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Abstract

E�ective communication among agents in large
teams is crucial because the members share a com-
mon goal but only have a partial views of the environ-
ment. Information sharing is di�cult in a large team
because, a team member may have a piece of valu-
able information but not know who needs the in-
formation, since it is infeasible to know what each
other agent is doing. Although much related work
has been done on e�cient delivery of informa-
tion, most work is based on assumptions which are not
suited to large scale multiagent teams.

In this paper, we made two contributions. Firstly, we
present a solution to sharing information that is appli-
cable to large teams based on previous research [12]. A
key to the solution is imposing a static network topology
on the members of the team where each agent requir-
ing communication to be only along very few links in
that network. The key observation underlying this so-
lution is that each piece of information is interrelated
and the sender of a piece of information can �guess�
who might need some information based on previously
sent messages. Thus, when an agent has a piece of in-
formation, it can determine which of its neighbors in
the network is most likely to either need the informa-
tion or know who does, based on related messages pre-
viously received. Secondly, we investigate the in�uence
of di�erent types of team network topology on the ef-
�ciency of information sharing. Our results show that
our algorithm works with various topologies but gets the
best performance on a scale free network.

1. Introduction
Exciting emerging applications require hundreds or

thousands of agents and robots to coordinate to achieve
their joint goals. In domains such as military opera-

tions, space or disaster response, coordination among
large numbers of agents promises to revolutionize the
e�ectiveness of our ability to achieve complex goals.
Such domains are characterized by widely distributed
entities with limited communication channels among
them and no agent having a complete view of the envi-
ronment. Information relevant to team goals will be-
come available to team members in a spontaneous,
unpredictable and, most importantly, distributed way.
The question we address in this paper is when a team
member senses some information, how it can decide
which team member to communicate that information
to. In most applications for very large teams, broad-
casting information is not suitable, desirable or feasi-
ble. Instead, the agent must attempt to target its in-
formation delivery to just the agents that need it. In a
large team, each member has a limited model of what
other members of the group know or even what many of
them are doing. For example, an unmanned aerial ve-
hicle (UAV) involved in a military operation may ob-
serve many features of a battle�eld on route to an as-
signment. Many of its observations will be relevant to
the plans of other combatants but the UAV will not
necessarily know which group members require the in-
formation.

While the problem of what and whether to commu-
nicate has been extensively studied [4,5,14], previous
work typically makes one of two assumptions, render-
ing it inappropriate for very large teams. One strand of
researches assumes that it is feasible to have all agents
communicate with some central control [6,9]. Both cen-
tralized algorithms and distributed approaches that
rely on all agents communicating with one particu-
lar agent, e.g., a match maker or information broker,
make this assumption. In very large groups such cen-
tralization is not feasible. A second strand of researches
[14,18] relies on having accurate models of what other
group members are doing, e.g., STEAM [13] relies on
such information. However, in very large groups, agents



will typically only have accurate knowledge of what a
subset of other agents are doing (i.e., those agents with
which it is currently closely coordinating). Hence, pre-
vious work has avoided the more di�cult problem of
distributed information delivery when the state of the
team is not known.

Our solution for information sharing among large
teams can perform distributed information sharing
without the cost of maintaining accurate models of
all the teammates. First, we impose a network topol-
ogy on the team members analogous to the social net-
works that exist in human societies. The key charac-
teristic of this network model is that information ex-
change is based on peer to peer communication. Specif-
ically, we limit agents to communicating directly with
only a small percentage of the overall team. This kind
social information sharing model has been proved e�-
cient in human groups on allowing information to ef-
�ciently reach many people by passing from friend to
friend with very few �jumps�. In this paper, analogous
to human groups, agents between whom there is a di-
rect communication channel are referred to as acquain-
tances and the resulting information exchange topology
is referred to as an acquaintance network. The central
reason why communication decision making is hard is
not that it is fundamentally hard, but that no single
agent has all the required information to make the deci-
sion where or to whom to send information. That is, an
agent can easily know what information they need, but
it will not know who has the information, while another
agent has the information but does not know who needs
it. By allowing the agents to simply forward the infor-
mation to acquaintance in a better position to make the
decision we spread the reasoning across the team, lever-
aging the knowledge of many agents. We also leverage
the idea that information is always interrelated and a
received piece of information can be useful in decid-
ing where to send another piece of information if there
is a relationship between two pieces of information. For
example, when coordinating an agent group in urban
search and rescue, if agent a tells agent b about a �re at
50 Smith St, when agent b has the information about
the tra�c condition of Smith St, sending that infor-
mation to agent a is a reasonable thing to do, since a
likely either needs the information or knows who does.
By utilizing the interrelationship between pieces of in-
formation, agents can more quickly route new infor-
mation through the acquaintance network. Moreover,
agents do not model information, rather they model
which of their acquaintances to send information to.
It may take several hops for a message to get to an
agent that needs the information. Since each piece of
information informs delivery of other pieces and mod-

els are updated as the message moves, the volume of in-
formation to be shared among the team increases the
amount of e�ort required per piece of information ac-
tually decreases. Moreover, since agents need to only
know about their acquaintances, the approach scales
as the number of agents in the team increases.

Furthermore, our research includes the success that
humans have in getting information to those who need
it to enhance information sharing among agent teams.
We observe that in a human group, members typi-
cally maintain a small number acquaintances but can
rapidly transmit information to any member of the
group in a series of hops, a phenomena known as a
small world e�ect. The most popular manifestation of
this phenomena is the six degrees of separation con-
cept, uncovered by the social psychologist Stanley Mil-
gram [9]. Milgram concluded that there was a path of
acquaintances with typical length six between any two
people in the United States. This experiments showed
that using very vague (and often incorrect) informa-
tion about other members of the population, people
will pass a message to someone better placed to �nd the
intended recipient until the information reaches the de-
sired recipient. Researchers from other �elds have re-
vealed that social structures, patterns and interconnec-
tions have a strong impact on the e�ectiveness of com-
munication and cooperation among human society [2].
Our algorithm leverages this e�ect to get e�cient in-
formation sharing in agent teams. And our experiment
shows the small world e�ect [16] and power law distri-
bution [1] of connectivity can greatly enhance the e�-
ciency of information delivery.

This paper is organized as follows: �rstly, the basic
model of how teams are organized for e�cient informa-
tion is presented in section 2; Section 3 describes the
algorithm the agent team uses to share information; In
the section 4, we investigate each social network prop-
erty and analyze how they potentially enhance infor-
mation sharing. In the last section, we present the ex-
periment results to identify our approach above.

2. Information Sharing in Large Scale
Teams

We are developing information sharing algorithms
for team with the following basic characteristics: there
are large number of widely distributed team members
with limited communication bandwidth and as a part
of a large team, agents only coordinate closely with a
subset of the rest agents of the team. Based on these
characteristics, we can de�ne a model for information
sharing among large scale teams. Speci�cally, we de-
�ne an agent team as a tuple with three elements: the
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Figure 1. An Example of Team Organization where
each agent only have a small number of acquaintances.

team members, the acquaintance network, the infor-
mation to be shared. A = {a1, a2, ...., an} is the agent
team and consists of a large number of agents, normally
more than 100. N is the de�nition of network topology
agents use to share information with each other. We re-
fer to agents with link between them as acquaintances.
N(t) = ∪

a∈A(t)
n(a) de�nes the acquaintance network of

the team, where n(a) is de�ned as all the acquaintances
of agent a. Note that the number of each agents' ac-
quaintances is much less than the size of agent team
|A|. A subset of a typical acquaintance network for a
big team is shown as Figure 1. In the �gure, each node
represents an agent member in the team, and when
pairs of agents are connected, they can sharing infor-
mation with each other as acquaintances. Further de-
scription of the types of acquaintance networks will be
discussed in Section 4.

The state of an agent a is written as Sa and is de-
�ned by a tuple Sa =< Ha,Ka >. Ha is the (poten-
tially truncated) history of messages received by this
agent. I = {i1, i2, . . . , in} is the alphabet of domain
information that is to be shared. i ∈ I denotes a spe-
ci�c piece of information, such as �There is an enemy at
(12, 12)�. Ka ⊆ I is the local knowledge of the agent.
If i ∈ Ka, we say agent a knows information i and
knows(a, i) = 1, otherwise, knows(a, i) = 0. Typically,
individual team members will know only a small frac-
tion of all the team knows, i.e., |Ka| << |I|.

The objective for information sharing is to make as
many agent know the information as can make use of
it. The importance of the information i is calculated
by determining the expected increase in utility for the
agent with the information versus without it. That is
U(a, i) = EU(a,Ka∪i)−EU(a,Ka), where EU(a,Ka)
is the expected utility of the agent a with knowledge
Ka. When U(a, i) > 0, knowledge of i is useful to a,
and the bigger value of U(a, i), the more that informa-
tion i is helpful for this agent. The reward for the team

Figure 2. Information sharing di�culty in coordinat-
ing WASMs is that WASM who has a piece of infor-
mation does not know who need it or where send it to.

can be de�ned as R(i) =

∑
a∈A

U(a,i)×knows(a,i)

∑
a∈A

knows(a,i) . That is,

the agent team must get information to those for whom
the information can be made best use of, while wast-
ing as few resources as possible communicating infor-
mation to agents that do not require it. Notice, that
since this calculation is based on knowing the use of a
piece of information to each agent, agents cannot com-
pute this reward function locally.

3. Algorithm for Information Sharing in
a Large Scale Team

Before discussing our model and algorithm in de-
tail, we �rst provide an example to illustrate the ba-
sic idea. This paper is being done as a part of a re-
search project on coordinating a large team of Wide
Area Search Munitions (WASM). A WASM is a cross
between a unmanned aerial vehicle and a standard mu-
nition and can perform functions including reconnais-
sance, search, battle damage assessment, communica-
tions relays and decoys in a hostile environment [12]. In
the project, a team of WASMs typically has more than
100 members and is physically distributed. In such a
domain, as shown in Figure 2, information exchange is
important because the WASM sensing some informa-
tion is not always the one who can make the best use
of it. As a simple example, when a WASM detects en-
emy movement while on route to destroying another
enemy, it must relay this information to an available
team member to investigate further.

Leveraging the team network, our basic approach is
when an agent has a piece of information to communi-



cate, it forwards that information to the acquaintance
most likely to actually need that information or know
who will. Then the acquaintance perform the same
reasoning when it gets the information. After pass-
ing through hopefully, a small number of team mem-
bers, information arrives at a team member that needs
it. The intuition is that each agent attempts to guess
which of its acquaintance either require the informa-
tion or are in the best position to get the informa-
tion to the agent that requires it. Even though mem-
bers of large teams will not have accurate, up-to-date
models of the team, our hypothesis is that the mod-
els will be accurate enough to deliver the information
in a small number of �hops�.

To test the potential of the approach we ran an ex-
periment where 800,000 agents are organized in a three
dimensional lattice [12]. One agent is randomly chosen
as the source of some information and another is ran-
domly chosen as the sink for that information. A prob-
ability is attached to each link, indicating the chance
that passing information down that link will get the
information through the smallest number of links to
the sink. In the experiment shown in Figure 3, we var-
ied the probability of sending information down links
that actually lead to an agent requiring the informa-
tion (as opposed to sending it down links that moves
the information further away) and measured the num-
ber of Messages (or �hops�) required to get the infor-
mation from the source to the sink. For example, for
the �59%� setting, messages are passe along links get-
ting closer to the sink 59% of the time and links fur-
ther from the sink 41% of the time. Figure 3 shows
that the agents only need to move closer to the target
slightly more that 50% of the time to dramatically re-
duce the number of steps that the message required to
reach to the sink. Thus, potentially, even relatively in-
accurate models of acquaintances are capable of lead-
ing to e�cient, targeted information delivery.

This result shown in Figure 3 is encouraging because
it shows we do not need to construct accurate and com-
plex models for information sharing but only have rea-
sonable models to improve agent's guessing. The key
question is how to create models that allow the agent
to �guess� correctly more often than not. To achieve
this, we observe that each piece of domain knowledge
is typically related to each other piece of domain infor-
mation. For example, if agent a tells agent b about a
plan to destroy an enemy base, when agent b gets the
information that the base is fake, sending that infor-
mation to agent a is a reasonable thing to do, since a
likely either needs the information or knows who does
(i.e., the WASM attaching the base). So it is reason-
able to infer from an agent's formerly sent message that
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Figure 3. Agents' likelihood of correctness where to
passing information can dramatically in�uence the ef-
�ciency of information sharing in an agent team with
800000 members

it may need the other kind of information to improve
the performance as the previous example. Thus, the
previously received information can be interpreted as
evidence to infer which acquaintance to send other in-
formation to. If an agent maintains a knowledge base
about what it heard from its acquaintances, it can use
that knowledge to determine where to route newly re-
ceived information.

Basic Approach

In this section, we formalize the algorithm described
above. The key to the algorithm is the model that the
agent maintains of its acquaintances. Pa is a matrix
where Pa[i, b] → [0, 1], b ∈ N(a), i ∈ I represents the
probability that acquaintance b is the best to send in-
formation i to. To obey the rules of probability, we
require ∀i ∈ I,

∑
b∈N(a) P t

a[i, b] = 1. The more accu-
rate the model of Pa, the more e�cient the informa-
tion sharing because the agent will send information to
agents that need it more often and more quickly. Pa is
inferred from incoming messages and thus the key to
our algorithm is for the agents to build the best possible
model of Pa. For example, in Figure 4, if Pa[i, b] = 0.7,
then a will usually forward i to agent b as b is very
likely the best of its acquaintances to send to.

Information is encapsulated into messages with
some supporting information which is helpful for infor-
mation sharing. Speci�cally, a message consists of two
parts, M =< i, path >. i ∈ I is the information be-
ing communicated. path records the track where the
message has been taken in the network. last(path) de-
notes the agent where the message was sent to current
agent via acquaintance network. To ensure mes-
sages do not travel inde�nitely around the network,
we stop the message when |path| ≥MAX_STEPS.

When a message arrives, the agent state, Sa, is up-
dated by the transition function, δ, which has three



Figure 4. Relative probability example where agent
b is more likely to be the best acquaintance to send
information i to.

parts, δH , δK , δP . First, the message is appended to
the history, δH(m,Ha) = Ha ∪ m. Secondly, the in-
formation contained in the message is added to the
agent's local information knowledge Ka, δH(m,Ka) =
Ka ∪m.i.1 Finally, and most critically for the purpose
of the algorithm, δP is used to update agent's prob-
ability matrix, to help route future message. (We de-
scribed δP in the next section.)

Each agent in the team runs the following algorithm
when receiving message m:

Algorithm 1: Information Share (Sa)
(1) While(true)
(2) m ← getMsg
(3) Sa ← δ(m, Sa)
(4) if m.|path| < MAX_STEPS
(5) APPEND(self, m.path)
(6) next ← CHOOSE(P [i,m.j])
(7) SEND(next,m)
In Algorithm 1, when an agent gets a message, it up-

dates its state according to function δ. If an agent �nds
the message does not meet the stop condition (line 4),
then the function choose (line 6) selects an acquain-
tance, according to the probabilities in matrix to pass
the message to. Notice, choose can select any acquain-
tance, with the likelihood of choosing a particular ac-
quaintance proportional to their probability of being
the best to send to.
Updating Acquaintance Models The key to our al-
gorithm is for the agent to often pass information to an
acquaintance either needs it or know who does. These
models are created based on previously received infor-
mation. This requires us making use of the relation-
ship between pieces of information and then mapping
it into a mathematics description, i.e. via Bayes Rule.

1 In this paper, we ignore di�cult issues related to contradic-
tory information.

We de�ne the relationships between pieces of infor-
mation as rel(i, j) → [0, 1], i, j ∈ I, where rel(i, j) >
0.5 indicates that an agent interested in i will also be
interested in j, while rel(i, j) < 0.5 indicates that an
agent interested in i is unlikely to be interested in j. If
rel(i, j) = 0.5 then nothing can be inferred. Since rel
relates two pieces of domain level information, we as-
sume that it is given (or can be easily inferred from the
domain).

Our algorithm de�ned action of δP for each piece
of relative information i when received a message con-
taining j can be described as follows: assuming infor-
mation j arrives to agent a from b, then agent a will
�rstly decrease the probability to send this informa-
tion back to b because clearly b already knows that in-
formation. Then Ha should be searched for to �nd any
relevant previous information. For each piece of rele-
vant information i, j should be additional evidence for
a how to make decision to send to i and the probabil-
ity of sending i to b should be strengthened.

The update of agent a's Pa based on an incoming
message m containing j which is received from c can
be achieved by leveraging Bayes Rule as following:

∀i, j ∈ I, b ∈ N(a) δI
P (Pa[i, b],m =< j, path >)

=





Pa[i, b]× rel(i, j)× 2
|N | if i 6= j, b = last(m.path)

Pa[i, b]× 1
|N | if i 6= j, b 6= last(m.path)

ε if i = j, b = last(m.path)

Then P must be normalized to ensure
∀i ∈ I,

∑
b∈N(a) P t

a[i, b] = 1. The �rst case in our
equation is the most interesting. It updates the prob-
ability that the agent that just sent some informa-
tion is the best to send other relative information to,
based on the relationships of other pieces of informa-
tion to the one just sent. The second case changes the
probability of sending that information to agents other
than the sender in a way that ensures the normaliza-
tion works. Finally, the third case encodes the idea
that you typically would not want to send a piece of in-
formation to an agent that sent it to you.

To see how δP works, consider the following exam-
ple at some point doing execution

b c d e

Pa =
i
j
k




0.6 0.1 0.2 0.1
0.4 0.2 0.3 0.1
0.4 0.4 0.1 0.1




The �rst row of the matrix shows that if a gets
information i it will likely send it to agent b, since
P [i, b] = 0.6. We assume that agents wanting informa-
tion i also probably want information j but those want-
ing k de�nitely do not want j. That is, rel(i, j) = 0.6
and rel(k, j) = 0.2
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Figure 5. Example of utilizing path for improve infor-
mation sharing e�ciency. Notice, c is a better candi-
date than b to send information i.

Then a message m =< j, {, , d, , b} > with informa-
tion j arrives from agent b. Applying δI

P to Pa we get
the following result:

b c d e

Pa =
i
j
k




0.643 0.089 0.179 0.089
ε 0.333 0.5 0.167

0.211 0.526 0.132 0.132




The e�ects on P are intuitive: (i) j will likely not
be sent back to b, i.e., Pa[i, b] = ε; (ii) the probabil-
ity of sending i to b is increased because agents want-
ing j probably also want i; (iii) the probability of send-
ing k to b is decreased, since agents wanting j proba-
bly do not want k. Notice a knows nothing of the net-
work topology beyond its acquaintances N(a).

Enhance E�ciency of Information Sharing Our
algorithm decides how a piece of information will be de-
livered, based on the path of messages with related in-
formation. Since the path of the related messages may
not have been the most direct path it is possible the
chosen path might not be e�cient, either. This can be
seen in the example in Figure 5. We assume agent a has
acquaintances b and c. And a gets a message with in-
formation j which was delivered from b, but from the
path we know before j arrives at b, j had visited c. In
this case, message j has travelled via c and b, so when
if we consider how to deliver another piece of infor-
mation i which rel(i, j) > 0.5, c is a better candidate
than b. Thus, instead of strengthening Pa[i, b], based on
m =< j, path >, we should strengthen Pa[i, c]. From
this example, instead of always using the immediate
sender of some information to update Pa, we use the
�rst agent in the path that was a recipient of the infor-
mation. If the path contains only one a's acquaintance,
then the algorithm reduces to the basic algorithm as
described above.

In summary, we can improve information sharing
in the following way: If agent a get a message with j
from an acquaintance, we strengthen the probability of
send i to who is a's first acquaintance to get the mes-

sage with j which can be determined from that mes-
sage's path. The function first(N(a),m.path) is de-
�ned to �nd such an agent. Furthermore, by looking at
that messages' path we can �nd all a's acquaintances
who have received j. Since these agents have already re-
ceived j, it should not be sent back to them. Hence, δI

P

can be revised as following:

∀i, j ∈ I, b ∈ N(a) δI
P (Pa[i, b],m =< j, path >, d =

first(N(a),m.path))

=





Pa[i, b]× rel(i, j)× 2
|N | if i 6= j, b = d

Pa[i, b]× 1
|N | if i 6= j, b 6= d

ε if i = j, b ∈ m.path ∩N(a)

In the �rst case, the probability that the agent that
just sent some information is the best to send other in-
formation to is not according to whom directly send
that message but a's acquaintance that �rst got that
message. In the third case, all the acquaintances who
have received the message are excluded from getting
the information back.

Changing the example above, so the message m =<
j, {, , d, , b} >the result will be:

b c d e

Pa =
i
j
k




0.5769 0.096 0.2308 0.096
ε 0.67 ε 033

0.4255 0.4255 0.0426 0.1064




4. E�ects of Network Topology on Shar-
ing E�ciency

As noted by social scientists, information sharing
e�ciency will be impacted by network topology. In
our paper,agents to sharing information among a large
scale teams adopt the same manners as the social group
which composed by human beings.

The properties of social network structure have been
comprehensively studied [1,11]. According to that re-
search, there are several parameters which are impor-
tant to help us understand or predict the behavior
of information sharing in large scale teams. Key fac-
tors include the small-world e�ect, degree distributions,
clustering, network correlations, random graph models,
models of network growth and preferential attachment,
and dynamical processes taking place on networks [11].
Most of them are interrelated. So, for the purpose of
this paper, we speci�cally focus on only three proper-
ties: average distance, degree distribution and average
acquaintance.
• Average distance: (commonly studied as �small
world e�ect� [16]). The average distance
l = 1

1
2 n(n+1)

∑
ai,aj∈A,i>j

distance(ai, aj), where



n = |A| and distance(ai, aj) represents the min-
imum number of agents ai, aj that a message
must pass through one agent to another via ac-
quaintance network. For example, if agent a1and
a2 are not acquaintance but share an acquain-
tance, distance(a1, a2) = 1.

• Degree distribution: (Commonly studied as �scale
free e�ect�) The frequency of agents having di�er-
ent number of acquaintances. The distribution can
be represented as a histogram where the bins rep-
resent a given number of acquaintances and the
size of bin is how many agents have such num-
ber of acquaintances [1].

• Average acquaintances: is the average number of
acquaintances that agents have in the teams. Its
value can be used to infer how many choices agents
may have when delivering a message.

Well known types of social network can be described
using these properties. For example, random network
have the ��at� degree distribution. While grid network
is distinct in that all nodes have the same degree. e.g,
four is the only degree in two dimension grid network.
Small World Network [15] and Scale Free Network [2]
are two important types of social network topologies
and research has shown that each of them possess some
interesting properties. Small world networks have much
shorter average distance than regular grid networks.
We hypothesize that the low average distance will im-
prove information sharing e�ciently because informa-
tion can potentially take less "hops" to reach a de�ned
destination. A scale-free network, shown in Figure 6 is
a speci�c kind of network in which the degree distribu-
tion forms a power-law, i.e, some nodes are very con-
nected hubs and connect to other nodes much more
than ordinary nodes. The hubs in scale free networks
give the advantages of centralized networks, which the
distribution provides the advantages of centralized ap-
proaches.

5. Experiment Setup and Result
In this section, we explore the impact of network

topology on algorithm performance. In these experi-
ments, we use a team with 400 agents and each of
them has, on average, four acquaintances. One agent
is randomly chosen as the source of some informa-
tion and another is randomly picked as the sink for
that information. The sink agent �rstly sends out 20
messages containing relative information j, each with
MAX_STEPS=50. Then the source agent sends out
a message with information i with rel(i, j) varied and
we measure how many steps or messages that it takes

Figure 6. The topology of scale free network whose
degree distribution is power law [11]

i to be encapsulated into message and sent to get to
the sink agent. In our experiments, four di�erent types
of acquaintance network topology are involved: two di-
mension grid networks, random networks, small world
networks and scale free networks. The small world net-
work is based on the grid network with 8% links ran-
domly changed. The key di�erence between the random
network and the scale free network is that the random
has a ��at� degree distribution but the scale free net-
work has a power law distribution. Each point on each
graph is based on the average of 1000 runs in simple
simulation environment.

Information sharing with di�erent information
relevance We �rst verify our basic algorithm in di�er-
ent types of acquaintance network topology. In Figure
7, we show the average number of steps taken to deliver
i as we varied the strength of the relationship between
the information originally sent out by the sink agent
and the information i sent by the source agent from 0.5
to 1. As expected, our algorithm works on the four dif-
ferent acquaintance networks and the stronger the re-
lationship between originally sent information and the
new information the more e�cient the information de-
livery.

Information sharing with di�erent number of
previous messages Next, we look in detail at ex-
actly how many messages must be sent by the source
to make the delivery from the sink e�cient. We use the
same settings as above except the number of messages
the sink sends out is varied and the relationship be-
tween these messages and i, rel (i, j) is forced at 0.9.
Notice that only a few messages are required to dra-
matically impact member of messages required. This
result also shows us that a few messages is enough for
agents to make a "precise guessing" where to send mes-
sages.
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Figure 7. The number of messages dramatically re-
duces as the association between information received
and information to be sent increases.
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Figure 8. The number of messages reduces as the rel-
ative messages increased from sink.

Information sharing e�ciency with or without
utilizing path to update probability matrix The
third experiment is designed to determine how the e�-
ciency is impacted by using information in path to up-
date probability matrix. We set rel(i, j) = 0.8. The re-
sult is shown in Figure 9. Notice that this small change
almost halves the number of messages required to de-
liver information from source to sink in di�erent ac-
quaintance network. This result demonstrate that by
utilizing path, information sharing e�ciency has been
greatly enhanced.

The in�uence of average acquaintances In next
experiment, we looked in detail at exactly how the
number of acquaintances can help to make the in-
formation sharing e�cient. We run experiments with
rel(i, j) = 0.8 and in acquaintance networks each agent
has average acquaintances from 2 to 8. The result in
Figure 10 shows the more number of acquaintances,
there have to be more messages to delivery i which
means the the information sharing cannot be enhanced

0

20

40

60

80

100

Random Small World Grid Scale Free

Network Type

M
es

sa
ge

s

Without efficiency enhanced AlgorithWith efficiency enhanced Algorith

Figure 9. By using information in path to update
probability matrix, the number of messages reduces
distinctly.
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Figure 10. The number of messages increases a little
bit if each agent has averagely more acquaintances in
acquaintance networks.

by connect agent with more acquaintances. Moreover,
in our experiment, we don't consider the limitation of
communication breadth for agent members.

Algorithm e�ciency among di�erent size teams
To investigate the in�uence of team scale on in-
formation sharing performance, in Figure 11, we
ran experiments using di�erent sizes of agent team
from 100 to 550 with rel(i,j)=0.7. The informa-
tion sharing e�ciency is measure as the percent-
age of agents involved for information sharing use
percentage = agents involved infodelivery

Total # of agent team . Experiment
result shows with di�erent sizes of teams, the e�-
ciency of information sharing is almost the same which
indicates that the team size is not a factor which in-
�uence the information sharing e�ciency.

Information sharing with di�erent types of team
organization From these experiments, we can �nd
not only that our algorithm works on each types of ac-
quaintance networks but also some clues that how these
network topologies in�uence the e�ciency of our in-
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Figure 11. Information sharing algorithm works even
slightly better on large scale teams according to the
measure of percentage.

formation sharing algorithm. We notice that networks
with small average distance (random, small world and
scale free network) are always outperform the regu-
lar grid network which has not such a property. More-
over scale free network with power law distribution is
clearly superior to others which do not possess this
character. The di�erence between di�erent acquain-
tance topologies is distinct when the previous messages
have a strong relationship with i, for example in Fig-
ure 7, when rel(i,j)=1, the number of messages needed
to delivery i in scale free network is only one third as
many as it in grid network.

6. Related Work
Most related work can be classi�ed into one of sev-

eral major categories. The �rst strand of research is
based on a centralized model or distributed model
where there are agents such as match maker, infor-
mation broker or message broad who can response for
all information communication [4,6]. These works has
been shown to be able to greatly improve multiagent
system performance [9]. However, such work is inade-
quate for large team, since it is impossible or undesir-
able for all team member to share all their information
all the time, i.e. because of the limit of required com-
munication channels.

The second major strand of research is relies on
agents maintaining a shared model of each other or
knowing exactly other members' actual internal state
as STEAM[15], COM-MTDP [14] and CAST [19]'s
mental model. However, as for centralized approaches,
in large team there is insu�cient bandwidth to sup-
port such an approach.

The information sharing problem can also be han-
dled by setting up decentralized model. Both [18]
and [7] did a communication decision model based on
Markov decision processes (MDP). Their basic idea

is an explicit communication action will incur a cost
and they supposed the global reward function of the
agent team and the communication cost and reward
are known. Moveover, [8] put forward a decentral-
ized collaborative multiagent communication model
and mechanism design based on MDP which assumed
that agents are full-synchronized when they start oper-
ating, but no speci�c optimal algorithm was presented.
Unfortunately, there are no experimental result show-
ing that their algorithm can work on large teams.

Incomplete information theory is another way to
solve the information sharing problems. [3] presents a
framework for team coordination under incomplete in-
formation based on the incomplete information game
theory that agents can learn and share their estimates
with each other. [17] used a probability method to coor-
dinate agent team without explicit communication by
observing teammates' action and coordinating their ac-
tivities via individual and group plan inference.

Research on social networks began in physics[1, 11,
16], but since it has been applied in many areas though
rarely in multiagent work.

7. Summary and Future Work

In this paper, we present a novel approach and ini-
tial result to the challenges represented by sharing in-
formation to coordinate large size agent team. Espe-
cially, we presented a basic architecture for �exible,
distributed information exchange among large teams.
Our key information sharing algorithm was encapsu-
lated in this architecture. This algorithm utilizes rela-
tionships between pieces of information to enable e�-
cient information sharing. An analysis of the in�uences
of di�erent acquaintance network structure on the ef-
�ciency showed that social network can lead to better
performance. Our experiment results show that scale
free network is the best acquaintance network topol-
ogy for information sharing. However, our initial ex-
periments reveal that while our algorithms are capa-
ble of dealing with some of the challengers of the do-
main, many challengers remain. A major issue we leave
for future research is how to calculate the relationships
between pieces of information which is highly relative
with domain knowledge and expertise where our algo-
rithm should be applied. Furthermore, we do not inves-
tigate how information sharing works on negative rel-
ative messages where the relationship between piece of
information is less than 0.5.
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