan-
tiation of a process at a particular time is called a process
instance, defined as follows:

Definition. A process instance 7 is a tuple (h, A, O),
where h identifies a process as defined above, ) is a known
scalar called a timing landmark, and O is an integer ran-
dom variable called the offset time, which takes on values
in Q(h). The time at which process instance 7 begins is de-
fined to be A + O. The multinomial distribution governing
O is defined by ©(h). The duration of 7 is given by d(h).

The timing landmark A is defined by a particular input in
A (e.g., the timing landmark for a ReadSentence process
instance may be the time at which the sentence stimulus is
presented to the subject), whereas the values for the offset
time O and/or the process h of the process instance may
in general be unknown. We model the distribution over O
as a property of the process, and its particular value as a
property of the process instance; that is, while there may
be slight variation in the offset times of ReadSentence in-
stances, we assume that in general the amount of time be-
tween a sentence stimulus and the beginning of the Read-
Sentence cognitive process follows the same distribution
for each instance of the ReadSentence process.

The latent variables in an HPM are h and O for each of the
process instances. We refer to each possible set of process
instances as a configuration.

Definition. A configuration c is a set of process in-

stances {7 ... 7z, } with their parameters ({\, O, d}) fully-
specified.

Given a configuration ¢ = {7y ... 7} the probability dis-
tribution over each observed data point y,,, in the observed
data Y is defined by the Normal distribution:

Ytv NN(Ntv(C)yav) (1)

where o, is the standard deviation characterizing the time-
independent noise distribution associated with the v*" time
series, and where

d(h(m))
pep(c) = Z Z SA(m) + O(mr) =t — 7) wrp (h(7))
TZO @

Here §(-) is an indicator function whose value is 1 if its
argument is true, and 0 otherwise. wy,, (h(7)) is the element

of the response signature W (h(r)) associated with process
h(r), for data series v, and for the 7th time step in the
interval during which 7 is instantiated.

Equation (2) says that the mean of the Normal distribution
governing observed data point ¥, is the sum of single con-
tributions from each process instance whose interval of ac-
tivation includes time ¢. In particular, the J(-) expression is
non-zero only when the start time (A(7) 4+ O()) of process
instance 7 is exactly 7 time steps before ¢, in which case we
add the element of the response signature W (h(m)) at the
appropriate delay (7) to the mean at time ¢. This expression
captures a linear system assumption that if multiple pro-
cesses are simultaneously active, their contributions to the
data sum linearly. To some extent, this assumption holds
for fMRI data (Boynton et al., 1996) and is widely used in
fMRI data analysis.

We can now define Hidden Process Models:

Definition. A Hidden Process Model, HPM, is a tuple
(H,®,C, (01 ...0v)), where H is a set of processes, @ is a
vector of parameters defining the conditional probabilities
over the processes in H given the stimulus types in A, C
is a set of candidate configurations, and o, is the standard
deviation characterizing the noise in the v*" time series of
Y.

Note that the set of configurations C' is defined as part of the
HPM. Each configuration is an assignment of timings and
process types to some number of process instances. This
restricts the hypothesis space of the model, and facilitates
the incorporation of timing constraints as mentioned above
(e.g. if none of the configurations allow process instance
n to be of type ReadSentence and/or start at t=4, then that
possibility is not considered by the HPM).

An HPM defines a probability distribution over the ob-
served data Y, given input stimuli A, as follows:

P(Y|HPM, A) =

> P(Y|HPM,C = ¢)P(C = c|[HPM,A)  (3)
ceC
where C is the set of candidate configurations associated
with the HPM, and C' is a random variable defined over C.

Notice the term P(Y|HPM, C' = c) is defined by equations
(1) and (2) above. The second term is

P(C = c|HPM, A) =
[1,c. P(h(m)|HPM, A)P(O(x)|h(r), HPM, A)

> ce [Lyew P(h(x)[HPM, A)P(O(x')[h (), HPM(,4 )A)

where P(h(m)|HPM, A) is the conditional probability of
process h(m) given the stimuli indicated by A as de-
fined by the parameter vector ® of the HPM. Similarly,
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P(O(m)|h(m),HPM, A) is the multinomial distribution
defined by ©(h(m)).

Thus, the generative model for an HPM involves first
choosing a configuration ¢ € C, using the distribution given
by equation (4), then generating values for each time series
point using the configuration c of process instances and the
distribution for P(Y|HPM,C = c) given by equations (1)
and (2).

3. Algorithms

3.1. Inference

The basic inference problem in HPMs is to infer the pos-
terior distribution over the candidate configurations C of
process instances, given the HPM, input stimuli A, and
observed data Y. By Bayes theorem we have

P(C = c[Y, A, HPM) =

P(Y|C = ¢, HPM)P(C = ¢|A, HPM)
Y wece P(Y|C =¢ ,HPM)P(C = ¢'| A, HPM)

&)

where the terms in this expression can be obtained using
equations (1), (2), and (4).

3.2. Learning

The learning problem in HPMs is: given an observed data
sequence Y, an observed stimulus sequence A, and a set
of candidate configurations including landmarks for each
process instance, we wish to learn maximum likelihood es-
timates of the HPM parameters. The set ¥ of parameters to
be learned include ©(h) and W" for each process h € H,
®, and o, for each time series v.

3.2.1. LEARNING FROM FULLY OBSERVED DATA

First consider the case in which the configuration of pro-
cess instances is fully observed in advance (i.e., all pro-
cess instances, including their offset times and processes,
are known). For example, in our sentence-picture brain
imaging experiment, if we assume there are only two cog-
nitive processes, ReadSentence and ViewPicture, then we
can reasonably assume a ReadSentence process instance
begins at exactly the time when the sentence is presented
to the subject, and ViewPicture begins exactly when the
picture is presented.

In such fully observable settings the problem of learning ®
and the ©(h) reduces to a simple maximum likelihood es-
timate of multinomial parameters from observed data. The
problem of learning the response signatures W (h) is more
complex, because the W (h) terms from multiple process
instances jointly influence the observed data at each time
point (see equation (2)). Solving for W (h) reduces to

solving a multiple linear regression problem to find a least
squares solution, after which it is easy to find the maximum
likelihood solution for the o,. Our multiple linear regres-
sion approach in this case is based on the GLM approach
described in (Dale, 1999). One complication that arises is
that the regression problem can be ill posed if the train-
ing data does not exhibit sufficient diversity in the relative
onset times of different process instances. For example, if
processes A and B always occur simultaneously with the
same onset times, then it is impossible to distinguish their
relative contributions to the observed data. In cases where
the problem involves such singularities, we use the Moore-
Penrose pseudoinverse to solve the regression problem.

3.2.2. LEARNING FROM PARTIALLY OBSERVED DATA

In the more general case, the configuration of process in-
stances may not be fully observed, and we face a problem
of learning from incomplete data. In this section we con-
sider the case where the offset times of process instances
are unobserved, however the number of process instances
is known, along with the process associated with each. For
example, in the sentence-picture brain imaging experiment,
if we assume there are three cognitive processes, ReadSen-
tence, ViewPicture, and Decide, then while it is reasonable
to assume known offset times for ReadSentence and View-
Picture, we must treat the offset time for Decide as unob-
served.

In this case, we use an EM algorithm to obtain locally max-
imum likelihood estimates of the parameters ®, based on
the following () function. Here we use C' to denote the
collection of unobserved variables in the configuration of
process instances, and we suppress mention of A to sim-
plify notation.

Q(V, M) = Egy youa [P(Y, C|0)]

The EM algorithm finds parameters ¥ that locally maxi-
mize the @) function by iterating the following steps until
convergence:

E step: Solve for the probability distribution over the unob-
served features of configurations of process instances. The
solution to this is given by equation (5).

M step: Use the distribution over the process instances
from the E step to obtain parameter estimates that maxi-
mize the expected log likelihood of the full (observed and
unobserved) data.

The update to W is the solution to a weighted least squares
problem maximizing the objective function

v — ¢ old ,
S O @) ©

202
v=1t=1 ceC v
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where 4, (c) is defined in terms of T as given in equation

Q).

The updates to the remaining parameters are given by

1 I
D ar
t=1

U?)

=l

where

at = (yt2'u - QytvEC|Y,\pold [Mtv(c)] + EC|Y,\I/°“ [M%v(c)])

and
Onh.0—0 — ZCEC Zﬂéc 5(h(7r) = h)bc,ﬂ-,o

o ZCGC ZWEC 6(h(m) = h) Zo’eﬂ(h(ﬂ)) be,m00
where

= §(0(n)

0)P(C = Y, ¥eld)

bc,ﬂ,o

4. Experiments

We applied HPMs to both synthetic and real fMRI data.
The real dataset arises from the fMRI study mentioned ear-
lier, in which subjects view a picture and sentence, and
must decide whether the sentence correctly describes the
picture. The synthetic data was constructed to match the
timing of the real dataset, but with simplified response sig-
natures.

4.1. Experiments with Synthetic Data

Two Sample Trials for 3-process Simulated Data Response 1
A

N, 1 1

Response 2

\\,Aw“ 05 05 w

0 10

20
Response 3

0

0 10 20

N\

10

0 20 40 60 80 20

Figure 2. Learned versus true process responses: synthetic data.
Plots on the right show learned response signatures (blue lines)
for three processes superimposed on the true response signatures
(green lines). This HPM was learned from synthesized data the
example on the left, in red; the green line indicates the synthesized

data before noise was added.

The synthetic data shown in Figure 2 was generated by
an HPM containing three processes. During training, the

exact timing was given in advance for the first two pro-
cesses, but not for the third. The HPM learning algorithm
obtained good estimates of the true response signatures de-
spite strong overlaps in the time intervals of the processes
instances and significant noise in the data. In a variety of
experiments we measured the accuracy of learned HPMs
by the fit of their response signatures to true response sig-
natures, by their data log likelihood on held out data, and
by their ability to correctly classify the process associated
with each process instance on held out data. Accuracy de-
creased with increasing data noise and improved with the
number of trials in the time series. We also found accuracy
improved as the dimension of the data increased, presum-
ably because the larger dimension provides more informa-
tion for localizing the hidden timing of process instances.
In this synthetic dataset, all voxels contained relevant signal
for each process instance. We are working on new datasets
that contain irrelevant voxels in addition to the informative
ones to more closely model real fMRI data.

4.2. Experiments with Real Data

The fMRI data used in this experiment was obtained from
an fMRI study (Keller et al., 2001) in which human sub-
jects were presented a sequence of 40 trials. In half of these
trials subjects were presented a picture for 4 sec followed
by a blank screen for 4 sec, followed by a sentence. They
then pressed a button to indicate whether the sentence cor-
rectly described the picture. In the other half of the trials
the sentence was presented first and the picture second, us-
ing the same timing. Throughout the session, fMRI images
of brain activity were captured every 500 msec (i.e., TR =
500 msec). Each image was summarized in terms of the
mean activation in 7 pre-defined regions.

Our goal in applying HPMs to this data is to model the
underlying cognitive processes used by subjects to perform
their task. We experimented with three different HPMs to
analyze this data:

1. HPM-2: An HPM with two processes, ReadSentence
and ViewPicture, each with a specified duration of 11
seconds (to account for the hemodynamic response),
and where the onset of each process is specified in
advance to coincide exactly with the appearance of
the corresponding stimulus. Thus, the timing is fully
specified, and the only HPM parameters to be learned
are the response signatures for the two processes.

2. GNB: An HPM with two processes, identical to HPM-
2 except that durations of both processes were set to
8 seconds (the time between stimuli) instead of 11.
This models the ReadSentence and ViewPicture pro-
cesses without overlap. The generative model learned
by this HPM is equivalent to the generative model
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learned by a Gaussian Naive Bayes (GNB) classifier
where the classes are ReadSentence and ViewPicture,
and the examples to be classified are 8-second win-
dows of fMRI observations.

3. HPM-3: An HPM with three processes: ReadSen-
tence, ViewPicture, and Decide, each with a duration
of 11 seconds. The timings for ReadSentence and
ViewPicture were fully specified, but the onset of the
Decide process was not. Instead, we assigned a uni-
form prior to start times in the interval beginning with
the second stimulus and ending 5 seconds later. The
model was constrained to assume that the onset of the
Decide process, while unknown, was at the same point
in each of the 40 trials.

For each of thirteen human subjects, we trained and eval-
uated these three HPMs, using a 40-fold leave-one-trial-
out cross validation method. Data likelihood was mea-
sured over the left-out trials. While the training process
allowed some variation in process instance timings as men-
tioned above, the instances’ process types were known. We
also measured the accuracy of the HPMs in classifying the
identities of the first and second process instances in each
left-out trial (i.e., classifying ReadSentence versus View-
Picture). The classification was performed by choosing
the process with highest posterior probability given the ob-
served data and the learned HPM, marginalizing over the
possible process identities for the remaining process.

The results are summarized in Table 1. Note first that both
HPM-2 and HPM-3 outperformed GNB in both data log
likelihood and classification accuracy. The comparison be-
tween GNB and HPM-2 is especially noteworthy because
the only difference between these two models is the 8 sec-
ond duration (resulting in non-overlapping processes) ver-
sus 11 seconds. Essentially, HPM-2 classifies the data in-
terval by simultaneously deconvolving the contributions of
the two overlapping processes, and assigning the classes
(process identities), whereas the standard GNB classifier is
unable to model the overlap. HPM-3 goes even further than
HPM-2, by assuming the existence of a third process with
unknown onset time, and simultaneously estimating the
contributions of each of these three, together with assign-
ing process identities. We take these results as a promis-
ing sign of the superiority of HPMs over earlier classifier
methods (e.g.,(Mitchell et al., 2004)) for modeling cogni-
tive processes.

Second, notice that HPM-3 outperforms HPM-2. This in-
dicates that HPMs provide a viable approach to modeling
truly hidden cognitive processes (e.g., the Decide process)
with unknown timing. The fact that the 3-process model
has greater cross-validated data log likelihood supports the
hypothesis that subjects are invoking three processes rather
than two when performing this task. While the existence

of the Decide process may be intuitively obvious, the point
is that HPMs offer a principled basis for resolving ques-
tions about the number and nature of hidden and overlap-
ping cognitive processes. (Note that we must use cross val-
idation to avoid overfitting and favoring the mor complex
model.) The learned response signatures of HPM-3 for one
subject are shown in Figure 3.

Observed data for two trials.

Observed |
data:

05T

05

4

Inferred
onsets for 8-

process D: —————> . - A
“o 2 ] &0 80 100 120

Learned
response
signatures:

Figure 3. Learned HPM-3 process responses for one subject:
fMRI data. The top plot shows two trials. The bottom plots are
learned response signatures for ReadSentence (S), ViewPicture
(P), and Decide (D). Each line represents data from one of the 7
brain regions.

Finally, we applied HPMs to a second fMRI study in which
subjects were presented a sequence of 120 words, one ev-
ery 3-4 seconds, and pressed a button to indicate whether
the word was a noun or verb. In this study, images were
obtained once per second (i.e., TR = 1 sec). We trained
a two-process HPM, with processes ReadNoun and Read-
Verb, each with duration 15 seconds. This implies overlap-
ping contributions from up to 5 distinct process instances in
the observed fMRI data at any given time, making it unre-
alistic to apply classifiers like GNB to this data. We applied
learned HPMs to classify which process instances were
ReadNoun versus ReadVerb. Despite the overlapped re-
sponses, we found cross-validated classification accuracies
significantly (p-value < 0.1) better than random classifica-
tion in 4 of 6 human subjects, with the accuracy for the best
subject reaching .67 (random classification yields accuracy
of .5). This further supports our claim that HPMs provide
an effective approach to analyzing overlapping cognitive
processes in realistic fMRI experimental datasets.
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Table 1. fMRI study: leave-one-trial-out cross validation results
for GNB, HPM-2, and HPM-3 on five subjects (A through E) ex-
hibiting the highest accuracies (top 3 rows) and data log likeli-
hoods (bottom 3 rows) out of 13 total subjects, and the average
over all 13 subjects. The accuracies are for predicting the identi-
ties of the first and the second stimuli (up to 80 correct answers,
0.5 for purely random classification).

‘ A B C D E Avg ‘
GNB 0.725 0.750 0.725 0.637 0.750 0.610
HPM-2 | 0.750 0.875 0.700 0.675 0.787 0.630
HPM-3 | 0.775 0.875 0.738 0.637 0.812 0.660 T S—|
GNB -896  -786  -941 -783 -476 -840
HPM-2 | -876  -751 912 -768 -466  -819 @ @ @ @ @ @ @ @
HPM-3 | -864 -713 -898 -753 -447 -811
Figure 4. Example of a partial DBN capturing the same assump-
5. Related Work tions and constraints as HPMs. The variables in the box must
be repeated for each process instance (e.g. Instl:). In this ex-
5.1. HPMs and DBNs ample, we know that Instl occurs exactly once on ¢ = [1,8].

We mentioned earlier that HPMs correspond to a con-
strained subclass of Dynamic Bayes Nets that make addi-
tional modeling assumptions. To encode these modeling
assumptions in a DBN, we can use integer-valued Markov
chains to model process instances. The chains can count
down deterministically from their duration to zero to indi-
cate the interval during which the instance is active. The
Markov chains must be process instances instead of pro-
cesses to allow overlapping instances of the same process.
Chains can be linked to process ID variables to keep track
of their process types and associated parameters. Addi-
tional variables are required to keep track of which start
times are allowed for the process instance Markov chains.
Furthermore, we need a memory chain for each process in-
stance to keep track of whether it has started yet. These
variables are explained in more detail through the exam-
ple in Figure 4. As this example illustrates, encoding an
HPM within the generic DBN framework with no new free
parameters is possible, but not elegant. Of course in ei-
ther formalism, encoding the additional domain knowledge
captured by our modeling assumptions will reduce the ef-
fective number of hidden parameters to be estimated, and
will also improve the learnability of the model. HPMs pro-
vide a convenient, process-oriented formalism to represent
and work within these modeling assumptions.

DBNSs have also been used for other purposes in fMRI anal-
ysis, as in (Hgjen-Sgrensen et al., 2000) and (Zhang et al.,
2006).

5.2. HPMs and the General Linear Model

HPMs are also related to the General Linear Model (GLM)
which is widely used for fMRI data analysis in the neu-

Suppose further that the process type PrID1 limits the possible
start times to ¢ = {1,2,5,6}. Instl is an integer-valued random
variable; when it starts, its value is set to its duration and it counts
back down to 0. M E'M is needed to ensure Instl occurs exactly
once; if the duration is 3 and the process starts at £ = 1, Instl
must not restart at t = 5 or t = 6 even though its value has re-
turned to 0, and if the process did not start att = 1 or ¢ = 2 or
t = 5, it must start at ¢ = 6. This DBN has no more free parame-
ters than its corresponding HPM, but is not an elegant description
of our modeling assumptions.

roscience community. HPMs provide a key generaliza-
tion of the standard GLM multiple regression methods used
for fMRI analysis because HPMs allow uncertainty regard-
ing the timings of the hidden processes, whereas standard
GLM regression analyses (e.g., (Dale, 1999)) assume the
precise timings of each process are known in advance. The
GLM models the time series with the following equation:

Y=XW+N (7

where Y is the horizontal concatenation of the ob-
served time series vectors for the different voxels, X =
[X; - -+ XK] is the horizontal concatenation of the timing
matrices for the K processes, W is the vertical concate-
nation of the response matrices for the processes, and N
is the horizontal concatenation of the noise vectors for the
different voxels.

Equation (7) corresponds to the special case of an HPM
model where the HPM configuration (i.e., all process tim-
ings and process identities) is given in advance. In this
case, Y and X are both known, and we need only solve
for the response signatures of the processes, represented by
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W. The maximum likelihood solution for W can be ob-
tained using Ordinary Least Squares methods. HPMs gen-
eralize the problem setting by treating the timing matrix X
as unknown; that is, treating X as a random variable to be
estimated (subject to constraints derived from prior knowl-
edge) simultaneously with W. Given the widespread use
and success of the more restricted GLM regression model
in fMRI analysis, the generalization provided by HPMs has
many potential applications in this domain.

6. Discussion

Hidden Process Models (HPMs) provide a general formal-
ism for representing probability distributions over time se-
ries data. Here we have described the formalism and as-
sociated inference and learning methods, and presented ex-
perimental results showing the ability of these algorithms
to learn HPMs characterizing hidden cognitive processes
in human subjects while their brain activity is recorded in
an fMRI scanner. HPMs provide an intermediate point be-
tween GLM regression and DBNs on the spectrum of ex-
pressivity versus learnability.

HPMs address a key open question in fMRI analysis: how
can one learn the response signatures of overlapping cog-
nitive processes with unknown timing? There is no com-
peting method to HPMs available in the fMRI community,
and general DBNs will not suffice because they do not con-
strain the learning problem sufficiently to allow learning
from sparse fMRI data sets. We see many directions for
future work on HPMs.

Perhaps the most significant limitation of the current ver-
sion of HPMs is the way that timing constraints (like “pro-
cess instances of type A begin at some ¢ offset [0...2] sec-
onds after their corresponding stimulus \”) are incorpo-
rated into the model. Currently, the HPM includes a set of
process configurations that describe the allowable timings
of the process instances. Timing constraints are observed
by simply not putting any configurations into the model that
violate the constraints, essentially limiting the hypothesis
space of the model to be consistent with the timing con-
straints. This makes the inference procedure easy (try each
configuration and pick the one that maximizes the data like-
lihood) but it is inefficient to list all possible configurations,
much less to evaluate them all. We are looking into approx-
imate inference algorithms for HPMs in an effort to make
them suitable for larger problems.

Another area in which HPMs can be improved is to reduce
the number of independent parameters estimated for HPM
response signatures, perhaps using parametric forms such
as those in (Boynton et al., 1996), or parameter sharing as
in (Niculescu & Mitchell, 2006). Another approach would
be to incorporate hierarchical Bayes approaches that allow

learning priors on the parameter values by pooling across
different voxels or processes within a subject, or by pooling
across different subjects.

Finally, we see HPMs as a framework that may be use-
ful in other high-dimensional, sparse-data domains where
generic DBNSs are not sufficiently constrained to be of use.
For example, in problems such as tracking people in a
building given a distributed network of sensors, it may be
that modeling assumptions of HPMs can be used to model
processes such a “person walking down the hallway,” and
incorporating prior knowledge such as “this person walks
down the hallway exactly once during time interval [t1,t2].”
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