
Speaker: Moritz Hardt

Joint work with Markus Bläser,
Saarland University

Arithmetic Circuit
Identity Testing for
Sparse Polynomials

C M U T h e o r y L u n c h , A p r i l 2 5 2 0 0 7

Arithmetic Circuit

• division-free

• size = #gates

Sparse Polynomial:
few nonzero monomials

24y+ 2y4

21

+

c

∗

∗

Quick Reminder

Given an arithmetic circuit of
size s computing a polynomial P,
determine if P is identically zero.

Arithmetic Circuit Identity Testing (ACIT)

Plan

1. Study the univariate
case first.

2. Randomize!

3. Reductions from
multivariate to
univariate.

Deterministic algorithm
that exploits the sparsity

of the input polynomial

How many roots can a nonzero
univariate polynomial have?

How many roots can a nonzero
univariate polynomial have?

d (degree)

How many roots can a nonzero
univariate polynomial have?

d (degree)

Naive poly(d,s)-time algorithm!

How many roots can a nonzero
univariate polynomial have?

d (degree)

Can we say anything better?

Naive poly(d,s)-time algorithm!

Fact: Real-valued polynomial with
at most m nonzero monomials
has at most m positive roots.

Fact: Real-valued polynomial with
at most m nonzero monomials
has at most m positive roots.

Proof: Rule of Signs.

Fact: Real-valued polynomial with
at most m nonzero monomials
has at most m positive roots.

Naive poly(m,s)-time algorithm (over the reals)?

Proof: Rule of Signs.

Fact: Real-valued polynomial with
at most m nonzero monomials
has at most m positive roots.

Naive poly(m,s)-time algorithm (over the reals)?

No! Why not?

Proof: Rule of Signs.

Fact: Real-valued polynomial with
at most m nonzero monomials
has at most m positive roots.

Naive poly(m,s)-time algorithm (over the reals)?

No! Why not?

Proof: Rule of Signs.

Can we still do it?

Previous Work
Lipton, Vishnoi ’03.
• poly(m,n,log d,H) runtime over the integers
Klivans, Spielman ’01.
• O(log(mnd)) random bits
Karpinski, Shparlinski ’96
• poly(m,n, log d) runtime over finite fields,
(but either a lot of randomness or dependence on the characteristic)

Previous Work
Lipton, Vishnoi ’03.
• poly(m,n,log d,H) runtime over the integers
Klivans, Spielman ’01.
• O(log(mnd)) random bits
Karpinski, Shparlinski ’96
• poly(m,n, log d) runtime over finite fields,
(but either a lot of randomness or dependence on the characteristic)

Further related work on sparse polynomial interpolation...

Previous Work
Lipton, Vishnoi ’03.
• poly(m,n,log d,H) runtime over the integers
Klivans, Spielman ’01.
• O(log(mnd)) random bits
Karpinski, Shparlinski ’96
• poly(m,n, log d) runtime over finite fields,
(but either a lot of randomness or dependence on the characteristic)

Further related work on sparse polynomial interpolation...

Agrawal, Biswas ’99
• Randomness-efficient test using arithmetic circuits

Not related to sparsity:

Our result

• Deterministic test using poly(m,s) ring
operations over any integral domain

‣ amounts to runtime poly(m,n,log d,H)
over integers or rationals, for instance

• Lower exponents in the runtime with fewer
random bits

• Very simple algorithm

Algorithm

for sufficiently many primes p.

Given an arithmetic circuit computing a
univariate polynomial P, verify

P() ≡ 0 mod p − 1

What is sufficient?

verify

for sufficiently many primes p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

What is sufficient?

verify

for sufficiently many primes p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

Claim: Given polynomial , degree d, nonzero
monomials, then there are less than m log d primes p
for which

m> 0

P() ≡ 0 mod p − 1.

P()

m> 0Claim: Given polynomial , degree d, nonzero
monomials, then there are less than m log d primes p
for which P() ≡ 0 mod p − 1.

P()

m> 0Claim: Given polynomial , degree d, nonzero
monomials, then there are less than m log d primes p
for which P() ≡ 0 mod p − 1.

P()

1st Idea: We’re reducing degrees mod p.

r < p, k ≥ 0kp+r ≡ r mod p − 1

m> 0Claim: Given polynomial , degree d, nonzero
monomials, then there are less than m log d primes p
for which P() ≡ 0 mod p − 1.

P()

2nd Idea: Count prime factors!

1st Idea: We’re reducing degrees mod p.

r < p, k ≥ 0kp+r ≡ r mod p − 1

m> 0Claim: Given polynomial , degree d, nonzero
monomials, then there are less than m log d primes p
for which P() ≡ 0 mod p − 1.

P()

2nd Idea: Count prime factors!
Fix two monomials d,d

′
.

1st Idea: We’re reducing degrees mod p.

r < p, k ≥ 0kp+r ≡ r mod p − 1

m> 0Claim: Given polynomial , degree d, nonzero
monomials, then there are less than m log d primes p
for which P() ≡ 0 mod p − 1.

P()

2nd Idea: Count prime factors!
Fix two monomials d,d

′
.

If d ≡ d′ mod p, we have p|(d− d′).

1st Idea: We’re reducing degrees mod p.

r < p, k ≥ 0kp+r ≡ r mod p − 1

m> 0Claim: Given polynomial , degree d, nonzero
monomials, then there are less than m log d primes p
for which P() ≡ 0 mod p − 1.

P()

2nd Idea: Count prime factors!

But, |d− d′| ≤ d.

Fix two monomials d,d
′
.

If d ≡ d′ mod p, we have p|(d− d′).

1st Idea: We’re reducing degrees mod p.

r < p, k ≥ 0kp+r ≡ r mod p − 1

m> 0Claim: Given polynomial , degree d, nonzero
monomials, then there are less than m log d primes p
for which P() ≡ 0 mod p − 1.

P()

At most log d bad primes per pair of monomials!

2nd Idea: Count prime factors!

But, |d− d′| ≤ d.

Fix two monomials d,d
′
.

If d ≡ d′ mod p, we have p|(d− d′).

1st Idea: We’re reducing degrees mod p.

r < p, k ≥ 0kp+r ≡ r mod p − 1

verify

for sufficiently many primes p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

How?

Claim: If P is given as an arithmetic circuit of size s,
we can verify P() ≡ 0 mod k − 1
with Õ(sk) ring operations (over an integral domain).

verify

for sufficiently many primes p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

How?

Claim: If P is given as an arithmetic circuit of size s,
we can verify P() ≡ 0 mod k − 1
with Õ(sk) ring operations (over an integral domain).

Claim: If P is given as an arithmetic circuit of size s,
we can verify P() ≡ 0 mod k − 1
with Õ(sk) ring operations (over an integral domain).

Idea: Compute the whole polynomial in its
reduced form.

Claim: If P is given as an arithmetic circuit of size s,
we can verify P() ≡ 0 mod k − 1
with Õ(sk) ring operations (over an integral domain).

 ∗ ∗ ∗ ∗

Example (k=5)

Invariant: Degree k polynomial at each gate

(3)2 = 6

→ 
(4)2 = 8

→ 3
(2)2 = 42

Idea: Compute the whole polynomial in its
reduced form.

Next step: Randomization

So far: Deterministic algorithm

runtime poly(m,s)

Goal: Õ(log(ms)) random bits,
speed up runtime as much as possible,

hopefully poly(s).

No m, here.

Next step: Randomization

So far: Deterministic algorithm

runtime poly(m,s)

verify

for sufficiently many primes p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

a large enough random prime p.

verify

for sufficiently many primes p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

a large enough random prime p.

OK, O(log p) = Õ(m log d) random bits.

verify

for a large enough random prime p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

Are we done?

verify

for a large enough random prime p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

Are we done?

Runtime
“poly(p,s)”

verify

for a large enough random prime p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

Are we done?

Runtime
“poly(p,s)”

Not efficient general, but still nice speed up.

Can we verify P() ≡ 0 mod p − 1
with poly(s) ring operations

and O(log p) random bits ?

Open Problem

From multivariate to
univariate

s n m d

1 n(d+ 1)nnot much
more

none

≤m
(mnd)k1

not much
moreÕ(log(mn logd)) sound w.h.p.

m

Random bits

Deterministic Reduction

P(1,2, . . . ,n)

Given:

• max variable degree d

Deterministic Reduction

P(1,2, . . . ,n)

Given:

• max variable degree d

 := (d+1)
−1

Substitute

Deterministic Reduction

P(1,2, . . . ,n)

Given:

• max variable degree d

 := (d+1)
−1

Substitute

Circuit of size
n log d

repeated squaring

Randomized Reduction

• Uses the mapping by Klivans and Spielman ’01

• Adds a step of chinese remaindering to it to
further decrease # random bits:

O(log(mnd)) Õ(log(mn log d))

Results in Detail
Deterministic Randomized

operations
with

Õ(log(mn logd))

random bits

operations

Õ((mn logd)2S)

S = s+ n2 logd T = s+ n log(mnd)

Õ(m log(mnd)T)

Conclusion

• What’s the “significant” parameter in identity
testing? Degree or Sparsity?

• Classical results say degree

• Our result argues for sparsity

• Efficient randomized analogon

(Õ(log(ms)) random bits) still missing!

Thank you.

Closer look at the open question

P() ≡ 0 mod p − 1
if and only if
P(r) = 0 for all p-th roots of unity r.

P ∈ C[].Suppose

Fact:

Closer look at the open question

P() ≡ 0 mod p − 1
if and only if
P(r) = 0 for all p-th roots of unity r.

P ∈ C[].Suppose

Fact:

What about picking a random root?

Closer look at the open question

P() ≡ 0 mod p − 1
if and only if
P(r) = 0 for all p-th roots of unity r.

P ∈ C[].Suppose

Fact:

What about picking a random root?

Idea: A polynomial that is zero everywhere except on
one point cannot be not sparse!

“Uncertainty Principle”

Closer look at the open question

P() ≡ 0 mod p − 1
if and only if
P(r) = 0 for all p-th roots of unity r.

P ∈ C[].Suppose

Fact:

What about picking a random root?

Idea: A polynomial that is zero everywhere except on
one point cannot be not sparse!

“Uncertainty Principle”

Unfortunately, parameters too weak per se.
But maybe, can mimic Indyk ’07 on polynomials...

