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Abstract

Machine learning typically involves discovering
regularities in a training set, then applying these
learned regularities to classify objects in a test
set. In this paper we present an approach to dis-
covering additional regularities in the test set,
and show that in relational domains such test
set regularities can be used to improve classifi-
cation accuracy beyond that achieved using the
training set alone. For example, we have previ-
ously shown how FolIL, a relational learner, can
learn to classify Web pages by discovering train-
ing set regularities in the words occurring on tar-
get pages, and on other pages related by hyper-
links. Here we show how the classification ac-
curacy of FoiL on this task can be improved by
discovering additional regularities on the test set
pages that must be classified. Our approach can
be seen as an extension to Kleinberg’s Hubs and
Authorities algorithm that analyzes hyperlink re-
lations among Web pages. We present evidence
that this new algorithm leads to better test set pre-
cision and recall on three binary Web classifica-
tion tasks where the test set Web pages are taken
from different Web sites than the training set.

1. Introduction

The standard paradigm in machine learning involves learn-
ing regularities over a training data set in order to classify
objects in a test set. We present here an approach to discov-
ering relational regularities in the test set, to augment the
regularities learned from the training set, and thereby im-
prove classification accuracy. This work was initially mo-
tivated by our research in the Web—KB project (Craven
et al., 1998a), which seeks to automatically extract use-
ful information from the Web. One key problem there
is to automatically classify Web pages (e.g., as student
home pages, research project pages, etc.). In this paper
we present experimental results showing that discovering
test set regularities does indeed improve accuracy for this
task of automatically classifying Web pages. We believe

the approach presented here will also be relevant to ma-
chine learning problems in various other domains involv-
ing relational data, especially when the training and test
sets include non-overlapping portions of the total relational
graph.

While most approaches to classifying text documents base
the classification on the content of the document (e.g., the
collection of words it contains) (Yang & Pedersen, 1997;
Lang, 1995; Dumais et al., 1998; Lewis et al., 1996),
hypertext documents such as Web pages contain another
source of information — the relationships between docu-
ments encoded as hyperlinks between pages. In previous
work (Craven et al., 1998b; Slattery & Craven, 1998) we
showed that a FoiL-like relational learner that takes ad-
vantage of such hyperlink relations in the training data can
achieve better classification accuracy than methods that use
only the words on the Web page itself.

A natural complement to this earlier work which learned
relational descriptions from the training set, is to consider
discovering relational regularities over the test set, then use
these to improve classification accuracy over the test set.
This paper suggests one particular class of test set regulari-
ties, shows how instances of this class of regularities can be
discovered in the test set, and shows that these can improve
classification accuracy. We then discuss how this approach
is related to other recent research on using hyperlink struc-
ture and unlabeled data, other relational domains in which
this approach may be useful, and our initial thoughts on
other forms of test set regularities that may be useful.

2. Motivation

Exactly what kinds of useful regularities might we be able
to learn over a test set of relational Web data? To illustrate,
consider the task of learning to classify Web pages accord-
ing to whether or not they are home pages of university
students. Suppose that we have already trained a model for
this classification task, using a set of labeled Web data.

Now suppose we are to apply this learned model to a new
Web site (the test data), part of which is shown in Figure 1.
As shown in this figure, the learned model classifies two of
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Figure 1. Web pages from a test set in which we wish to identify student home pages. The model learned from the training set has
classified Dayne’s Home Page and Rayid’s Home Page as student home pages. This model has missed that Sean’s Home Page is also a

student home page.

these test set pages as student home pages (“Rayid’s home
page,” and “Dayne’s home page”). As humans examining
this new Web site, we might therefore guess that “Sean’s
home page” is also a student home page. We humans might
make this inference because Rayid’s and Dayne’s pages ap-
pear on a list together, both seem to be student home pages,
and Sean’s page appears on the same list. In fact, there is
support in this test set (two out of three examples known to
be correct) for the regularity:

If page P is pointed to from the list on the
“Web—KB Members” page, then P is a student
home page.

In this paper, pages such as the “Web— KB Members” page
will be referred to as hubs.

Naturally the above rule is not guaranteed to be correct.
In fact Tom’s page is not in reality a student home page.
However, given the way information tends to be organised
on the Web, this kind of observed regularity may often pro-
duce useful predictions, and it may therefore be useful to
search for empirical regularities of this form within the test
data. We propose below an iterative algorithm that searches
for test set regularities of a similar form.

Notice one important characteristic of the above regularity:
it could not possibly be learned from any amount of train-
ing data (assuming the training data is disjoint from the test
set). This is because the above regularity refers directly to

the constant “Web—KB Members” which occurs only in
the test set. Regularities that depend on such test set con-
stants are outside the scope of what can be learned from a
disjoint training set. They can be learned only by searching
for regularities in the test set.

Figure 2 shows an overall picture of the components of our
approach. The relational training and test sets consist of
objects and (in this case) binary hyperlink relationships be-
tween them. A model of the positive objects is learned from
the training set and used to classify objects in the test set.
Using the algorithm presented in Section 4.2, we then si-
multaneously find promising hubs (test set regularities that
predict positive examples), and hub predictions (new posi-
tive examples in the test set).

3. Hubsand Authorities

Inspiration for the algorithm presented in this paper comes
from an elegant information retrieval algorithm, also based
on discovering relational regularities in a test set, intro-
duced by Kleinberg (1998). Hubs and Authorities is a Web
searching algorithm based on observations about how in-
formation is organised on the Web. Starting from the prob-
lem of searching for authorities on a particular topic, Klein-
berg made the following observation:

Hyperlinks encode a considerable amount of la-
tent human judgement, and we claim that this
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Figure 2. lllustration of how a learned model and the structure of a relational test set can be used to find more positive predictions using

hubs discovered in the test set.

type of judgement is precisely what is needed to
formulate a notion of authority. Specifically, the
creation of a link on the www represents a con-
crete indication of the following type of judge-
ment: the creator of page p, by including a link
to page g, has in some measure conferred author-
ity on g. Moreover, links afford us the opportu-
nity to find potential authorities purely through
the pages that point to them; this offers a way to
circumvent the problem ... that many prominent
pages are not sufficiently self-descriptive.

To actually find the relevant authorities for a given Web
search, Kleinberg introduces the notion of hub pages which
point to multiple relevant authorities. Noting that

Hubs and authorities exhibit what could be called
a mutually reinforcing relationship: a good hub
is a page that points to many good authorities;
a good authority is a page that is pointed to by
many good hubs.

he presents a simple algorithm for finding relevant hub
pages and authority pages in a given set of linked Web
pages. Relating this back to our motivating example, the
“Web— KB Members Page” would be a hub page and each
of Sean’s, Rayid’s and Dayne’s pages would be authority
pages.

The core of the algorithm involves separate hub (k) and
authority (a) weights for each page being considering and
iterating the following weight update rules until conver-
gence:

h(p) = > a(q)
q: link from p to ¢
a(p) = > h(q)

q: link fromg top

Section 4.2 will present an algorithm for Web page classi-
fication that is an extension of an existing relational learner
to take advantage of Hubs and Authorities style inference.

4. Algorithms

The experiments presented in Section 5 compare the perfor-
mance of two algorithms on a set of Web page classification
tasks. The first is an existing relational learner which can
create models referencing the neighbourhood of a page, but
cannot discover test set regularities.

The second is an extension to the first algorithm which uses
the Hubs and Authorities idea to search for test set regular-
ities and use these to improve classification accuracy.

4.1 FoIL

Previous work (Craven et al., 1998b) described how a re-
lational learner such as FoIL (Quinlan, 1990; Quinlan &
Cameron-Jones, 1993) could be used for Web page classifi-
cation. In comparison with conventional text classification
approaches, relational learners can naturally use the infor-
mation contained in hyperlinked pages when constructing
a model of the target class.

A very simple set of background relations is used to repre-
sent the data:



¢ link_to(Page, Page) This relation represents Web
hyperlinks. For a given hyperlink, the first argument
specifies the page in which the hyperlink is located
and the second argument indicates the page to which
the hyperlink points.

e has_word(Page) This set of relations indicates the
words that occur on each page. There is one predi-
cate for each word in the vocabulary and each instance
indicates the occurrence of the word on the specified

page.

Note that this representation does not use theory constants
to represent words because doing so would require FOIL to
add two literals to a clause for each word test, instead of a
single literal as in this representation.

For plotting precision-recall curves, we require that each
prediction made by FoIL have an associated confidence
weight. We extended the FoiL algorithm so that it assigns a
probability of correct classification to each learned rule. An
m-estimate (Cestnik, 1990) is used to estimate this proba-
bility with m = 2. For each prediction, the highest -
estimate over all matching rules was used as the confidence
weight. Predictions for test examples with no matching rule
were given confidence weight 0.0.

4.2 FoiL-HuBs

FolL-HuBS is an extension to FoIL to subsume the Hubs
and Authorities algorithm. The extensions are simple —
two recursive rules to encode the mutual dependence be-
tween hubs and authorities, and an iterative algorithm for
using the learned rule set and the recursive rules to produce
predictions.

4.2.1 RECURSIVE RULES

FoiL-HuBss first applies the FolL algorithm to the training
set to learn a rule set R that describes pages of class class:

has_foo(A), has_bar(A).
link_to(A,B), ...

We call these the learned classifier rules. The following
two recursive rules are then added to the rule set:

class_page(A) :-
class_page(A) :-

class_page(A) :- link_to(B,A), class_hub_page(B)
class_hub_page(A) :- link_to(A,B), class_page(B)

Together with the modified evaluation rules described in
the next section, these new rules mimic the weight update
rules presented in Section 3.

4.2.2 RULE EVALUATION

Rule evaluation in FoiL-HuBs differs fundamentally from
FoliL. Instead of considering a target relation being true or

false for a page, we assign a weight indicating how confi-
dent we are that a page is an example of the target relation,
with larger weights indicating higher confidence.

We calculate weights for each rule type on each test exam-
ple as follows:

Learned classifier rules Calculate confidence weights us-
ing the scheme described in Section 4.1.

Recursive rules Sum the confidence weights from each
possible instantiation of the recursive rule. The
weight of a single instantiation is simply the weight
of the recursively referenced literal. So if stu-
dent_hub_page(p12) currently has weight 0.7, then
the weight we get from this instantiation of the recur-
sive rule:

student_page(p47) :-
link_to(p12,p47), student_hub_page(p12)

isalso 0.7.

4.2.3 ITERATIVE ALGORITHM

An iterative relaxation algorithm is used by FoiL-HuBS to
apply a rule set containing recursive rules to a test set of
Web pages. Since we’re combining two sources of infor-
mation (from the learned classifier rules and the recursive
rules), we must be careful about the importance assigned to
each. The policy chosen here is that the learned classifier
rules are the best source of information we have about the
target class and so should be weighted more heavily than
the recursive rules. Our learned classifier rules generally
produce confidence weights in the range 0.5-1.0. This led
us to scale the recursive rule weights so that they had a
maximum value of 0.1.

The iterative algorithm is as follows:

1. Calculate the learned classifier weight for each page.

2. Iterate the following until convergence

(a) For each page, calculate the class_hub_page
weights for that page using only the recursive
rules.

(b) For each page, calculate the class_page weights
for that page using only the recursive rules.

(c) Scale the class_page weights so that the maxi-
mum weight is 0.1.

(d) For each page add the learned classifier weight
for that page to its class_page weight.

3. Report the class_page weight for a page as the con-
fidence that that page is a positive example of class
class.



Table 1. The number of Web pages in the University data set. The
pages were collected from the Web sites of the Computer Science
departments at Cornell University, University of Texas at Austin,
University of Washington and the University of Wisconsin.

CLAss CORNELL TEXAS WASH. Wisc.
COURSE 44 38 76 85
DEPARTMENT 1 1 1 1
FACULTY 34 46 31 42
PROJECT 20 20 21 25
STAFF 21 3 10 12
STUDENT 128 148 126 156
OTHER 619 570 940 946

4.2.4 OBSERVATIONS

We hope this algorithm will outperform FoIL in two ways.
Firstly, since FoiL’s predictions are inherently discrete,
its predictions occur in clumps with the same confidence.
FoiL-HuBs can use regularities in the test set to find highly
probable positive test pages and assign them higher confi-
dences.

Secondly, FoIL’s coverage has been found to be low on
these tasks because its rules are performing keyword pres-
ence tests. FoIL-HUBS has the potential to find promising-
looking positive examples among the pages FoiL had no
matching rule for, such as “Sean’s Home Page” in the mo-
tivating example in Section 2

One last point worth mentioning is that the original Hubs
and Authorities algorithm depended on the mutual rein-
forcement of many hubs and authorities for its information.
It is less likely that such extensive structure exists for clas-
sification tasks. However adding in the learned classifier
weight to the iterative algorithm may make up for the lack
of such structure allowing “singleton” hubs to make a dif-
ference.

5. Experimental Evaluation
5.1 The University Data Set

Our data set for these experiments comes from the
Web— KB project mentioned in the introduction. The first
version of the system looked at university Web sites and the
classification tasks involved finding student home pages,
course home pages etc.

To train our classification algorithms, we collected pages
from the Web sites of four computer science departments.
This data set includes 4,127 pages and 10,945 hyperlinks
interconnecting them. Each of the pages were labelled into
one of seven classes, including a catch-all other class. De-
tails of the distribution are given in Table 1.

5.2 Data Representation

The data is represented by the relations described in sec-
tion 4.1. To produce the has_word(Page) relations, the
Web pages were stripped of HTML markup, had stop-
words removed and a stemming algorithm was applied
to each word. For each remaining word that occurred
more than 200 times in the training set, a correspond-
ing has_word relation was created.> Depending on the
training set, this procedure produced between 341 and
540 relations. The complete set of relations used are
available from http://www.cs.cmu.edu/~WebKB/
ICML2000-data.html.

5.3 Experimental Setup

We considered three binary classification tasks in the uni-
versity data set: identifying student home pages, course
home pages and faculty home pages. Using leave-two-
university-out cross validation, we created all six possible
train/test splits. For each split, we ran FoiL on the training
data and applied the resulting rule set to the test data. The
FoiL-HuBs algorithm was also applied to the test set.

5.4 Results

The precision and recall results for the target class on each
classification task are shown in Figure 3. Precision and
recall are defined as follows:

# correct positive predictions
# of positive examples

# correct positive predictions
# of positive predictions

Recall =

Precision =

For each cross-validation run, the predictions for each al-
gorithm were ordered according to the confidence they as-
signed the target class. Precision and recall were calculated
at various confidence weight thresholds to get the tradeoff
curve for that run. The curves were then averaged to get
the final graphs presented here.

5.5 Discussion

Looking over all the precision-recall graphs we can see
FoiL-HuBs performs better than FoliL for most confidence
thresholds. The general form of the FOIL-HUBS curves is
interesting. At low recall they show a marked improvement
over the FoiIL predictions. The improvement over FoIL
falls away as recall increases. Then, as recall increases fur-
ther, the improvement becomes more marked again.

IStandard information gain and related metrics are not good
criteria for selecting words for a relational learner. Consider the
case where the existence of the word Guinnesson a linked page
was a very useful feature for classifying the current page.
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Figure 4. Recall precision tradeoffs for the test examples that matched some FoIL rule.

This behaviour stems from the way FoiL-HUBS uses the
FoliL predictions. Effectively, FoIL-HuUBS takes the exam-
ples FoiL made some predictions for and uses the relational
regularities in the test set to produce a better ordering than
the original FoiL one.

The improvement at higher recall is due to FoIL-HuBS tak-
ing the examples FoIL had no rules for, and using the test
set regularities to find likely positive examples of the target
concept among them. If we split the test data into those ex-
amples that matched some learned FoiL rule and those that
matched none, and replot the precision-recall curves we see
this effect more clearly (Figures 4 and 5).

This instantiation of the FoiL-HUBS algorithm leverages
from finding useful hub pages in the test data. Craven
et al. (1998b) noted the utility of learning a good descrip-
tion of the index page of graduate students (which occurs
in each of our four universities) when learning to classify
graduate student home pages. In the experiments presented
in Craven et al. (1998b), the description of a graduate stu-
dent index page generalised to cover the index page in the
test set three times out of four.

FoiL-HuBs provides an independent route for leveraging
off pages like the index page of graduate students. Table 2
shows the highest weighted hub pages for a particular run
of the faculty home page classification task. It makes in-
tuitive sense even from the titles of these pages, that they
would contain hyperlinks to faculty home pages.

Table 2. Top five weighted hubs for the faculty home page class
using pages from Washington and Wisconsin as training data and
testing on pages from Cornell and Texas.

UTCS Faculty

Research Interests of the Faculty and Senior Researchers
UT Atrtificial Intelligence Laboratory

CS195T: Introduction to Graduate Computer Science
Faculty Research Interests

6. Related Work

Several other researchers have examined extensions to the
original Hubs and Authorities algorithm. Bharat and Hen-
zinger (1998) investigated extending it to take into account
information about the content of Web pages, whereas the
original algorithm treated pages as atomic features. Their
algorithm scaled both the hub and authority weights by an
Information Retrieval motivated similarity score computed
between each page and the search query. They found that
this approach improved precision by about 10% for a va-
riety of search queries. Chakrabarti et al. (1998) define
a bridge page which corresponds to the notion of a hub
page discussed in this paper. They give evidence for bridge
pages containing links to pages of the same topic, although
they also discovered that links occurring closer together on
a bridge page are even more likely to point to pages of sim-
ilar topic than links occurring further apart. They also use
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an iterative algorithm to label pages, although the approach
collapses all the features into a single “engineered docu-
ment” for learning and classification, essentially creating a
propositional representation. Our work differs in that we
focus both on document classification and on learning rela-
tional descriptions.

One way to view the approach we propose in here is as an
attempt to use information in the unlabeled test set to im-
prove classification accuracy. There has recently been sig-
nificant interest in this topic within the machine learning
research community. For example, Bennett and Demiriz
(1998) discuss a transduction method that uses unlabelled
test data together with labeled training data to improve ac-
curacy in support vector machines. Nigam et al. (2000)
discuss the application of EM to combining labeled and
unlabeled data for naive Bayes text classifiers. Blum and
Mitchell (1998) propose a cotraining method that uses un-
labeled data to improve classification accuracy when the
examples are described by redundantly sufficient features.
All of these approaches to using unlabeled data make the
assumption that the training and test data are drawn from
the same underlying distribution, exhibit the same regular-
ities, and that if we are given sufficient training data we
could learn these regularities from the training data alone.
In contrast, our approach was motivated by the fact that our
training and test data tend come from different Web sites,
that the detailed regularities inherent in each Web site are
different, and that the statement of some of these regulari-
ties requires referring to specific constants in the first order
descriptions of the data. In essence, this requires that we
search for new regularities in the test data that cannot in
principle be learned from the training data.

7. FutureDirections
7.1 Other Relational Domains

While we have focused thus far on the problem domain of
Web page classification, our approach appears to be rele-
vant to a variety of relational domains. To see how this ap-
proach can generalize, notice in our Web domain we have

instructed the FoiL-HuBS algorithm to search for test set
regularities of the form

class_page(X) :- link_to(c,X)

where X is a variable, and c is a constant Web page (dis-
covering hubs corresponds to choosing the constant ). In
general, we believe user knowledge of the likely forms of
test set regularities may be used in a similar way in other
domains.

Consider, for example, a relational data set that describes
people, their income, relatives, employers, etc., and assume
the task is to learn to predict where each person lives. As
in the Web domain, we may use our prior knowledge to
instruct the system to search for test set regularities of the
form

live_in(P, c1) :- employer_of(P, c2)

where c1 represents some specific constant city, and c2 a
second constant employer. Given that some companies do
employ only people in a single city, this is a reasonable
form of regularity to search for. Furthermore, if the train-
ing and test sets are personnel databases from disjoint sets
of employers, then we are again in a setting where the gen-
eral form of regularities is known in advance, but the actual
regularities can only be learned from the test set, just as in
our Web setting.

7.2 Learning Regularity Forms

The recursive rules given in Section 4.2.1 can be intepreted
as background knowledge given to FoiL-HUBS to enable
it to search the test set for regularities. We would certainly
expect the form of such a regularity to exist in the training
set and could conceivably build an algorithm for finding the
its form from the training set.

8. Conclusion

This paper has presented an approach to discovering regu-
larities in the test set, and used these to improve classifica-



tion accuracy. More specifically, we presented an extension
to the FoiL algorithm, called FoiL-HuBS, and showed that
it improves classification performance on three binary Web
page classification tasks. Although we considered only
Web classification tasks here, we believe similar uses of
the test set may be helpful in other relational domains.
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