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Abstract: Automated high-throughput drug screening constitutes a critical
emerging approach in modern pharmaceutical research. The statistical task
of interest is that of discriminating active versus inactive molecules given a
target molecule, in order to rank potential drug candidates for further test-
ing. Because the core problem is one of ranking, our approach concentrates
on accurate estimation of unknown class probabilities, in contrast to popular
non-probabilistic methods which simply estimate decision boundaries. While
this motivates nonparametric density estimation, we are faced with the fact
that the molecular descriptors used in practice typically contain thousands
of binary features. In this paper we attempt to improve the extent to which
kernel density estimation can work well in high-dimensional classification set-
tings. We present a synthesis of techniques (SLAMDUNK: Sphere, Learn A
Metric, Discriminate Using Nonisotropic Kernels) which yields favorable per-
formance in comparison to previous published approaches to drug screening,
as tested on a large proprietary pharmaceutical dataset.

1 Introduction: Classification for Drug Screening

Virtual screening refers to the use of statistical and computational methods
for prioritizing candidate molecules for biological testing for their possible use
as drugs. Because these assays are time-consuming and expensive, accurate
“virtual” assays, or prioritization of molecules by computer, has direct impact
in cost savings and more rapid drug development. Virtual screening, part of
the more general enterprise of high-throughput screening, has thus become an
increasingly pressing new component of modern drug development research.

The classification problem. In this paper we are concerned with
the scenario of a large pharmaceutical research and development laboratory,
which is as follows: We assume there is a single target molecule. There are
multiple molecules which are known to interact in the desired fashion with
the target molecule, i.e. are active with respect to the target, and a generally
larger number of molecules known to be inactive with respect to the target.
The task is to predict whether a previously unseen molecule will be active
with respect to the target.
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The features. The structure of a molecule determines its interaction
with a target molecule — whether and how it will interlock, or “dock” with
the target — but the interaction is itself a complex dynamic process whose
complete characterization remains an oustanding problem of science. Thus,
molecular descriptions used in virtual screening typically contain hundreds or
thousands of binary (0/1) features, collecting all manner of both generic and
target-specific properties which might be relevant to the classification task.
Typical binary features record the absence or presence of a certain kind of
atom or substructure, proximity relationship, and so on.

The goal. Our goal to design a classifier with the best possible predic-
tion performance based on a proprietary commercial training set of 26,733
molecules, 6,348 binary features, and one output variable (“active” or not).

Recent work in virtual screening. Most of the well-known classifica-
tion methods have been proposed for the virtual screening problem, including
decision trees, neural networks, naive Bayes classifiers, and support vector
machines (SVM) ([16]), which are currently considered to be one of the most
empirically successful in general. Our work is strongly motivated by two of
the most recently published comparisons of classification methods for virtual
screening ([17],[10]), which reveal two slightly lesser-known winners. One is
the ‘binary kernel discriminator’ (BKD) of [9], a simple kernel estimator for
classification using a kernel based on the Hamming distance. (We note that
the BKD is not formulated directly in terms of decision theory.) In [17], a
fairly extensive comparison (by a different group of researchers than the ones
who first proposed BKD’s for this problem) between SVM’s and BKD’s was
performed, demonstrating surprisingly clear superiority in the performance
of BKD’s over SVM’s. In that work, molecule descriptions containing up
to about 1,000 features were used. In [10], which performed experiments
using the same dataset used in this paper, a conjugate gradient-based logis-
tic regression (LR) method was demonstrated to have consistently favorable
performance compared with several popular methods including SVM’s with
both linear and nonlinear (radial basis function) kernels, decision trees, naive
Bayes classifiers, and k-nearest-neighbor classifiers. Our work ultimately con-
tains aspects of both BKD and LR, achieving a method with performance
superior to either one.

Ranking versus binary decision-making. To score the ranking per-
formance of a classifier, we use the standard device of receiver operating char-
acteristic (ROC) curves ([3]), which captures more information than simply
the percentage of correctly-classified data.! The starting point for the ap-
proach of this paper is that the ranking problem is more difficult than the

L An ROC curve is constructed by sorting the data according to the predicted probability
for the “active” class, i.e. P(C1|z). Starting at the origin and stepping through the data
in order of decreasing “active” probability, a point on the curve is plotted by moving up
one unit if the true label was actually “active” and moving right one unit if the prediction
was incorrect. A summary of an ROC curve is the area under the curve (AUC), which is
0.5 for a classifier which guesses randomly and 1.0 for one which ranks perfectly.
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standard classification problem because the quantity of interest is the poste-
rior class probability rather than simply the error rate of making binary de-
cisions. A classifier may estimate class probabilities with very large bias, but
still perform well when scored in terms of accuracy in binary decision-making
as long as the order relation between the class probabilities is maintained.
In this work we pursue the extent to which direct estimation of posterior
class probabilities, as opposed to pure classification designed to minimize the
binary error rate, might yield superior ranking performance. There are addi-
tional practical advantages to obtaining accurate class-conditional densities.
Among them: imputation of missing data is naturally treated, outliers are
more naturally identified, and difficult-to-classify data are easily isolated.

2 General Approach

Decision theory. The motivation above leads us naturally to the gen-
eral framework of statistical decision theory. The posterior class probability
P(C1]z), is expressed in terms of the class-conditional density p(z|C1):

p(z|C1)P(Ch) 1)
(z|C1)P(C1) + p(x|Ca) P(C2)

P(Cilz) = »

where C7 and C5 are the two classes. If the class-conditional distributions on
the right-hand side are known, the Bayes error rate is achived, i.e. the best
possible performance is obtained.

Nonparametric density estimation. We consider the classifier ob-
tained by estimating p(z|C1) and p(z|C>) with minimal assumptions, using
the nonparametric kernel density estimator (KDE):

5@) = 5 Y Ko, ) @)

where N is the number of data, K () is called the kernel function and satisfies
7 Kn(2)dz = 1, and h is a scaling factor called the bandwidth. Kernel
density estimation is the most widely-used and well-studied method for non-
parametric density estimation, owing to both its simplicity and flexibility, and
the many theorems establishing its consistency for near-arbitrary unknown
densities and rates of convergence for its many variants ([14],[13]). We refer
to the resulting classifier as a nonparametric Bayes classifier (NBC), for lack
of a standard name. The standard form of kernel which is most often used
is the product kernel, in which

D
Kh(.’E,QIj) = HKd (@) ) (3)
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where D is the number of dimensions, i.e. the kernel function is a product of
D univariate kernel functions, and all share the same bandwidth hA. Though
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we could consider a setup in which separate bandwidths can be adjusted for
each dimension, this creates a combinatorial problem which is intractable in
our high-dimensional setting. If we ensure that the scales of the respective
features are roughly the same, we need only adjust a single parameter h.

Thus, our classifier has two parameters, the bandwidth for each class.
These are found by first estimating the optimal bandwidth for each density
independently using least-squares cross-validation ([14]), then scoring band-
width pairs nearby these values using the leave-one-out error score.

3 SLAMDUNK: Sphere, Learn A Metric, Discriminate
Using Nonisotropic Kernels

The nonparametric Bayes classifier arises naturally when considering the best
available method for accurate estimation of class probabilities with minimal
assumptions. However, its power comes at potentially severe costs. The
SLAMDUNK methodology consists of a set of procedures designed to mit-
igate the traditional limitations of nonparametric density estimation in the
setting of high-dimensional classification, so that its distinct advantages may
be exploited. We now treat in turn three significant roadblocks.

3.1 Fast Algorithms for Kernel Density Estimation

Estimation of the density at each of the N points, when performed in the
straightforward manner, has O(N?) computational cost. Computational in-
tractability impacts statistical inference quality directly — for example in [17]
only 200 data were subsampled for each class to form the training set, due to
the computational cost of BKD. In our experiments we use the entire set of
26,733 data. Any high-dimensional context demands the use of as much data
as possible, forcing the computational issue. Fortunately, this problem has
been largely mitigated in very recent work presenting a fast algorithm yield-
ing simultaneously fast and accurate computation of kernel density estimates
([8])- The algorithm reduces the O(N?) cost to O(N). Further, it is shown
empirically in [8] that the algorithm’s time complexity is not exponential in
the dimension D, but instead appears to depend on the intrinsic dimension-
ality, the local dimensionality of the manifold upon which the data lies ([5])
(see below). However, the computational geometry methods employed by the
algorithm require that the underlying distance be a true metric, which will
constrain our methodology below.

3.2 Nonstationary and Nonisotropic Estimators

A major perceived obstacle is the statistical inefficiency of KDE in high di-
mensions. Theoretical bounds establish that in the worst case, the number
of samples required for accurate kernel density estimation rises exponentially
with the dimension ([14]). We now consider more realistic alternative choices
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for the kernel functions in KDE.

Nonstationary estimators. It has long been noted that the assumption
of spatial stationarity, or a single scale h holding across the entire space
is deficient. Visually it is clear that smoothing with a fixed bandwidth is
unappealing when the dataset contains regions of differing density, which is
inevitable in practice. Adaptive (or variable-kernel) kernel density estimators
have been studied and shown to be more effective than fixed-width kernel
density estimators in experimental studies, e.g. [15]. In these estimators,
the variable bandwidth h; for each point z; is obtained by scaling the single
global bandwidth A by a factor

where p() is a pilot estimate of the density, to which the overall estimator
is largely insensitive ([1]). Many simple choices can be used for this pilot
estimate, including adaptive Gaussian mixture models or variable kernel es-
timators based on nearest-neighbor distances ([2]).

Nonisotropic estimators. It has been noted by many authors (par-
ticularly in the field of machine learning, in which high-dimensional data
classification and clustering is routinely performed) that in practice it is vir-
tually never the case that a dataset’s intrinsic dimensionality is equal to its
explicit dimensionality D, e.g. [4]. With the assumption that the data lie
on a linear manifold, the dimension of the subspace can be estimated using
the eigenspectrum from a principal components analysis ([5]). However in
general the data may lie on a nonlinear manifold ([12]). A common way esti-
mator of the intrinsic dimension with minimal assumptions has been called,
among other things, the correlation dimension ([7]), but amounts to the 2-
point correlation function used in spatial statistics. Very often in practice
the intrinsic dimension D' << D, regardless of which variant of its definition
is used.

With this in mind, the standard product kernel, which is isotropic, i.e.
has equal extent in all directions, is a poor match to realistic high-dimensional
data. Further, as noted earlier, the behavior of volumes in high dimensional-
ities, rising exponentially in D, is disastrous when D is large. Instead we use
an estimator in which the univariate bandwidths h; are replaced by matrices
H;, resulting in a multivariate kernel such as the multivariate Gaussian

1
Ky, (z,2:) = WGXI’{—i(x _xi)THil(x_xz’)} (5)
where H; = h\; X, with X, the covariance matrix estimated from x; and its k
nearest neighbors of x;. Such estimators have received relatively little study,
though one example showing their consistency is [6]. By allowing increased
sensitivity to the local manifold of the data, or correlations in the feature
space, we deflate the worst-case curse of dimensionality in KDE, relative to
the naive product kernel estimator.
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3.3 Coordinate Transformation and Metric Learning

One of Vapnik’s central arguments for the non-probabilistic approach [16]
underlying the SVM is that if the error rate is the desired quantity to be min-
imized, estimation of entire densities rather than simpler decision boundaries
is unnecessary and wasteful of modeling capacity ([16]). We now introduce
a methodology for essentially focusing less modeling effort on directions that
are less relevant with respect to the decision boundary.

Metric learning. An implicit part of the kernel estimator is the under-
lying metric used to obtain the distances. The standard Euclidean distance
is used by default. It can be seen as a special case of a more general weighted
Euclidean distance

d(z.y) = e —yll = \/(z - 9) "W (z — y) (6)

in which the matrix W is diagonal containing all 1’s. We instead consider
the metric weight matrix W as a free parameter to adjust to maximize the
performance of our estimator. We refer to this as “learning the metric”.
This functional form retains the metric properties, for the purpose of using
the fast algorithm described above.

The linear discriminant metric. We propose a form of W which is
diagonal, and relates the metric to the decision boundary. We obtain the
vector w (the diagonal of W) which is the result of a linear classifier such
as logistic regression or a linear support vector machine (we use logistic re-
gression based on the favorable experimental results described earlier). The
weight vector w describes a classifier where the class prediction for z is ob-
tained by computing wz and comparing it to a threshold wg. Thus if two
points z and y lie on the decision boundary of the classifier, we have that
wT (z —y) =0, i.e. the vector w is orthogonal to the decision boundary. By
taking the metric formed by the norm

d(z,y) = |lw” (= —y)l| (7)

we obtain a metric which measures distance along w, or between the class
means (with the appropriate Gaussian assumptions). This can be interpreted
as measuring the extent to which the linear discriminant prefers class 1 or
class 2. It can be regarded as an implicit form of dimensionality reduction,
by realizing that values of w tending to zero will cause the metric to assign
negligible weight in those directions, which is tantamount to removing the
corresponding features.

Sphering. Our diagonal restriction on W motivates the removal of corre-
lation between the features in advance. Normalizing each feature so that they
all have roughly the same scale is also important for KDE as noted earlier.

2 Although asymptotic results imply that the choice of metric does not affect perfor-
mance, finite-sample experiments show that marked improvements can be made by adjust-
ing the metric to the task at hand [4, 11].
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For this reason we perform these operations (sphering the data) as the first
step of our methodology using principal component analysis (PCA). We also
take the opportunity at this stage to examine the resulting eigenspectrum
and remove low-eigenvalue features. Our overall dimension reduction scheme
thus includes two kinds of steps: this PCA-based explicit feature removal,
which aims to ‘denoise’ the data, and the use of discriminant information to
replace isotropy in the metric.

4 Experimental Results

Our dataset contains 26,733 rows and 6,348 attributes, and is sparse, contain-
ing 3,732,607 non-zero input values. It has 804 positive output values (“ac-
tive” class). A pre-analysis of the data, however, reveals that 2290 columns
are empty. Furthermore, 388 out of 8,235,711 pairs of columns are identical.
These are also removed. Among the remaining columns, a column reduction
scheme also reveals linear dependencies. Removal of 406 columns from the
remaining 3,871 columns is performed. This leaves about half of the original
dimensions. We then perform PCA, keeping only 100 of these dimensions.
This value was chosen to correspond roughly to the inflection point of the
eigenspectrum, as per common practice, and captured 97% of the variance
in this case. All experiments were performed using 10-fold cross-validation,
in which the data is broken into 10 equally-sized disjoint subsets, and testing
(evaluation) is performed on one of them while training is performed on the
other 9 put together.

| Method | AUC |
k-nearest neighbors 0.862 £+ 0.017
Bayes classifier 0.891 £ 0.012
decision tree 0.893 £ 0.011
linear support vector machine 0.918 £ 0.010
RBF support vector machine 0.927 £ 0.013
logistic regression 0.931 £+ 0.012
SLAMDUNK fixed isotropic kernel 0.933 + 0.017
SLAMDUNK fixed isotropic + metric learning 0.937 £ 0.012
SLAMDUNK variable nonisotropic + metric learning | 0.940 + 0.012

The first part of the table lists the results of the experimental evaluation
of [10] performed on the same data. Each method was tested both with and
without the use of PCA projecting to 100 dimensions. The table shows only
the better of the two procedures, for each method. The second part of the
table shows the SLAMDUNK results on this data. We see a progression in
the AUC score when metric learning is performed, and when variable and
nonisotropic kernels are used, showing that these techniques each contribute
to increased prediction quality in a non-conflicting and additive manner. 3

3Test results are not shown for each of the possible combinations of the sub-techniques
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5 Conclusion

We have presented a methodology called SLAMDUNK which we have de-
signed to have favorable properties for the problem of virtual screening.
We have demonstrated its favorable performance on a real pharmaceutical
dataset in current use for drug discovery, providing evidence that this line of
thinking may hold promise for this important contemporary problem. More
generally, this work explores the extent to which fully probabilistic methods
can be successful in high-dimensional problems.
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