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Abstract. In this paper we describe mechanisms for execution monitoring of
OWL-S web services. The described mechanisms are implemented as extensions
of the OWL-S Virtual Machine which is a component that controls interactions
between a client and web services. All extensions are driven by practical needs
that arose as part of two projects involving OWL-S web services. Specifically, an
event-based model for monitoring and logging is described that allows a human
or software agent to analyze, replay or debug the execution. Next, we describe
mechanisms for error handling and reporting which is not addressed by the OWL-
S specifications. Finally, we describe the virtual machine introspection extensions
motivated by needs of advanced software agents as brokers or process mediators
that need to interact with web services dynamically.

1 Introduction

The main goal of Web Services is to enable and facilitate smooth inter-
operation of diverse software components in dynamically changing envi-
ronments. Emerging Semantic Web Services standards as OWL-S [1] and
WSMO |[2] enrich web service standards like WSDL [3] and BPEL4WS
[4] with rich semantic annotations to further facilitate flexible dynamic
web services discovery, invocation and composition. Since all these tasks
are expected to be performed fully or semi automatically by software
agents, many practical problems arise. A software agent must be able to
not only understand the semantics of the web service but it must also
be able to interpret the course and the results of the execution and to
deal with erroneous states. It must be able to understand and interpret
the sources of problems so that it can recover or avoid the situation next
time if possible. This poses challenges for both the semantic web services
specification frameworks and for invocation tools. Execution monitoring
mechanisms are needed to provide agents with appropriate information
about the execution course and results.
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from France Telecom.



OWL-S represents one of main efforts in the semantic web services
domain. OWL-S covers three areas: the Service Profile describes what
the service does in terms of its capabilities and is used for discovery
purposes; the Process Model specifies ways through which clients can
interact with the service; the Grounding links the process model to the
specific execution infrastructure (e.g., maps processes to WSDL oper-
ations and allows for sending messages in SOAP [5]). The elementary
unit of the Process Model is an atomic process, which represents one
indivisible operation that the client can perform by sending a particular
message to the service and receiving a corresponding response. Processes
are specified by means of their inputs, outputs, preconditions, and effects
(IOPEs). Types of inputs and outputs are usually defined as concepts in
some ontology or as simple XSD data-types. Processes can be combined
into composite processes by using the various control constructs such as
sequence, any-order, choice, if-then-else, etc. Besides control-flow, the
process model also specifies a data-flow between processes. In the fur-
ther text we assume that the reader is familiar with OWL-S.

Algorithms and software tools using OWL-S ontologies for discovery
[6], invocation [7] and composition [8,9,10,11] were developed and are
available. However, OWL-S does not provide explicit support for moni-
toring and errors handling.! Specific applications and tools are supposed
to cover these areas. We will describe monitoring mechanisms that we
implemented as extensions of the OWL-S Virtual Machine [7] which is
a component that controls interactions between the client and web ser-
vices. Specifically, the OWL-S Virtual Machine (OVM) executes the pro-
cess model of a given service by going through the process model while
respecting the OWL-S operational semantics [12] and invoking individ-
ual services represented by atomic processes. During the execution, the
OVM processes inputs provided by the requester and outputs returned by
the provider’s services, realizes the control and data flow of the compos-
ite process model, and uses the grounding to invoke WSDL based web
services when needed. The OVM is a generic execution engine which
can be used to develop applications that need to interact with OWL-S
web services.

! There is a kind of support for dealing with errors in terms of conditional results that can be
used for representing erroneous outcomes, but we believe that this is only a very basic support.
We will analyze this in detail in Section 4.



The main contribution of this paper is the description of an event-
based monitoring extension to the OVM combined with introspection
functionalities and errors handling. These extensions allow to perform
different monitoring tasks such as logging, performance measuring, exe-
cution progress tracking, execution debugging or evaluations of security
parameters. We provide details on monitoring and logging in Section 3.
In Section 4 we define an approach to error handling that is used as part
of the monitoring extension and point out a possible extension of OWL-
S that would allow uniform error handling of different types of errors
that can occur during the execution. Section 5 addresses the support for
introspection in the OVM. In the last section, we conclude.

2 Problem domains

The need for monitoring, logging, error handling and execution intro-
spection arose as a natural requirement in the context of two different
projects where the OVM is used as an invocation engine of OWL-S web
services.

In the POIROT project, machine learning techniques are used in or-
der to learn and perform complex web service workflows, given a single
demonstration example. The human expert is using web services to solve
some complex problem, e.g., evacuation of wounded patients from the
battlefield to a hospital. The solution of the given problem is recorded
as a sequence of calls to individual web services that perform tasks such
as looking up airports by geographic location, finding available flights to
and from those airports, reserving seats on flights and reserving hospi-
tal beds at the destinations. Various components of the POIROT system
use recorded observations in order to learn hierarchical task models and
generalizations of these workflow traces by inferring task order depen-
dencies, user goals, and the decision criteria for selecting or prioritizing
subtasks and service parameters. The POIROT can dynamically access
the same variety of semantically interoperable domain services as the
user, which allows it to perform experiments to verify or falsify gener-
ated hypotheses by simulating the real services execution. The OVM is
used as an execution component and is also part of the experiment execu-
tion module. As such, it must provide rich enough feedback to learning
components to allow them to acquire new knowledge based on experi-
mental results.



In the second project, OVM is used as part of the mediation / bro-
kering component whose goal is to automatically reconcile discrepan-
cies and incompatibilities between service requester and service provider
assuming that the provider is (generally) able to satisfy the requester’s
needs. Since different types of mismatches between provider’s and re-
quester’s process models are possible, the mediator component must be
able to analyze both process models and to dynamically translate re-
quester’s messages and execute provider’s process model to allow smooth
interoperation. OVM is used to introspect and to dynamically execute the
provider’s process model.

Although the two projects are very different, from the perspective of
services invocation and monitoring the requirements are very similar and
complementary. The problems that we needed to address can be formu-
lated as follows:

1. Record the service calls and their outcomes during the execution of

the process model(s).
The recorded sequence can be used as an observation for the POIROT
learning components but it can be useful also for different purposes
as, e.g., debugging of the process model. Depending on the specific
purpose a different level of detail may be needed.

2. Verify if a given sequence of calls (atomic process) can be “generated”

by the composite process and/or replay a given sequence of calls if it
is possible. If the execution fails, identify reasons for it.
The POIROT experimental component may be interested in replaying
exactly the same sequence as the one performed by the human expert,
or it may modify the sequence to verify some hypothesis. Similarly, in
the process mediation scenario, we are interested in testing, if a given
sequence of requester’s calls can be satisfied by the provider’s process
model. In these cases the OVM must be able to record enough infor-
mation to allow replaying of some execution and to identify reasons
for possible execution failures.

3. In the mediator / broker / client driven execution allow the client to
see what steps (calls) can be chosen in each state of execution and/or
allow the client to “simulate” or execute the chosen call. If the call
cannot be executed or if it fails, provide an appropriate explanation.
The process model may be complex and may contain nondeterminis-
tic choices (any-order and choice control constructs) and the decision



of what choice is appropriate often depends on the execution context
and on the application logic. Software agents enacting the client role
of some process model must be able to decide, what choice to take,
if more options are available. Since the OVM “knows” the execution
context (e.g., values of variables, precondition evaluations, etc.), it can
simplify the client’s decision by providing introspection functionali-
ties allowing the client to see what choices are available in the given
execution context and filtering out those that are not available, e.g.,
due to unsatisfied preconditions.

3 Event based monitoring and logging

To solve the problem of monitoring during the process model execution,
at least two questions must be answered: what exactly should be moni-
tored and what (implementation) model should be chosen. While OWL-
S itself does not address these issues, the clear semantics of the process
model helps in answering the first question. By analyzing the process
model and the grounding, it is possible to identify important events that
might be monitored. The following list summarizes event types that oc-
cur during the execution of the process model:

— Process call: Presents probably the most important event type. An
atomic process call can be recorded as one event together with its in-
puts and outputs values and effects. A simple and a composite process
represent decomposition of a process into subprocesses. Therefore we
represent them as two separate associated events: the start of the pro-
cess and the end of the process. The start event is associated with input
values and the end event with output values and effects.

— Inputs assignment: Input values of processes can be provided either
by the user (client) of the process model or by the data binding that is
used, e.g., an input or an output of some previous or ancestor process
as the value source. We distinguish these two different situations as
separate event types.

— Outputs processing: Outputs of atomic processes are obtained as a
result of the service execution which is covered by the process call
event type and so no new event type needs to be introduced. For simple
and composite processes a new event type is needed to represent the
fact that the output value of the process is obtained from some output



data binding (such as, in the case of the OutputBinding produced by
the Produce pseudo-step).

— Preconditions evaluation: Represents preconditions evaluation of the
process with variables values assigned and with the true or false status.

— (Conditional) result evaluation: Represents an evaluation of a result
comprising the grounded inCondition expression, produced effects and
output bindings. A special event type represents a situation when no
result can be applied because the inCondition expression fails for all
conditional results.

— Control construct execution: For each control construct one event
type represents its start and one its end. Furthermore, we define spe-
cific event types for particular control constructs representing specifics
of their semantics. For control constructs involving nondeterministic
choices (any-order and choice) we define an event representing that
a particular branch was chosen. For control constructs whose execu-
tion depends on an expression evaluation (if-then-else, repeat-while,
repeat-until) the information representing this expression evaluation
and the branch chosen is included in the starting event type. Further,
we introduce event types that capture events as start and end of the
iteration in loop control constructs and start and end of the branch in
the split and split-join constructs.

— Grounding events: There can be different groundings for a given
process model. Since currently only WSDL grounding is defined by
OWL-S specifications, we identify only event types specific to WSDL
grounding. The WSDL grounding defines mappings of atomic pro-
cesses to WSDL operations and of inputs and outputs to WSDL mes-
sages and message parts. We define a separate event type for each type
of the mapping, e.g., an event type for mapping of an input, an event
type for mapping to a input message, etc.

— Failures and erroneous events: For different categories of errors spe-
cific event types are defined. We analyze error types and errors han-
dling in Section 4.

Based on this analysis we defined a hierarchy of event types showed in
Figure 1. Particular event types mentioned in the previous text are in the
leaves of the taxonomy. For space reasons, the figure does not show all
event types.
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Fig. 1. Event types taxonomy. Only selected classes are displayed, particularly, specific Excep-
tionEvent types are not shown (see Section 4) and only some ControlConstructEvent types are
shown.

It is important to note that described event types are application in-
dependent in two senses. First, they are derived only from the logic of the
process model and therefore can be used in any application. Second, they
are neutral to the purpose for which they can be used. So, for example,
it is easy to imagine, that if the OVM emitted described events during
the process model execution, they could be used for generating logs. If
a different monitoring task needs to be performed as, e.g., performance
analysis, the events could be used as well. Thanks to the application in-
dependence, the described events can serve as a sound basis for the mon-



itoring system. We adopted the event-based model [13] as the basis of
the monitoring extension to the OVM.

3.1 Events handling

During the execution of the process model, OVM emits instances of de-
scribed event types (events). Events can be processed by event-handlers.
There can be one, several or none event handler for a given event type.
The hierarchical organization of event types allows to define event-hand-
lers with varying granularity, e.g., one event-handler can be defined for
all instances of the ProcessCallEvent type (similarly to exception han-
dling in object-oriented programming languages). The implementation
of the OVM itself does not include any event-handlers and all events are
ignored by default. Event-handlers are application specific and can be
defined by the application programmer. Advantages of this model are its
efficiency and flexibility. An application can define event-handlers only
for event types that are important to it while ignoring the other.
Internally, events are represented as instances of OWL classes. This
choice is quite natural, since details of an event can be specified by re-
ferring to relevant parts or including parts of the executed process model
which is mainly defined in terms of OWL classes and instances. This is
also convenient for OWL-S aware applications since they can easily in-
terpret the content of events. So, for example, the event representing a
call of some atomic process refers to the instance of this process in the
process model and uses its inputs and outputs definitions when specify-
ing their values. We defined an ontology? of event types with each par-
ticular event type represented by one OWL class. The ontology exactly
corresponds to the hierarchy of event types introduced in Figure 1.
Figure 2 shows an instance of one event type emitted by the OVM
during the execution. This event represents a call of the isbnLookup web
service which searches for an ISBN given a book title as an input. The
isbnLookupPM namespace refers to the process model of the isbnLookup
web service and the books namespace refers to the books ontology that
defines concepts such as ISBN. In this example, the event refers to the ex-
ecution of the &isbnLookupPM; isbnLookup atomic process with “Crime
and Punishment” as the input value of the &isbnLookupPM;bookTitle
input parameter. The service returned an instance of the books:ISBN

% The ontology is available at http: //www.daml.ri.cmu.edu/owls/events.owl



<AtomicProcessCallEvent>
<timestamp>2007-03-12T12:35:12</timestamp>
<process rdf:resource="g&isbnLookupPM; isbnLookup"/>
<input>
<ParameterValueBinding>
<toParameter rdf:resource="g&isbnLookupPM;bookTitle"/>
<dataValue>Crime and Punishment</dataValue>
</ParameterValueBinding>
</input>
<output>
<ParameterValueBinding>
<toParameter rdf:resource="g&isbnLookupPM;isbn"/>
<objectvValue>
<books : ISBN>
<books:value>978-0140621808</books:value>
</books: ISBN>
</objectValue>
</ParameterValueBinding>
</output>
</AtomicProcessCallEvent>

Fig. 2. An event instance: atomic process call event representing isbnLookup service call

class representing the 978-0140621808 ISBN as the value of the &is-
bnLookupPM;bookTitle output parameter.

3.2 Logging

With the event based monitoring and event-handlers we get the logging
infrastructure almost for free. The log record of an execution session is
stored as a sequence of OWL instances representing events generated
during the execution. We developed a set of event handlers for the log-
ging purposes which we use in our projects and which can be used as a
general logging tool for OWL-S based application development. Depend-
ing on the particular purpose only some event-handlers are activated. So,
for example, in the POIROT project, services are currently represented
as atomic processes. Learning components therefore need to see only
instances of the AtomicProcessCallEvent and possible FailureEvents in
the log. In a different context, if we need to guarantee that the execution
of a composite process model can be replayed by the OVM, addition-
ally all instances of the ControlConstructEvent and ProcessCallEvent
are recorded in the log. Finally, for the debugging purposes all gener-
ated events are being logged.



4 Dealing with errors

OWL-S does not define a model for error handling and reporting. Ap-
plication level errors and failures as, for example, the situation when no
ISBN is found for a given book title, are supposed to be handled by using
conditional results. Other types of problems, for example, invocation er-
rors, must be taken care of by an execution engine. This lack of support
for explicit errors handling causes several problems:

— every application must define its own specific mechanisms for errors
handling which leads to decreased interoperability

— an OWL-S execution engine is not able to distinguish erroneous states
caused by application level errors from the normal flow which compli-
cates, e.g., monitoring and execution evaluation

— OWL-S process model does not capture explicitly the WSDL error
handling based on fault messages of the WSDL operations. This en-
forces specific application level solutions.

We present a solution that we incorporated into our event-based model. It
solves the mentioned problems only partially. Solving the error handling
in OWL-S in general would require a deeper analysis which is out of the
scope of this paper.

4.1 Errors as part of the event-model

Similarly to event types that we identified in the previous section, also
different erroneous situations can be identified:

1. OWL-S processing errors: Capture parsing / syntax level problems and
problems with malformed OWL-S files of a given service.

2. Service invocation errors: For example, communication failure, seri-
alization / deserialization error, no response, malformed response, re-
sponse time-out, etc.

3. Process level execution errors: Include all erroneous situations that
may occur during the execution of the process model and are caused
by the discrepancies or inconsistencies on the process model level. For
example, a required input is not provided by the client, a wrong input
type is provided, the precondition of a process fails so that it cannot be
executed, etc.

4. Application level errors: Erroneous states specific to the application
logic of a web service as, e.g., no ISBN is found for a given book title.



These problems are solved by specifyig different results in the process
model.

The first three categories of errors are application independent which al-
lows us to define specific event types in our event types hierarchy repre-
senting particular erroneous situations. Figure 3 shows a snippet of the
events taxonomy with event types representing exceptional states. Ex-
ception events instances contain context information specifying reasons
for the error.

Figure 4 displays an example of a process level error, namely the
exception event caused by providing a wrong input type of the &is-
bnLookup;isbnLookup atomic process. An instance of the &books;Title
class is expected as the value of the &isbnLookup;bookTitle input param-
eter according to the process model definition, but the client provided the
&xsd;string instead.

The main problem of application level errors is that there is no way
for an invocation engine to identify an application level error because
it is represented as a conditional result and it is not distinguished from
normal results. Therefore, for example, it is not possible to emit appro-
priate exception events or to generate a log record that would declare an
erroneous state. We believe that OWL-S should provide some support for
explicitly distinguishing application level erroneous states (results) from
normal ones. One way of doing this would be to use a different OWL
class for representing a normal result and a different one for representing
an erroneous result. Currently every result is represented as an instance
of the Result class. If, let us say, the FaultResult were introduced in the
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<WrongInputTypeException>
<timestamp>2007-03-12T12:47:23</timestamp>
<process rdf:resource="g&isbnLookup;isbnLookup" />
<parameter rdf:resource="&isbnLookup;bookTitle"/>
<dataValue>Crime and Punishment</dataValue>
<expectedType>&books; Title</expectedType>
<invocationType>&xsd; string</invocationType>

</WrongInputTypeException>

Fig. 4. Example of an exception event

process model, an application designer could clearly separate normal and
erroneous results. It would be also possible to define specific application
exception event types hierarchies as subclasses of the FaultResult. This
would allow an invocation component to handle application errors trans-
parently in the same fashion as other types of exception events.

4.2 Runtime exceptions handling

When some erroneous situation occurs during the execution the OVM
generates an instance of an appropriate exception event type. If an event-
handler is defined for a given exception type, it is called. The event-
handler can for example create an appropriate log record or it can inform
a monitoring component. Besides, the normal execution flow is inter-
rupted by throwing an ordinary exception of the programming language.
Since the OVM is programmed in Java, we use the Java built-in exception
handling mechanism. We did not address explicit exception handling in
the OWL-S process model. In the OVM implementation, a thrown Java
exception is propagated to the caller of the OVM. This behavior is appro-
priate in our context. However, it might make a sense to solve exception
handling and/or compensation on the level of the process model (as for
example BPEL4WS does). This would, however, require extension of
OWL-S specifications as, for example, introducing the notion of excep-
tions in the process model and mechanisms of propagating of exceptions
in composite processes.

5 Virtual machine introspection

Introspection functionalities are the last extension of the OWL-S virtual
machine supporting monitoring tasks. By introspection we mean the abil-
ity of the OVM to provide the caller or the active event-handler with



information about the state of the execution during the runtime. In par-
ticular, the OVM allows examination of the current execution context,
i.e., the values of inputs, outputs, local variables, state of precondition
evaluation and the execution stack. Basically, the value of every variable
and every expression with a specified URI can be inspected. This can be
useful for example for debugging or tracing of the process model.

The OVM also provides information about what are the possible choi-
ces in terms of available next process calls in a given execution state. A
composite process may include branching and choices, and in a given
state, more than one choice may be possible. For example, a client of a
fictive book selling service may at some point either search for a book,
see the content of the shopping cart or proceed to checkout. Since the
OVM is executing the process model and knows the execution context it
can relatively easily evaluate what next process calls are possible. This
information is particularly useful for components as service brokers or
process mediators. If there is more than one choice available in a given
state, the client can specify which one should be taken by the OVM.

Currently, the OVM supports only passive examination of the exe-
cution state. It is not allowed to modify the flow of execution by, for
example, changing values of parameters.

6 Conclusions

In this paper we described an event-based monitoring model for OWL-S
semantic web services. The main advantages of the model are its appli-
cation independence, flexibility and extendibility. The model is easy to
comprehend yet complex monitoring tasks can be performed by using it.
It imposes only minimal constraints on the application and monitoring
tools developers. Since it is tightly coupled with the OWL-S definitions
of the process model, it allows to monitor virtually any aspect of the
process model execution and to provide information in a way that is un-
derstandable by OWL-S aware clients. We applied the monitoring model
to develop a logging facilities.

As part of the even-based monitoring problem we had to deal with er-
ror handling which is not covered by OWL-S specifications. Specifically,
we figured out that it is impossible to identify application level errors
in an application independent way because OWL-S does not support ex-
plicit specification of erroneous results/states. We suggested a relatively



simple extension in the form of introducing a new category of results
representing erroneous states. This extension would allow applications
to clearly distinguish normal results from errors and it would allow the
invocation and monitoring tools to deal with application level errors in
the same way as with any other errors that may occur during the execu-
tion. We are aware that the proposed extension covers only one part of
the errors handling and processing which deserves a more comprehen-
sive examination that would address such issues as exceptions handling
in the process model or errors compensation.
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