Automated Discovery, Interaction and
Composition of Semantic Web services

Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

{katia,paolucci,anupriya,naveen}@cs.cmu.edu

Abstract. In this paper we introduce a vision for Semantic Web services
which combines the growing Web services architecture and the Semantic
Web and we will propose DAML-S as a prototypical example of an on-
tology for describing Semantic Web services. Furthermore, we show that
DAML-S is not just an abstract description, but it can be efficiently
implemented to support capability matching and to manage interaction
between Web services. Specifically, we will describe the implementation
of the DAML-S/UDDI Matchmaker that expands on UDDI by providing
semantic capability matching, and we will present the DAML-S Virtual
Machine that uses the DAML-S Process Model to manage the interac-
tion with Web service. We will also show that the use of DAML-S does
not produce a performance penalty during the normal operation of Web
services.

1 Introduction

The numerous Web services in existence constitute a distributed computation
framework in which information and services are provided on demand in a
machine-processable manner!. Yet, given any arbitrary problem, it is unlikely
that it will solvable by one of the available Web services; rather, the solution
of the problem will probably require an agent? to integrate results provided
by several services. The composition of Web services and the integration of the
information provided by Web services is the holy grail of the Web services infras-
tructure. Emerging standards such as BPEL4AWS and WSCI provide languages
to specify how Web services work together to address a problem or information
need. Similarly, from the realm of the Semantic Web, DAML-S specifies an on-
tology for the description of what a Web service does and how to interact with it,

! Our view of Web services is based on the definition given in [7]. A Web service is a
software system identified by a URI whose public interface and bindings are defined
and described by XML. Its definition can be discovered by other software systems.
These systems may then interact with the Web service in a manner prescribed by
Internet protocols.

2 Throughout the paper, we refer to ’agent’ as any software entity, possibly with
problem-solving capabilities, including intelligent autonomous agents [15].

2 Sycara et al.

which in turn provides the basis for Web service composition. This constitutes
the main thrust of our paper.

The problem of composing Web services can be reduced to three fundamental
problems: the first one is to make a plan that describes how Web services interact
and how the functionality they offer can be integrated to provide a solution of
the problem. The second problem is the discovery of the Web services that
perform the tasks required in the plan. The third problem is the management
of the interaction with those Web services. Crucially, planning, discovery and
interaction are strictly interconnected: a plan specifies the type of Web services
to discover, but it also depends on the Web services that are available. Similarly,
the interaction process depends on the specifics of the plan, but the plan itself
depends on the requirements of the interaction.

These three subproblems also dictate a set of challenges that any Web service
infrastructure supporting composition must address. To discover a Web service,
the infrastructure should be able to represent the capabilities provided by a Web
service and it must be able to recognize the similarity between the capabilities
provided and the functionalities requested. The second challenge for Web service
infrastructure is to support the interaction between Web services. In particular,
it should enable the specification of the information a Web service requires and
provides, the interaction protocol it expects and the low-level mechanisms re-
quired to invoke the Web service. While service discovery and invocation are
assumed to be part of the infrastructure, we assume that planning is the respon-
sibility of individual agents and not of the infrastructure3.

The challenges mentioned above highlight the need for semantic as well as
the syntactic interoperability provided by XML. Syntactic interoperability allows
agents and Web services to identify only the structure of the messages exchanged,
but it fails to provide an interpretation of the content of those messages.

The current Web services infrastructure focuses on syntactic interoperability.
Two popular proposed standards are SOAP [31] and WSDL [10], which use XSD
to represent message data structures. UDDI [30] is a repository of useful infor-
mation about Web services, but it does not allow capability-based discovery of
Web services. WSCI [4] and BPEL4WS [12] describe how multiple Web services
could be composed together to provide a more complex Web service. However,
their focus remains on composition at the syntactic level and therefore, does not
allow for automatic composition of Web services.

Semantic interoperability is therefore crucial for Web services. It allows Web
services to (a) represent and reason about the task that a Web service performs
(e.g. book selling, or credit card verification) so as to enable automated Web
service discovery based on the explicit advertisement and description of service
functionality, (b) explicitly express and reason about business relations and rules,
(c) represent and reason about message ordering, (d) understand the meaning
of exchanged messages, (e) represent and reason about preconditions that are

3 Technically, infrastructure components, such as brokers who do composition on be-
half of other agents, can be captured in our vision as a special type of agent.

Service Composition in DAML-S 3

required to use the service and effects of having invoked the service, and (f) allow
composition of Web services to achieve a more complex service.

Web services can draw naturally from research in the Semantic Web, which
aims to express the content of Web pages and make it accessible to agents and
other services. The Semantic Web provides a set of languages with well-defined
semantics and a proof theory that allows agents to draw inferences over the
statements in the language. The content of Web pages is expressed by referring
to ontologies, which provide a conceptual model to interpret the content.

The Semantic Web has the potential to provide the Web services infrastruc-
ture with the semantic interoperability it needs. It can provide formal languages
and ontologies to reason about service descriptions, message content, business
rules and relations between these ontologies. In this way, the Semantic Web and
Web services are synergistic: the Semantic Web transforms the Web into a repos-
itory of computer readable data, while Web services provide the tools for the
automatic use of that data.

The vision that we pursue is the realization of Semantic Web services, which
result from the integration of semantic metadata, ontologies, formal tools and
the Web services infrastructure [19]. A Semantic Web service is a Web Service
whose description is in a language that has well-defined semantics. Therefore, it
is unambiguously computer interpretable, and facilitates maximal automation
and dynamism in Web service discovery, selection, composition, negotiation,
invocation, monitoring, management, recovery and compensation. Specifically,
Semantic Web services rely on the Semantic Web to describe (1) the content of
the messages that they exchange, (2) the order of the messages exchanged and
(3) the state transitions that result from such exchanges. The result of using
the Semantic Web is an unambiguous description of the interface of the Web
service which is machine understandable and provides the basis for a seamless
interoperation among different services.

The use of the Semantic Web to describe Web services has wide ranging
consequences. It allows the description of additional properties of Web services,
such as the quality of service and security constraints in a coherent and uniform
way that is universally understood. Furthermore, and most importantly, the
description of the states produced by the execution of the Web service is the
basis for the description of its capabilities as a transformation from its inputs
and preconditions, to its outputs and effects.

The contribution of this paper is to demonstrate how semantic information
enables discovery and autonomous invocation of semantic Web services. Fur-
thermore, we will show how service discovery and invocation support automatic
composition of Web services. The rest of the paper is organized as follows. In
Section 2 we will discuss the contribution of DAML-S to discovery and invocation
of Semantic Web services. Furthermore, we will discuss different approaches to
Web service discovery and a formal semantics for the DAML-S Process Model. In
Section 3 we will concentrate on how DAML-S can be used for capability based
discovery and we sketch how it can be used to improve on the UDDI registry.
In Section 4 we will introduce the DAML-S Virtual Machine: a general purpose

4 Sycara et al.

DAML-S/UDDI
Matchmaker

Response:
Provider

Advertisement

Request

Process
4 Model

| —

Messages

Fig. 1. Description of Web services Interaction

processor for the DAML-S Process Model that implements the formal semantics
described in Section 2. In Section 5 we will provide a performance evaluation
for the DAML-S Virtual Machine and we will show that DAML-S can be used
with very little overhead. In Section 6 we describe an application that employ
composition of DAML-S services and finally in Section 7 we conclude.

2 Semantic Web Services

The view adopted by DAML-S is that Web services have a set of capabilities
that they offer to the rest of the community. The capability of some Web services
may be to provide information, as for instance stock quotes, the capability of
other Web services may be to provide services such as travel booking. In their
normal operations, Web services, solve problems through information exchange
or the exchange of services.

Each exchange minimally involves two parties: a requesting Web service that
initiates the exchange and a provider that responds to the invocation. Since
transactions may require more than one information exchange, the requester and
the provider may dynamically switch their roles, for example the provider may
ask the requester to select among alternative products in which case the provider
is the one that seeks information from the requester. Indeed Web services cannot
be restricted to a client/server relation but they should be able to interact as
peers. Finally, some exchanges may involve more than two parties, for example,
when the requester does not know which provider to invoke, the transaction
involves one or more registries that receive a specification of the capability that

Service Composition in DAML-S 5

the requester expects in the provider, and select the provider whose capabilities
match the needs of the requester.

A detailed view of the way DAML-S Web services interact is shown in Fig-
ure 1. The first task of a Web service is to advertise its capabilities with a
registry (link 1), in our case the DAML-S/UDDI Matchmaker. The registration
of capabilities allows the Web service to be discovered and to act as a provider.
When a Web service needs to contact another Web service with a specific set
of capabilities, it compiles the Profile of the ideal Web service it would like to
contact, and submits it as a request to the Matchmaker (link 2). The task of the
Matchmaker is to select the provider which declared a set of capabilities that
more closely match the capability expected by the Requester. In our diagram,
the Matchmaker located the Provider as the best match (link 3). Finally, the
Requester knows about the Provider, and it can initiate the interaction (link
4). The interaction is regulated by the specifications in the Process Model and
Grounding which define the interface of the Provider Web service.

In the rest of this section we provide a detailed description of DAML-S, and
we will concentrate on two key problems for DAML-S and Semantic Web services
in general: capability representation and the trade-offs that it entails, and the
assignment of a formal semantics to the Process Model.

2.1 DAML-S

DAML-S Service Profile Service Profiles consist of three types of informa-
tion: the capability of the service, a host of non-functional parameters, and a
description of the person or legal entity that is responsible for the Web service.
The capability of a Web service is represented as a transformation from the in-
puts and the preconditions of the Web service to the set of outputs produced (in
return messages), and any (non message producing) side effects that result for
the execution of the service. For example, a for-pay news reporting service might
require as inputs a date and a credit card number; have as a precondition that
the credit card number is a valid one and not overdrawn; have as output a Web
page with news of that day, and have the effect that the specified credit card is
charged. Functional attributes specify additional information about the service,
such as the quality guarantees that it provides, or the cost of the service, or the
classification of the service in some taxonomy such as the NAICS [8].

Implicitly, Service Profiles specify the intended purpose of the service, be-
cause they specify only the functionalities that the Web service is willing to
provide publicly. For example, a book-selling service may involve two different
functionalities: browsing to locate a book and selling the books found. The book-
seller has the choice of advertising just the selling service or both the browsing
and the selling functionality. The advertisements will affect its clients. If the
book-seller advertises both browsing and selling, then clients interested only in
browsing may contact the book-seller, while by advertising only the selling ser-
vice, those same clients will not contact it. Ultimately, the decision as to which
service to advertise determines how the service will be used.

6 Sycara et al.

DAML-S Process Model The DAML-S Process Model provides a more de-
tailed view of the Web service than the Profile by showing a (partial) view of
the workflow of the provider. The Process Model allows the requester to decide
whether and how to interact with the provider. The requester may analyze the
Process Model to verify whether the interaction with the provider leads to the
results that were declared in the Profile. Through this analysis the requester de-
tects the exceptions and possible failures that may emerge during the interaction
and plan for contingencies. Finally, the Process Model reveals to the requester
what information the provider requires and provides, and when to perform the
information exchanges. Through the Process Model, the requester extracts the
interaction protocol, and decides how to provide that information by using its
own knowledge base, or by composing the invocation with other Web services.

In general, it is up to the provider to decide the degree of visibility that it
allows of its own Process Model. The provider may decide that its own process is
a “black box” in which case it will collapse all its processing in a single operation
whose inputs the requester should provider and outputs are returned as answer.
At the other extreme the provider may decide to provide a “glass box” view
in which the requester has complete visibility on the workflow of the provider.
In general, the provider should allow enough visibility to derive the interaction
protocol. The result is a “gray box” where the requester has partial visibility on
the process of the provider, but the provider hides some very important details.

The simplest units of description of the Process Model are the atomic pro-
cesses which are equivalent to the basic functions performed by the provider.
Atomic Processes can be composed into more complicated processes through
workflow control structures such as sequence, if-then-else, or split and join. The
Process Model provides a partially specified view of the provider because it al-
lows the provider to hide details of its own workflow behind atomic processes.
Furthermore, the Process Model provides non-deterministic constructs that can
be specified only at execution time.

Atomic Processes also define the atomic units of interaction between the
provider and the requester. The inputs of the atomic processes correspond to
the information that the provider expects from the requester, and the outputs
to the information that the provider sends to the requester. By following the
control structures of the process model, the requester derives the sequences of
information exchanges with the provider, which in turn correspond to the inter-
action protocol of the provider.

The Process Model and the Profile provide two different points of view of
the same Web service. The Profile specifies the capabilities of the Web service
(what the Web service does), while the Process Model provides a declarative
specification of how the Web service achieves its goals, and how its requesters can
interact with it. For example, the Profile says that a Web service, say Amazon’s,
sells books, the Process Model says that in order to buy books the requester
needs to find the book, provide payment information, provide shipping address
and so on before the book is actually delivered.

Service Composition in DAML-S 7

The two representations are used at two different times during the composi-
tion process: the Profile is used during discovery, when the requester knows what
it expects from a provider, but it does not know what providers are available
nor what processes do they perform. Upon matching, the requester can use the
Process Model to select the most appropriate provider and to interact with and
derive the provider’s interaction protocol.

DAML-S Grounding The role of the DAML-S Grounding is to separate the
abstract information exchange described by the Process Model from the im-
plementation details, message format and so on. The DAML-S Grounding is
responsible for mapping atomic processes into WSDL operations in such a way
that the execution of one atomic process corresponds to the invocation of an op-
eration on the server side. In addition the Grounding provides a way to translate
the messages exchanged into DAML classes and instances that can be referred
by the Process Model.

2.2 Capability Representation

Capability representation emerges as a key problem for Semantic Web services
because any service requester may be aware of services it needs, without know-
ing precisely whether they are available on the Web or how to locate them.
For example, a Web service that provides financial advice may need the latest
quote of the IBM stock. To this extent, the Web service should transform the
particular problem, i.e. get the quotes of the IBM stock, to a description of the
capabilities it expects from the stock quotes provider, i.e. stock market reporting.
Finally, it should use that capability description to locate the stock reporting
Web service using a registry that can perform capability matching such as the
DAML-S/UDDI Matchmaker.

A number of capability representation schemes have been proposed by the Se-
mantic Web services community. Specifically, we distinguish between two types
of representation schemes: the first one assumes ontologies that provide an ex-
plicit representation of the tasks performed by Web services. In those ontologies,
each task is described by a different concept, while Web services capabilities
are described by enumerating the tasks that they perform. The second repre-
sentation scheme describes Web services by the state transformation and the
information transfer that they produce. In this case, there is no mention of the
task performed by the Web service; the task is implicitly represented by the state
transformation and the Web service’s inputs and outputs.

The two approaches to capability representation provide two ways to use
ontologies. The schemes that make an explicit use of tasks require ontologies
that assign a concept for each task performed by Web services, but since Web
services can perform many different tasks, these ontologies can grow very large
thus becoming unmanageable and may not scale up when new Web services with
new capabilities become available. The implicit representation schemes do not
suffer from those shortcomings since they require only concepts that describe the

8 Sycara et al.

Sell Reserve Credit ‘

Sell Credit Card |
Sell Loan
Sell Mortgage ‘
Sell Credit Line |
Sel IFinancia Servuce Sell Saving and Investment Service ‘

Sell Management Service ‘

Sell Account Access Services ‘

Fig. 2. Fragment of ontology of loan selling tasks

domain of the Web service, and then describe the Web service by the transforma-
tion it produces on its environment. On the other hand, explicit representations
facilitate the matching process since there is no need to infer the task from its
implicit representation. Each capability representation scheme strikes a differ-
ent balance between the two extremes depending on the ontologies that it has
available, and how closely they describe the capabilities of Web services.

Explicit Capability Representations An example of ontology which pro-
vides an explicit description of tasks and processes is the MIT Process Handbook
[17]. Figure 2 shows a fragment of the specialization hierarchy of the ontology of
tasks with the root SELL FINANCIAL SERVICES [17]. Furthermore, it shows that
the concept Sell Loan is a specialization of SELL FINANCIAL SERVICE which in
turn is specialized by SELL CREDIT CARD, Sell Mortgage and other concepts.
In turn, the ontology associates to each process properties such as PORT that
describes the I/O behavior of the process, and DECOMPOSITION that describes
how the process is realized by the composition of other processes described in
the ontology. The MIT Process Handbook can be used to index Web services for
later retrieval [6]. For example, a Web service that sells loans would be associated
with the concept SELL LOAN in the taxonomy in Figure 2.

The advantage of the explicit approach is that it reduces the burden of mod-
eling Web services capabilities, since they can be represented by the list of tasks
that they perform. The disadvantage of this representation, at least in princi-
ple, is that it is impossible to distinguish between Web services that sell loans
whose amount is greater that $50,000 from those that sell loans whose amount
is smaller than $10,000. To represent these constraints on the loan amount that
the two Web services offer would require, at least in principle, the definition of
two sub-classes of Sell Loan to describe the two different cases.

Implicit Capability Representation DAML-S Service Profile, as described
above, adopts the implicit representation of capabilities of Web services. Web
services are represented in terms of the transformation that they produce. Specif-
ically, Web services are represented by the information transformation that they

Service Composition in DAML-S 9

produce in terms of inputs required and outputs generated, and by the state
transformation produced in terms of preconditions that need to be satisfied for
an execution and effects generated. In addition it provides a host of features
that help with the specification of non-functional parameters of the Web service
such as quality guarantees. An example of a capability specification for a stock
reporting Web service is given in Figure 3. The input of the Web service is the
ticker symbol, and its output is a quote for that ticker. The precondition is a
valid account to which charge the giving of the information, and the effect is
that the account is charged®.

<profile:input>
<profile:ParameterDescription rdf:ID="Ticker_input">
<profile:restrictedTo rdf:resource="Financial:Ticker"/>
</profile:ParameterDescription>
</profile:input>

<profile:output>
<profile:ParameterDescription rdf:ID="Quote_QOutput">
<profile:restrictedTo rdf:resource="Financial#Quote"/>
</profile:ParameterDescription>
</profile:output>

<profile:precondition>
<profile:ParameterDescription rdf:ID="valid_membership">
<profile:restrictedTo rdf:resource="Financial#valid(account)"/>
</profile:ParameterDescription>
</profile:effect>

<profile:effect>
<profile:ParameterDescription rdf:ID="charged_account">
<profile:restrictedTo rdf :resource="Financial#charged(account) n/>
</profile:ParameterDescription>
</profile:effect>

Fig. 3. Examples of Input, Output, Precondition and Effect in DAML-S

The advantage of the implicit representations scheme is that any capability
can be represented with no requirement of ontologies that explicitly classify
capabilities. Furthermore, constraints on the capability of the Web service can
easily be expressed. For example, the two sell loans services mentioned above can
be represented by adding a precondition that the loan is smaller than $10,000
or bigger than $50,000. The problem of this representation is that the more

4 At the time of writing, DAML does not support a rule language, therefore, conditions
like VALID(ACCOUNT) or CHARGED(ACCOUNT) cannot be expressed.

10 Sycara et al.

constraints that are expressed about a Web service and its capabilities the more
difficult is to perform a match of capability with the request.

Ultimately, when explicit ontologies are available, their use is bound to pro-
vide a more precise and efficient capability representation and matching. But,
explicit representations can be used effectively only in limited domains, and they
cannot scale up to the whole Web. We believe that implicit representations are
the only way to represent Web services capabilities which has the potential to
generalize to all services on the Web.

Combining Implicit and Explicit Representations The DAML-S Profile is
a DAML class; as such it can be subclass ed and it can become part of a taxonomy
of concepts. Therefore, it is possible to construct a taxonomy of profiles where
each profile corresponds to a type of capability. Such a taxonomy would be
equivalent to the taxonomy of services in the MIT Handbook. Indeed, it would
be possible to construct a taxonomy equivalent to the taxonomy shown in Figure
2 where SELLFINANCIALSERVICES, is a subclass of Profile that specializes in the
representation of a type of financial services. This class could also be sub-classed
into SELLLOAN and so on.

The result is an hybrid representation of capabilities in DAML-S, where
the representation of capabilities on the basis of input, outputs, preconditions
and effects, can be augmented with the use of explicit ontologies of tasks. The
advantage of this representation is that it maintains the expressive power of the
implicit representation while facilitating the capability matching.

2.3 Execution Semantics for Service Composition

DAML-S provides only the specification of Semantic Web services. This spec-
ification must be complemented by (a) an execution model that preserves the
DAML-S semantics, (b) an implemented computational architecture that en-
ables dynamic, run-time semantic service discovery, interaction, interoperation
and composition across the Web.

In this paper we adopt the operational semantics proposed in [1] which pre-
cises the execution behavior of a set of core constructs in the Process Model such
as sequences, if-then-else conditionals and spawning of concurrent processes.
From the semantics of these core constructs, the semantics of composite con-
structs such as loops, can be easily derived. In Section 4 we will describe in
detail the DAML-S Virtual Machine, a computational architecture which imple-
ments these operational semantics.

An alternative semantics for the DAML-S Process Model has been proposed
by Narayanan et al. [22], which describes the semantics of processes and their
inputs, outputs, preconditions and effects as axioms in situation calculus. These
axioms are mapped onto Petri net representations, which then describe the exe-
cution semantics of the DAML-S control constructs. The operational semantics
we adopt uses a single representational model, namely that of functions, and is
better suited for our purposes. The two semantics are equivalent in most respects,
except for a few minor differences noted in [1].

Service Composition in DAML-S 11

EUNC) 7 Epor o, w)df)(zlz, (E[pavs -+ vnl, 9)
APPL) B\ -fiei(>U)ur;],t)sz;l nil(>611=(23[el90/ ull: #)
(N e 57 o 1T BT =5 el
o oA s e .I;:L(:E:[:’[aecjm, csan/vall ¢)

Table 1. Semantics of DAML-S Core - 1

The formal semantics of the DAML-S Core is shown in Tables 1 and 2 where
an inference rule of the form: A/B represents the drawing of the conclusion B
on the basis of the premise A. The — denotes a state transition, formally,
—C State x State and we will write s — s’ to denote the transition from
state s into state s’. The expression IT, (E[¢],¢) indicates that there is a set
of processes IT that may be running concurrently, and (E[¢],¢) identifies the
execution of one of such processes, where an operation of type ¢ is evaluated
with a set of ports . A rule A/(E[¢],) —> S specifies that if A is true, the
execution of ¢ leads to state S°.

The meaning of the rules in the two tables is the following. The rule FUNC
in Table 1 specifies the effect of executing an atomic process. More precisely, it
claims that if a process ¢ belongs to the set {2 of atomic processes, its execu-
tion results in the invocation of a corresponding operation ¢4 on the provider
Web service. The rule SEQ in Table 2 specifies that the execution of a process
e should wait on the return of value v from the previous process. Effectively,
the rule forces the processes to be executed in a strict sequence. The evaluation
of SPAWN e results in a new parallel process being created and in the return
of the current process. The rule COND-TRUE specifies that if the condition
evaluates to TRUE, then the first process is executed. This rule has a symmet-
rical COND-FALSE that specifies what happens when the condition is false.
Finally CHOICE-LEFT specifies that if the execution of a process e; produces
a change of state, then the same state is reached by executing [choice e; e3] and
choosing (non-deterministically e;). The rule CHOICE-RIGHT is symmetrical.
The other rules fill in technical details, specifically, PORT, REC, SEND deal
with the introduction of new ports, and with sending and receiving messages.

® For a more detailed explanation of the formalism we refer the reader to [1].

12 Sycara et al.

(SEQ) II,(E[return v >>= e,) — I, (E[(e v)], ¢)
(SPAWN) II, (E[spawn €], p) — II, (E[return ()],), (e, 0)
, e if x = p;
vomt p new PortRef ¢'(z) = {(p(:c) stherice,
() II, (E[newPort 7|,) — II, (E[return pl, ¢’)
p€Dom(p)) =v-w ¢'(2)= {w ift}f o
(REC) p(x) otherwise.
II, (E[p?), ¢) —> II, (E[return v], ¢')
_ , _Jw-v if = p;
D) p € Dom(p2) ¢2(p) =w ¢h(z) = {goz(x) e

I, (E[p!v]v‘pl)7 (67 ‘102) — I, (E[return ()]7()01)7 (6750’2)

II, (E[cond True e; es],p) — II,(Ele1],)

(COND-TRUE)

H7 (E[el]a (P) — H” (E[ell]a (P’)

CHOICE-LEFT
() I, (E[choice e ea],p) — IT', (Ele}], ¢')

Table 2. Semantics of DAML-S Core - II

The rules APPL, CONV, SERV deal with the management of variables and
constants.

3 Matching Engine

In the previous sections we concentrated on the theoretical framework underly-
ing the use of DAML-S for Web service discovery, interaction and composition.
We described the structure of DAML-S, its approach to capability representa-
tion and we provided a formal semantics of the Process Model. On the basis
of this theoretical framework, we implemented a computational model for the
processing of DAML-S descriptions. Specifically, in this section, we will describe
the Matching Engine that is at the core of the DAML-S/UDDI Matchmaker.
The Matching Engine uses the capability description provided by DAML-S, to
enhance UDDI with capability matching. In the next section we will describe

Service Composition in DAML-S 13

the DAML-S Virtual Machine: a general processor that allows Web services to
interact using only DAML-S descriptions of Web services.

The task of the Matching Engine is to select the advertisements that match
a given request. An advertisement matches a request, when the capabilities de-
scribed by the advertisement are sufficiently similar to the capabilities requested.
Of course, the problem of this definition is to specify what “sufficiently similar”
means. In its strongest interpretation, an advertisement and a request are “suf-
ficiently similar” when they describe exactly the same service. This definition is
too restrictive because it is unlikely that there exists a service that satisfies all
the needs of the requester.

To accommodate a softer definition of “sufficiently similar” we need to allow
the matching engines to perform flexible matches, i.e. matches that recognize
the degree of similarity between advertisements and requests. Service requesters
should also be allowed to decide the degree of flexibility that they grant to the
system. If they concede little flexibility, they reduce the likelihood of finding ser-
vices that match their requirements, i.e. they minimize the false positives, while
increasing the false negatives. On the other hand, by increasing the flexibility of
match, they achieve the opposite effect: they reduce the false negatives at the
expense of an increase of false positives.

An additional problem related with performing flexible matches is that the
Matching Engine is open to exploitation from providers and requests. Service
providers could provide capability advertisements that are too generic in an
attempt to maximize the likelihood of matching. For instance, a service may
advertise itself as a provider of everything, rather than be honest and precise re-
garding what service it provides. The matching engine must protect against such
attempted exploitations by ranking advertisements on the basis of the degree of
match with the request.

In a nutshell, the matching engine must satisfy the following desiderata:

— The matching engine should support flexible semantic matching between
advertisements and requests on the basis of the ontologies available to the
services and the matching engine.

— Despite the flexibility of match, the matching engine should minimize false
positives and false negatives. Furthermore, the requesting service should have
some control on the amount of matching flexibility it allows to the system.

— The matching engine should encourage advertisers and requesters to be hon-
est with their descriptions.

— The matching process should be efficient: it should not burden the requester
with excessive delays that would prevent its effectiveness..

The algorithm we propose strives to satisfy all four desiderata. Semantic
matching is based on DAML ontologies: advertisements and requests refer to
DAML concepts and the associated semantics. By using DAML, the matching
process can perform inferences on the subsumption hierarchy leading to the
recognition of semantic matches despite their syntactic differences and difference
in modeling abstractions between advertisements and requests.

14 Sycara et al.

77 WebBased
- DAML Ontologies .

DAML_S Matching Engine 7
Advertisements Ontologies |
Data Base Data Base
Matching DAML+OIL
Engine Reasoner

Fig. 4. The architecture of the DAML-S Matching Engine

The use of DAML also supports accuracy: no matching is recognized when
the relation between the advertisement and the request does not derive from the
DAML ontologies used by the registry. Furthermore, the semantics of DAML-S
descriptions allows us to define a ranking function which distinguishes multiple
degrees of matching.

Finally, the matching process is necessarily a complex mechanism that may
lead to costly computations. In order to increase efficiency, the algorithm de-
scribed here adopts a set of strategies that rapidly prune advertisements that
are guaranteed not to match the request, thus improving the efficiency of the
overall matching engine while maintaining its precision.

3.1 Algorithm for capability matching

The matching process for DAML-S [26] recognizes a match between the adver-
tisement and the request, when the advertised service could be used in place
of the requested service. Operationally this is correct when the outputs of the
advertisement are equivalent or more general of the outputs of the request (ie,
the advertised service provides all the information that the request needs), and
when the inputs of the request are equivalent or more general of the inputs of the
request. More formally, if in 44 and inge, represent the inputs of the advertise-
ment and the request respectively, and out 44 and outge, represent their outputs
then the matchmaker recognizes an ezact output match when outaq = outpeq
and an ezact input match when inaq = ingey Also, the matchmaker recognizes
a plugIn match when outsq 1 outpgeq OF iNReq N A4-

When the outputs of the advertisement are more specific than the outputs
of the request, then the advertised service provides less information than the
requester needs. Still, it may be that the information provided by the advertiser
is all that the requester needs, or that the requester may find another provider for
the remaining data. In these cases, the matchmaker recognizes a subsumed match.
Formally, the matchmaker recognizes a subsumed match when outgreq, 1 outaq
or ingq 1 ingeq- When neither of the conditions above succeeds, there is no
relation between the advertisement and the request and the match fails.

Service Composition in DAML-S 15

DAML-S/UDDI Matchmaker

Communication

Module Web based

DAML
Ontologies

DAML-S/UDDI DAML-S
Translator Matching
Engine

uDDI
Registry

Fig. 5. The architecture of the DAML-S/UDDI Matchmaker

As should be clear from the discussion above, the matching algorithm defines
a scoring function based on the degree of match detected. The scoring function
is ordered in the following way: exact > plugIn > subsumed > fail. Further-
more, in general the Matchmaker prefers output matches over input matches.
This is because the requester knows what it expects from the provider, but it
cannot know what the provider needs until the provider is actually selected.
Input matching is therefore relegated to a secondary role of tie breaker among
providers with equivalent outputs.

Implementation of the Matchmaker The matching algorithm has been im-
plemented in the DAML-S Matching Engine whose architecture is displayed in
Figure 4. Advertisements are stored in the AdvertisementDB component and
indexed using ontologies downloaded from the Web and stored in the Ontolo-
gyDB.

Upon receiving a request, the Matching Engine component selects advertise-
ments that are relevant for the current request; then it uses the DAML+OIL
Reasoner and the ontologies downloaded from the Web to select the advertise-
ments that really match the request and compute the degree of such match.

3.2 Adding Capability Matching to UDDI

The Universal Description Discovery and Integration (or UDDI) [30] is an Inter-
net wide registry of Web services. Because of its strong industry backing, UDDI
is expected to become the standard registry for Web services. UDDI allows busi-
nesses to register their contact points, and a host of useful information about
Web Services such as binding information to allow Web services to interact.

In addition, UDDI supports the association of an unbounded set of properties
to the description of Web services via a construct called TModel. For example, a

16 Sycara et al.

service may specify its category using the North American Industry Classification
System (NAICS). While TModels support the association of any type of data
with the advertisement, and their meaning is not codified, therefore two different
TModels may have the same meaning, but this similarity cannot be recognized.

UDDI supports only a keyword based search of businesses, services and
TModels in its repository. In addition services can be searched by their type
specification through TModels. For instance, it is possible to search for all the
services that adhere to the WSDL representation or that have a specific value as-
sociated with a TModel. Since search in UDDI is restricted to keyword matching,
no form of inference or flexible match between keywords can be performed.

The limitation of UDDI is that it lacks an explicit representation of the
capabilities of the Web service. The result is that UDDI supports the location
of essential information about the Web service, once it is known that the Web
service exists, but it is impossible to locate a Web service only on the basis of
what it does. To solve this problem, a translation function from DAML-S Profiles
to UDDI record has been implemented [25]. At its core, this function defines a set
of TModels that correspond to properties of DAML-S Profiles therefore allowing
any DAML-S profile to be recorded as a UDDI record.

The DAML-S/UDDI Matchmaker uses the translation function described
above to map DAML-S advertisements into UDDI records, and then it uses the
UDDI registry to store and retrieve them. Furthermore, leveraging on DAML-
S capability representation, the DAML-S/UDDI Matchmaker adds a semantic
layer that performs a capability matching between advertisements and requests
using the matching engine described above and DAML ontologies published on
the Web. The result of this work is empowering UDDI with DAML-S capability
representation and with the corresponding matching mechanism to select Web
services on the basis of their capabilities.

The architecture of the combined DAML-S/UDDI Matchmaker is described
in Figure 5. The Matchmaker receives advertisements and requests through the
Communication Module; upon recognizing that a message is an advertisement,
the Communication Module sends it to the DAML-S/UDDI Translator that con-
structs a UDDI service description using information about the service provider,
and the service name. The result of the registration with UDDI is a reference ID
of the service. This ID combined with the capability description of the advertise-
ment are sent to the DAML-S Matching Engine that stores the advertisement for
capability matching. Requests follow the opposite direction: the Communicator
Module sends them to the DAML-S Matchmaker that performs the capabil-
ity matching. The result of the matching is the advertisement of the providers
selected and a reference to the UDDI service record that can be used by the
requester to retrieve information from the UDDI registry.

3.3 Related Work

The DAML-S Matchmaker is based on the algorithm described in [26], but in
recent years a number of discovery algorithms for Semantic Web services have
been proposed. The first of such algorithms, described in [6] , uses the Process

Service Composition in DAML-S 17

Model of a Web service, expressed using a workflow language, as advertisement
of the Web service, and fragments of Process Models as requests. The retrieval
mechanism selects from a repository the Process Models that match the request.
For the matching to work, the requester and the provider should agree on the
names of the different types of processes and how do they relate to each other.
To this extent it requires an extensive ontology of processes, and indeed the
authors rely on the MIT Process Handbook [17] discussed above. The use of
Process Models for matching and the use of extensive ontologies of processes are
two striking differences with rispect to the DAML-S Matchmaker. Ultimately,
the two approaches re complementary and their use depends on the information
that is available at the application, for instance whether the a Process ontology
is available or not, and the types of queries that the requester can/wants to
express.

A number of matching algorithms that have been proposed rely on Descrip-
tion Logics (DL) and subsumption reasoning. Most prominently [?], [?] and [?].
The first one, [?], assumes an extensive representation of types of Web services
to specify the type of service. The matching process is based on the subsumption
relation between the advertisement and the request. Similarly to the DAML-S
Matchmaker, they define a number of degrees of matching, but they also add a
degree of match, intersection, that is based on the search of Web services that
are classified in branches of the ontology that are sibling to the classification of
the request. On the other hand, [?] and [?] assume an intensive representation
of capabilities of Web services that is equivalent to the DAML-S Profiles. [?]
provides the semantics for a representation of Web services within a DL and a
definition of subsumption for Web services. While they provide the theoretical
foundations for a matching process, they do not explicitly define one. A match-
ing process is defined in [?] which uses a modified version of the DAML-S Profile
to facilitate the subsumption process, and, as in the DAML-S Matchmaker, they
assume multiple degrees of matching. As far as we can see, this algorithm de-
scribes a different way to achieve the same results of the DAML-S Matchmaker.
The only difference is the use of interesection as an additional degree of match
that is supposed to detect when only some features of the request are satisfied by
the advertisement. The use of interesection in [?] and [?] is problematic since it
may overgeneralize. For instance a request for a provider of least 200 computer
parts, may be matched by the advertisement of providers of at least 200 items
irrespectively of what those items are.

An intersting matching algorithm has been proposed by [?] who attempts
to retrieve the smaller subset of web services that maximizes the achiement of
the goal of the request, while providing as many inputs as possible. Because
the matching process has such different goals when compared with the DAML-S
Matchmaker, it is not really possible to compare the two approaches. Never-
theless, it raises an interesting issue that is rarely addressed in the discovery
literature: namely the division of tasks between the discovery registries and the
requesters for service. The matching engine proposed by [?] seems to be tar-
geted to a very powerful matching process which can identify the functionalties

18 Sycara et al.

of clusters of Web services. On the other hand the DAML-S Matchmaker places
more responsability on the requesters to decompose their problems in such as
way that they can be solved by multiple requesters.

4 Managing Web Services Interaction

The interaction with the DAML-S/UDDI Matchmaker results in a reference to
a Web service that the requester can invoke. The next problem of the requester
is to use the Process Model of the provider to interact with it. In this section, we
will concentrate on how the requester uses the Process Model to interact with
the provider. Specifically, we will discuss the architecture and implementation
of the DAML-S Virtual Machine: a general purpose processor for the DAML-S
Process Model which allows Web services to interact on the basis of the DAML-
S specifications. Furthermore we will show that the DAMS-Virtual Machine is
consistent with the execution semantics presented in 2.3.

4.1 Architecture of DAMS-Virtual Machine

The architecture of the DAML-S Virtual Machine is shown in Figure 6. The core
of the architecture is represented by three components in the center column: the
Web service Invocation, the DAML-S Processor and the DAML Inference En-
gineS. The DAML-S Processor is responsible for “driving” the interaction with
the provider. More precisely, the DAML-S Processor derives the sequence of pro-
cesses to be executed dealing with the intrinsic non-determinism of the DAML-S
Process Model on the basis of the rules shown in Table 3. The DAML-S Proces-
sor relies on the Web service invocation module” for the message exchange with
the provider. Upon receiving a message, the Web service invocation module ex-
tracts the message payload, translates it into DAML, and sends it to the DAML
Inference Engine. The DAML Inference Engine is responsible for interpreting
the messages received, as well as loading additional ontologies which can help
the Web service in its interaction. Furthermore, the DAML Inference Engine is
responsible for drawing the consequences of the information that it loads.

The other two columns of the diagram in Figure 3 are also very important.
The column on the left shows the information that is downloaded from the Web
and how it is used by DAML-S Web services. WSDL is used for Web service
invocation, while ontologies and DAML-S specifications of other Web services
are loaded in the DAML Inference Engine and used by the DAML-S Processor to
make decisions on how to proceed. The column on the right shows the Reasoning
System which is responsible for what the Web service does. For example, if the
Web service provides financial consulting the Agent Reasoning System would
contain software that performs financial calculations as well as financial decision

5 The DAML Inference Engine is based on the Jena RDF/DAML parser [18] and the
DAML-Jess-KB[32]

" The Web service invocation module is based on Apache’s Axis [2] and IBM’s
WSIF[28].

Service Composition in DAML-S 19

Web Services
Ik
S0AP
DAML-S VM
DAML-S Service Webservice Invocation
Description
Axis's Web Service
- Invocation Framework M
— DAMLS
W3DL Z WehSericelnvaoker
o ¢
DAML-S Processor
o |0 Sround
! rounding i
Exaiitinn Blas Agent Reasoning System
Process Made| 5 interaction Rules
Execution Rules
DAML-3 =
rorats DAML Inference Engine Agent KB
Model DAML Jess KB Inference Engine
o
... Jess
Jena

Fig. 6. Architecture of the DS-VM

making such as suggesting stocks to buy. The DAML-S Virtual Machine interacts
with the Agent Reasoning System by reporting the information received from
the provider or by asking what information to send next.

4.2 Implementation of the Process Model Operational Semantics

The Process Model Ezecution Rules which are employed by the Process Model
Processor implement the Process Model operational semantics which we dis-
cussed in Section 2.3. In the rest of this section we will discuss the implemen-
tation of these rules and we will provide an informal proof of the consistency
between the specification and the implementation.

Atomic Atomic processes are implemented by rule (1) in Table 3. Their execu-
tion consists of the invocation of the Grounding and ultimately of the operations
on the provider. The semantics of executing atomic processes is shown by the
rule (FUNC) of Table 1 which consistently with the implementation calls for the
execution of an operation on the provider side.

20 Sycara et al.

(1) executed (atomic(Process)) <
callGrounding(Process), assert(complete(Process))

(2) executed (sequence(Process,List)) <
executed(first(List)),
executed(sequence(Process,rest(List)))
assert(complete(sequence(Process,List)))

(3) executed (split(Process,List)) <
exec(first(List)), exec(split(Process,rest(List))),
assert(complete(split(Process,List)))

(4) executed (splitJoint(Process,List)) <
exec(first(List)), exec(splitJoint(Process,rest(List))),
complete(first(List)), complete(splitJoint (Process,rest(List)))
assert(complete(splitJoint(Process,List)))

(5) executed (if(Cond,ThenProcess,ElseProcess)) <
(Cond, executed(ThenProcess)) XOR executed(ElseProcess)
assert(complete(if(Cond, ThenProcess,ElseProcess)))

(6) executed (choice(Process,List)) < executed(oneOf(List))
assert(complete(choice(Process,List)))

Table 3. Rules of the Process Model Processor

Sequence Sequences are implemented by rule (2) in Table 3. A sequence of
processes is executed by executing the processes in the order established by
the sequence. The semantics of a sequence of two processes is shown by the
rule (SEQ) in Table 2. A sequence(Process,List), where List consists of the
processes pi,...py, is formalized as follows:®

sequence (Process,{p1,...pn}) = do {p1;...;Pn}

Notice that this is equivalent to the unraveling of

do {p1;...;pn}intop; >> do {p2;...;Pn}
8 For simplicity, we use the imperative-style do-notation here. as defined in [16]:
do {z <- e;s} =e >= \z -> do {s}
do {e;s} =e >>=_ -> do {s}
do {e} =e

Service Composition in DAML-S 21

where the first process of the list p; is evaluated first and then the rest of the
list do {p2;...;pn} which shows the consistency between rule (2) and (SEQ).

Split Splits are implemented by rule (3) in Table 3. A split describes the
spawn of multiple concurrent computation of processes skipping the wait for
their completion. The semantics of sequences is shown by the rule (SPAWN) in
Table 2. Formally, a split (Process,List), where List consists of the processes
P1,.-.Pn iS expressed as:

split(Process,{pi,...pn}) = do {spawn p;;...;spawn p,}

As with sequence, this is equivalent to launching the first process in the
List p; while concurrently it spawns off {pa, ... ,p,} as concurrent processes as
it is expressed by rule (3) in Table 3.

SplitJoint SplitJoints are implemented by rule (4) in Table 3. A splitJoint
extends split by describing the spawn of multiple concurrent computations of
processes with a coordination point at the end of the execution. In our semantics
the processes are spawned off sequentially, and the completion of the splitJoint
depends on the completion of every process. More formally, the splitJoint con-
struct

splitJoint (Process,{pi,... ,Pn})

is modeled as the following, where each p; =do { p;;t!done}:

do {t <- newport;
split(Process,{p},...,pL};
t?7; ... 17 }

As can be seen, splitJoint behaves like a split with an extra synchronization at
the end. The process listens on port ¢ for n messages, where n is the number
of sub-processes that were initially spawned. The DAML-S Processor rule (4) in
Table 3 for the execution of a splitJoint differs from those for split only in that
the splitJoint is complete only when each of the processes it has spawned off
is complete. This is clearly equivalent with our semantics, where we first create
a port for synchronization, then spawn off the sub-processes and then wait for
each of them to send a completion message done.

If-Then-Else if-then-else are implemented by rule (5) in Table 3. An if-then-
else conditional triggers the execution of the then process when the condition is
true, or the else process when the condition is false. The semantics of sequences
is shown by the rule (COND-TRUE) in Table 2 and by a symmetrical rule
for (COND-FALSE) which is not shown. The if-then-else conditional can be
formalized as:

if (Cond,ThenProcess,ElseProcess) = (cond Cond ThenProcess ElseProcess)

22 Sycara et al.

The two XOR conditions in rule (5) of Table 3 correspond to the two rules
(COND-TRUE) and (COND-FALSE) of Table 2, which essentially proves the
equivalence between rule (5) and (COND-TRUE), (COND-FALSE).

Choice A choice represents a non-deterministic choice among a set of processes
which may be forced by the execution context. A choice is executed by executing
one of the processes in its list. Choices are implemented by rule (6) in Table 3,
while the semantics of the construct is shown by the rule (CHOICE-LEFT)
and (CHOICE-RIGHT) of Table 2. A choice construct choice(Process,List)
where List consists of processes p1,... ,Pn, is formalized as:

choice(Process,{pi,...pn}) = (choice (choice p; p2) ... pn)

The DAML-S Processor rule (6) in Table 3 for the processing of the choice
construct executes one of the set of processes in the choice on the basis of some

non-deterministic choice outside its control. This proves the equivalence between
rule (6) and (CHOICE-LEFT), (CHOICE-RIGHT).

4.3 The Grounding and the Invocation of Provider

The rules for the Grounding are stored in the Grounding Fzxecution Rules module
of the DAML-S Processor. These rules allow the compilation of WSDL message
structures and the mapping of atomic processes into WSDL operations that can
be directly invoked by the Web service Invocation module.

In addition, the Grounding rules are used to extract the XSLT [11] transfor-
mations that are required when the provider does not express inputs and outputs
in DAML. From the implementation point of view, the XSLT transformations
are performed by XALAN [3] and then transformed into WSDL messages using
JROM [14]. Finally, after the messages are constructed the WSDL operation is
invoked using the AXIS framework. Outputs follow the opposite path, the data
streams corresponding to the WSDL output messages are returned by the AXIS
tools, and fed into JROM and finally transformed into DAML using XALAN.
The DAML data is then parsed with the Jena DAML/RDF parser and finally
asserted in the Jess KB where they are available for inference and interact with
the rest of the knowledge of the Web service.

4.4 Related Work

Using the Petri Net execution semantics for DAML-S proposed in [22], Narayanan
et al. have developed a DAML-S interpreter for use with the Petri Net simula-
tion and modeling environment, KarmaSIM. The DAML-S interpreter converts
a DAML-S service specification into a Petri Net system, which can then be
analysed with the help of KarmaSIM. The KarmaSIM tool and DAML-S inter-
preter together allow DAML-S services to be simulated interactively and sup-
port several kinds of verification and performance analyses of DAML-S service

Service Composition in DAML-S 23

Amazon Client DAML-S Virtual Machine
Average Execution Time| 2007 ms 2021 ms
Standard Deviation 1134 ms 776 ms

Table 4. Execution time of Amazon Client and DAML-S Virtual Machine (time in
milliseconds)

DAML-S Virtual Machine|Data Transformation|Invocation
Average Time 83 ms 156 ms 2797ms
Percentage 3% 5% 92 %
Standard Deviation 107 ms 146 ms 1314 ms

Table 5. Distribution of time during the execution

specifications. The DAML-S Virtual Machine does not address verification or
performance analyses issues; its focus is instead on dynamic discovery, composi-
tion and execution. Once a service has been composed by the DAML-S Virtual
Machine, however, the DAML-S interpreter and KarmaSIM tool could be used
to analyse the service with respect to its performance and other properties.

5 Performance Evaluation

In the paper so far we demonstrated the correctness of the execution rules used
in the DAML-S Virtual Machine. In this section we provide a performance eval-
uation. We time the DAML-S Virtual Machine during an interaction with the
Amazon Web service’ and we show that the use of DAML-S does not produce
a performance penalty.

To estimate the performance of the DAML-S Virtual Machine we performed
two experiments: in the first one, we compared the execution time of the DAML-
S Virtual Machine with the time required by the client software module provided
by Amazon'® when browsing for a book using the Amazon Web service. This
experiment provides the performance cost of using DAML-S and the DAML-S
VM. In the second experiment, we provide the average time of the execution
of the DAML-S Virtual Machine when both searching and reserving a book. In
this experiment we compared the total time the DAML-S Virtual Machine spent
in processing DAML-S information with the total time of the interaction with
the Amazon Web service. We repeated both experiments at different times of
the day to account for the different load conditions both on our side and on
Amazon’s side. Also, in all experiments we looked exactly for the same items.

9 We constructed a DAML-S description of the Amazon Web service on the basis of
its WSDL description.

10 Amazon’s client requires an input from the user. We hardcoded that input to avoid
penalties due to the human interaction.

24 Sycara et al.
5.1 Experimental Results

The first experiment was run 98 times over 4 days in varying load conditions.
The results of the experiment are shown in Table 4, which shows the average
execution time of the Amazon Client and the DAML-S VM and the standard
deviation. The results show that the DAML-S Virtual Machine has virtually the
same performance of the client distributed by Amazon, with only 14 milliseconds
of difference on average.

In the second experiment we computed three measures: the first one is the
time required by the DAML-S Virtual Machine to make a decision on the path
to take in the Process Model; the second is the time required by the data trans-
formation from DAML to the format required by Amazon, the third is Amazon’s
invocation time. As in the first experiment we report the average times, and the
standard deviation. We also report the percentage of the three averages com-
pared to the total time required by the interaction. The data is shown in Table
5.

Consistently with the first experiment the time required by the DAML-S
Virtual Machine is minimal with respect to a call to the Amazon Web site
requiring only 3% of the whole interaction time.

The experiments show that the use of the DAML-S Virtual Machine does
not produce a performance penalty. Indeed the average time required by the
DAML-S Virtual Machine for browsing is virtually equivalent to the time re-
quired by the Amazon client. This equivalence is explained by the second ex-
periment that shows that the time required by the DAML-S is about 8% of the
interaction time, and the majority of that time was required by the XSLT trans-
formations between the XML format required by Amazon and DAML required
by the DAML-S Virtual Machine.

6 Using DAML-S for Web Services Composition

So far, we described how the use of DAML-S and the Semantic Web supports
capability based discovery, as well as the autonomous invocation of Web ser-
vices. On their own, these two properties already provide a contribution to the
Web services infrastructure. As we have shown, the use of DAML-S contributes
capability based discovery to UDDI; and the semantic specification of the infor-
mation expected by a Web service supports autonomous interaction without the
need for direct intervention of human programmers or users.

Discovery and automatic invocation of Web services effectively expands the
capabilities of agents that can gain access to Web services. In such case, when
solving a goal an agent has two alternatives, either it solves the goal directly
using its own capabilities and problem solving, or it subcontracts the goal to
some Web service out there that can achieve the same goal. The final solution of
the problem is the result of the composition of invocations of Web services and
some reasoning that is done autonomously by the agent [21].

Service Composition in DAML-S 25

| LT

Car Rental

Airline

“
E
DAML S
Matchmaker

MS Outlook Calendar Agent

DML

PI Meeting
‘Web Service

Fig. 7. Description of the system for scheduling a trip to the DAML PI meeting

The Web services composition problem is a new version of the problem of
integrating information from different information sources which has been ac-
tively investigated in the Data Base community [13] and in the development of
Agents and Multi-Agent systems [5,23]. Web services contribute to this line of
research in two ways: first they provide a uniform way to interface information
sources; second, the use of the semantic information to represent capabilities and
interaction information with Web services provides the basis for a uniform way
to specify what information is provided by a Web service, and how to interact
with it. In turn this uniform interfaces and descriptions allow existing techniques
to scale up to the whole Web.

In the rest of this section, we provide an example of an agent that uses the
semantic Web services infrastructure to interact with other Web services only
on the basis of DAML-S and information collected from the Semantic Web.
Specifically, we employed the RETSINA Calendar Agent (RCal) [27] which can
reason about schedules in RDF and DAML and interact with MS Outlook. We
expanded the capabilities of RCal with the HITAP planner [24] which allows the
construction of plans involving multiple sources of information. Furthermore, we
interfaced RCal with the DAML-S Virtual Machine to allow automatic interac-
tion with other Web services. In our scenario, shown in figure 7, RCal is given
the task of organizing a trip to a conference, namely the DAML PI meeting. We
assume that the organizers of the meeting publish a Web service which provides
information about the meeting, such as time, location, talks, participants and so
on. The Calendar Agent verifies the user’s availability checking on her schedule
stored in MS Outlook, and then uses the DAML-S/UDDI Matchmaker to find
airlines, car rental companies and hotels. Finally, RCal uses the DAML-S Vir-
tual Machine to interact with the different Web services until it completes the
schedule of the trip which is uploaded into Outlook.

26 Sycara et al.

This very simple scenario highlights the challenges of planning for Web ser-
vices composition. The first challenge was to generate requests for services from
goals that RCal could not achieve. For example it had to transform the goal
book(flight) into a request for an airline which could do the booking of the
flight. This was achieved by transforming the goal into a DAML-S Profile whose
only output was the information that solves the goal, and empty inputs, precon-
ditions and effects.

The second challenge was to interleave planning and execution. The planning
agent had to interact with the Matchmaker, and the Web services themselves
before a plan could be constructed. This interaction required the planner to
interleave its own planning with the execution of information gathering actions
[20,9]. For this purpose, we adopted HiTAP, an HTN planner that can also
suspend planning to execute parts of its plan to extract information that proves
to be critical to make choices between alternative plans.

The third challenge was the management of the interaction. The DAML-S
Virtual Machine allows the agent to know what messages to send and how to
interpret the information it receives, but the agent had to make a decisions about
alternatives, and to decide what inputs to send to the providers. The selection
of the inputs was based on the inputs of the corresponding step in the plan,
while selections between alternative processes in the process model were made
by analyzing the consequences of each choice.

Our experiment proved that DAML-S provides the needed information for
Web service composition, but it also highlights some of the challenges that have
to be explored. Some of these have to do with management of failures of Web
services and recovery from those failures. Other problems include interactions
between Web services which may undo each other’s work.

6.1 Related Work

A service composition prototype has been described by Sirin et al. [29], which
enables a user to create a workflow-like service composition by filtering a existing
set of services and presenting available service choices to the user at each step.
The strength of their system is that it enables step-wise composition of services,
where the filtered services presented at each step depend on the services chosen
at the previous step and their constraints. This process here is guided heavily
by the user, unlike the DAML-S Virtual Machine, which allows an agent to
discover services dynamically. The composition prototype could thus be viewed
as complementary to the DAML-S Virtual Machine, in that it allows a user to
put together services that have been discovered with the help of matchmaking.
One issue that remains unclear is how the initial set of discovered services is
formed. Crawling the Web for semantic service descriptions, as suggested in
the paper, seems practical only for repository services. At this point, a service
requestor would anyway need to resort to matchmaking to discover services from
the repository, so the problem of matchmaking still needs to be addressed.

Service Composition in DAML-S 27

The DAML-S Virtual Machine, as far as we know, is the first near-complete
system for Web services discovery, composition and execution described in the
literature.

7 Conclusions and Future Work

In this paper we presented a vision for a Web of services which combines the
growing Web services infrastructure with the Semantic Web. We showed that
the excessive reliance of the Web services on pure XML guarantees syntactic
interoperability, but it fails to provide semantic interoperability. The result is
that Web services may be able to parse the information that they exchange but
fail to understand the content of that information.

The Semantic Web has the potential to alleviate and possibly remove this
problem by linking the data exchanged to a set of ontologies which specify the
conceptual framework that helps with the interpretation of the data. Using these
ontologies Web services map the information that they receive to known concepts
and then use that mapping to derive consequences of the message.

The task of mapping Web services with the Semantic Web is partly fulfilled
by DAML-S: an ontology for the description of Web services. DAML-S provides
a way to express capabilities of Web services so that they can be used to discover
Web services on the basis of what they do. Furthermore DAML-S provides a way
to encode a description of Web services and their interaction protocol.

In this paper we show that DAML-S is not just an abstract description,
but that it can be used by programs that implement Web services. Specifically,
we show that the capability description can be used by the DAML-S/UDDI
Matchmaker to locate the providers on the basis of their capabilities. This is
a clear improvement on UDDI that does not provide any capability matching.
The second contribution is the DAML-S Virtual Machine which implements the
execution semantics of the DAML-S Process Model and can be used to manage
the interaction with Web services. Furthermore we demonstrate the use of DAML
in two applications and, most importantly, we show that the use of DAML-S does
not produce a performance penalty.

As a final note we can ask whether the Semantic Web really delivers on its
promises to Web services. While by and large the jury is still out and a definitive
answer is still to come, this paper provides an initial answer. Above we showed
two approaches to capability matching, and we discussed the differences and
the trade-offs. Nevertheless, both representation schemata crucially depend on
the existence of ontologies. Indeed, capability matching simply cannot be done
without the use of ontologies. The contribution of the Semantic Web to the
management of the interaction is a more complicated question which hinges on
the contribution of the Semantic Web toward the interpretation of the data
exchanged by Web services. The DAML-S Virtual Machine provides an essential
step toward the answer of the question, and this will be the main topic of our
future research.

28

8

Sycara et al.

Acknowledgment

We owe a special thanks to Joseph Giampapa, Frank Huch, Takahiro Kawamura,
Takuya Nishimura, Terry Payne and Rahul Singh for their contribution to dif-
ferent parts of this work. The research was funded by the Defense Advanced Re-
search Projects Agency as part of the DARPA Agent Markup Language (DAML)

pr

ogram under Air Force Research Laboratory contract F30601-00-2-0592 to

Carnegie Mellon University.

References

w

10.

11.
12.

13.

14.
15.

16.

. A. Ankolekar, F. Huch, and K. Sycara. Concurrent execution semantics for DAML-
S with subtypes. In ISWC, 2002, Sardegna, Italy, 2002.

Apache Foundation. Apache - Axis.

Apache Foundation. Apache - Xalan.

A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani,
K. Riemer, S. Struble, P. Takacsi-Nagy, I. Trickovic, and S. Zimek. Web Service
Choreography Interface (WSCI) 1.0. http://www.w3.org/TR/2002/NOTE-wsci-
20020808, 2002.

G. Barish and C. A. Knoblock. An efficient and expressive language for information
gathering on the web. In Workshop on Is there life after operator sequencing?—
AIPS-2002, pages 5—12, 2002.

A. Bernstein and M. Klein. High precision service retrieval. In ISWC 2002,
Sardegna, Italy, 2002.

D. Booth, M. Champion, C. Ferris, F. McCabe, E. Newcomer, and D. Orchard.
Web services architecture. http://www.w3.org/TR/2003/WD-ws-arch-20030514/,
14 May 2003. W3C Working Draft.

U. C. Bureau. North American Industry Classification System (NAICS).
http://www.census.gov/epcd/www/naics.html, 1997.

H. Chen, T. Finin, and A. Joshi. Using OWL in a pervasive computing broker. In
Workshop on Ontologies in Open Agent Systems, AAMAS 2003, 2003.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR /2001 /NOTE-wsdl-
20010315, 2001.

J. Clark. XSL Transformations (XSLT) Version 1.0. Technical report, W3C, 1999.
F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. BPEL4WS white paper. http://www-3.ibm.com/software/solutions/
webservices, 2002.

H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. Integrating and accessing heterogeneous information sources in tsimmis.
In AAAI Symposium on Information Gathering, pages 61-64, 1995.

IBM Corporation. JROM - Java Record Object Model.

N. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Journal of Autonomous Agents and Multi-Agent Systems, 1(1):275—
306, 1998.

S. P. Jones. Tackling the awkward squad: monadic input/output, concurrency,
execptions and foreign-language calls. Lecture Notes for a tutorial given at Mark-
toberdorf Summer School, 2002.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32

Service Composition in DAML-S 29

T. W. Malone, K. Crowston, B. P. Jintae Lee, C. Dellarocas, G. Wyner, J. Quimby;,
C. S. Osborn, A. Bernstein, G. Herman, M. Klein, and E. O’Donnell. Tools for
inventing organizations: Toward a handbook of organizational processes. Manage-
ment Science, 45(3):425-443, March, 199 1997.

B. McBride. Jena: Implementing the RDF model and syntax specification. In
Semantic Web Workshop, WWW2001, 2001.

S. Mcllraith and D. Martin. Bringing semantics to web services. IEEE Intelligent
Systems, 18(1):90-93, 2003.

S. Mcllraith and T. C. Son. Adapting golog for composition of semantic web ser-
vices. In Proceedings of the Eighth International Conference on Knowledge Repre-
sentation and Reasoning (KR2002), pages 482-493, April 2002.

S. Mcllraith, T. C. Son, and H. Zeng. Semantic web service. IEEE Intelligent
Systems, 16(2):46-53, 2001.

S. Narayanan and S. A. Mcllraith. Simulation, verification and automated com-
position of web services. In Proceedings of the Eleventh International World Wide
Web Conference (WWW-11), Honolulu, Hawaii, USA, May 2002.

M. Nodine, W. Bohrer, and A. Ngu. Semantic brokering over dynamic heteroge-
neous data sources in infosleuth. Technical report, MCC Technical Report, 1998.
M. Paolucci, D. Kalp, A. Pannu, O. Shehory, and K. Sycara. A planning component
for RETSINA agents. In N. Jennings and Y. Lespérance, editors, Intelligent Agents
VI, Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, 2000.

M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Importing the semantic
web in uddi. In Proceedings of E-Services and the Semantic Web Workshop, 2002.
M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of
web services capabilities. In ISWC2002, 2002.

T. R. Payne, R. Singh, and K. Sycara. Calendar agents on the semantic web. IEEE
Intelligent Systems, 17(3):84-86, 2002.

A. Project). Web services invocation framework. Technical report, Apache Project,
2003.

E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web services
using semantic descriptions. In Web Services: Modeling, Architecture and Infras-
tructure Workshop in conjunction with ICEIS, 2003.

UDDI. The UDDI Technical White Paper. Technical report, OASIS, 2000.

W3C. SOAP Version 1.2, W3C Working Draft 17 December 2001.
http://www.w3.org/TR/2001/WD-soapl2-part0-20011217/, 2001.

J. Web and W. Kopena. DAMLJessKB.

