# **NER FOR NELL**

# EXPLOITING MORPHOLOGICAL PATTERNS IN CATEGORIES

Reza Bosagh Zadeh October 29, 2009

#### **OVERVIEW**

- Task Description
- How to solve outside a NELL system
- Simple approach evaluated
- How to tackle in a NELL system: initial experiments

# WHAT IS "NAMED ENTITY RECOGNITION"?

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill</u>

<u>Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, <u>Microsoft</u> claims to "love" the opensource concept, by which software code is made public to encourage improvement and development by outside programmers. <u>Gates</u> himself says <u>Microsoft</u> will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying... Extract named-entities from text, label as "Person", "Organization", etc

**Microsoft Corporation** 

CEO

Bill Gates

Microsoft

Gates

Microsoft

Bill Veghte

Microsoft

VP

Richard Stallman

founder

Free Software Foundation

### WHAT PATTERNS?

- Yarow-sky
- Min-ski
- Bosagh-Zadeh
- Milose-vitch

Current RTW system helps us find popular names using context frames.

Should be able to find patterns in popular names and use them to discover rarely used names.

#### MODELS FOR NER

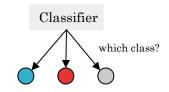
#### Lexicons (Gazetteers)

Abraham Lincoln was born in Kentucky.



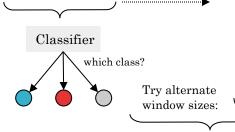
# Classify Pre-segmented Candidates

Abraham Lincoln was born in Kentucky.

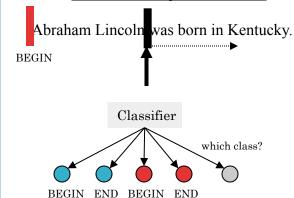


#### **Sliding Window**

Abraham Lincoln was born in Kentucky.



#### **Boundary Models**

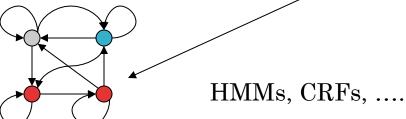


#### **Token Tagging**

Abraham Lincoln was born in Kentucky.

Most likely state sequence?

This is often treated as a structured prediction problem...classifying tokens sequentially



Slide: William Cohen, Information Extraction

#### PAPER: MIKHEEV ET. AL.

• How well can we perform with only a lexicon (list/gazeteer)?

#### • With lists:

| category     | learned lists |           | common lists |           | combined lists |           |
|--------------|---------------|-----------|--------------|-----------|----------------|-----------|
|              | recall        | precision | recall       | precision | recall         | precision |
| organization | 49            | 75        | 3            | 51        | 50             | 72        |
| person       | 26            | 92        | 31           | 81        | 47             | 85        |
| location     | 76            | 93        | 74           | 94        | 86             | 90_       |

Recall: Number of correct tags in the answer file over total number of tags in the key file.

**Precision:** Number of correct tags in the answer file over total number of tags in the answer file.

#### NER FOR NELL

- Don't have easy access to supervised data: doesn't fit the never-ending-learner model
- Context isn't important anymore!
- Want to use Morphological patterns abundant in human names and surnames
- Need to be fast each iteration
- Initial experiment: focus on suffixes

### COMMON SUFFIXES - TRIGRAMS

• Most common trigram endings of NPs in the list of person names currently obtained from RTW:

-SON, -MAN, -TON, -ELL, -LER, -LEY, -ING, -TER,-ERS, -ARD

• Not very useful: would have us believe "Rowing" is a person name.

#### COMMON SUFFIXES - NGRAMS

• Most common fourgram endings of NPs in the list of person names currently obtained from RTW:

-NSON, -LSON, -LLER, -NTON, -BUSH, -RSON, -ROWN, -MITH, -TEIN, -RMAN

- Not very useful: would have us believe "Protein" is a person name.
- Same problem for ngrams of length 3 to 6

-NSON, -LSON, -LLER, -NTON, -OHNSON, -HNSON, -BUSH, -LINTON, -INTON, -RSON

# PROBLEM: HOW TO FIND DISCRIMINATIVE NGRAMS?

- Not only identify the most common suffixes in the list of names, but those name suffixes which also appear *rarely in all NPs*.
- Two competing requirements
- Borrow ideas from TF-IDF and define score for ngram i:

$$\operatorname{score}(i) = \frac{a_i}{b_i}$$

a<sub>i</sub>: frequency of ngram i in names list

b<sub>i</sub>: frequency of ngram i in entire NP list

### MUCH NICER

- Take all ngrams and sort by score function
- Use top 100-scoring ngrams
- Length freely varying from 3 to 5
- Picks up...

### **MUCH NICER**

New names, not picked up before

TAKEI, RICHARD\_M\_.\_NIXON, BISMARK, BASSANO, PARRISH, BUSBY, CANOGA, **lubavitch**, Lustig, Mohr, Robb, James\_Baldwin, Rohrer, Biznik, Finneran, Morea, Katz, Wahid, Solow, Seles, Polos, Schapiro, Chauncey, Kahn, Olivier, Devaney, Leguizamo, Musee, Baldwin, Shula, Moravec, Spader, Zhang, Musial, Yoder, Cusack, Smyth, Smolin, Wannstedt, Stagg, Moher, Pitts, Niven, Lowry, Metzler, Whyte, Anjou, Fukudome, Vogel, Culkin, Emmitt, Zook, Currie, Staal, Pedroia, McCormick

List not filtered or altered in any way: all seem to be names

Some very familiar-but-rare suffixes, such as -vitch

# **NEXT STEPS**

• Use prefixes as well as suffixes: McDowell

McCartney O'Connor O'Dowel

• Try other categories

Aghani-stan

Paki-stan

Can potentially work for locations: Fin-land

Green-land

Eng-land

#### **NEXT STEPS**

- Put this into main pipeline for RTW
- Insert new names during bootstrapping process
  - Should be interesting to see the interaction between morphologically identified names and names found using contexts
- Use confidence scores

Thanks!