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Arithmetic Circuit

• division-free

• size = #gates

Sparse Polynomial: 
few nonzero monomials
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Quick Reminder



Given an arithmetic circuit of 
size s computing a polynomial P, 
determine if P is identically zero. 

Arithmetic Circuit Identity Testing (ACIT)



Plan

1. Study the univariate 
case first.

2. Randomize!

3. Reductions from 
multivariate to 
univariate.

Deterministic algorithm
that exploits the sparsity 

of the input polynomial



How many roots can a  nonzero 
univariate polynomial have? 



How many roots can a  nonzero 
univariate polynomial have? 

d (degree)



How many roots can a  nonzero 
univariate polynomial have? 

d (degree)

Naive poly(d,s)-time algorithm!



How many roots can a  nonzero 
univariate polynomial have? 
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Can we say anything better?

Naive poly(d,s)-time algorithm!
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Fact: Real-valued polynomial with 
at most m nonzero monomials 
has at most m positive roots.

Naive poly(m,s)-time algorithm (over the reals)?

No! Why not?

Proof: Rule of Signs.

Can we still do it?
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Previous Work
Lipton, Vishnoi ’03.
• poly(m,n,log d,H) runtime over the integers
Klivans, Spielman ’01.
• O(log(mnd)) random bits
Karpinski, Shparlinski ’96
• poly(m,n, log d) runtime over finite fields, 
(but either a lot of randomness or dependence on the characteristic)

Further related work on sparse polynomial interpolation...

Agrawal, Biswas ’99
• Randomness-efficient test using arithmetic circuits

Not related to sparsity:



Our result

• Deterministic test using poly(m,s) ring 
operations over any integral domain

‣ amounts to runtime poly(m,n,log d,H) 
over integers or rationals, for instance

• Lower exponents in the runtime with fewer 
random bits

• Very simple algorithm



Algorithm

for sufficiently many primes p. 

Given an arithmetic circuit computing a 
univariate polynomial P, verify

P() ≡ 0 mod p − 1
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m> 0Claim: Given polynomial       , degree d,          nonzero 
monomials, then there are less than m log d primes p 
for which  P() ≡ 0 mod p − 1.

P()

At most log d bad primes per pair of monomials!

2nd Idea:    Count prime factors!

But, |d− d′| ≤ d.

Fix two monomials d,d
′
.

If d ≡ d′ mod p, we have p|(d− d′).

1st Idea:     We’re reducing degrees mod p.

r < p, k ≥ 0kp+r ≡ r mod p − 1
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How?
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Claim: If P is given as an arithmetic circuit of size s, 
we can verify P() ≡ 0 mod k − 1
with Õ(sk) ring operations (over an integral domain). 

 ∗ ∗ ∗ ∗

Example (k=5)

Invariant: Degree k polynomial at each gate

(3)2 = 6

→ 
(4)2 = 8

→ 3
(2)2 = 42

Idea:  Compute the whole polynomial in its 
reduced form.
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Goal: Õ(log(ms)) random bits,
speed up runtime as much as possible,

hopefully poly(s).

No m, here.

Next step: Randomization

So far: Deterministic algorithm

runtime poly(m,s)
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for sufficiently many primes p. 

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

a large enough random prime p.

OK, O(log p) = Õ(m log d) random bits.
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verify

for a large enough random prime p.

Given a univariate polynomial P,
P() ≡ 0 mod p − 1

Are we done?

Runtime
“poly(p,s)”

Not efficient general, but still nice speed up.



Can we verify P() ≡ 0 mod p − 1
with poly(s) ring operations 

and O(log p) random bits ? 

Open Problem



From multivariate to 
univariate

s n m d

1 n(d+ 1)nnot much 
more

none

≤m
(mnd)k1

not much 
moreÕ(log(mn logd)) sound w.h.p.

m

Random bits
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Deterministic Reduction

P(1,2, . . . ,n)

Given:

• max variable degree d

 := (d+1)
−1

Substitute

Circuit of size
n log d

repeated squaring



Randomized Reduction

• Uses the mapping by Klivans and Spielman ’01

• Adds a step of chinese remaindering to it to 
further decrease # random bits:

O(log(mnd)) Õ(log(mn log d))



Results in Detail
Deterministic Randomized

operations
with

Õ(log(mn logd))

random bits

operations

Õ((mn logd)2S)

S = s+ n2 logd T = s+ n log(mnd)

Õ(m log(mnd)T)



Conclusion

• What’s the “significant” parameter in identity 
testing?  Degree or Sparsity?

• Classical results say degree

• Our result argues for sparsity

• Efficient randomized analogon  

(Õ(log(ms)) random bits) still missing!



Thank you.
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Closer look at the open question

P() ≡ 0 mod p − 1
if and only if
P(r) = 0 for all p-th roots of unity r.

P ∈ C[].Suppose

Fact:

What about picking a random root?

Idea:  A polynomial that is zero everywhere except on 
one point cannot be not sparse!

“Uncertainty Principle”

Unfortunately, parameters too weak per se.
But maybe, can mimic Indyk ’07 on polynomials...


