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ABSTRACT
This paper is about a variant of

�
nearest neighbor classification on

large many-class high dimensional datasets.
K nearest neighbor remains a popular classification technique,

especially in areas such as computer vision, drug activity predic-
tion and astrophysics. Furthermore, many more modern classifiers,
such as kernel-based Bayes classifiers or the prediction phase of
SVMs, require computational regimes similar to

�
-NN. We believe

that tractable
�

-NN algorithms therefore continue to be important.
This paper relies on the insight that even with many classes, the

task of finding the majority class among the k nearest neighbors
of a query need not require us to explicitly find those

�
nearest

neighbors. This insight was previously used in (Liu et al., 2003)
in two algorithms called KNS2 and KNS3 which dealt with fast
classification in the case of two classes. In this paper we show how
a different approach, IOC (standing for the International Olympic
Committee) can apply to the case of � classes where ����� .

IOC assumes a slightly different processing of the datapoints in
the neighborhood of the query. This allows it to search a set of
metric trees, one for each class. During the searches it is possible
to quickly prune away classes that cannot possibly be the majority.

We give experimental results on datasets of up to ��� 	�
�����
records and ��� ��
������ attributes, frequently showing an order of
magnitude acceleration compared with each of (i) conventional lin-
ear scan, (ii) a well-known independent SR-tree implementation of
conventional

�
-NN and (iii) a highly optimized conventional k-NN

metric tree search.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Design, Performance
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�
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This paper is about new approaches to fast
�

-NN classification.
Spatial data structures such as kd-trees [7, 17] and metric trees [21,
16, 5] have often been proposed and used for this computation, but
the benefits of finding the

�
-NN using such data structures have

often been observed to degrade substantially compared with linear
search when the dimensionality of the data gets high [22]. This
paper attempts to take advantage of one extra leverage point that

�
-

NN classification has that the more general problem of
�

-NN does
not have: all we need to do is to find the majority class of the

�
nearest neighbors—not the neighbors themselves.

During this paper, we show why it is hard to exploit this leverage
point for the case of conventional

�
-NN. We therefore introduce

a modified form of
�

-NN called IOC (standing for International
Olympic Committee, explained later in the paper) that selects the
predicted class by a kind of elimination tournament instead of a
direct majority vote. Interestingly, this alternative voting scheme
exhibits no general degradation in empirical performance, and we
also prove that the asymptotic behavior of IOC must be very close
to that of conventional

�
-NN.

IOC allows us to take advantage of the above leverage point,
and we describe the new metric tree search algorithms that result.
Our empirical results show excellent computational acceleration of
IOC-with-metric-trees on real-world datasets compared with our
own implementation (KNS1), and a well-known standard imple-
mentation of classical

�
-NN search (SR-tree). Our empirical results

also show only slight predictive performance loss with typically an
order of magnitude acceleration over classical

�
-NN for predictions

on streams of queries.

2. METRIC TREES
The metric tree [21, 16, 5] is a data structure that supports effi-

cient nearest neighbor search. We briefly describe the data structure
and its usage.

First, some notation. Assume that the data are points in a � -
dimensional Euclidean space. Let �������������! "���#�$�#�%�!&(' be the set
of training data. Each �*) has a label +�)-,/. , where we define0 �21 .31 to be the total number of classes. We use 4 to denote
the query point on which the classification algorithm is to make a
prediction.

For
�

-NN classification, one finds the
�

nearest neighbors of 4
from � — we denote them by 56�87�9:9:;<4(� � �%�>=?�/��@ � �%@  �A�$�#�#�
@CBD' . Then

�
-NN labels 4 with the class that appears most fre-

quently in 5 . As a notational convention, we call the most frequent
class the “winner” and all other classes the “losers.” Thus, the

�
-

NN classification amounts to finding the winner class and assigning
it to the query point 4 .

We use EF;G�H��I�= to denote a ball centered at point � with radius
I . In other words, we have EF;G�H��ID=F�J�K+8LM1#1 �ON�+P1#1RQSID'��



A metric tree data structure organizes a set of points in a spatial
hierarchical manner. It is a binary tree whose nodes represent a
set of points. The root node represents all points, and the points
represented by an internal node � are partitioned into two subsets,
represented by the two children of ���"��� . More formally, if we use� ;��D= to denote the set of points represented by node � , and use � ��� 	
and �R��
�	 to denote the left child and the right child of node � , then
we have

� ;���= � � ;�� ��� 	K=�� � ;�� ��
	K= (1)� � � ;�� ��� 	K=�� � ;�� ��
	K= (2)

for all the non-leaf nodes. At the lowest level, each leaf node con-
tains very few points (typically from � to � ).

Each node � contains a pivot point, denoted by � ������� , and a ra-
dius, denoted by � ��
 , such that all points represented by � fall in the
ball centered at � ������� with radius �R��
 . Mathematically, we have

� ;���=�� E ;��R�������D��� ��
 = � (3)

We stress that although
� ;��R��� 	K= and

� ;�� ��
�	K= are disjoint, the
balls representing these two pointsets are not necessarily so. Fur-
thermore, � ��
 is chosen to be the minimal value satisfying (3). As a
consequence, we know that the radius of any node is always strictly
greater than the radius of its child nodes. The leaf nodes have very
small radii.

The pivot points also serve as the criterion for partitioning the
nodes: every point � in

� ;���= is assigned to one child of � whose
pivot point is closer to � . More specifically, for all non-leaf nodes� , we have

��, � ;�� ��� 	K=���� 1#1 � N�� ��� 	"��������1$1 Q81#1 � N�� ��
�	���������1#1 (4)

��, � ;�� ��
�	K=���� 1#1 � N�� ��� 	"��������1$1 �81#1 � N�� ��
�	���������1#1 (5)

We do not discuss the construction of metric trees except that a
metric tree can be constructed from the points efficiently, for exam-
ple, using methods from [21, 5, 15].

We focus our attention to nearest neighbor (NN) search using
metric trees. Intuitively, metric trees can speed up the search by us-
ing the triangle inequality. Given any query point 4 and an arbitrary
��, � ;���= , we know that

1$1 4 N�� �������K1#1 N�� ��
 Q 1#1 4 N � 1#1�Q81#1 4 N�� ��������1#1���� ��
 � (6)

Therefore, by doing only one distance computation (namely, the
distance between 4 and � ������� ), we can bound the distance between
4 and any point in

� ;���= , both from above and from below. This
information can help us estimate the number of points that are at
most distance � from 4 , as well as the number of points that are at
least distance �� away from 4 . In many cases, this insight can help
prune away many nodes in the

�
-NN search.

3. THE IOC ALGORITHM
In this section we discuss the IOC algorithm for approximating

the
�

-NN classification for the many-class setting. We first describe
the problem with existing solutions using metric trees.

3.1 Previous solutions and their problems
A naı̈ve implementation of the standard

�
-NN algorithm finds

the exact
�

nearest neighbors using linear search, which needs
�

invocations of distance computation. When the dimension � of the
data is large, these distance computations have time complexity! ;G� � = , which can be unrealistically expensive. Classical solu-
tions such as metric trees can be used to speed up the search, but
this technique does not scale well to high dimensions.

Liu et al. [14] proposed several techniques to speed up the
�

-NN
binary classification problem. Their techniques rely on the insight
that in

�
-NN classification, one does not need to find the actual�

nearest neighbors. Rather, it is often sufficient to answer sim-
pler, counting-related problems. Examples of these questions are:
1) “How many points of class " are in the

�
nearest neighbors of

4 ?” and 2) “Does class " contains at most # points in the
�

near-
est neighbors of 4 ?” As demonstrated in [14], these questions can
often be answered much more efficiently.

To illustrate this point more clearly, we introduce a new concept,
namely the “threshold nearest neighbor” function.

DEFINITION 1. The threshold nearest neighbor function, de-
noted by �A9:9 , is defined as follows.

��9:9 ;<4(�%� ��$ � � ��#�= L �
% � if 1 $&� 7D9:9:;<4(� � �%�>=�1 Q'#
� otherwise (7)

Intuitively, ��9:9 ;<4(� �O�($C� � ��#�= checks whether of the
�

nearest neigh-
bors of 4 in � , the subset $ contains at most # points.

Roughly speaking, the evaluation of �A9:9 ;<4(��� �)$ � � ��#�= is done
by finding a “threshold bound” � , such that either
1. EF;<4(���%= contains at most # points in $ and at least ; � N'#�=

points in �+*�$ , or

2. EF;<4(���%= contains more than # points in $ and less than ; � N,#�=
points in �+*�$ .

In the first case, we have �A9:9:;<4(�%� ��$ � � ��#�=O� � ; in the second
case, we have ��9:9 ;<4(� � �)$C� � ��#�=3� � . In Section 3.4, we review
the evaluation of ��9 9 in more details.

Unfortunately, the insight in [14] does not work in the many-
class case. Consider a query point 4 and its

�
nearest neighbor set

5 . For binary classification, 4 is classified as class " , if and only if
5 contains at least - �/. �10 points of class " (assuming that

�
is odd).

Thus the task of finding the winner is reduced to a counting prob-
lem, or more specifically, evaluating the function ��9:9 ;<4(� �O��$ ) � � �2 �/. �43K= . In the case of many-classes, the situation is very different.
We no longer have a fixed threshold that allows us to reduce the
search-for-winner problem to a counting problem. We know that
for a class to be the winner, it must necessarily contain more than2 �/. 0 3 points in 5 (assuming that

�
is not a multiple of 0 ), and

it is sufficient that it contains at least - �/. �40 points. However, for
numbers between

2 �/. 0 3 and - �5. �10 , we cannot prove anything.
Therefore, we cannot reduce the

�
-NN search problem to a simple

counting problem. This is the reason why the techniques in [14] do
not extend to the many-class case.

3.2 IOC: high-level descriptions
The IOC algorithm is a variant of the

�
-NN algorithm that al-

lows speed-up using metric trees. The motivation behind IOC is to
modify

�
-NN in such a way that it can be reduced to a sequence of

counting problems. One important observation is that despite the
fact that the necessary condition and the sufficient condition com-
bined cannot determine if an arbitrary class is the winner in gen-
eral, one can always use the necessary condition to find some class
that is not a winner. This is simply because that by the pigeonhole
principle, there exists at least one class containing at most

2 �/. 0 3
points, and this class is not the winner.

This algorithm is inspired by the procedure used by the Interna-
tional Olympic Committee [11] to select the host city for summer
Olympic games (which also explains its name). In the procedure,
instead of having a single round of ballots and selecting the favorite
city as the winner (which would correspond to the “standard”

�
-NN

algorithm), multiple rounds of ballots are cast. In each round, if a
city gets a majority of the votes, then it is declared the winner and



the procedure finishes. Otherwise, the city that gets the fewest votes
is eliminated and a new round of ballots is cast. This continues until
only one city is left, and this city is declared the winner.

We now describe the IOC algorithm at a high level. IOC starts by
building a metric tree for each class respectively, and then proceeds
in rounds. In each round, either a winner is selected, or some losers
are eliminated. More precisely, in each round, if a class " contains
at least - �5. �10 points in the

�
nearest neighbors of 4 , which can

be answered by evaluating the threshold nearest neighbor function�A9:9 ;<4(��� ��$P) � � � 2 �/. �43K= , then this class is declared a winner and
the algorithm terminates, labeling 4 with class " . Otherwise, the
algorithm finds all the classes that contains at most

2 �/. 0 3 points
in the

�
nearest neighbors of 4 , and declare these classes the losers,

All the “loser” classes will be removed from consideration. The
number of classes, 0 , is reduced accordingly. This process contin-
ues until a winner is selected or there is only one class remaining,
in which case the only remaining class is declared a winner.

class 1 

class 2 

class 3 

q

9−NN in round 1

9−NN in round 2

Figure 1: different predictions by IOC and
�

-NN.

We notice that the IOC algorithm does not always behave identi-
cally to the standard

�
-NN algorithms, and in particular, the predic-

tion made by the IOC algorithm may differ from that by the stan-
dard

�
-NN. As an example shown in Figure 1, there are � classes

and
� ��� . The � nearest neighbors of the query point 4 con-

tain � points of class � , � points of class � , and � points of class
� . Therefore, standard

�
-NN algorithm would select class � as the

winner. However, in the IOC algorithm, class � would be identi-
fied as a loser and removed in the first round. In the second round,
the � nearest neighbors of 4 includes two additional points of class
� . Now we have � points of class � and � points of class � in this
round, and IOC will choose class � as the winner.

Incidentally, a similar example occurred in the procedure for
picking the host city for the 2000 Olympics game by IOC. The
process proceeded in multiple rounds, and Beijing was the favorite
city in all but the last round, but never won more than half of the
votes. In the last round, Beijing lost to Sydney, and the IOC chose
Sydney as the winner. If the standard

�
-NN algorithm had been

used, Beijing would have been chosen.

3.3 The Threshold Nearest Neighbor Function
Recall that the idea of IOC hinges on the ability to evaluate

the threshold nearest neighbor function �A9:9 efficiently. There-
fore, we first describe an algorithm that evaluates ��9 9 using met-
ric trees. The algorithm, denoted by ��� �A9:9 thereafter, is adapted
from [14].

To begin with, ��� ��9 9 builds one metric tree for $ ) , the set of
training points of class " . Then, to evaluate function ��9:9 ;<4(�%� ��$ ) � � �)#�= ,
��� ��9:9 needs to:
1. Find an appropriate threshold � , and

2. Prove that either:

(a) EF;<4(� ��= contains at most # points in $ ) and at least ; � N#�= points in � *4$ ) (so that ��9 9 ;<4(��� ��$ ) � � ��#�=F� � ), or

(b) EF;<4(� ��= contains more than # points in $ ) and less than
; � N #�= points in � *4$P) (so that ��9:9:;<4(��� �($ )�� � ��#�=?�
� ).

First, let us assume that � is known. We see how one can prove
statement (2.a) or (2.b) using the metric trees. Consider a node � in
the metric tree for class � . Suppose � represents 	 points, and the
distance between � ������� and 4 is � . By the triangle inequality, we
know that if ��
�� N&� ��
 , then none of the 	 points in

� ;���= is in
EF;<4(����= ; if �C� �,� � ��
 , then all the 	 points are in EF;<4(���%= . In both
cases, node � contributes information about the number of points in
EF;<4(����= and we say � is “useful.” However, if � ,�� � N � ��
 �%� � � ��
� ,
node � does not tell us anything, and we say node � is “useless.”
Then ��� ��9:9 sums up all the information from the useful nodes
and checks if this information can be used to prove (2.a) or (2.b).

In case the information is insufficient, ��� �A9:9 selects a useless
node � to split, i.e., to replace node � by its two children � ��� 	 and� ��
	 . Since child nodes have smaller radii, they provide more “re-
fined” information that might be useful. Ultimately, the leaf nodes
provide very accurate information since they have very small radii.1

However, splitting a node is an expensive operation, as one needs
to compute the distance between 4 and the pivots of the children
nodes, and distance computations are the dominant operations in
terms of time complexity. Therefore, to achieve optimal efficiency,
one needs to minimize the number of splits.

Next, if we drop the assumption that � is known, ��� ��9:9 needs
to search for � as well. To do so, it maintains a list of “known”
nodes from the metric trees, i.e., the nodes where the distance be-
tween 4 and their pivots are computed and known, and searches
for an appropriate � . If no such � is found due to insufficient infor-
mation, the algorithm selects a node to split according to a certain
splitting policy and tries again. As demonstrated in [14], with a
carefully designed policy, one can indeed minimize the number of
splits and make the algorithm very efficient.

3.4 The IOC Algorithm
With an efficient implementation of the ��9:9 function, we can

implement the IOC algorithm directly, as in Section 3.2. How-
ever, this is not very efficient, since ��� �A9:9 may need to do a lot
of splits in order to find the answer. In fact, observe that in each
round, many instances of the ��9:9 functions are evaluated — for
each class " , we need to evaluate both �A9:9:;<4(�%� ��$ ) � � � 2 �/. �43K= and��9 9:;<4(�%� ��$P)�� � � 2 �5. 0 3K= . We can make progress whenever we
find one winner or one loser. This observation allows us to im-
prove the efficiency by dove-tailing, i.e., evaluating all the �A9:9
functions simultaneously, and terminates whenever a winner or a
loser is found. More precisely, we modify the ��� ��9:9 algorithm
so that it may also output � , standing for “unknown.” Then we
only do a split when all evaluations return � .

The algorithm, IOC, is described in Figure 2. Here ��� ��9:9  
is the revised version of ��� �A9:9 that partially computes ��9:9 . In
other words, ��� ��9 9  may return � when it does not have suffi-
cient information, but it never splits any node. The splitting of the
trees is handled by the procedure do split, which picks a particular
class " and performs one split on the metric tree of $ ) . Effectively,
the IOC algorithm minimizes the number of splits by aggressively
attempting to evaluate all the ��9 9 functions after each split.

We emphasize that the IOC algorithm is presented in a way to
maximize clarity. In particular, we omit all optimizations, some of

� As a matter of fact, it is often the case that a leaf node contains a
single point, in which case a leaf node has radius 0.



Procedure IOC(
�

, 4 , � , $ � ��$  ���#�#�#�)$�� )
begin��� ����� �����#�#�$� 0 '

begin repeat
/* partially evaluate the �A9:9 functions */

foreach "F, � do
� ) � ��� �A9:9  ;��R�%� �)$ ) � � � 2 �/. �43K=
+D) � ��� ��9:9  ;��R�%� ��$P) � � � 2 �/. 0 3K=

end foreach� 
��
	/
���� � �
/* check for winners and losers */
if ��"?, � , s.t., �!) �� , then return "
else � " , � ,

if + ) � � then
/* found a loser, remove it */����� *D��" ' , � � � *4$ ) , 0 � 0 N�� ;� 
��
	/
���� � � ;

end if
/* terminate if only one class remaining */
if 0 � � and

� �J�4" ' , then return "
end if
/* need to split if no winner/loser is found */
if � 
��
	/
���� � � then do split( � , $F���($  ���#�$�#�)$ � )

end repeat
end

Figure 2: The IOC algorithm.

which are obvious. For example, after splitting class � , one only
needs to update the information related to class � and there is no
need to re-compute all � ) and + ) for all " ’s. Additionally, many
invocations of the ��� ��9:9 can be merged to improve efficiency.
Furthermore, some other techniques are used in the algorithm to
ensure its robustness. Due to space limitation, we do not discuss
them in this extended abstract.

3.5 Theoretical analysis
We analyze the behavior of the IOC algorithm from the theoret-

ical perspective. Due to space limitation, the proofs are omitted.

Theorem 1 IOC behaves identically to the standard
�

-NN algo-
rithm when

� � � and when 0 �� .
Theorem 2 If class " is not chosen by the IOC algorithm as the

winner, then there exists a
�  such that class " is not the ma-

jority class in 7D9 9 ;<4(� �  �%�>= .
Theorem 3 Let 4 be the query point, 0 be the number of classes,

� be the size of training set. Let �������! ������������ �
be the Bayes conditional probability for class " at 4 , and let� ���H� N��! . Then, with probability at least � N � , the
behavior of the IOC algorithm with

� � �K��  "!$#&% ' � 0�)(
is identical to the behavior of

�
-NN as �+*-, .

Remarks Theorem 1 establishes the fact that IOC and
�

-NN are
identical in many cases. Theorem 2 indicates that even in the many-
class case where IOC and

�
-NN differ, the difference isn’t signifi-

cant: if a class is not chosen as the winner by IOC, then it will be a
loser in

�  -NN, for a properly chosen
�  . Theorem 3 implies that if�

is large enough, then the asymptotic behavior of IOC and
�

-NN
are identical with very high probability, and in particular, both are
approximations of the optimal Bayes prediction.

4. EXPERIMENTAL RESULTS
In this section, we tested the IOC algorithm on both artificial

and real-world datasets and compared the results with three other
algorithms:

1. Naı̈ve: a conventional linear-scan
�

-NN algorithm.
2. SR-tree: an implementation by Katayama and Satoh [12].
3. KNS1: an optimized

�
-NN search based on metric trees [21].

We estimate two performance measures:

Speed This is the primary concern of this paper. We consider ac-
celerations both in terms of number of distance computations
and CPU time. For all the experiments below, we first show
the computational cost of naı̈ve

�
-NN. We then examine the

speed-ups of SR-tree, KNS1 and IOC. (Notice that for SR-
tree, we omit the distance computations speedup, since the
SR-tree implementation does not report this measure.)

Accuracy We compare the (empirical) classification accuracy be-
tween

�
-NN and IOC. We emphasize that since our goal is to

accelerate multi-class classification in high dimensions, we
do not try to improve accuracy (though we should expect no
decline). We consider it acceptable to have both

�
-NN and

IOC perform badly on some datasets as long as their perfor-
mance is comparable.

We tested our algorithm on a variety of real world datasets (listed
in Table 1) with multi-class classification tasks. The datasets are all
publicly available.

Table 1: The datasets.

Dataset Train Test Num. Di- Num.
size size mensions classes

Letter 16000 4000 16 26
Isolet 6238 1555 617 26
CovType 58101 522911 54 7
Video 35049 3894 62 3
Internet ads 2952 327 1555 2

1. Letter (Letter Recognition Database [20]) It is from the UCI
Machine Learning repository, containing 20,000 instances
with 26 classes. Each instance represents a bitmap image
of a character as one of the 26 Roman letters. The objective
is to identify the letter category from the images.

2. Isolet (Isolet Spoken Letter Recognition Database [6]) It con-
tains 6238+1559 instances with 26 classes. The dataset was
derived from 150 people speaking the name of each letter of
the alphabet twice (3 examples are missing). Each instance
has 617 attributes. The goal is to predict which letter is spo-
ken.

3. CovType (Forest CoverType Database) If is originally from
UCI/KDD Archive. The dataset contains 581012 datapoints
with 7 classes. See [4].

4. Video (TREC-2001 Video Dataset [10]) It contains 5.8 hours
of MPEG-1 video files. The task is to detect the shot bound-
aries within the video files. The corpus contain 2 types of
transition frames: cuts and gradual transitions, so we can
see this problem as a 3 class classification problem: no tran-
sition, cut and gradual transition. After preprocessing, the
final dataset contains 38,943 frames, each frame has 62 at-
tributes [18].

5. Internet ads (Internet Advertisements [13]) This dataset rep-
resents a set of possible advertisements on Internet pages.
The task is to predict whether an image is an advertisement
(“ad”) or not (“non-ad”). After we remove the three continu-
ous attributes, the final dataset contains 3,279 instances, and
1,555 attributes for each instance.



For each dataset, we manually partitioned them into a training
set and a test set, and we ran our experiments with

� � � , � , and � .
For all algorithms, we report the pre-processing time and the er-

ror rates (see Table 2), as well as the average prediction time per
query (see Table 3) We also plot the speed-up of various algorithms
over naı̈ve

�
-NN (CPU time) for the case

� ��� in Figure 3. Fur-
thermore, we report how the CPU time of various algorithms scales
with the size of the training data (see Figure 4 for the case

� � �
and

� � � ).

Figure 3: CPU time speed up over naı̈ve
�

-NN ; � ���= .
Table 2: Pre-processing time and error rates [time(s) : error].

Dataset
�

Naı̈ve SR-tree KNS1 IOC
Letter 1 0 : 0.043 54 : 0.043 0.46 : 0.043 6.7 : 0.112

5 0 : 0.054 54 : 0.054 0.46 : 0.054 6.7 : 0.088
9 0 : 0.056 54 : 0.056 0.46 : 0.056 6.7 : 0.077

Isolet 1 0 : 0.11 n/a : n/a 4.43 : 0.11 68 : 0.12
5 0 : 0.077 — : — 4.4 : 0.077 69 : 0.085
9 0 : 0.08 — : — 4.4 : 0.08 69 : 0.08

CovType 1 0 : 0.14 311 : 0.14 5.1 : 0.14 101 : 0.12
5 0 : 0.17 311 : 0.17 5.1 : 0.17 101 : 0.17
9 0 : 0.18 311 : 0.18 5.1 : 0.18 101 : 0.17

Video 1 0 : 0.15 240 : 0.15 3.5 : 0.15 52 : 0.16
5 0 : 0.13 240 : 0.13 3.5 : 0.13 52 : 0.13
9 0 : 0.13 240 : 0.13 3.5 : 0.13 52 : 0.13

Internet 1 0 : 0.040 n/a : n/a 6.4 : 0.040 80 : 0.049
5 0 : 0.052 — : — 6.4 : 0.052 80 : 0.052
9 0 : 0.062 — : — 6.4 : 0.062 80 : 0.064

Error rate The error rate of Naïve
�

-NN, SR-tree, and KNS1 are
the same, since they are all exact

�
-NN algorithms. For the

IOC algorithm, the error rate is slightly different. For Letter
with

�
=1, the accuracy for IOC is worse than

�
-NN, while

for all the other datasets and other settings of
�

, the error
rates are comparable. In some cases IOC has even better
accuracy than

�
-NN. This validates our claim that both

�
-

NN and IOC are approximate versions of the optimal Bayes
prediction, and none generally outperforms the other.

Speed-up The SR-tree algorithm typically does not show a signif-
icant speedup compared with the naı̈ve linear scan in these
datasets. We emphasize that the IOC algorithm maintains
very robust speed-up in the face of high-dimensional data.
Consider the datasets Isolet (617 dimensions) and Internet ads
(1,555 dimensions). The SR-tree implementation is unable
to run on these two sets, and the KNS1 algorithm, which is
highly optimized using metric trees, ach-ieves very mediocre
speed-up, and sometimes we even observe a slow-down. Nev-
ertheless IOC consistently exhibits from ��� -fold to � � -fold

Table 3: Number of distance computations and CPU time. The
Naı̈ve column shows [number : time(s)], all other columns show
speedup over Naı̈ve.

Dataset
�

Naı̈ve SR-tree KNS1 IOC
Letter 1 16000 : 27 n/a : 1.3 14 : 6.5 47 : 16

5 — : — n/a : 0.88 8.9 : 3.4 38 : 10
9 — : — n/a : 0.79 7.4 : 3.3 32 : 7

Isolet 1 6238 : 112 n/a : n/a 1.1 : 1.1 20 : 17
5 — : — — : — 0.98 : 0.93 11 : 9
9 — : — — : — 0.92 : 0.88 8.8 : 6.3

CovType 1 58101 : 40776 n/a : 7.3 36 : 26 79 : 38
5 — : — n/a : 4.46 20 : 15 34 : 25
9 — : — n/a : 3.62 16 : 12 42 : 14

Video 1 35049 : 177 n/a : 3.7 28 : 20 555 : 664
5 — : — n/a : 2.9 21 : 15 96 : 43
9 — : — n/a : 2.6 19 : 13 70 : 30

Internet 1 2952 : 28 n/a : n/a 2.4 : 2.4 49 : 58
5 — : — — : — 1.7 : 1.7 15 : 15
9 — : — — : — 1.5 : 1.4 10 : 9.8

speed-up. The dataset Internet ads is particularly interest-
ing and merits special mention. Notice that it is a two-class
dataset, and techniques from [14] can be directly applied
here. In particular, one can use the KNS3 algorithm in [14]
to speed up the

�
-NN prediction. However, our IOC algo-

rithm, which is designed for many-class prediction, shows
about � -fold speed-up over KNS3, and has about the same
accuracy. This fact suggests that the pre-pruning technique
used by IOC might have much wider applicability.

Scalability We performed the simulations for scaling over dataset
Video. We fixed 3500 points as a test set and trained on 5
training sets with sizes 7000, 14000, 21000 and 28000. To
achieve better understanding of the scalability of our algo-
rithms, we ran the experiments for both

� � � and
� � � .

The results are presented on Figure 4. Notice that IOC scales
much better than all other algorithms.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20  40  60  80  100

C
PU

 ti
m

e(
s)

Training data size (%)

Video (D=62, n=35,049, k=1)

IOC
KNS1
SR-tree
Naive

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20  40  60  80  100

C
PU

 ti
m

e(
s)

Training data size (%)

IOC
KNS1
SR-tree
Naive

Figure 4: CPU time vs. data size (Video,
� � � and

� � � ).



5. RELATED WORK
For the problem of finding the

�
nearest datapoints (as opposed

to
�

-NN classification) in high dimensions, the frequent failure
of traditional metric trees to beat naı̈ve has lead to some very in-
genious and innovative alternatives, based on random projections,
hashing discretized cubes, and acceptance of approximate answers.
For example, Gionis et al. [8] gives a hashing method that was
demonstrated to provide speedups over a SR-tree-based approach
in 64 dimensions by a factor of 2–10 depending on how much er-
ror in the approximate answer was permitted. Another approximate�

-NN idea is in [3], one of the first
�

-NN approaches to use a pri-
ority queue of nodes, in this case achieving a 3-fold speedup with
an approximation to the true

�
-NN. However, these approaches are

based on the notion that any points falling within a factor of ; ���+� =
times the true nearest neighbor distance are acceptable substitutes
for the true nearest neighbor. Noting in particular that distances
in high-dimensional spaces tend to occupy a decreasing range of
continuous values [9], it remains unclear whether schemes based
upon the absolute values of the distances rather than their ranks are
relevant to the classification task (indeed, in the extreme of uni-
form data in very high dimensions, a randomly chosen data point
would be expected to lie in the ; � � � = ball2). In contrast, the IOC
algorithm finds an exact answer, though to a modified version of

�
-

NN classification. Although both approaches have theoretical un-
derpinnings, an important piece of future work will be a thorough
empirical comparison (which was beyond the scope of the current
paper).

Another solution to the cost of
�

-NN-type queries is editing (or
prototypes): most training points are forgotten and only particu-
larly representative ones are used (e.g. [2, 1, 19]). Kibler and Aha
extended this further by allowing datapoints to represent local con-
sensuses of sets of previously observed datapoints. This can be
effective, but requires in advance the choice of the right degree of
“smoothing” of the data (i.e. choosing the number of points to
be included in the consensus). KNS1 (traditional metric tree kNN
search) and IOC can both adaptively be called with varying values
of
�

. A more serious problem with prototypes is that inevitably,
very local predictions have detail lost and eventually (as the amount
of data increases) the very advantage of non-parametric classifiers
(their ability to adapt to local data) is lost if the number of retained
datapoints remains fixed.
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