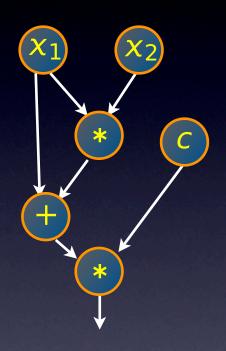
Arithmetic Circuit Identity Testing for Sparse Polynomials

Speaker: Moritz Hardt

Joint work with Markus Bläser, Saarland University

Quick Reminder



Arithmetic Circuit

- division-free
- size = #gates

$$2x^4y + 2xy^4$$

Sparse Polynomial: few nonzero monomials

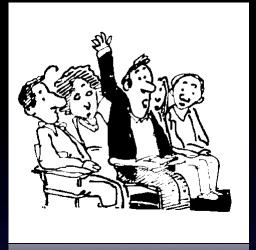
Arithmetic Circuit Identity Testing (ACIT)

Given an arithmetic circuit of size s computing a polynomial P, determine if P is identically zero.

Plan

- I. Study the univariate case first.
- 2. Randomize!
- 3. Reductions from multivariate to univariate.

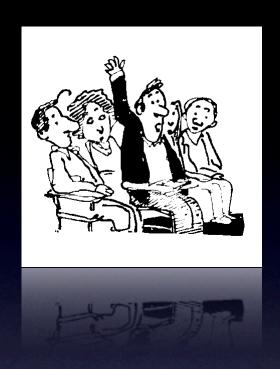
Deterministic algorithm that exploits the **sparsity** of the input polynomial



d (degree)

d (degree)

 \longrightarrow Naive poly(d,s)-time algorithm



d (degree)

 \longrightarrow Naive poly(d,s)-time algorithm

Can we say anything better?

Proof: Rule of Signs.

Proof: Rule of Signs.

Naive poly(m,s)-time algorithm (over the reals)?

Proof: Rule of Signs.

Naive poly(m,s)-time algorithm (over the reals)?

No! Why not?

Proof: Rule of Signs.

Naive poly(m,s)-time algorithm (over the reals)?

No! Why not?

Can we still do it?

Previous Work

Lipton, Vishnoi '03.

• poly(m,n,log d,H) runtime over the integers

Klivans, Spielman '01.

• O(log(mnd)) random bits

Karpinski, Shparlinski '96

• poly(m,n, log d) runtime over finite fields, (but either a lot of randomness or dependence on the characteristic)

Previous Work

Lipton, Vishnoi '03.

• poly(m,n,log d,H) runtime over the integers

Klivans, Spielman '01.

• O(log(mnd)) random bits

Karpinski, Shparlinski '96

poly(m,n, log d) runtime over finite fields,
 (but either a lot of randomness or dependence on the characteristic)

Further related work on sparse polynomial interpolation...

Previous Work

Lipton, Vishnoi '03.

• poly(m,n,log d,H) runtime over the integers

Klivans, Spielman '01.

• O(log(mnd)) random bits

Karpinski, Shparlinski '96

poly(m,n, log d) runtime over finite fields,
 (but either a lot of randomness or dependence on the characteristic)

Further related work on sparse polynomial interpolation...

Not related to sparsity:

Agrawal, Biswas '99

• Randomness-efficient test using arithmetic circuits

Our result

- Deterministic test using poly(m,s) ring operations over any integral domain
 - amounts to runtime poly(m,n,log d,H) over integers or rationals, for instance
- Lower exponents in the runtime with fewer random bits
- Very simple algorithm

Algorithm

Given an arithmetic circuit computing a univariate polynomial *P*, verify

$$P(x) \equiv 0 \mod x^p - 1$$

for sufficiently many primes p.

Given a univariate polynomial P, verify $P(x) \equiv 0 \mod x^p - 1$ for sufficiently many primes p.

What is sufficient?

Given a univariate polynomial P, verify $P(x) \equiv 0 \mod x^p - 1$ for sufficiently many primes p.

What is sufficient?

Claim: Given polynomial P(x), degree d, m > 0 nonzero monomials, then there are less than $m \log d$ primes p for which $P(x) \equiv 0 \mod x^p - 1$.

Ist Idea: We're reducing degrees mod p.

$$x^{kp+r} \equiv x^r \mod x^p - 1$$
 $r < p, k \ge 0$

Ist Idea: We're reducing degrees mod p.

$$x^{kp+r} \equiv x^r \mod x^p - 1$$
 $r < p, k \ge 0$

2nd Idea: Count prime factors!

Ist Idea: We're reducing degrees mod p.

$$x^{kp+r} \equiv x^r \mod x^p - 1$$
 $r < p, k \ge 0$

2nd Idea: Count prime factors! Fix two monomials x^d , $x^{d'}$.

Ist Idea: We're reducing degrees mod p.

$$x^{kp+r} \equiv x^r \mod x^p - 1$$
 $r < p, k \ge 0$

2nd Idea: Count prime factors!

Fix two monomials x^d , $x^{d'}$.

If $d \equiv d' \mod p$, we have $p \mid (d - d')$.

Ist Idea: We're reducing degrees mod p.

$$x^{kp+r} \equiv x^r \mod x^p - 1$$
 $r < p, k \ge 0$

2nd Idea: Count prime factors!

Fix two monomials x^d , $x^{d'}$.

If $d \equiv d' \mod p$, we have p|(d - d').

But, $|d - d'| \leq d$.

Ist Idea: We're reducing degrees mod p.

$$x^{kp+r} \equiv x^r \mod x^p - 1$$
 $r < p, k \ge 0$

2nd Idea: Count prime factors!

Fix two monomials x^d , $x^{d'}$.

If $d \equiv d' \mod p$, we have p|(d - d').

But, $|d - d'| \le d$.

At most log d bad primes per pair of monomials!

Given a univariate polynomial P, verify $P(x) \equiv 0 \mod x^p - 1$ for sufficiently many primes p.

How?

Given a univariate polynomial P, verify $P(x) \equiv 0 \mod x^p - 1$ for sufficiently many primes p.

How?

Claim: If P is given as an <u>arithmetic circuit</u> of size s, we can verify $P(x) \equiv 0 \mod x^k - 1$ with $\tilde{O}(sk)$ ring operations (over an integral domain).

Claim: If P is given as an <u>arithmetic circuit</u> of size s, we can verify $P(x) \equiv 0 \mod x^k - 1$ with $\tilde{O}(sk)$ ring operations (over an integral domain).

Claim: If P is given as an <u>arithmetic circuit</u> of size s, we can verify $P(x) \equiv 0 \mod x^k - 1$ with $\tilde{O}(sk)$ ring operations (over an integral domain).

Idea: Compute the whole polynomial in its reduced form.

Claim: If P is given as an <u>arithmetic circuit</u> of size s, we can verify $P(x) \equiv 0 \mod x^k - 1$ with $\tilde{O}(sk)$ ring operations (over an integral domain).

Idea: Compute the whole polynomial in its reduced form.

Example (k=5)

$$x^{2}$$
 $(x^{2})^{2} = x^{4}$ $(x^{4})^{2} = x^{8}$ $(x^{3})^{2} = x^{6}$
 $\rightarrow x^{3}$
 $\rightarrow x$

Invariant: Degree k polynomial at each gate

So far: Deterministic algorithm runtime poly(m,s)

Next step: Randomization

So far: Deterministic algorithm runtime poly(m,s)

Next step: Randomization

Goal: $\tilde{O}(\log(ms))$ random bits, speed up runtime as much as possible, hopefully poly(s).

No *m*, here.

Given a univariate polynomial P, verify $P(x) \equiv 0 \mod x^p - 1$ for sufficiently many primes p.

a large enough **random** prime p.

Given a univariate polynomial P, verify $P(x) \equiv 0 \mod x^p - 1$ for sufficiently many primes p.

a large enough **random** prime **p**.

OK, $O(\log p) = \tilde{O}(m \log d)$ random bits.

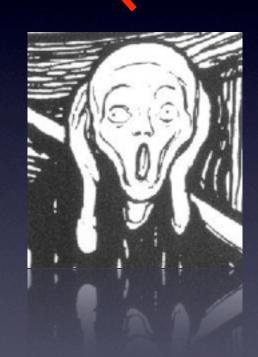
Given a univariate polynomial P, verify $P(x) \equiv 0 \mod x^p - 1$ for a large enough random prime p.

Are we done?

Given a univariate polynomial P, verify $P(x) \equiv 0 \mod x^p - 1$ for a large enough random prime p.

Are we done?

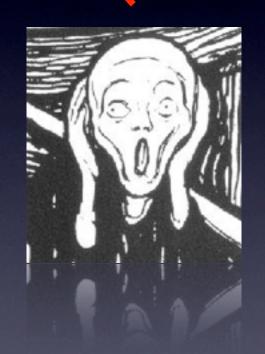
Runtime "poly(p,s)"



Given a univariate polynomial P, verify $P(x) \equiv 0 \mod x^p - 1$ for a large enough random prime p.

Are we done?

Runtime "poly(p,s)"



Not efficient general, but still nice speed up.

Open Problem

```
Can we verify P(x) \equiv 0 \mod x^p - 1
with poly(s) ring operations
and O(\log p) random bits ?
```

From multivariate to univariate

Random bits	5	n	m	d
none	not much more	1	m	$n(d+1)^n$
$\tilde{O}(\log(mn\log d))$	not much more	1	≤ m sound w.h.p.	(mnd) ^k

Deterministic Reduction

Given:

```
P(x_1, x_2, \ldots, x_n)
```

• max variable degree d

Deterministic Reduction

Given:

$$P(x_1, x_2, \ldots, x_n)$$

• max variable degree d

Substitute

$$x_i := x^{(d+1)^{i-1}}$$

Deterministic Reduction

Given:

```
P(x_1, x_2, \ldots, x_n)
```

max variable degree d

Substitute

$$x_i := x^{(d+1)^{i-1}}$$

Circuit of size

n log d

repeated squaring

Randomized Reduction

- Uses the mapping by Klivans and Spielman '01
- Adds a step of chinese remaindering to it to further decrease # random bits:

 $O(\log(mnd)) \longrightarrow \tilde{O}(\log(mn\log d))$

Results in Detail

Deterministic	Randomized

 $\tilde{O}((mn \log d)^2 S)$ operations

operations with $\tilde{O}(\log(mn\log d))$

 $\tilde{O}(m\log(mnd)T)$

random bits

$$S = s + n^2 \log d$$
 $T = s + n \log(mnd)$

Conclusion

- What's the "significant" parameter in identity testing? Degree or Sparsity?
- Classical results say degree
- Our result argues for sparsity
- Efficient randomized analogon $(\tilde{O}(\log(ms)))$ random bits) still missing!

Thank you.

Suppose $P \in \mathbb{C}[x]$.

Fact: $P(x) \equiv 0 \mod x^p - 1$

if and only if

P(r) = 0 for all p-th roots of unity r.

Suppose $P \in \mathbb{C}[x]$.

Fact: $P(x) \equiv 0 \mod x^p - 1$

if and only if

P(r) = 0 for all p-th roots of unity r.

What about picking a **random** root?

Suppose $P \in \mathbb{C}[x]$.

Fact: $P(x) \equiv 0 \mod x^p - 1$

if and only if

P(r) = 0 for all p-th roots of unity r.

What about picking a **random** root?

Idea: A polynomial that is zero everywhere except on one point cannot be **not sparse!**

"Uncertainty Principle"

Suppose $P \in \mathbb{C}[x]$.

Fact: $P(x) \equiv 0 \mod x^p - 1$

if and only if

P(r) = 0 for all p-th roots of unity r.

What about picking a **random** root?

Idea: A polynomial that is zero everywhere except on one point cannot be **not sparse!**

"Uncertainty Principle"

Unfortunately, parameters too weak per se.

But maybe, can mimic Indyk '07 on polynomials...