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ABSTRACT 

 
In this paper, we explore supervised classification methods 
for video shot segmentation. We transform the temporal 
segmentation problem into a multi-class categorization 
issue. This approach provides a uniform framework for 
using different kinds of features extracted from the video 
and for detecting various types of shot boundaries. The 
approach utilizes manual labeled training data and a 
simple classification structure, which eliminates arbitrary 
thresholds and achieves more reliable estimation than 
previous threshold-based methods. Contrastive 
experiments on 13 videos (~4 hours) show excellent 
performance on the 2001 TREC Video Track Shot 
Classification Task in terms of precision and recall.  

 

1. INTRODUCTION 
 
Temporal video segmentation is the first step toward 
automatic annotation of digital video for browsing and 
retrieval. Its goal is to divide the video stream into a set of 
meaningful and manageable segments called shots. A shot 
is defined as an unbroken sequence of frames taken from 
one camera. There are two basic types of shot transitions: 
cut and gradual. A gradual transition may occur in many 
forms, with fades and dissolves the most frequent. Gradual 
transitions are more difficult to detect than cuts. They must 
be distinguished from camera operations and object 
movements.  
We consider video shot segmentation from a different 
perspective, namely as a categorization task, classifying 
every frame in the video stream as either a “common shot 
frame”, a “cut frame”, a “fade frame”, or a “dissolve 
frame”. Adjacent frames tend to be in the same class and 
usually have only small differences between them. This 
classification framework allows us to use many different 
kinds of video features in an integrated structure. The 
supervised learning process also enables reliable 
estimation of thresholds, which has not been addressed by 
other shot segmentation research so far.   
This paper is organized as follows. The next section 
reviews the related work. Section 3 presents the basic 

features, classification strategies and process of this 
supervised shot segmentation. Section 4 gives 
experimental results, and we conclude with a summary. 
 

2. RELATED WORK 
 

Good overviews of existing techniques in temporal video 
segmentation operating on both uncompressed and 
compressed video streams are found in [1][2][5].  
For uncompressed data, basically, most algorithms are 
based on frame differences for pixel, block-based or 
histogram comparisons. Most existing methods rely on 
suitable thresholding of differences between successive 
frames. However, these thresholds are typically highly 
sensitive to the specific type of video. There have only 
been a few machine learning approaches that tried to 
overcome this drawback.  [9] views temporal video 
segmentation as a 2-class clustering problem (“scene 
change” and “no scene change”) and uses K-means to 
cluster frame differences. [4] applies HMMs with separate 
states to model shot cuts, fades, dissolves, pans and zooms. 
[2] proposes a reliable dissolve detector. They use a 
‘dissolve synthesizer’ to create an infinite amount of 
dissolve examples of arbitrary duration, as artificial 
training data for supervised learning methods. [5] provides 
a statistical detector based on minimization of the average 
detection-error probability for cuts and dissolves.  
As pioneered by the above methods, classification 
methods appear promising for this task. However, most 
existing shot detection algorithms just use ad hoc frame 
classification with arbitrary thresholding rules. In the 
following section, we present a reliable shot boundary 
detection approach based on supervised classification and 
later validate its usefulness. 

 
3. SHOT SEGMETNATION BASED ON 

SUPERVISED CLASSIFICAITON  
 
3.1. Problem Analysis and System Overview 

We treat every frame in the video stream as a single 
feature vector and classify each frame into exactly one 
class. Although the supervised classification is capable of 
detecting many different types of shot boundaries, we 
demonstrate its performance on just two broad boundary 
classes in this paper: hard cuts and gradual transitions. The 
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classification works in a two level hierarchy. The dashed 
block in Figure 1 shows that, first, cut frames are 
distinguished from non-cuts, and then non-cuts are split 
into gradual transition frames and normal frames. The 
system uses features including frame differences, as well 
as camera motion likelihood, and black frame likelihood.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following subsections describe each process in detail. 
 
3.2. Deriving the Vector of Frame Features  

To categorize each frame into three different classes, we 
need to use features that reliably distinguish the different 
segmentation categories. Our features can be divided into 
two types: frame differences and current frame properties.  
 
3.2.1. Frame Difference 
Frame differences show different behavior for frames 
within shots, at cut boundaries or around gradual 
transitions. Within a shot, the differences between frames 
can mainly be attributed by object/camera motion or 
lighting changes. Thus, desirable features for shot 
classification will be insensitive to motion and lighting.  
To compute frame differences, we extract features that 
represent the visual content of a frame. Then, we quantify 
the difference between frame k  and frame lk + .  Two sets 
of frame differences are used: A whole-frame color 
histogram difference and an 8*8 block-wise histogram 
difference between frames, both in the YUV color space.  
Histogram differences are insensitive to object motion and 
invariant to image rotation. Experiments in [9] show that 
histogram differences in YUV color space achieve the best 
overall performance among different color spaces. [5] 
reports that a block-wise histogram difference is very 

sensitive to cut boundaries, but, because of the emphasis 
on blocks, it is also sensitive to object and camera motion. 
Combining both global and block wise histogram 
differences makes the system insensitive to object motion 
but very sensitive to cut boundaries.  
For each frame, we calculate the feature differences for 
each of 30 frame pairs between frame t  and frame 1−t , up 
to frame t  and frame 30−t , for both the global and the 
8*8 block wise histogram features. These 60 window-
based differences represent a frame’s temporal 
relationship with its neighborhood. Although there is no 
absolute minimum duration for a shot, it can realistically 
be assumed that no shot last for less than a second. Thus, 
the 30-frame difference window is close to the minimum 
shot length at 30 frames per second. 
 
3.2.2. Current Frame Property 
Further improvement of the detection performance can be 
achieved by using extra information. Although the 
histogram difference is insensitive to object motion, it 
remains somewhat sensitive to camera motion, such as 
panning, or zooming. Therefore, we added one feature 
containing the likelihood of a camera motion at the current 
frame. This value is the sum of the probabilities for zoom 
in/out as well as pan left/right/up/down camera actions. 
These are derived from an analysis of the motion vectors 
in the MPEG-1 compressed stream [10].  
[1] points out that none of the difference measures perform 
satisfactorily on very dark frames. Very black frames 
frequently appear during fade transitions, which constitute 
one kind of gradual transition. Thus we added another 
feature representing the likelihood that the current frame is 
black. This is merely the average Y value of the frame.  
 
3.3. Hierarchical Classification  

As illustrated in Figure 1, after we build a feature vector 
for each frame, we first use a binary classifier to 
categorize the frames into “non-cut frames” or “cut 
frames”. For the “non-cut frames”, we then use the second 
level binary classifier to distinguish a “shot frame” from a 
“gradual transition frame”. In general, distinguishing cuts 
from gradual transitions or normal shots is easier than 
separating gradual frames from normal shot frames. We 
compared the following classifiers for binary classification 
in our system: 
KNN. KNN stands for k-nearest neighbor classification. 
The algorithm is quite simple: given a feature vector, the 
system finds the k-nearest neighbors among the training 
vectors, and uses the categories of the k neighbors to 
determine the category of this test vector. For the binary 
case used in this paper, for each test frame, we calculate 
the ratio of positive examples within its k nearest 
neighbors and used this value as the positive likelihood.  

Figure 1. System Overview 
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NB: The basic idea in Naïve Bayes (NB) probabilistic 
classification is to use the features’ joint probabilities to 
estimate the probabilities of a category given a data point. 
The Naïve Bayes assumption of feature independence 
makes the computation of the NB classifiers far more 
efficient than the non-naïve Bayes approaches. 
SVM: Support Vector Machines (SVM) is a relatively 
recent but increasingly popular learning approach for 
solving two-class pattern recognition problems. It is based 
on the structural risk minimization principle. The method 
aims to find a decision surface that “best” separates the 
data points in two classes. The SVM formulation can be 
solved using quadratic programming techniques. 
 
3.4. Post Processing for Gradual Transitions 

Due to the variations in video stream, the classification 
score for each frame is also quite noisy. This is not a big 
problem for the first level classification, because cut 
frames are usually easy to distinguish. But the noise may 
cause errors in the detection of a gradual transition, which 
extends over several adjacent frames. 
We use wavelet smoothing to perform an automatic de-
noising process on each non-cut frame‘s second level 
classification score. This wavelet smoothing helps to erase 
the noise and consolidate the classification scores 
corresponding to a sequence of gradual transition frames.  
Additionally, we take the presence or absence of a nearby 
shot boundary into account when we perform the temporal 
integration for graduals, because multiple transitions are 
unlikely to be immediately adjacent to each other. 
 

4. EXPERIMENTS 
 
4.1. TREC-2001 Video Data Set 

There has been a long time need for standard benchmarks 
and unified evaluation criteria in shot boundary research. 
The TREC-2001 Video Track [6][7][8] organized by 
NIST provided such a data corpus that allows consistent 
comparison and precise evaluation of different systems. 
The video collection consists mostly of documentary style 
videos, widely varying in age, production style and quality. 
This corpus contains about 5.8 hours MPEG-1 videos. 
Discarding some of the extremely short videos, we used 
about 4 hours of video from this corpus, or 13 MPEG-1 
video files at slightly over 2GB of data. This collection 
contained 420,976 frames and 2462 transitions, of those 
1670 were cuts (67%), and 792 gradual transitions. 
 
4.2. Evaluation 

For all videos in this corpus, shot segmentation reference 
data had been constructed manually by NIST. We 
compared our detection results for each video to the shot 
segmentation reference data using evaluation software 

provided by NIST to get performance measurements for 
each video. We report the Precision/Recall score to 
evaluate our experiments.  
Precision: Among the transitions (cut or gradual) detected 
by the system, how many are true transitions?  
Recall: For all possible transitions (cut or gradual), how 
many were detected by system? 
A good detector should have both high precision and high 
recall. If we let d be the number of transitions detected, z 
be the number of transitions manually judged, and dz be 
the number of transitions manually judged as transitions 
among the detected ones, the precision and recall for the 
system are: 

zdzddz /Recall    /Precision ==   
F1 is a commonly used metric that combines precision and 
recall.  

RecallPrecision
RecallPrecision2F1

+
××=   

F1 is high only when precision and recall are both high. 
 
4.3. Experimental Results 

While we conducted numerous experiments, we present 
here four experimental runs that provide interesting and 
meaningful contrasts: 
Run-1 (30.bc.bc): This run uses only block wise 
histogram difference (30 features) and NB for both levels 
of classification. 
Run-2 (30.knn.knn): Uses block wise histogram 
difference (30 features) and kNN for both levels of 
classification. 
Run-3 (62.knn.knn): Uses both global and block wise 
histogram differences, camera motion likelihood and 
black-frame likelihood (30+30+2 features) with kNN for 
both levels of classification. 
Run-4 (62.svm.knn): Use the same 62 features as Run 3. 
Uses a linear SVM for the first level classification, and 
kNN for the second level. 
In each run, for each video, we trained the classification 
model on the other 12 videos.  
For the kNN classification step, we set two parameters, k 
and a score cutoff based on one validation video outside 
the 13 videos in the collection,  
From the TREC evaluation software [6], we obtained each 
test video’s cuts/gradual detection precision/recall scores 
as well as a weighted sum of precision and recall, 
weighted by the number of transitions in each video.  
In addition to comparing the four runs described above, 
we also compared our results to the best performing 
systems at the 2001 TREC evaluation [6]. One system was 
best at cut detection, though not for gradual transitions, 
while the other system performed best for gradual 
transitions, but not for cuts. Figure 2 shows the precision 
vs. recall plots of these six runs. Each run has two points 



  

Figure 2. Precision vs. Recall for Cuts 
and Gradual Transitions 
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Table 1.  F1 Comparison. The best performing 
system in each category is in bold type. 

in the figure. One is for detection of cuts, the other is for 
gradual transition detection.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Figure 2, we can see that for the cut detection, 
block-wise histogram difference using 30 features (star ‘*’ 
symbol) is similar to the complete 62-feature set. This 
confirms the hypothesis that block-based histogram 
difference is very appropriate for cut detection. But for 
gradual transition detection, the 62-feature set shows 
dramatically improved performance (plus ‘+’ symbol). 
Linear SVM (square symbol) performs similar to kNN (‘+’ 
symbol) for cuts. Other, non-linear SVM kernels did not 
improve performance. In general, NB performs quite 
poorly here due to our window-wise feature generation.   
Table 1 lists the F1 comparison for these six runs. We can 
see that though our 62.knn.knn run has neither the best in 
cuts nor in gradual segmentation, but it achieves the 
overall best performance when both are considered. 

RUNS CUT_F1 GRADUAL_F1 SUM_F1 
30.bc.bc 0.241644 0.500100 0.3709 

30.knn.knn 0.947389 0.485034 0.7162 
62.knn.knn 0.942435 0.698285 0.8204 
62.svm.knn 0.928222 0.685770 0.8070 
TrecBestCut 0.965900 0.670600 0.8182 

TrecBestGra 0.857200 0.729700 0.7934 
 
 
 

5. CONCLUSION 
 
This paper considered video shot segmentation from a 
supervised classification perspective. It provided a generic 
technique that provides reliable shot boundary 
categorization allowing multiple features to be used 
simultaneously to improve performance. Experiments 
show that this method has excellent performance on the 

2001 TREC Video Track Shot Classification Task in 
terms of precision and recall.  
In the future, it may be productive to add audio features to 
the classification, as well as exploring other machine 
learning techniques. 
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