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Abstract

A major problem with machine learning ap-
proaches to information extraction is the high
cost of collecting labeled examples. Active
learning seeks to make efficient use of a la-
beler’s time by asking for labels based on the
anticipated value of that label to the learner.
We consider active learning approaches for
information extraction problems where each
example is described by two distinct sets of
features, either of which is sufficient to ap-
proximate the function; that is, they fit the
cotraining problem setting. We discuss a
range of active learning algorithms and show
that using feature set disagreement to select
examples for active learning leads to improve-
ments in extraction performance regardless of
the choice of initially labeled examples. The
result is an active learning approach to mul-
tiple view feature sets in general, and noun
phrase extraction in particular, that signif-
icantly reduces training effort and compen-
sates for errors in initially labeled data.

1. Introduction

One difficulty with machine learning techniques for in-
formation extraction is the high cost of collecting la-
beled examples. We can make more efficient use of the
trainer’s time by asking them to label only instances
that are most useful for the learner. Research in active

learning has shown that using a pool of unlabeled ex-
amples and prompting the user to only label examples
that have high anticipated value reduces the number
of examples required for tasks such as text classifica-
tion , parsing, and information extraction (Thompson
et al., 1999; Soderland, 1999). Bootstrapping algo-
rithms have been proposed for similar learning prob-
lems (Blum & Mitchell, 1998; Nigam & Ghani, 2000;
Collins & Singer, 1999; Muslea et al., 2000) that fall
into the cotraining setting ¢e. they have the property
that each example can be described by multiple fea-
ture sets, any of which are sufficient to approximate
the function.

We present an active learning framework for problems
that fall into the cotraining setting. Our approach dif-
fers from work by Muslea on co-testing (Muslea et al.,
2000) in that semi-supervised learning , using both la-
beled and unlabeled data, is interleaved in the active
learning framework. Instead of learning with only la-
beled data, we use a botstrapping algorithm to learn
from both labeled and unlabeled data and then select
examples to be labeled by the user at every iteration.
We do this by adapting co-EM to information extrac-
tion tasks and develop active learning techniques that
make use of multiple feature sets.

We focus on extracting noun phrases that belong to
a predefined set of semantic classes. Using the words
within the noun phrase and the words surrounding it
as two distinct feature sets, we describe active learn-
ing algorithms that make effective use of this division.
Instead of relying only on a fixed, prelabeled set of ex-



amples, the active learning system keeps the user in the
loop and presents them with examples to label at each
iteration. We find that by utilizing the redundancy
inherent in the data because of multiple feature sets,
active learning approaches can significantly reduce the
effort required to train information extraction systems.
We also show that active learning can compensate for
a bad choice of initial labeled examples and that the
labeling effort is better spent during the active learn-
ing process rather than at the beginning, as done in
standard supervised and semi-supervised learning.

2. Task and Data Set Representation

We focus on extracting noun phrases that correspond
to organizations, people, and locations from a set of
web pages. These semantic classes are often identified
using named entity recognizers (e.g. (Collins & Singer,
1999)), but those tasks are usually limited to proper
names, such as “John Smith” or “California”. Our
task is to identify all relevant noun phrases, such as “a
telecommunications company” or “software engineer”.
As our data set, we used 4392 web pages from corpo-
rate websites collected for the WebKB project (Craven
et al., 1998). 4160 were used for training and 232 were
set aside as a test set. We preprocessed the web pages
by removing HTML tags, and adding periods to the
end of sentences when necessary. To label our data
set, we extract all noun phrases (NPs) and manually
label them with one or more of the semantic classes
of interest (organizations, people, or locations). If a
noun-phrase does not belong to any of these classes, it
is assigned none.

Our goal is to recognize the semantic class of a word or
phrase in contert. Many words can belong to different
semantic classes when they appear in different con-
texts. For example, the word “leader” can refer to a
person, as in “a number of world leaders and other ex-
perienced figures” but can also occur in phrases which
do not represent people, such as in “the company is a
world leader”. We have identified three common sit-
uations where the semantic class of a word can vary
depending on the local context:

¢ General Polysemy: many words have multiple
meanings. For example, “company” can refer to a
commercial entity or to companionship.

e General Terms: many words have a broad meaning
that can refer to entities of various types. For exam-
ple, “customer” can refer to a person or a company.

e Proper Name Ambiguity: proper names can be
associated with entities of different types. For exam-

ple, “John Hancock” can refer to a person or a com-
pany, which reflects the common practice of naming
companies after people.

Although the semantic category of a noun phrase may
be ambiguous, the context in which the noun phrase
occurs is often sufficient to resolve its category. There-
fore, we cast our problem as one of classifying each
instance of a noun phrase that appears within a docu-
ment, based on both the noun phrase and its surround-
ing context. Each noun phrase instance (or example)
consists of two items: (1) the noun phrase itself, and
(2) a lexico-syntactic context surrounding the noun
phrase. We used the AutoSlog (Riloff, 1996) system
to generate patterns representing the lexico-syntactic
contexts. For the remainder of the paper we will refer
to these lexico-syntactic contexts simply as contexts.

By using both the noun phrases and the contexts sur-
rounding them, we provide two different types of fea-
tures to our classifier. In many cases, the noun phrase
itself will be unambiguous and clearly associated with
a semantic category (e.g., “the corporation” will nearly
always be an organization). In these cases, the noun
phrase alone would be sufficient for correct classifica-
tion. In other cases, the context itself is highly pre-
dictive. For example, the context “subsidiary of <>”
nearly always refers to an organization. In those cases,
the context alone is sufficient. There will also be cases
where either of these features by itself will be ambigu-
ous with respect to the semantic class. We discuss
these ambiguities in the next section and measure the
extent to which these are present in our data set.

2.1. Ambiguity of Classes

Since our training corpus is unlabeled, we cannot mea-
sure the ambiguity directly. However, the examples
in our test set were randomly drawn from the same
distribution, and manually labeled, so ambiguity of
noun-phrases and contexts in the test set is indicative
of their ambiguity in the training set as well. Dur-
ing the labeling process, when an example was judged
as belonging to multiple classes, multiple labels were
assigned. An example is the sentence “We welcome
feedback”, where the “We” could refer to an organi-
zation, or the people of the organization. This kind
of ambiguity also occurs when countries (locations)
act as agents (organizations). Tables 1 and 2 summa-
rize the ambiguity in noun-phrases and contexts in our
test set, by showing how many noun-phrases were am-
biguous with respect to which classes. Noun-phrases
that did not fall into any of the categories location,
organization or person were labeled as none.

Noun phrases are mostly unambiguous (only 2% of the



Ambiguity Class(es) Number
of NPs

none 3574

No loc 114
Ambiguity org 451
person 189

loc, none 6

Belonging to org, none 31
TWO classes person, none 25
loc, org 6

org, person 13

Belonging to loc, org, none 1
THREE classes | org, person, none 3

Table 1. Noun-Phrase Ambiguity: The number of NPs
that belong to each combination of classes. NPs are rel-
atively unambiguous (4328 out of 4413 only belong to a

single class).

Ambiguity Class(es) Number

of Contexts

none 1068

No loc 25

Ambiguity org 98

person 59

loc, none 51

Belonging to org, none 271

TWO classes person, none 206

loc, org 5

org, person 50

Belonging to loc, org, none 18

THREE classes org, person, none 83

Belonging to loc, org, 6
all FOUR classes | person, none

Table 2. Context Ambiguity: The number of Contexts that
belong to each combination of classes. Contexts are rela-
tively ambiguous - 6 of the contexts were labeled as be-
longing to all 4 classes

4413 unique noun-phrases belong to 2 or more classes)
but are relatively sparse in the training set; only 1887
of these noun-phrases had been seen in the training
set. Thus for 57% of the noun-phrases in the test set,
we have no training information at all. In contrast,
37% of the contexts are ambiguous but each of them
occurs more often and can be modeled better. 91% of
these 1940 contexts from the test set also appear in the
training set. These measurements reinforce our previ-
ous assumption both the noun phrase and the context
will play a role in determining the correct classification
for each example.

3. Active Learning Problem Setting

Active learning is the problem of determining which
unlabeled instances to label next as learning proceeds,
in order to learn most accurately from the least label-
ing effort. The detailed problem setting varies with

the form of the target function, the pool of unlabeled
instances available, and the type of training informa-
tion sought from the trainer. This section defines the
active learning problem setting we consider, by placing
it along each of these dimensions.

Form of target function to be learned. We consider
active learning of a target function f : X — Y that
maps a set X of instances to a set Y of possible values.
We only consider target functions where instances are
described by two distinct sets of features X; and X,
(i.e., X = X3 x X3), such that the target function can
be approximated either in terms of X; or in terms of
X5. In our information extraction task, X; describes
the noun phrase itself, and X, describes the context
in which it appears.

For example, consider a problem where each instance
2 € X is a noun phrase along with its surrounding lin-
guistic context (e.g., “drove to (New York )”), where
the target function f specifies whether or not the noun
phrase refers to a location, where the first set of fea-
tures X consists of the noun phrase itself (e.g., (New
York )), and where the second set of features X5 con-
sists of the linguistic context (e.g., “drove to ()”). Ide-
ally, we assume that the target function f can be ex-
pressed in terms of X; alone, and also in terms of X5
alone (e.g., that it is possible to determine whether the
instance refers to a location, based solely on the con-
text “I drove to ()”, and also based solely on the noun
phrase “(New York ).” Put more formally, we assume
X = X1 x X5, where there exist functions g; : X1 = Y
and g2 : Xo = Y such that f(z) = g1(z1) = ga2(x2)
for all z = z1|z2. In the real-world domains consid-
ered here, this ideal assumption is not fully satisfied,
as described in Section 2 and Tables 1 and 2.

Pool of unlabeled data available. A second dimension
for defining the active learning problem involves as-
sumptions about how and when unlabeled instances
are made available to the active learner. We begin
with the usual PAC-learning assumption (Ehrenfeucht
et al., 1989), that the instances X are generated ac-
cording to some fixed but unknown probability distri-
bution P(X), and that the goal of the learner is to
minimize the probability that it will misclassify future
instances drawn randomly according to this same dis-
tribution. We can make several assumptions about
how unlabeled instances are obtained by the active
learner. We could assume that a fixed pool containing
n instances is collected in advance according to the
distribution P(X), and that this fixed pool is all that
is available to the active learner. This setting is con-
sidered in (McCallum & Nigam, 1998). We call this
the fixed random pool setting. An alternative is to as-



sume that the active learner can draw new instances
at random from P(X) during learning, so that it is not
limited to the fixed pool. This setting is considered in
(Cohn et al., 1994), and we will refer to this as the on-
going random sampling setting. A further alternative
is to assume the learner can synthesize any syntacti-
cally legal instance in X, regardless of P(X), and ask
the trainer for information about this instance. While
this setting is interesting, it can lead to synthetic ex-
amples that are not intelligible to the trainer (Baum
& Lang, 1992). This setting is considered in (Angluin,
1988) . We will call this the synthesized instances
setting, though it has sometimes been referred to as
“membership querying.” In this paper, we consider
only the fixed random pool setting for active learning.

Information provided by the trainer. A third dimen-
sion concerns what information is to be provided to
and by the trainer. In the standard labeling setting
the trainer is provided an unlabeled instance, and in
return provides the label. A different possibility is that
the trainer is provided part of the description (e.g.,
provided only “drove to ()”), and required to label it.
We will call this the single feature set labeling setting.
Another possibility is that the trainer is allowed to de-
mur in some cases, providing a label only when certain
(e.g., the trainer may decline to label “occurred in ()”
because of its ambiguity, but agree to label “drove to
()” as a reliable location context).

To summarize, we consider an active learning problem
in which the target function follows the cotraining as-
sumption, the data available to the active learner is a
fixed random pool, and we compare standard labeling
to single feature set labeling.

4. Algorithmic Overview

Our approach consists of the following steps: a small
set of words (seedwords or seeds) and a set of docu-
ments are provided. Instances in the document col-
lection are initially labeled using the seeds (initial ex-
amples) and the annotated documents (including the
unlabeled instances) are given to the bootstrapping
algorithm. After every iteration of the bootstrapping
algorithm, a human labeler is asked to label a set of
examples selected by the active learning method. The
design of our information extraction system requires
answering the following questions:

1. How to label the initial examples for the bootstrap-
ping algorithm?

2. What bootstrapping method will be used to learn
from a combination of labeled and unlabeled data?

Class SeedWords

locations australia, canada, china, england, france,
germany, japan, mexico, switzerland,

united states

organizations | inc., praxair, company, companies, arco
dataram, halter marine group, xerox,

rayonier timberlands, puretec

customers, subscriber, people, users,
shareholders, individuals, clients, leader,

people

director, customer

Table 3. Seedwords used for initialization of bootstrapping.

3. What is the best active learning algorithm for re-
questing additional labels from the trainer?

4. What is the best method to assign labels to test
instances?

We discuss and answer these questions below.

4.1. Method for Initial Labeling

The set of seedwords we use to generate initially la-
beled examples for the three information extraction
tasks are shown in Table 3. The locations seedwords
are the same as those used in (Riloff & Jones, 1999).
The seeds for organizations and people were cho-
sen by sorting noun-phrases in the training set by fre-
quency, and selecting the first ten matching the target
class. Note that this method does not necessarily lead
to the best choice of seedwords, but is a simple method
not requiring skill and experience. A domain expert
might be able to pick better seedwords but we wanted
to experiment with words that a non-expert could eas-
ily generate. Seedwords may be of poor quality if they
are either (1) infrequent in the documents, or (2) am-
biguous. We run experiments to examine whether ac-
tive learning can compensate for “poor” seedwords (in
terms of both 1 and 2) and report results in Section 5.

There was ambiguity across all sets of seedwords. In
particular, ”leader” refers to an organization more of-
ten than to a person in our data set, but it was used as
a person keyword during Fixed Initialization. We will
show that our algorithms are robust enough to recover
from this kind of ambiguity. We examine two meth-
ods for creating initial labeled examples to jumpstart
the bootstrapping process, one of which allows us to
correct these ambiguities at the beginning:

Fizxed Initialization: All noun phrases whose head
noun (right-most word) matches a seed word are con-
sidered to be positive training instances, regardless
of the context in which they appeared. This ap-
proach was also used in (Riloff & Jones, 1999). This
is frequently correct, for example labeling the city
“Columbia” as a location in the example “... head-



quartered in Columbia”. However, in the example
“Columbia published ...” it refers to a publishing com-
pany, not a location.

Active Initialization: To address errorsintroduced
by ambiguity in the automatic labeling phase, we tried
a novel method that incorporates active learning. In
active initialization, examples matching the seed words
are interactively labeled by the trainer before begin-
ning the bootstrapping process. We hypothesize that
by actively labeling examples at the outset and cor-
recting the errors introduced by ambiguous seedwords,
we can provide the bootstrapping algorithms with bet-
ter initial examples and thus improve extraction per-
formance. For reasonably frequent seed words, this
requires significant numbers of examples to be labeled
at the outset; 669 examples for locations, 3406 for
organizations, and 2521 for people, for the seed
words in Table 3 and our training collection.

4.2. Bootstrapping Method: coEM

Unlike previous work in active learning where the clas-
sifiers are only learned on labeled data, we use a boot-
strapping method to learn from both labeled and un-
labeled data. The bootstrapping algorithm we use
for the information extraction task is coEM. coEM
is a hybrid algorithm, proposed by (Nigam & Ghani,
2000), combining features from both co-training and
Expectation-Maximization (EM). coEM is iterative,
like EM, but uses the feature split present in the data,
like co-training. The separation into feature sets we
used is that of noun-phrases and contexts. The algo-
rithm proceeds by initializing the noun-phrase classi-
fier g1 (z1) using the labeled data only. Then ¢ (z;) is
used to probabilistically label all the unlabeled data.
The context classifier ga(z2) is then trained using the
original labeled data plus the unlabeled data with the
labels provided by ¢;. Similarly, g» then relabels the
data for use by g1, and this process iterates until the
classifiers converge. For final predictions over the test
set, g1 and ¢» predictions are combined by assuming
independence, and assigning the test example proba-
bility proportional to ¢i(z1)da(z2)-

In earlier work (Ghani & Jones, 2002), we compared
coEM with metabootstrapping (Riloff & Jones, 1999)
and found coEM to be better.

4.3. Active Learning Methods in the
Cotraining Setting

The cotraining problem structure lends itself to a vari-
ety of active learning algorithms. In co-testing (Muslea
et al., 2000) the two classifiers are trained only on
available labeled data, then run over the unlabeled

data. A contention set of examples is then created,
consisting of all unlabeled examples on which the clas-
sifiers disagree. Examples from this contention set
are selected at random, a label is requested from the
trainer, both classifiers are retrained, and the process
repeats.

While this naive co-testing algorithm was shown to
be quite effective, it represents just one possible ap-
proach to active learning in the co-training setting. It
is based on training the two classifiers g1 and g» us-
ing labeled examples only, whereas work by (Collins &
Singer, 1999; Blum & Mitchell, 1998; Riloff & Jones,
1999) has shown that unlabeled data can bootstrap
much more accurate classifiers. In this paper, we use
both labeled and unlabeled data to create our clas-
sifiers. Also, instead of selecting new examples uni-
formly at random from the contention set, one might
rank the examples in the contention set according to
some criterion reflecting the value of obtaining their
label. In this paper, we propose and experiment with
active learning algorithms that use unlabeled data for
training g1 and ¢», in addition to using ¢; and ¢ga to
determine which unlabeled example to present to the
trainer. We also consider a variety of strategies for
selecting the best example from the contention set:

Uniform Random Selection: This baseline
method selects examples according to a uniform dis-
tribution. Each noun-phrase, context pair that occurs
at least once in the training set is selected with equal
probability. Example frequency is ignored.

Density Selection: The most frequent unlabeled
noun-phrase context pair is selected for labeling at
each step. This method is based on the assumption
that labeling frequently occurring examples would be
beneficial for the learner.

Feature Set Disagreement: Since we learn two
distinct classifiers that apply to the same instance, one
way to select instances where a human trainer can pro-
vide useful information is to identify instances where
these two classifiers disagree. This approach can be
viewed as a form of query-by-committee (QBC), (Fre-
und et al., 1997; Liere & Tadepalli, 1997) or uncer-
tainty sampling (Thompson et al., 1999), where the
committee consists of models that use different fea-
ture sets and is similar to that used by (McCallum
& Nigam, 1998). Our selection criterion is based on
Kullback-Leibler (KL) divergence. Our final ranking
gave each example a density-weighted KL score, by
multiplying K L(P,, (+|z), P,, (+|z)) by the frequency
of the example. Examples were selected determinis-
tically, with the next unlabeled example taken each
time. For these experiments we used only a single



committee member per feature set, though an obvious
extension is to have multiple committee members per
feature set.

Context Disagreement:  All active selection al-
gorithms described so far use the standard labeling
paradigm, with the user labeling a pair consisting of
a noun-phrase and its context. However, we can also
label noun phrases independent of context, and since
each noun phrase may occur in many contexts, this
may lead to greater value in labeling. For example,
“Ttaly” occurs with “centers in ()”, “operations in ()”,
“introduced in ()”, “partners in ()”, and “offices in
()”, so labeling “Italy” provides us with information
about all of these contexts. In addition, we can use
the different contexts as votes by committee members
about the label for the noun-phrase. Selecting the
noun-phrase with the most context disagreement may
provide the bootstrapping algorithm with the most in-
formative labeling. This is can be thought of as query-
by-committee (QBC) with the committee consisting of
different cooccurrences of elements of one feature set
with elements of the other feature set. We quantified
context disagreement using density weighted KL di-
vergence to the mean, as in feature set disagreement,
and all the contexts of the noun-phrase were used as
input to the KL divergence measure. We used the fre-
quency of the noun-phrase to density-weight the KL
divergence. The user then only labeled noun-phrases,
in single-feature set labeling.

4.4. Extraction Method

The combination of bootstrapping and active learning
results in a learned model consisting of noun-phrases
and contexts, with corresponding learned probabilities
for each. We use this model to assign scores to the un-
seen test instances by taking the product of the scores
of the noun-phrase and context (both from the train-
ing set). Nouns and contexts that occur in the test
set but have not been seen in the training set are as-
signed a prior to reflect the frequency of the classes
in our dataset (0.027 for locations, 0.11 for people
and 0.20 for organizations). Note that our examples
include pronouns and other anaphoric references.

5. Results

We use coEM to label five examples per iteration, un-
til 500 examples have been labeled. Then, we continue
running coEM till convergence (usually around 400 it-
erations total) and use the learned model to score the
test instances. We sort the test instances according to
the score assigned by the extraction method and cal-
culate precision-recall values.
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Figure 1. Comparison of active learning methods, for lo-
cations, people and organizations. for people, the sparsest
class. Choosing examples to label based on disagreement
between the two feature sets was most effective.

Disagreement and Density Active Learning
Most Effective: Figure 1 shows how the different
active learning methods perform after the user has la-
beled 500 examples. Feature set disagreement (“Dis-
agreement”) outperforms all other methods, except in
the “people class” where density based active learning
performs best. The people class contains many pro-
nouns, which are frequently selected by density-based
selection. Uniform random labeling of 500 examples
does not improve over the baseline coEM using only
the initial seeds. We believe this result to be signifi-
cant as it shows that randomly selecting examples to
label is no better than not labeling at all and letting
coEM learn from the more promising initial labeled
and unlabeled examples. This makes sense in our set-
ting, since our positive classes are sparse, and random
labeling does not provide much information about the
positive class, compared with the dense information
provided with the seeds. However, if we started with
no seeds at all, some information would be gained by
random labeling.

Although our active learning algorithms improve over
the baseline in all cases, the improvement is most
marked for the people class — this was the class with
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Figure 2. Breakeven point between precision and recall
shown for each iteration for learning the people class. 5
examples are labeled per iteration for active learning, up
to a total of 500 examples labeled. coEM improves slightly
with the first few iterations, then degrades. With active
learning, the most substantial improvements are made in
the first few iterations, but labeling more data continues
to improve results.

the most ambiguous initial seeds. This provides ev-
idence that active learning can compensate for poor
seed choices.

Labeling instances based on their frequency (“Den-
sity”) was also very effective for people and
organizations, which were frequent in our dataset.
Context disagreement, which uses the single feature
set labeling setting, did not perform as well as Dis-
agreement or Density labeling, which use standard la-
beling. Single feature set labeling is useful (better than
no active learning), but using both feature sets to se-
lect instances is a more effective technique.

Substantial Improvements with Small Amounts
of Labeling: As can be seen in Figure 2, the most sub-
stantial improvements with active learning are made
in the first few iterations, but labeling more data con-
tinues to improve results. This suggests that we can
perform favorable trade-offs between labeling time and
desired levels of accuracy.

Active Learning More Useful than Active Ini-
tialization: We found that active initialization (man-
ually labeling and correcting errors in the initial la-
beled examples due to ambiguous seedwords) did not
perform significantly better than fixed initialization.
When our active learning method is provided a set
of initial instances that are “clean” and unambiguous,
the extraction performance does not improve. This
suggests that the active learning methods are robust
to ambiguous/noisy training data and can recover from
poor initial seeds. This is shown in Figure 3. We also
find that the active learning method (with 500 exam-
ples labeled for locations) performed better than us-
ing bootstrapping with coEM with active initialization

Locations: Active Learning Versus Active Initialization
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Figure 3. Labeling 500 noun-phrase-context pairs with ac-
tive learning (and no initial labeling) does better than using
active initialization, which requires labeling 693 examples
at the outset. Labeling the initial examples and then la-
beling another 500 with active learning performs best.

(with 693 examples labeled). This is an important re-
sult since if we have a fixed amount of time to label
instances, active learning can be a more effective use
of this time than labeling the instances at the outset.

Active Learning Compensates for Infrequent
Seeds: Figure 4 shows that selecting 20 country
names uniformly from a set of 253 leads to variable re-
sults, with effectiveness related to frequency of initial
seeds. The graph on the left contains three sets of 20
seeds each, matching 133, 129 and 34 examples in our
training set, respectively. In the left-hand graph, the
seed set matching only 34 examples performs poorly
with the bootstrapping algorithm, but when combined
with active learning, is able to produce results compa-
rable with the other seed sets. The graph on the right
shows the results for a frequent seed set (occurring 673
times in the training set). It is interesting that active
learning improves results in all cases and compensates
for seeds that are infrequent in the document set. Thus
with active learning we can obtain results superior to
bootstrapping on the best seed set, regardless of the
seed set we choose.

Summary of Results We compared different met-
rics for selecting examples to label and found that us-
ing the disagreement between classifiers built with the
two feature sets worked well. Manually correcting ini-
tial examples that were mislabeled due to ambiguous
seeds is not as effective as providing the active learn-
ing algorithm with an arbitrary set of seeds and la-
beling examples during the learning process. Context-
disagreement used the single feature set labeling set-
ting, and did not perform as well as methods using
standard labeling. Using only a single feature set for
labeling may allow inaccuracies to creep into the la-
beled set, if any of the examples are ambiguous with
respect to that feature set. In addition, disagreement
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Figure 4. Active learning provides gains even with a good choice of frequent seeds (right hand graph). With a very poor
set of initial seeds, active learning permits comparable results (left hand graph).

between members of a single feature set may reflect in-
herent ambiguity in the example, and not uncertainty
in the learner.

6. Conclusions

We presented a framework for incorporating active
learning in the semi-supervised learning paradigm by
interleaving a bootstraping algorithm that learns from
both labeled and unlabeled data with a variety of sam-
ple selection techniques that present the user with ex-
amples to label at each iteration. We show that em-
ploying the redundancy in feature sets and designing
algorithms that exploit this redundancy enables both
bootstrapping and active learning to be effective for
training information extractors. The techniques pre-
sented in this paper are shown to be robust and are
able to compensate for bad choice of initial seedwords.
Although the results shown here are specific to the in-
formation extraction setting, our approach and frame-
work are likely to be useful in designing active learning
algorithms for settings where a natural, redundant di-
vision of features exists.
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