Towards automatic mediation of OWL-S process models

*

Roman Vaculin, Katia Sycara
The Robotics Institute, Carnegie Mellon University
{rvaculin, katia} @cs.cmu.edu

Abstract

The framework for automatic mediation of two process
models composed of semantically annotated web services
is presented. Process mediation is hard because of many
possible mismatches between process models. We introduce
algorithms for the process models analysis to find possible
mappings between provider’s and requester’s process mod-
els, or to identify incompatibilities that cannot be reconciled
with given set of available data mediators and external ser-
vices. Results of the analysis phase are used in the mediator
runtime component. In particular, we show how the work-
flow and dataflow mismatches can be resolved.

1 Introduction

One of the main promises of web services standards is to
enable and facilitate seamless interoperation of diverse ap-
plications and business processes implemented as compo-
nents or services. Many existing services are programmed
to exchange data according to a specified protocol. A ser-
vice can be part of a process model that prescribes control
and data flows and thus defines the overall functionality of
a more complex application.

However, as business needs change, processes could get
reconfigured or additional process components and services
may need to be added. As a result of these changes, the
previous components must become interoperable with the
new one. The possibility of achieving interoperability of
existing processes without actually modifying their imple-
mentation and interfaces is desirable and often necessary. In
such cases, interoperation can be realized by applying a pro-
cess mediation component which resolves all incompatibil-
ities and generates appropriate mappings between different
processes. Implementing the mediation component is com-
plicated and costly, since it has to address many different
types of incompatibilities. On the data level, components
may be using different formats to encode elementary data

*This research was supported in part by Darpa contract
FA865006C7606 and in part by funding from France Telecom.

or data can be represented in incompatible data structures.
Furthermore, messages can be exchanged in different order-
ings, some pieces of information which are required by one
process may be missing in the other one, or control flows
can be encoded in very different ways.

Current web services standards provide a good basis for
achieving at least some level of mediation. WSDL [8] stan-
dard allows to declaratively describe operations and format
of messages and data structures that are used to commu-
nicate with the web service. BPELAWS [3] adds the pos-
sibility to combine several web services within a formally
defined process model, and so to define the interaction pro-
tocol and possible control flows. However, neither of these
two standards goes beyond the syntactical descriptions of
web services. Newly emerging standards for semantic web
services as WSDL-S [2], OWL-S [18] and WSMO [14]
strive to enrich syntactic specifications with rich semantic
annotations to further facilitate flexible dynamic web ser-
vices discovery and invocation. Tools for reasoning can be
used for more sophisticated tasks such as, e.g., matchmak-
ing and composition [16].

In this paper, we address the problem of automatic me-
diation of process models consisting of semantically anno-
tated web services. Processes can act as service providers,
service requesters or communicate in peer-to-peer fashion.
We are focusing on the situation where the interoperabil-
ity of two components, one acting as the requester and the
other as the provider, needs to be achieved. When the re-
quester is supposed to be used with some provider with
a given process model, it can be programmed specifically
for this provider. However, when the provider needs to be
changed or a new provider is added, a new requester must be
programmed. Another approach, that we are advocating in
this paper, is to assume, that the requester behaves accord-
ing to a specified process model that is expressed explicitly.
This requester’s process model can either correspond to a
particular implementation of the requester or it can be a de-
fault process model that for example generalizes a business
process of a generic requester solving some problem (e.g.,
generic flights booking client). When a new provider has to
be used, we can use its process model and the reqester’s pro-

Requester Provider

Process |q....
...... »| mediation
component |-

Requester's Provider's
process model process model

Figure 1. Mediation of process models

cess model in the process mediation component that tries to
resolve all mismatches based on the analysis of both process
models.

Because the problem of process mediation is complex
and extensive, we do not address the data level mediation
in detail (see, e.g., [15, 5, 6]). However, we define a frame-
work, in which data mediation has its place and data me-
diators can be easily incorporated. We use the OWL-S on-
tology for semantic annotations because it provides good
support for description of individual services and also ex-
plicit constructs with clear semantics for describing process
models.

The rest of the paper is organized as follows. In Sec-
tion 2, we define the problem and provide an example sce-
nario. Section 3 gives an overview of our approach. In
Sections 4 and 5 algorithms for finding mappings between
process models are described and pruning possibilities are
discussed. Section 6 summarizes related work, and Sec-
tion 7 contains conclusions and future work.

2 Problem definition

Figure 1 shows our problem setting. We assume that
both process models of the requester and the provider are
described using OWL-S ontology'. The problem of creat-
ing a process mediator can be formulated in terms of finding
the translations / mappings between these two process mod-
els. In the context of process mediation the following types
of mismatches can be identified:

1. Data level mismatches:

(a) Syntactic / lexical mismatches: data are represented
as different lexical elements (numbers, dates format,
local specifics, etc.).

(b) Ontology mismatches: the same information is rep-
resented as different concepts

i. in the same ontology (subclass, superclass, sib-
lings, no direct relationship)

ii. or in different ontologies, e.g., (Customer vs.
Buyer)

'OWL-S process model pertains mainly to describe service providers.
However, its constructs can be used to describe the requester in the same
way as if describing the provider. The only conceptual difference in using
the OWL-S process model to describe the behavior of a requester is that it
describes the behavior the requester expects a provider to have.

2. Service level mismatches:

(a) a requester’s service call is realized by several
provider’s services or a sequence of requester’s calls
is realized by one provider’s call

(b) requester’s request can be realized in different ways
which may or may not be equivalent (e.g., different
services can be used to to satisfy requester’s require-
ments)

(c) reuse of information: information provided by the
requester is used in different place in the provider’s
process model (similar to message reordering)

(d) missing information: some information required by
the provider is not provided by the requester

(e) redundant information: information provided by one
party is not needed by the other one

3. Protocol / structural level mismatches: control flow in
the requester’s process model can be realized in very dif-
ferent ways in the provider’s model (e.g., sequence can
be realized as an unordered list of steps, etc.)

We assume that both process models describe services that
come from the same domain. By this we mean that inputs,
outputs, preconditions and effects are defined in the same
ontology and that the original and the new provider solve
conceptually the same problem. We want to avoid the situ-
ation when, for example, the provider is a book selling ser-
vice and the requester needs a library service. Both process
models could be using the same ontology but the mediation
would not make much sense in this case. This requirement
can be easily achieved either by appropriate service discov-
ery mechanisms [17] or simply be a consequence of the real
situation when only applications from within the same do-
main need to be integrated.

In this paper, we address the data mediation (mismatches
of type 1) only in a very limited way. We assume that data
mediators are given to the process mediation component as
an input. In our system data mediators can have a form
of a converter that is built-in to the system or of an external
web service [13]. We support basic type conversions (as up-
casting and down-casting) based on reasoning about types
of inputs and outputs.

2.1 OWL-S

OWL-S [18] is a semantic web services description lan-
guage. OWLS covers three areas: the Service Profile de-
scribes what the service does in terms of its capabilities and
is used for discovery purposes; the Process Model speci-
fies ways of how clients can interact with the service; the
Grounding links the process model to the specific execution
infrastructure (e.g., maps processes to WSDL operations
and allows for sending messages in SOAP). The elemen-
tary unit of the Process Model is an atomic process, which
represents one indivisible operation that the client can per-

Sequence

Login Until (ightCount '= 01] | ChooseDepFlight
I: userID- UserlID I: flght - FltNr
password- itinerary -
Password | | SearchFlight ItineraryNr
0O:logResult - I: from- FromCity 0: awvailable -
boolean to - ToCity AvailStatus

E: if (logResult) depTime - U5-DepTime

(loggedIn userID) arrTime - US-ArrTime ChooseReturnFlight
0: flights- I: flght - FLtNr
FlightsList itinerary - ItineraryNr
flghtCount - 0: available -
integer AvailStatus

Figure 2. Requester’s process model

form by sending a particular message to the service and re-
ceiving a corresponding response. Processes are specified
by means of their inputs, outputs, preconditions, and effects
(IOPEs). Types of inputs and outputs are usually defined
as concepts in some ontology or as simple XSD data-types.
Processes can be combined into composite processes by us-
ing the following control constructs: sequences, any-order,
choice, if-then-else, split, split-join, repeat-until and repeat-
while. Besides control-flow, the process model also speci-
fies a data-flow between processes.

2.2 Motivating example

Figure 3 depicts a fragment of the process model of
a hypothetical provider from the flights booking domain.
The requester’s model, presented in Figure 2, represents a
straightforward process of purchasing a ticket from some
airlines booking web service, while the provider’s process
model represents a more elaborate scenario that allows the
requester, besides booking the flight, to also rent a car or to
book a hotel. Boxes in figures represent atomic processes
with their inputs, outputs, preconditions and effects, and
ovals stand for control constructs. The control flow pro-
ceeds in the top-down and left to right direction. Inputs and
outputs types used in process models refer to a very simple
ontology showed in the Figure 4 (ovals represent classes
and lines represent subsumption relations). The requester’s
process model starts with the Login atomic process that has
two inputs — userld which is an instance of the UserlD
class and password of Password type — one output lo-
gResult of boolean type and the conditional effect saying
that the predicate (loggedIn userID) will become true if the
value of logResultOutput equals to true. In the next step, the
SearchFlight is executed within the repeat-until loop which
is repeated until some flight is found. Similarly the process
continues by executing other atomic processes.

Our example demonstrates several types of inconsisten-
cies that we have to deal with. The Login step in the re-
quester’s model is represented by two separate atomic pro-

LoginStep 1 LoginStep 2 While (! (loggedOut user))

I: user- UserlID I: password- Password
0: sessionID - sessionID- SessionID

SessionID 0:logResult - boolean
Choice {One Way / Return fit)

E: if (logResult==true]
(loggedIn user)

|

SrchOneWayFlight Chooseltinerary
| [
ChooseDepFlght | | ChooseRetFight

I: from- I: itinerary -
Chooseltinerary I:flght - FLlthNr I:flght - FLtNr

Book Hotel
Composite
Process

0: flghtCount- int

flights -FlightslList

SearchTwoWayFlight
I:from- AirportFromCode
to - AirportToCode
depTime - IS0DepTime
arrTime - ISOArrTime
0: flights-FlightslList
flghtCount - int

AirportFromCode Itineraryhr
to - AirportToCode 0: available -
depTime -IS0DepTime AvailStatus
arrTime -ISOArrTime
I: itinerary - itinerary - itinerary -

ItineraryMr ItineraryNr Itineraryhr
0: available - 0: available - 0: available -
AvailStatus AvailStatus AvailStatus

Figure 3. Provider’s process model

C City) Geinerar‘yND CUSEI’\D) Gasswor:D
FltMr AvailStatus
FromCity ToCity
FlightsList
{ AirportCode

Girpor‘tFromCod% Girpor‘tToCodg @SrDepT\ma@&Arrﬂma GSOArrT\m%GSODepTim‘e}

Figure 4. Simple flights domain ontology

DateTime

uUs-DateTime 150-DateTime

cesses in the provider’s model (mismatches 2a, 2e, see Sec-
tion 2). Types of inputs and outputs do not always match
exactly, e.g., AirportFromCode and FromCity are not di-
rectly related in the ontology (mismatch 1b), US-DepTime
and ISODepTime based on ISO 8601 are subclasses of the
common superclass DateTime (mismatch 1b). SearchFlight
in the requester’s process model can be mapped either to
SrchOneWayFlight or to SrchTwoWayFlight (mismatch 2b).
Finally, the structure of both processes is quite different and
it is not obvious at first sight whether the requester can be
mapped into the provider’s process model (mismatch 3).

3 Approach

The problem of process mediation can be seen as finding
an appropriate mapping between requester’s and provider’s
process models. The mapping can be constructed by com-
bining simpler transformations representing different ways
of bridging described mismatches. We need to decide if
structural differences between process models can be re-
solved. Assuming that the requester starts to execute its

process model, we want to show that for each step® of the
requester the provider (with some possible help of interme-
diate translations) can satisfy the requester’s requirements
(i.e., providing required outputs and effects) while respect-
ing its own process model. This can be achieved by ex-
ploring possible sequences of steps (execution path) that the
requester can execute.

Definition: Requester’s execution path is any sequence
of atomic processes which can be called by the requester in
accordance with its process model, starting from the pro-
cess model first atomic process and ending in one of the
last atomic processes of the process model. An atomic pro-
cess is last in the process model if there is no next atomic
process that can be executed after it (respecting the control
constructs as loops).

Since any of all possible requester’s execution paths can
be chosen, we need to show that each requester’s execution
path can be mapped into the provider’s process model (as-
suming some data translation facility). If there exists a pos-
sible requester’s execution path which could not be mapped
to any part of the provider’s process model, we would know
that if this path were chosen, the mediation would fail. Thus
the existence of a mapping for each possible requester’s ex-
ecution path is a necessary precondition of successful medi-
ation. Indeed, it is only a necessary condition of successful
process mediation for the following reason. Since the pos-
sible mappings are being searched before actual execution,
some of them can turn out not to work during execution
(e.g., because of failing preconditions of some steps). Still,
by analyzing requester’s execution paths and trying to find
mappings for them, we can partially answer the question of
mediation feasibility.

Finding possible mappings means to explore the search
space generated by combining allowed execution paths in
the provider’s process model with available translations
(data mediators in our case). We explore the search space
by simulating the execution of the provider’s process model
with possible backtracking? if some step of the requester’s
path cannot be mapped or if more mappings are possible.
During the simulation, data mediators are used to reconcile
possible mismatches.

Finally, during the execution the runtime mediation com-
ponent must decide, what actions it should perform in each
given state. We use generated mappings to decide, if and
what services of the provider’s process model should be ex-
ecuted, or if a translation (or a chain of translations) is nec-
essary after the requester executes each step.

Why mediation can fail without prior analysis: Con-

2In the following text the word step stands for an atomic process exe-
cuted by the requester. If we refer to the provider’s atomic processes, we
mention it explicitly.

3Note that the bactracking is possible because of choise and any-order
control constructs that allow different execution paths to be chosen.

sider the situation of the requester from Figure 2 in
which it executes the SearchFlight atomic process. Let
us assume that this step can be mapped either to the
SearchOneWayFlight process or the SearchReturnFlight
process of the provider. If the mediator used only the
current state information (as, e.g., in [9]), these two op-
tions would appear as indistinguishable to it since there
is no difference in their IOPEs. Therefore the media-
tor could choose the SearchOneWayFlight which would be
wrong since no mapping exists for following two steps
(ChooseDepFlight and ChooseRetFlight) in this context,
while in case of selecting the SearchTwoWayFlight the map-
ping exists.

Mediator overview The following procedure provides a
top-level view of the whole process mediation:

1. Generate requester’s paths: based on the process
model of the requester, possible requester’s paths are gener-
ated (see Section 4)

2. Filter out those requester’s paths that need not be
explored: as the result we get the minimal set of requester’s
paths. (see Section 4)

3. Find all appropriate mappings to the provider’s pro-
cess model for each requester’s path from the minimal
set of paths and store them in the mappings repository: if
for a path no mapping is found, user is notified with point-
ing out the part of the path for which the mapping was not
possible. (see Section 5)

4. Execution: for each requester’s request until requester
or provider finishes successfully or the execution fails do:
4.1 Retrieve possible actions from the mappings reposi-
tory that are available in this context

4.2 Remove inconsistent actions: actions that are not con-
sistent with actual variables bindings (e.g., preconditions
fail)

4.3 If no mediation action that can be taken is available,
fail

4.4 If more actions are available, choose the best: Having
execution paths and mappings precomputed, we can easily
figure out, if the suggested mediation action, if chosen, al-
lows to finish all paths that can be taken by the requester
from this state of execution*. If there is no such an action,
we choose the one that allows to finish the most paths.

4.5 Execute selected action: depending on the type of an
action either the OWL-S Virtual Machine [11] is called to
execute the external service or the provider’s atomic pro-
cess, or the built-in converter is called, or a response to the
requester is generated by the mediation component.

4 Alternatively, if more possible actions were suggested, we could fork
the execution and try to follow different possible mappings in parallel. This
would be possible only for service calls that do not modify the state of the
world (i.e., have no effects) and only while results returned to the requester
do not differ. Currently we always choose only one action.

Sequence Seguence

Figure 5. Analysis of choices

4.6 Update state of the mediator: mappings repository
and variables values and valid expressions are updated.

4 Generating the minimal set of requester’s
execution paths

When generating requester’s execution paths we poten-
tially have to deal with combinatorial explosion caused by
chains of branching in the requester’s process model. We
want to find out what reconciliation actions are available
or necessary in given state of execution which depends on
possible combinations of available variables and valid ex-
pressions in this state. Because the current state depends on
actions performed preceding this state, we might be in prin-
ciple interested in every possible requester’s path. We show,
however, that in some situations we do not need to explore
every possible path.

Figure 5a depicts a sequence of three choice constructs.
For simplicity we only show names of services and their
output types. Consider for example that we want to figure
out what actions can be performed to reconcile the step E.
There are four different combinations of available variables
depending on the path that leads to step E: (0A, oC), (0A,
oD), (0B, oC), (0B, oD). This means that in this particular
case all possible paths leading to E must be explored, be-
cause for every path different variables are available which
can allow different mediation actions to be taken. On the
other hand, consider the same situation in case of Figure
5b. No matter which path was taken, only one combination
of available variables before executing step E is possible,
namely (o1, 02). This simple situation can be generalized
as follows:

1. Each service call (atomic process) must be included in at
least one explored path.

2. In case of branching which is followed by other steps
two situations are possible:

(a) The state after finishing the branching does not de-
pend on which branch was chosen, i.e., available
variables and valid effects are always the same (as in
case 5b) In this case we can choose any of the paths
going through the branching with the same effect.

(b) The state is different for different branches, therefore
all possibilities need to be explored.

Requester Provider

{ Choice |

Sequence

B C B A C C B A
;02| 10:03| [0:02] | 0ol | 003 |0:i03] |0i02] |00l

Figure 6. Analysis of any-order

Seguence

Sequence

This observation allows us to reduce the amount of explored
paths significantly in some cases. In the example 5a eight
paths must be explored while in case 5b only two. Still, in
the worst case, the number of explored paths can be ex-
ponentially high (2/2 paths for n steps) if we consider
branching only.

Repeat-while can be treated similarly as branching —
either the body of while is skipped, or it is executed. More
then one execution of the while loop has no additional ef-
fect, since we perform only static evaluation. For repeat-
until construct, we know that the body is always executed
at least once and for the same reason as with while, we con-
sider only situation when it is executed exactly once.

Any-order presents the main source of possible branch-
ing since its steps can be executed in any order. Thus one
any-order construct with n steps can generate n! possible
orderings. However, if the process model is well formed, we
can assume that all steps forming any-order construct are
mutually independent (since they can be executed in any or-
der they should be). This means that (1) no matter what or-
dering is chosen, the outcome after finishing any-order will
be always the same, and (2) the available reconciliation ac-
tions for each step of the any-order, should depend only on
steps performed prior to entering the any-order construct.
Thus, in an ideal case we only need to choose one random
ordering of steps. The situation can be complicated by the
way in which the any-order is mapped into the provider’s
process model. The general idea is following:

1. We find all mappings for the path with one random or-
dering of steps of any-order

2. If one of the mappings maps steps of any-order to
“equivalent” any-order construct in the provider’s pro-
cess model, we are done, because by this mapping all
orderings can be covered.

3. If there is no such a mapping (i.e., no equivalent any-
order can be found), other options must be considered.
Specifically, the any-order can be represented as the
partial or complete enumeration of all orderings in the
provider’s process model.

Figure 6 illustrates one of the situations for which the any-
order can be successfully mapped into the provider’s pro-
cess model in which it is represented by the partial enumer-
ation. In this case we need to explore three different paths,

starting with step A, or B or C instead of picking just one
random ordering. In the worst case, in which the any-order
is represented as an enumeration of all possible orderings in
the provider’s process model, we can end up with explor-
ing n! paths. However, in this situation the number of paths
is limited by the number of steps in the provider’s process
model, which is linear. The algorithm for deciding which
paths need to be explored is a recursive procedure which
step-wisely explores partial enumerations of the any-order.
It is bit tricky because different ways of how any-order can
be represented in the provider’s process model must be ana-
lyzed. However, it is more a matter of careful analysis than
of an interesting new idea.

Split and split-join can be treated as any-order, because
their semantics says that all their steps must be executed and
the ordering is not specified.

S Finding mappings for the requester’s path

In order to find all the mappings for a given requester’s
path we simulate the execution of the provider’s process
model and try to map each step of the requester’s path
to some part of the provider’s model (atomic process or
several atomic processes) with help of data mediators. If
some step of the requester’s path cannot be mapped to the
provider’s process model, the simulaition backtracks to the
last branching (e.g., choice or any-order). The mapping is
constructed during the simulation and is represented as a
sequence of actions that the mediation component should
execute during the runtime mediation (see Fig. 7 for an
example of a mapping). To make our pseudocode simpler
we assume that each time some action is executed during
the simulation, it is also added to the mapping. The recon-
ciliation algorithm for the given requester’s path works as
follows:

Input: requester’s path requesterStepsSequence

1. Initialize the simulator state by adding requesterStepsSe-
quence to it

2. Call executeNextRequesterCalls method

3. Simulate the execution of the provider’s process model
until no requester’s steps need to be reconciled, or the
provider finishes, or reconciliations fails
e when the atomic process P is reached during simula-

tion, call the reconciliation method for P

Since services are not executed during the simulation, we
do not use values of inputs and outputs, but we only reason
with variables names and their types. For example, the atom
(Available userld UserID) is saying that a variable userld of
type UserID is available and can be used as an input of some
task. Preconditions and effects cannot be fully evaluated be-
cause of missing variables values. However, if the effect or
precondition does not depend on variables values, it can be

partially evaluated, as, e.g., in case of the effect (loggedIn
userld) of the LoginStep2 atomic process from the motivat-
ing example.

First, we provide the pseudocode for executeNextRe-
questerCalls method which is responsible for simulation of
one or more requester’s calls:

Method executeNextRequesterCalls
if requester StepsSequence == () then
exit reconciliation procedure // all steps reconciled sucessfully
end if
repeat
rqstStep = deleteFirst(requester StepsSequence)
inputs = inputs of rqstStep; outputs = outputs of rgstStep;
ef fects = effects of rqstStep
for each input in inputs add((Available inputName inputType))
for each ouptut in outputs add((RequesterGoal (Available output-
Name ouptutType)))
for each ef fect in ef fects add((RequesterGoal effect))
until (outputs # 0) or (requester Steps == ()

This method adds each input of the requester’s call to
the simulator’s state and for each output and effect creates
an appropriate goal. If the requester does not expect any
output to be returned, subsequent step can be executed im-
mediately.

Reconciliation method for atomic process P
if all inputs of P are available and precondions satisfied then
simulate P (add outputs and effects of P to the simulator’s state)
else
Goals = transform missing inputs & preconditions to goals
/I e.g., missing toCode => (Goal (Available toCode AirportToCode))
if solve-goals(Goals, true) == false then
fail // no way how to get inputs and preconditions
else
simulate P (add outputs and effects of P to the simulator’s state)
end if
end if
if all required outputs are available and effects true then
send outputs to requester
executeNextRequesterCalls()
else
Goals = transform missing outputs & effects to goals
/l(RequesterGoal goal) => (Goal goal)
if solve-goals(Goals, false) == false then
continue //unsatisfied requester’s goals can be resolved by subse-
quent provider’s atomic processes
else
executeNextRequesterCalls()
end if
end if

This method adds all outputs and effects of the atomic
process to the simulator’s state if the inputs of the process
are available and its preconditions are satisfied, and returns
the outputs to the requester if they are available. If some-
thing is missing, appropriate goals are created and the rec-
onciliation method solve-goals is called. The solve-goals
method implements a backward chaining algorithm, which
tries to supply missing variables and satisfy false expres-
sions by means of applying translators and external ser-
vices. If new goals are created by some of translators or
external services, solve-goals is called recursively.

Method solve-goals(Goals, solve All) //when solveAll is true, all goals
must be resolved to succeed
returnStatus = true
for all goals g in Goals do
if solve-goal(g) == false then
if solve All == true then
return false
else
returnStatus = false
end if
end if
end for
return returnStatus

Method solve-goal(g), g of the form (Goal atom)
for all methods m that can satisfy g do
call method m //methods m represent data mediators
if m fails then
continue with next method
end if
NG = new goals added by executing m
if NG # 0 and solve-goals(N G, true) == true then
return true
end if
end for
return false
Data mediators can be seen as atomic processes: for
given inputs, the outputs and effects are returned if precon-
ditions are true. Therefore, we represent a data mediator
similarly to atomic processes of the provider. However,
since we are using data mediators in the backward chain-
ing algorithm, if some of mediator’s inputs are missing or
preconditions are not satisfied, they are translated into new
goals that need to be resolved. After the data mediator is
called, its outputs and effects are added to the simulator’s
state. The other difference is that data mediators can be ex-
ecuted at any time when they can help to fulfill some goal,
while provider’s atomic processes are restricted by its pro-
cess model.
Technical notes Let us mention some issues that we had to
address during the simulation. Processes can have multiple
conditional results. Because we cannot fully evaluate ex-
pressions, we treat all conditional results as possible defer-
ring the precise evaluation to the mediator runtime, which
is able to chose only the correct effect. Because of the same
reason we treat if-then-else as split (i.e. both branches are
possible) without evaluating the if condition. Repeat-while
and repeat-until also do not evaluate terminating conditions
and are treated as potentially infinite loops. To avoid in-
finite looping during the simulation, we introduced a hard
limit on number of iterations. If this limit is reached, the
simulation branch fails, simulation backtracks and differ-
ent branches are tested. Data bindings in general are quite
useful, because they specify the sources of input variables
and thus eliminate the need to find a suitable source during
the simulation. Currently, the support for bindings is lim-
ited only to valueSource binding type. IS-A relationships
between types of inputs and outputs are evaluated by us-
ing the reasoner. This allows us to identify necessary data

The requester’s path:

Login, SearchFlight, ChooseDepFlight, ChooseRetFlight, ...

A possible mapping for first two steps:

requester-Login s1-userlD s1-password

provider-LoginStep1 s1-user sessionlD

provider-LoginStep2 s1-password sessionID logResult
mediator-prepare-to-send logResult

mediator-send

requester-SearchFlight s2-from s2-to s2-depTime s2-arrTime
external-AirportCityToCode s2-from apt-code-gener1
mediator-explicit-down-casting apt-code-gener1 AirportToCode
external-AirportCityToCode s2-to apt-code-gener2
mediator-explicit-down-casting apt-code-gener2 AirportToCode
external-USTimeTolSO s2-depTime iso-time-gener1
mediator-explicit-down-casting iso-time-gener1 ISODepTime
external-USTimeTolSO s2-arrTime iso-time-gener2
mediator-explicit-down-casting iso-time-gener2 ISODepTime
provider-SearchReturnFlight apt-code-gener1 apt-code-gener2 iso-time-
gener1 iso-time-gener?2 flights flghtCount
mediator-prepare-to-send flights

mediator-prepare-to-send flghtCount

mediator-send

Figure 7. Example solution for a requester’s
path

castings.

Example Figure 7 shows part of one mapping generated
for a requester’s execution path. This example assumes that
we have provided the system with the AirportCityToCode
external web service for translating instances of City to in-
stances of AirportCode, and the service USTimeTolSO for
translating between US and ISO time formats. Each step
name is prefixed by requester, provider and external to in-
dicate to which component it is related. Requester’s steps
show names of inputs parameters, while for provider, trans-
lators and external services also output variables are in-
cluded. This example also illustrates implicit up-casting of
types and explicit down-casting which is enforced by the
fact, that AirportCityToCode and USTimeTolSO are defined
to work with more generic types than those provided by re-
quester and requested by the provider. Due to the explicit
down-casting, user will be asked, if it is allowed or not. In
this case the all castings are fine. (see [15] for details on
analyzing casting operations for ontology classes).

6 Related work

[19] provides a conceptual underpinning for automatic
mediation. The work closest to ours is [9]. Mediation
between two WSMO based process is performed strictly
during the runtime. Besides structural transformations
(e.g., change of message order) also data-mediators can be
plugged into the mediation process. [1] describes an agent
called sButler for mediation between organizations’ work-
flows and semantic web services. The mediation is more
similar to the brokering, i.e., having a query or requirement
specification, the sButler tries to discover services that can
satisfy it. The requeter’s process model is not taken into

considerations. OWL-S broker [12] also assumes that the
requester formulates its request as query which is used to
find appropriate providers and to translate between the re-
quester and providers. [7] and [10] describe the IRS-III bro-
ker system based on the WSMO methodology. IRS-III re-
questers formulate their requests as goal instances and the
broker mediates only with providers given their choreogra-
phies (explicit mediation services are used for mediation).
[4] applies a model-driven approach based on WebML lan-
guage. Mediator is designed in the high-level modeling
language which supports semi-automatic elicitation of se-
mantic descriptions in WSMO. In [15], data transformation
rules together with inference mechanisms based on infer-
ence queues are used to derive possible reshapings of mes-
sage tree structures. An interesting approach to translation
of data structures based on solving higher-order functional
equations is presented in [5] while [6] argues for published
ontology mapping to facilitate automatic translations.

7 Conclusions and further work

In this paper we described an automatic mediation of
two OWL-S process models by using provided data media-
tors in the form of built-in converters and external services
used to provide missing information and translations. We
described an algorithm based on the analysis of provider’s
and requester’s process models for deciding if the media-
tion is possible and for performing the runtime mediation.
Although we used OWL-S for describing process models,
our approach can be used also with different process spec-
ification languages (e.g., BPELAWS in combination with
WSDL-S). We are aware of some most obvious problems
that we want to address in future work. To allow real-life
mediation, better support for data mediation must be pro-
vided. We want to explore a user assisted mediation and
the top-down analysis of process models to allow more se-
lective exploration of requester’s paths and so to better deal
with possible combinatorial explosion.

References

[1] C. Aberg, P. Lambrix, J. Takkinen, and N. Shahmehri. sBut-
ler: A Mediator between Organizations Workflows and the
Semantic Web. World Wide Web Conference workshop on
Web Service Semantics: Towards Dynamic Business Inte-
gration, 2005.

[2] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T.
Schmidt, A. Sheth, and K. Verma. Web service semantics
- wsdl-s, 2005. http://www.w3.org/Submission/WSDL-S/.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, et al.
Business Process Execution Language for Web Services,
Version 1.1. Specification, BEA Systems, IBM Corp., Mi-
crosoft Corp., SAP AG, Siebel Systems, 2003.

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

M. Brambilla, I. Celino, S. Ceri, D. Cerizza, E. D. Valle,
and F. M. Facca. A software engineering approach to design
and development of semantic web service applications. In
I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe,
P. Mika, M. Uschold, and L. Aroyo, editors, International
Semantic Web Conference, volume 4273 of Lecture Notes in
Computer Science, pages 172—186. Springer, 2006.

M. Burstein, D. McDermott, D. R. Smith, and S. J. West-
fold. Derivation of glue code for agent interoperation. Au-
tonomous Agents and Multi-Agent Systems, V6(3):265-286,
May 2003.

M. H. Burstein and D. V. McDermott. Ontology translation
for interoperability among semantic web services. The Al
Magazine, 26(1):71-82, 2005.

L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, V. Tanas-
escu, C. Pedrinaci, and B. Norton. [RS-1II: A Broker for
Semantic Web Services Based Applications. 2006.

E. Christensen, F. Curbera, and G. M. S. Weerawarana. Web
services description language, 2001.

E. Cimpian and A. Mocan. Wsmx process mediation based
on choreographies. In C. Bussler and A. Haller, editors,
Business Process Management Workshops, volume 3812,
pages 130-143, 2005.

J. Domingue, S. Galizia, and L. Cabral. Choreography in irs-
iii - coping with heterogeneous interaction patterns in web
services. In Proc. 4th Intl. Semantic Web Conference., 2005.
M. Paolucci, A. Ankolekar, N. Srinivasan, and K. P. Sycara.
The DAML-S virtual machine. In D. Fensel, K. P. Sycara,
and J. Mylopoulos, editors, International Semantic Web
Conference, volume 2870 of Lecture Notes in Computer Sci-
ence, pages 290-305. Springer, 2003.

M. Paolucci, J. Soudry, N. Srinivasan, and K. Sycara. A
broker for owl-s web services. In Cavedon, Maamar, Martin,
Benatallah, (eds) Extending Web Services Technologies: the
use of Multi-Agent Approaches. Kluwer, 2005.

M. Paolucci, N. Srinivasan, and K. Sycara. Expressing
wsmo mediators in owl-s. In International Semantic Web
Conference, 2004.

D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel. Web service modeling ontology. Applied On-
tology, 1(1):77 — 106, 2005.

B. Spencer and S. Liu. Inferring data transformation rules to
integrate semantic web services. In International Semantic
Web Conference, pages 456-470, 2004.

K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan.
Automated discovery, interaction and composition of se-
mantic web services. Journal of Web Semantics, 1 (1):27-
46, 2004.

K. P. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic
service matchmaking among agents in open information en-
vironments. SIGMOD Record, 28(1):47-53, 1999.

The OWL Services Coalition. Semantic Markup for Web
Services (OWL-S). http://www.daml.org/services/owl-s/1.1/.
G. Wiederhold and M. R. Genesereth. The conceptual basis
for mediation services. IEEE Expert, 12(5):38-47, 1997.

