Methods for task allocation via agent coalition

formation ™

Onn Shehory

The Robotics Institute, Carnegie-Mellon Universily,
5000 Forbes Ave, Pitlsburgh, PA 15213, USA

Sarit Kraus

Depl. of Math and Compuler Science, Bar Ilan University,
Ramat Gan, 52900 Israel,
and
Institute for Advanced Computer Sludies, University of Maryland,
College Park, MD 20742, USA

Abstract

Task execution in multi-agent environments may require cooperation among agents.
Given a set of agents and a set of tasks which they have to satisfy, we consider sit-
uations where each task should be attached to a group of agents that will perform
the task. Task allocation to groups of agents is necessary when tasks cannot be
performed by a single agent. However it may also be beneficial when groups per-
form more efficiently with respect to the single agents’ performance. In this paper
we present several solutions to the problem of task allocation among autonomous
agents, and suggest that the agents form coalitions in order to perform tasks or im-
prove the efliciency of their performance. We present efficient distributed algorithms
with low ratio bounds and with low computational complexities. These properties
are proven theoretically and supported by simulations and an implementation in
an agent system. Our methods are based on both the algorithmic aspects of combi-
natorics and approximation algorithms for NP-hard problems. We first present an
approach to agent coalition formation where each agent must be a member of only
one coalition. Next, we present the domain of overlapping coalitions. We proceed
with a discussion of the domain where tasks may have a precedence order. Finally,
we discuss the case of implementation in an open, dynamic agent system. For each
case we provide an algorithm that will lead agents to the formation of coalitions,
where each coalition is assigned a task. Our algorithms are any-time algorithms,
they are simple, efficient and easy to implement.

*This material is based upon work supported in part by the NSF under grant

Preprint submitted to Elsevier Science 4 April 1998

1 Introduction

Autonomous agents in multi-agent environments may need to cooperate in
order to fulfill tasks. Given a set of tasks to be satisfied, we consider situa-
tions where each task is assigned a group of agents to perform it. We address
cases in which dependencies among tasks, if such exist, are due to compet-
ing resources’ requirements or execution precedence order. The allocation of
tasks to groups of agents is necessary when tasks cannot be performed by
single agents or when single agents perform them inefficiently. Various groups
of agents may have different degrees of efficiency in task performance due to
differing capabilities of their members. Task allocation should be done with
respect to these differences.

The purpose of the allocation of tasks to groups of agents is to maximize bene-
fits via their performance. We seek an algorithm that will enable a distributed
task allocation, i.e., without a central authority. A low computational com-
plexity shall be considered an important property for such a solution. Hence, in
this paper we present algorithms that enable the agents to form groups and as-
sign a task to each group. We call these groups coalitions. For the development
of the required algorithms, we combine a combinatorial algorithmic approach
and concepts from operations research, with autonomous agents’ methods and
distributed computing systems methods. The coalitions the agents form when
using these algorithms are beneficial for systems of cooperative agents, as we
show in this paper. We will concentrate on coalition formation in environments
which are not necessarily super-additive® [11,21].

Distributed artificial intelligence (DAI) is concerned with problem solving in
which several agents interact in order to execute tasks. During the past few
years, several solutions to the coalition formation problem have been suggested
by researchers in the field of DAI. These solutions concentrate on the special
case of autonomous agents in a super-additive environment [28,44,64]. Most
of these solutions are given for coalition formation in Multi-Agent Systems
(MAS), where each agent tries to increase its own personal utility via cooper-
ation. One of the main problems of coalition formation in the case of MAS is
how to distribute the common outcome of a coalition among its members. We
present coalition formation algorithms which are appropriate for Distributed
Problem Solving? (DPS) [6] cases where agents cooperate in order to increase
the overall outcome of the system [45] and are not concerned with their per-

No. TRI-9423967 and Army Research Lab under contract No. DAALO197K0135.
Preliminary results of this research were published in the proceedings of IJCAI-95
and ICMAS-96.

!In a super-additive environment any combination of two groups of agents into a
new group is beneficial. For details see section 3.

2 Recently, DPS agent systems are referred to as cooperative MAS [52].

sonal payoffs as they are in MAS. In such cases, the disbursements to the
agents are not as important as they are in MAS. In addition, our solution is
not restricted to the super-additive environment. Since in the case of a super-
additive environment the grand-coalition is expected®, a coalition formation
process for DPS systems in super-additive environments shall be very simple.
Conversely, the non-super-additive environment case is much more challenging
and may be very realistic. In cases where the addition of every new agent to
the coalition is costly *, as the size of the coalition increases, it may becomes
non-beneficial to form it. We suggest a solution which is most appropriate for
such non-super-additive cases.

We begin by illustrating the problem we intend to solve (section 2). Then, we
give a brief description of the environment with which we deal in section 3. We
also briefly present the basic definitions and assumptions in section 3.1 and the
set-covering and set-partitioning problems in 3.2. The algorithms are described
in sections 4 and 5, their ratio-bounds are discussed in section 6, and their
complexity is analyzed in section 7. Section 8 contains the simulation results
and their analysis, and in section 9 we discuss the requirements and properties
of an implementation in an open MAS. Related research is referred to in section
10, and section 11 ends our paper with a discussion and conclusions.

2 Illustration of the problem

The problem we solve in this paper is that of task allocation among groups
of autonomous agents in a DPS system. Given a set of tasks, the system
as a whole must seek a maximization of its benefits by satisfying tasks®. We
consider cases where tasks may have a precedence order. We assume no central
authority that distributes the tasks among the agents. Therefore, they shall
reach an efficient task allocation by themselves, seeking a maximal outcome.
This is achieved via the formation of coalitions, possibly overlapping ones.

3 A grand coalition is a coalition that includes all of the agents [43].

4Such costs may arise from the intra-coalition coordination and communication
costs; these increase with the size of the coalition.

® Ideally, all of the task should be satisfied, however when attempting to maximize
benefits, the execution of some tasks may be hindered.

Initial configuration

T
|
!
|
!
|
T
|
!
|
!
|
T
I
I
|
|
I

Final configuration

T

o

T
|
!
|
!
|

-Gy - G,

We demonstrate the problem using a Blocks World domain as in the figure
above. The blocks are of various sizes (for simplicity, we consider the case of
a unit block and a row of attached unit-blocks). Each unit-block weighs one
weight-unit. The blocks should be moved from the initial configuration to the
final configuration. This should be done by a group of agents, each capable of
lifting a limited weight (e.g., 2 weight-units) and moving it aside as much as
necessary. Each block can be carried by a limited number of agents (due to
physical limitations). We do not discuss the planning problem but assume a
previously provided plan. This plan shall divide the goal into subgoals with
a precedence order. Such subgoals, which are part of the global plan, are
presented in the figure below. In such a subgoal, one cannot place block C
before blocks A and B are properly located. In addition, cooperation among
agents is necessary. Block C cannot be lifted by one agent. However, 4 agents
can do so but less efficiently, due to coordination costs, and 20 of them will
be far too many. Obviously, any member of the group that places C may be a
member of a group that places A or B. However, if the agents have a limited
amount of fuel, they may cease functioning after performing a set of tasks,
and therefore they cannot be part of all working groups.

The global goal may be partitioned into several subgoals. For instance, it may
be partition to three subgoals: subgoal I — locate blocks Ay, By, Cy; subgoal 11
—locate blocks Ay, By, Cy; subgoal 111 — locate block C5. Each of these subgoals
can be performed by a coalition of agents, and subgoal III can be performed
only after subgoals I and II have been performed. Members of the coalitions
that perform either subgoal I (C}) or subgoal 11 (Cy7) may be members of the
coalition that performs subgoal III. It may also be possible that members of
C'1 be members of Cj; and vice versa. However, to increase the efficiency of
the performance of subgoals I and II, C'; and C; should not have any common
members. This will enable the performance of subgoals I and II simultaneously,
thus saving time and avoiding an intra-coalitional coordination overhead that
arises from larger coalitions.

Another example of our problem may be a transportation company®. The
company supplies transportation services via a system of autonomous and
automated trucks, lift trucks, cranes, boats and planes which we refer to as
agents. This system is usually arranged in a distributed manner, since every
single agent may perform limited tasks by itself. The agents differ in their
capabilities. That is, they differ in the type of actions that they can perform,
in the size, volume and weight of goods that they can carry at one time, in
the transportation speed, its costs and the method by which it is performed.
There may be occasions where agents cannot perform a given transportation
task by themselves. In such cases, cooperation is necessary. Therefore, the
agents shall form groups, and each group of agents will cooperatively fulfill a
transportation task. We call such cooperating groups coalitions. Some coali-
tions may be unable to perform some tasks. Some tasks cannot be performed
unless other tasks have been satisfied prior to their performance. Among the
coalitions that are able to perform a given task, the efficiency and the costs
may be completely different.

6 Transportation systems have been extensively used as examples for DPS systems
(e.g., [41]). We do not intend to solve a specific transportation problem. However,
we provide this example because the reader may be familiar with it.

For example, suppose that a task of taking 10 passengers from Mirabel airport
to Dorval airport (both in Montréal) has been ordered. This may be performed
by several private cars or by a single helicopter. However, using a helicopter
in such a case will probably cost much more than using private cars and
take approximately the same time (due to flight constraints and regulations).
Therefore, the most appropriate coalition in such a case is a coalition of private
cars. This coalition shall be such that it consists of the optimal number of cars
as per number of passengers. An excess of agents in the coalition may be costly
either for the coalition members or for the system as a whole, or both. This
is due to the communication, coordination and internal organization costs,
both for the formation of the coalition and for its maintenance. These costs
are an increasing function of the size of the coalition. In the case of disjoint
coalitions, an overhead of agents in a coalition may prevent the formation of
other beneficial coalitions and may therefore reduce the total outcome of the
system.

The transportation company may have many agents, and therefore a central
authority for coalition formation may be too costly in time and computa-
tional efforts. Using a distributed task allocation mechanism rather than a
centralized one may be advantageous (as discussed in section 7). In such cases
task allocation and cooperation shall be decided upon locally. However, such
a company seeks the maximization of its benefits. Therefore, the company
shall attempt to satisfy beneficial transportation orders, mainly to bring an
immediate profit, but also to satisfy clients (which is important for the com-
pany’s future). Since a single agent cannot always satisfy a client’s order, close
cooperation is necessary. For such cases, the company shall provide the agents
with a simple but also efficient algorithm that will enable the formation of
coalitions of agents.

The problem of the transportation company is generalized in this paper. We
provide algorithms which enable the allocation of tasks among a system of
agents via the formation of coalitions. We show that the algorithms are simple
to implement, have a short run-time (hence can be used as a real-time method),
and yield results which are close to the optimal results.

3 Environment description

In order to elucidate the problem and its solution, we briefly present some
general notations and definitions of concepts. We assume that agents can
communicate, negotiate and make agreements [59]. Communications require
time and effort on the part of the agents. We also assume that resources can
be transferred between agents. This ability may help the agents form more
beneficial coalitions. Agreement on cooperation may be reached even if the

last assumption is not valid (e.g., [1,2,29,62]). However, the possibility of goods
transferability (or alternatively, side-payments) may help the agents form more
beneficial coalitions. To emphasize the non-super-additivity property of the
environment with which we deal, we assume that the addition of agents to a
coalition is costly, and therefore expanding coalitions may be non-beneficial.
Without this assumption, the grand coalition, as a coalition that consists of
all of the formed coalitions within it, would be the most beneficial.

3.1 Definitions

We recall the following definitions as presented in [45,46]. There is a set of n
agents, N = {A}, Ay,..., A, }. Each agent A; has a vector of real non-negative
capabilities B; = (bi,...,b'). Each capability is a property of an agent that
quantifies its ability to perform a specific action. These capabilities are ei-
ther expendable or non-expendable (e.g., the carrying capability in the Blocks
world). The expendability of the capabilities affects the overall task-execution
of the agent-system. Recalling the transportation company, the volume and
weight that can be transported by an agent is its transportation-volume capa-
bility. In order to enable the assessment of coalitions and of task-execution, an
evaluation function shall be attached to each type of capability. Such a function
shall transform the capability units into monetary units. In the transportation
case, this function may be the income from performing a task. This may be
a linear function of the number of passengers. We also assume that there is a
set of m independent tasks” T' = {t1,t3,...,,,}. For the satisfaction of each
task ¢;, a vector of capabilities B; = (b}, ..., b!) is necessary. The utility gained
from performing the task depends on the capabilities that are required for its
performance. In our solution we assume, to simplify the calculations, that the
utility gained is a linear function of the resource amount.

There may be occasions where a specific task ¢; cannot be performed unless
another specific task ¢; has already been satisfied. This is generalized by a
partial precedence order between the tasks, ¢y, < ¢, < ... =< ST
e, =X .00 2 bhp, s where t; < t; means that ¢; is the predecessor of ¢; and
1; 1s the successor of ¢; in the performance order. The precedence order and
the resource consumption are the only dependencies that we assume. This
restricts our solution to cases where no other explicit dependencies exist (this

"The partition of a single task into subtasks is beyond the scope of this paper.
However, if these subtasks are independent, then the algorithms that we suggest
can be used recursively to allocate sub-groups of agents to the subtasks. In cases
where there are interdependencies (which are not precedence dependencies) among
tasks, we suggest to combine dependent tasks into unified tasks. The recognition of
such dependencies can be performed by implementing techniques from constraint
satisfaction research (see [35,37]).

is appropriate for various domains, including the Blocks world and several
transportation domains).

A coalition can be defined as a group of agents who have decided to coop-
erate in order to achieve a common task. We assume that a coalition can
work on a single task at a time, and that each agent may sometimes be a
member of more than one coalition. The latter assumption can increase an
agent’s ability to use its resources for task execution. A coalition C' has a
vector of capabilities B. which is the sum of the capabilities that the coali-
tion members contribute to this specific coalition. Note that in the case of
overlapping coalitions this sum is not the sum of all of the capabilities of the
members, because the agents may be members of more than one coalition, and
can contribute part of their capabilities to one coalition and part of them to
another. A coalition C can perform a task ¢ only if the vector of capabilities
necessary for its fulfillment B; satisfies V 0 < <r bl < bic and, in the case
of precedence order, t has no unsatisfied predecessors. For each coalition C'
a value V can be calculated® which is the joint utility that the members of
C' can reach by cooperating via coalitional activity for satisfying a specific
task ?. The coalitional value V is directly affected by the capabilities that the
members of the coalition contribute to it, the precedence order of the tasks
and the number of coalition members. In the case of overlapping coalitions,
a method is required according to which the agents decide how to partition
their capabilities between coalitions in which they are members. This method
is provided in the corresponding coalition formation algorithm, in section 4.
Recall the transportation company: given a specific transportation task, if the
sum of transportation-volumes of a coalition is less than the volume necessary
for the task, then the value of the coalition for this specific task is zero. If the
coalitional transportation volume is much greater than necessary for satisfy-
ing the task, then the value is positive, but relatively small compared to the
case of having the exact volume. Actually, the transportation-volume is not
the only capability of the agents and therefore does not affect the coalitional
value exclusively.

To conform with a common representation, we may employ the notion of
coalitional cost ¢ instead of coalitional value. This cost may be calculated as
the reciprocal of the coalitional value or as its negation. Such a calculation
attaches a low cost to a high-valued coalition and vice versa. The coalitional
rationality (as described below), which leads agents to try to increase the

8 The calculation of coalitional values is, in the general case, rather complex. Never-
theless, low complexity approximation methods for calculating values of agreements
among multiple agents have been recently developed [26], and these can be utilized
for our case.

9 This notion of coalitional value is different from the notion commonly used for
coalitional values in game theory, since here the value depends on the coalitional
configuration and on the task allocation.

coalitional value, likewise leads them to try to reduce the coalitional cost.

We assume that the agents are group-rational. That is, they form a coalition
only if they benefit as a coalition at least as much as the sum of their personal
benefits outside of it [22,33,39]. The agents benefit if they fulfill tasks. Group
rationality is necessary to ensure that whenever agents form a coalition, they
increase the system’s common outcome, which is the sum of the coalitional
outcomes. We also assume that each agent tries to maximize the common
utility; among all of the possibilities that an agent has, it will choose the one
that will lead to the maximum common utility. However, group rationality of
the agents does not necessarily entail a super-additive environment. In order
to emphasize the difference between the super-additive environment and the
ones with which we deal, we describe the super-additive environment below.

A super-additive environment is such that the set of the possible coalitions sat-
isfies the following rule: for each pair of coalitions Cy,C; in the set, C;NCy = (),
if C1,C; join together, then the newly formed coalition will have a new value
View > VA 4+ V2, where V2, V2 VA are the values of the coalitions Cy,C and
Crew, respectively ', Rational agents in a super-additive environment will
prefer the grand coalition over all other coalitions. Hence, in a super-additive
environment, when the grand coalition is formed, the only problem that re-
mains is the utility distribution among its members. This is a major problem
in MAS, however, in DPS systems such a problem is of lesser importance or
may not exist at all.

More assumptions are as follows: we assume that the agent-population does
not change during the coalition formation process. We do not assume complete
information. That is, all of the agents must know about all of the goals and the
existence of other agents, however only coalition members must know all of
the details required for satisfying a specific goal. Note that for implementation
in a dynamic agent system, the assumptions of a fixed agent population and
full knowledge about goal and agent existence are later relaxed (in section
9). Additional assumption are as follows: agents outside a coalition C' need
not know the details of the intra-coalitional activity within C'. Our algorithm
should work regardless of clock synchronization among the agents!!. That is,
in order to decide which agent will perform what action, the agents do not
have to know precisely when other agents will act. Nevertheless, significant
time differences between the agents’ clocks may reduce the efficiency of the
overall goal satisfaction.

10 Note that in our case there may be coalitions C7,C5 and C,,.,, such that Vaer <
V2 + V2, however the group rationality prohibits the formation of such Ci,eys.

1 This assumption is only with regards to the requirements of our algorithm. The
properties of the tasks of the multi-agent system may require such a synchronization,
independently of our algorithm requirements.

Now that we have made the necessary assumptions and definitions, we can
formally present the problem. Given a set of m tasks T' = {t1,...,¢,}, with
an (optional) precedence order and a set of n agents N = {A,..., A,} with
their capabilities, the problem we solve is of assigning tasks ¢; € T to coalitions
of agents C; C N such that 3, V; (the total outcome) is maximal and the
precedence order is respected as well. Note that while we initially refer to
T and N as fixed, we later allow them to change dynamically. We solve the
problem for the general case of non-super-additive environments. However,
even in the case of a super-additive environment, the solution will consist of
coalitions C; that do not have null ** members. This is because the membership
of null members in a coalition will probably increase the coalitional costs thus

reducing the overall outcome.
3.2 Set Covering and Set Partitioning

Since task allocation among agents may be approached as a problem of as-
signing groups of agents to tasks, the partition of the agents into subgroups
becomes the main issue. Therefore, the task allocation problem becomes sim-
ilar to the set partitioning and the set covering problems.

Below we formulate the two problems: SCP and SPP. Given a set N =
{A1,...,A,} and a set of subsets of N, S = {C4,...,C,,}, such that C; C N
and S C 2V a set-cover is any S’ C S, such that Ug,es Cj = N. The mem-
bers of S” are the covering sets. If the members of S’ are also pairwise disjoint

(ie,V Ci,C; € 8,1 #35 C;nC; =10), then S" is a set-partitioning of
N. We assume that each C; € S has a positive cost ¢;. The cost of a cover
S"is Yc,esr ¢j. The set covering problem entails finding the cover with the
minimum cost, and the set partitioning problem is defined correspondingly

[3,4,20].

The set covering problem is NP-complete [12]. Therefore, the optimal solu-
tion implies an exponential computational complexity, which is too high for
practical use. However, a variety of algorithms for solving this problem sub-
optimally have been suggested, e.g. in [4,8,9]. Among them we can find the
algorithm of Chvatal [9], which has a logarithmic ratio bound !*. Given its
low ratio bound, it is very tempting to adopt and adapt this algorithm for the
case of multi-agent coalition formation. This cannot be done for the case of
disjoint coalitions, since the algorithm provides a solution to the set covering
problem, in which subgroups may overlap. Furthermore, even when overlap-
ping coalitions are allowed other difficulties are still present. These include the

12 Null members are agents that contribute nothing to the coalitional performance.
13 An approximation algorithm for a problem has a ratio bound p(n) if p(n) is
smaller than the ratio between the optimal cost and the approximated cost.

10

following: the set covering problem deals only with a small given set of subsets,
and in the case of agents, the number of possible coalitions is 2" (hence, we
need heuristics for reducing this number); the algorithms for SCP and SPP are
centralized and, since we deal with autonomous, distributed agents, we seek
a distributed algorithm; the SCP and SPP algorithms do not refer to cases
where there is a precedence order between the chosen subgroups. Despite the
deficiencies indicated above, we attempt to borrow some of the properties of
the Chvatal’s algorithm, thus constructing coalition formation algorithms with
a low ratio bound.

4 The algorithms

The algorithms we present below are greedy distributed set-partitioning and
set-covering algorithms with low ratio bounds. They were designed for the
special case of autonomous agents in an environment which is not necessarily
super-additive, and that work as a DPS system (i.e., they try to act in order to
increase the performance and benefits of the group as a whole). The algorithms
are any-time algorithms, that is, if the execution is stopped before an algorithm
would have normally terminated, it still provides the agents with a solution
which is better than their initial state or other preceding states.

The algorithms consist of two main stages (presented later in detail):

(i) In the preliminary stage of each algorithm, all possible coalitions are
distributively calculated and their initial values are computed.

(ii) The main stage of the algorithms consists of an iterative distributed
greedy procedure in which two sub-stages occur:

— The coalitional values are re-calculated. This is done because an efficient
coalition formation algorithm requires up-to-date information about the
values of the possible coalitions, to enable the choice of the preferred
ones.

— The agents decide upon the preferred coalitions and form them.

As previously stated, the solution of the SPP and the SCP in the case of
autonomous agents are of an exponential complexity, since the number of the
possible coalitions is exponential (27). A reduction in this number is possible
by limitations on the permitted coalitions. This can be done via the constraints
of the specific problem under investigation, e.g., it may happen that all of the
tasks must be performed by the same number of agents. In case no specific
limitations accrue from the properties of the specific problem, we recommend
preferring small-sized coalitions. We justify such heuristics by the associated
cost-estimation: since communication and computation-time are costly, and
the agents seek cost-reduction, they should try to avoid unnecessary commu-

11

nication and computation activities. In this sense, small-sized coalitions are
more economical to design than larger coalitions and therefore shall be pre-
ferred ' . This is the case since the calculations and communication operations
are exponentially dependent on the numbers of members in a coalition. These
heuristics will be implemented in our algorithms by presenting an integer &
which will denote the highest coalitional size allowed. This restriction will
limit the number of coalitions to O(r*), which is a polynomial number in n.
However, this does not trivialize the problem since even with such restrictions,
the problem remains NP-complete !°. In the transportation case, a limitation
on the size of coalitions may be even more reasonable than in the general case.
Here, it would be very convenient to assume that the volume of a single task
never exceeds a given size. Such a restriction affects the number of coalitions
in the same way as in the case of communication and computation restrictions.
Additional information about the properties of the tasks and the coalitional
values may enable the calculation of the expectation values of the outcome of
different coalitions. This shall improve the heuristics we employ, thus reducing
the number of coalitions and the complexity of the algorithm.

The initial coalitional state consists of n, single agents. The agents then begin
negotiating [31] and, step by step, form coalitions. In the case of disjoint
coalitions, agents that join coalitions quit the coalition-formation process, and
only the remaining single agents will continue negotiations. The reduction in
the number of agents that continue negotiating reduces the computational and
communication costs. In the case of overlapping coalitions, agents that join
coalitions do not quit the coalition-formation process unless their resources
are depleted. However, the overlapping property increases the efficiency of
task execution and thus the benefits of the system.

4.1 Preliminary agreement on calculation-distribution

Prior to forming the coalitions, the agents must agree on the distribution of
value calculations among themselves. In order to achieve this distribution,
each agent A; should perform the following steps:

14 Note that this seems to contradict the economies of scale principle. However, our
coalitions are created for performing a single task, and they afterwards decompose,
whereas the principle of economies of scale refer to long-lasting organizations which
perform multiple tasks over time. Hence we find this concept inapplicable to our
case. There may be, however, cases in which only large coalitions can satisfy the
tasks. In such cases different heuristics must be adopted.

15 This is because the number of combinations of coalitions may still be exponential.
This is similar to the NP completeness of SPP and SCP which, too, refer to a small
number of subsets.

12

(i) Calculate all of the permutations that include up to k& agents including

A; and put in P;, the set of the potential coalitions of agent A;.

(ii) While P; is not empty, do:

— Contact an agent A; that is a member of a potential coalition in P;.

— If this is the first contact with A;, locate information about its capa-
bilities (i.e., retrieve B;).

— Commit to the calculation of the values of a subset ' S;; of the common
potential coalitions (i.e., a subset of the coalitions in P; in which both
A; and A; are members).

— Subtract S;; from P;. Add S;; to your long-term commitment list ;.

— For each agent Aj that has contacted you, subtract from P; the set S,
of the potential coalitions it had committed to compute values for.

— Compute values for the coalitions you have committed to!” (.S;;), as
detailed below (section 4.2, (i)-(iv)). If some capabilities are unknown,
contact the relevant agents!®.

— Repeat contacting other agents until P; = {A;} (i.e., no more agents to
contact).

After the preliminary stage, each agent A; has a list L; of potential coalitions
for which it had committed to repeatedly calculate the values, and their pre-
liminary values. In addition, A; has all of the necessary information about the
capabilities of the members of these coalitions, and it updates the information
if necessary 9.

4.2 Distributed, repeated calculation of coalitional values

The coalition formation algorithms require repeated calculation of the coali-
tional values. As opposed to the common approach to coalitional values, the
values in our model vary continuously. Therefore, the calculations should be
repeated iteratively. However, the calculation in each iteration follows the

16 The size of this subset may vary from a single coalition to all of the common
coalitions. The agents should make this decision with respect to their relative com-
putation speed.

17Note that since agents may have different computation capabilities some will
finish faster than others. These will re-enter the loop and commit to another subset
of potential coalitions. By this, the computations will be distributed evenly with
respect to computing speed.

18 Instead, as done in the implementation (section 9), agents can query a match-
maker for this information.

19 Note that this does not require that each agent know all of the capabilities of all
the others because they do not necessarily compute coalitions where these agents
are members. The necessity of agents’ knowledge about others is further relaxed in
the implementation in an open system, section 9.

13

same procedure, as described below. Note that this procedure is appropriate
for either the overlapping or the non-overlapping cases. For the case of tasks
with precedence order, some modifications will be necessary. The basic proce-
dure for calculating the coalitional values is presented below. In addition to
L;, each agent A; should maintain a list of the coalitions for which it should
currently compute values, denoted LS, initially set?° to (). Given these lists,
agent A; should perform the following steps:

Loop and for each coalition C on list L{", perform:

(i) Calculate the coalitional potential capabilities vector BF°, by summing
up the unused capabilities of the members of the coalition *! . Formally,
Bl =3 4.ec Bi.
(ii) Form a list K. of the expected outcomes of the tasks in 7" when coalition
C' performs them. For each task ¢t; € T', perform:
— Check what capabilities B; are necessary for the satisfaction of ¢;.
— Compare B; to the sum of the unused capabilities of the members of the
coalition B¢ thus finding the tasks that can be satisfied by coalition
C.
- If Vi,bj- € B; < b;c € B¢ (that is, t; can be satisfied by '), calculate
t;’s expected net outcome e; with respect to |C'|. This shall be done
by calculating the gross benefit acquired from the task execution. The
latter is the sum of the market-values of the capabilities necessary for
the execution of ¢; as expressed in B;. From the gross benefit, the sum
of capabilities costs and internal coordination costs must be subtracted.
This will be the expected net outcome e; of task ¢; when coalition C
performs it. Put ¢; in E..
(iii) Among the expected outcomes on list £, choose the maximal. This will
be the coalitional value V..
(iv) Calculate the coalitional cost which is ¢, = VLC
In cases where computation is the bottleneck of the agent-system, additional
action on the part of A; may be necessary. If A; has finished computing values
for the coalitions in L{" but another agent, for instance A;, has not finished
its computations, A; should contact A; and commit to the computation of the
values of a subset ST of L{". Then, A; should add Sf7 to L{" and repeat the
iterative process above.

Having calculated the coalitional values and costs, the agents can continue to
the proceeding steps of the coalition formation iteration.

20 [¢7 is initially () because all of the values were calculated in the preliminary stage.
21 Note that in the case of overlapping coalitions, this sum is not B., the coalitional
vector of capabilities.

14

4.3 Choosing coalitions

In this sub-stage, in each iteration of the algorithms, the agents decide step-
by-step which coalition should be preferred and formed, and the coalitional
configuration is gradually achieved. At the end of the coalition-value calcula-
tion sub-stage, each agent A; will have a list L; of coalitions and their values
and costs which it had calculated. In this sub-stage, the agents shall form
coalitions. Each agent A; shall iteratively perform a sequence of steps. The
overlapping coalitions’ case will require a sequence different from the disjoint
coalitions’ case.

4.3.1 Disjoint coalitions

In order to simplify the representation of the algorithm, we denote the ratio
between the cost of the coalition and the coalition’s size by w; = ¢;/ | C; |
and call it the coalitional weight. At the end of the first sub-stage of each
iteration of the algorithm, each agent will have calculated a list of coalitions
and coalitional values and weights.

Each agent A; shall iteratively perform the following:

(i) Locate in L; the coalition C; with the smallest w;.

(ii) Announce the coalitional weight w; that it has located.

(iii) Choose the lowest among all of the announced coalitional weights. This
Wiy Will be chosen by all agents. Choose the corresponding coalition C},,,
and task ?;,,, as well.

(iv) Delete the members of the chosen coalition Cj,,, from the list of candidates
for new coalitions.

(v) If you are a member of the chosen coalition Cj,,, join the other members
and form Cj,y,.

(vi) Delete from L; the possible coalitions that include deleted agents.

(vii) Delete from 7' the chosen task #;,,.

(viii) Assign to L{" the coalitions in L; for which values should be re-calculated
(see details below).

The above procedures of calculating coalitional values and choosing the pre-
ferred coalitions will be repeated until all agents are deleted (that is, until all
are assigned to coalitions), or until there are no more tasks to be allocated,
or none of the possible coalitions is beneficial. Some of the coalitional values
shall be re-calculated repeatedly since values may be affected by variations in
the coalitional configuration. This is because each value is calculated subject
to the tasks that should be performed. A change in the coalitional configura-
tion corresponds to an assignment of a task to a coalition. This specific task
no longer affects the coalitional values which it may have previously affected.

15

Therefore, the coalitional values that have been calculated with respect to
a task that has just been allocated must be re-calculated. All other values
remain unchanged.

4.3.2 Qverlapping coalitions
Each agent A; shall iteratively perform the following:

(i) Locate in L; the coalition C; that has the smallest cost ¢;.

(ii) Announce the coalitional cost ¢; that it has located.

(iii) Choose the lowest among all of the announced coalitional costs. This ¢;oy
will be chosen by all agents. The corresponding coalition C},, and task
t1,w shall be selected as well.

(iv) If you are a member of the chosen coalition Cj,,, join the other members
of Cy,, and form the selected coalition.

(v) Erase from T the task according to which the value of the newly-formed
Clow has been calculated.

(vi) Update the capability-vectors of all of the members of C},,, according to
their contribution to the task-execution.

(vii) Assign to L{" the coalitions in L; for which values should be re-calculated.

As in the case of disjoint coalitions, the iterative procedures of calculating
coalitional values and costs, selecting the preferred coalitions and forming
them, will be repeated until there are no more tasks to be performed or none
of the possible coalitions is beneficial. Here, some coalitional values must be
re-calculated in every iteration because each value is calculated with respect
to the unused capabilities, and these may change due to the formation of a
coalition. Note that in the disjoint case we use the coalitional weight whereas
in the overlapping case we use the coalition cost. This difference is necessary
since in the disjoint case agents can only contribute once to the total outcome,
therefore their individual weight is important, while in the overlapping case
agents may contribute to the total outcome several times, and therefore the
contribution of whole coalitions is important. This difference causes a different
choice of agents for the coalitions to be formed.

5 Tasks with precedence order

In a case where tasks have predecessors, each task can be satisfied only if all of
its predecessors have been performed previously. Hence, our precedence-order
algorithm requires that the choice of a task implies the choice of all of its
predecessors (however it does not require that the same coalition will perform
all the precedent tasks). For each task ¢, we denote its set of predecessors,

16

including ¢ itself, by P;. The choice of ¢ for coalition formation will depend on

the costs of, and the benefits from, the formation of coalitions that perform
all of the tasks in P;.

In the original algorithms above, the agents form coalitions iteratively — one
coalition in each iteration. They greedily satisfy tasks, performing the single
task ¢ that currently appears most beneficial. In the precedence-order case, the
agents shall form several coalitions in each iteration, to perform all of the tasks
in the specific set P, which appears most beneficial among all such possible
sets. For the evaluation of these sets of tasks, we introduce the concept of
precedence value pV; (p-value), which is the sum of the values of all of the
tasks in the precedence set F;.

As in the previous cases, where the value of a task was re-calculated in each
iteration until it was chosen, pV; will be re-calculated in each iteration as well.
Each such calculation of pV; requires the calculation of the values of all of the
tasks in P;. For this we employ the calculation methods of sections 5.2 and 5.3,
where F; is substituted into 7" from 5.3. The internal precedence order within
P; is not considered as to this value-calculation, since all of the tasks within
P; must be satisfied, if ¢ is chosen. The distribution of the calculations among
the agents will be performed as suggested in section 5.2. In each iteration, the
best pV is chosen from among all of the current pV’s. This implies that all of
the tasks in P; will be satisfied as well. Since we introduced the notion P;, we
must emphasize its difference from 7', which denotes the set of all of the tasks
that were not yet performed. Initially, 7" includes all of the tasks that must
be satisfied by the agent-system.

The agents may either each perform all of the calculations concerning each
task t € T, or they may distribute these calculations, but in each step of the
algorithm (when necessary) agree upon the P; to be calculated. Recall that
only part of the values corresponding to tasks in P; should be re-calculated.

All of the agents, simultaneously, should iteratively perform the following:

— Given the current status of capabilities; for each t € T' do
(i) Compute greedily the values of all of the tasks in P; using the distributed
methods of section 5.3, where the input set of tasks for the greedy calcu-
lation is F;.
(ii) If, in step (i), all of the tasks in P; were assigned coalitions to perform
them, then set pV; to be the sum of the values of the tasks in P;.
(iii) Otherwise, remove ¢ from T #*.
— Choose the task ¢* with the maximal pV; to be performed together with all
of its predecessors. Form the required coalitions as in 5.3.

22 This is since ¢ cannot be performed.

17

— Remove t* and all of its predecessors from T'.

— If an overlapping coalitions case, update the capability-vectors of the asso-
ciated coalitions’ members. Else, (disjoint coalitions), delete the members
of the coalitions from the list of candidates for coalition formation.

The above iterative procedure of calculating p-values and costs, selecting the
preferred coalitions for task execution and forming them will be repeated
until there are no more tasks to be performed in 7', or no more agents free
to perform them. Note that as before, the values are dynamically changing as
a result of the change in the accessibility of resources, and therefore shall be
distributively re-calculated after each coalition formation.

6 Quality assessment

The algorithms presented above have several advantages. An important prop-
erty of the algorithms is their low logarithmic ratio bounds. Denote a coalition
configuration by C, its total cost by cior = 32 ¢ ¢j, and superscribe by * for
the optimal case.

6.1 The overlapping case

To express the ratio bound by the same notions both for the disjoint and the
overlapping algorithms, we must define the agent weight w; for the case of the
overlapping coalitions. Denote the number of new members in a coalition C;
by z;; the agent’s weight is the ratio between the coalition cost ¢; and z;, i.e.,
w; = . Here, only agents who are new members, i.e., agents who join a new
coalition for the first time, are considered for weight calculation (whereas in
the disjoint case such a distinction is not necessary).

Theorem 1 The ratio bound p of the algorithm for the overlapping case ts
given by

maz(|Cj])
Cio 1
p=-7< = (1)
Ciot i=1 l

Proof: Each coalition C; contributes its cost ¢; to the cost ¢+ of the coalition
configuration C of the solution. Since each agent A; receives some weight w;,
Ctot, Which is the sum of the weights of all of the agents in the final coalitional
configuration Cyjpq, 1s given by:

18

Ctot = E w; < E Z wy (2)

AEN Cj€Csinar Ai€C;

The inequality results from the fact that each agent contributes only once to
the total cost (as expressed in the left side sum), and the right side sum allows
multiple contributions by a single agent. For any final coalition configuration
(and in particular for the optimal one):

Y Tus ¥ Y=Y X 3)
1€C inat A€C, C,€C finat Ai€C, Ci€Crina AseC; Vi
Since the following relation holds in general,
ce%:fmal AXE:C |C| B cje%:ﬁml “ i=1 i=1
it in particular holds for ¢} ,, and the conclusion from (2), (3), and (4) is that
%1

maz(|C}
Crot < Z CJE < Gy Z
i=1

C] ecfinal =1

(5)

=
S

Hence, we derive the ratio bound

(6)

Since the disjoint case algorithm is similar in its nature to the algorithm of the
overlapping case, the quality assessment is similar as well. Despite minor mod-
ifications in its derivation, the ratio bound of the disjoint algorithm is similar,
and therefore not presented separately. Note that lim, ., 227, 7 = v + Inn,
where v is Euler’s constant (= 0.5772...). Therefore, this ratio bound grows
logarithmically with the size of the coalitions to which the algorithm refers.
Since we previously suggested presenting a constant to determine the maxi-
mum permitted coalitional size, we simultaneously limited the ratio bound to
being a constant that can be calculated simply using (6). One must recall that
the ratio bound is the worst case bound.

6.2 The precedence order case
As a result of the modified coalitional values, the costs and the weights are

changed.

Proposition 1 The ratio bound in the precedence order case is given by

19

p= Ctot < Inmaz(|C;|) Inmaz(|p-valuel) (7)

*
Ctot

Proof: The calculation of p-values in the precedence order case is similar
to the calculation of values in both of the non-precedence-order cases. This is
because the calculations in all cases are based on the concept of choosing the
lowest cost each time and adding it to the total cost. Therefore, according to
theorem 1, the ratio bound of the p-value within any precedence set P; is

cwlP) "G

= <1 C;e P 8

Pp-value (P = ; ;= nmaz(|C; € P) (8)
The total value is

Cior = Z p-value (9)

pe CC

and therefore ¢, is bounded by ¢}, In maz(|p-value|). As a result, the ratio-

bound of the p-values contributes another logarithm into the ratio-bound, thus
yielding:

p= ciOt < Inmaz(|C;|) In maz(|p-value|) (10)

Ctot

7 Complexity of the algorithms

In addition to the quality of the solution with respect to the optimal solu-
tion (given k), the efficiency of the algorithms should be judged from two
main perspectives: that of computations and that of communications. At the
preliminary stage, where the calculations are distributed, all of the relevant
permutations of agents are calculated; this requires Y5, (n—1)!/((n—i—1)!!)
computation operations, which is of order O(n*~!) per agent. During this stage

the agents contact one another; each of them conducts up to contacts

n —1
min([Si;[)
with the other agents (where |.S;;| is the size of the subset of potential coalitions
considered in each communication operation). Since the choice of |S;;| may be
any integer in the range [1,C}_,], the communication complexity varies corre-
spondingly. While in the best case (communication-wise), where |S;;| = C},
(O(n*=?)), the average number of communication operations per agent is O(1),
in the worst case, where |5;;| = 1, the communication complexity per agent

at the calculations-distribution stage is O(n*~1).

Below we prove and discuss the complexity of the non-precedence case.

20

Proposition 2 For the value calculation and task assignment, the computa-
tional complexity per agent is of order O(n* - |T)).

Proof: The value calculation process consists of the assignment of tasks to
coalitions **. Such an assignment is performed for all of the tasks, hence |T'|
assignments are necessary. The number of value-calculation operations per
agent is of order?* O(n*~1 . |T|). Given the assumption that the number of
capabilities depends neither upon the number of agents nor upon the number
of tasks, each assignment operation requires O(1) operations. Choosing the
largest value is of the order of the number of possible coalitions, i.e., O(n*~1)
computations per agent. The two processes of calculating coalitional values
and choosing coalitions may be repeated up to n times (however, if |7'| < n,
n will be replaced by |T'|. Therefore, the computational complexity per agent
is of order O(n* - |T']). O

This complexity can be compared to a centralized case, where a single agent
performs all of the operations. In such a case, this single agent will experi-
ence O(n**! . |T|) computations and O(n) communications. Therefore, the
computational complexity is higher than in the average distributed case (the
speed-up is of order O(n)), but the communicational complexity is lower .
The overlapping coalitions’ case is similar to the disjoint coalitions’ case. How-
ever, if |T'| > n this case still allows for O(|T']) coalitions to be formed, whereas
in the disjoint case n is the upper limit.

Following we present the complexity of the precedence order case. We do not
provide an explicit proof, however justify it informally.

Proposition 3 The computational complexity in the precedence order case is

O(n* - |T?).

Proposition 3 is justified as follows. The change in the calculation of coalitional
values due to the precedence order yields an increase in the computational
complexity. In addition to the original calculations, O(|T|*) operations are
necessary for the calculation of each task’s p-value. This shall be performed
up to |T'| times, and therefore the overall additional complexity is O(|T[*), by

23 We assume that the planning for partitioning goals into sub-goals is given, and
therefore the calculation of coalitional values is not as complicated as in [42].

24 Note that, while some agents perform O(n*~!-|T'|) value-calculations, others may
happen to perform less than O(n*~1-|T|) calculations. This property of the process
is advantageous because it occurs when there are differences in computational capa-
bilities among the agents. In such cases the non-equal partition of the calculations
moderates the differences in the calculation-time of the agents, thus reducing the
average time of calculation completion.

25 1f, for all agents, there exists a communication channel between every pair of
agents, then the computational overhead of the distributed case will not affect the
performance of the algorithm.

21

which the complexity of the original algorithm shall be multiplied. Thus, the
new complexity is O(n* - |T|°), which is a rough estimation of its complex-
ity. A deliberate analysis and the introduction of some heuristics reduce the
complexity.

8 Simulation results

In order to strengthen the validity and to demonstrate the quality of our ap-
proach, we have simulated the algorithm of overlapping coalitions with prece-
dence order among the tasks. The simulation consists of a centralized program
which calculates the task allocation and the coalition formation which would
have resulted from the distributed algorithm. The centralization is aimed at
simplifying both the code and the running process, however all of the proper-
ties of the original algorithm, except for its distribution, are kept. Separately,
in the next section, we present a fully distributed implementation of the al-
gorithm for a domain specific agent system (with some modifications to the
algorithm).

We are especially interested in the ratio between the total outcome of agent-
systems that act according to our algorithm and the optimal outcome of such
systems. We are also interested in the number of tasks executed with respect
to the number of tasks executed in the optimal case. Another important factor
would be the run-time consumption with respect to the number of agents and
tasks.

The simulation system was tested for different ratios between the average
amounts of resources per agent and the average resource amount necessary for
task execution, as we elaborate below. We have conducted several hundreds of
runs of the simulation for various numbers of tasks, and the number of agents
varying from 4 to 22. We have also performed few simulations for 50 to 60
agents to check the functionality of the algorithm for larger numbers of agents
and tasks. There were 4 different resources, randomly partitioned among the
agents. As a result of this non-equal partition, agents could have amounts of
some resources which are significantly different from the average. This affected
their ability to perform tasks and has driven agents to coalition formation.

The figures below present the results of the simulation, divided into three
categories: figures 1 and 2 present the results in the case where the average
amount of resources per agent is approximately equal to the average amount of
resources necessary for each task execution; figures 3 and 4 present the results
in the case where the average amount of resources per agent is significantly
greater than the average amount of resources necessary for each task execution;
figures 5 and 6 present the results in the case where the average amount

22

Simulation task execution / Optimal task
execution

09 .
08
0.7
06
05
04
0.3
02
0.1

fig. 1

Ratio

06 08 1 12 14 16 1.8
Agents / Tasks

Simulation profits / Optimal profits

1 s BEH o]]
0.9 - "= 1 . I
0.8 i

0.6
05
04
03
0.2
0.1

fig. 2

Ratio

06 0.8 1 1.2 14 1.6 1.8
Agents / Tasks

Simulation task execution / Optimal task execution

fig. 3 % 05
lg D:

06 1.1 16 21 26
Agents / Tasks

23

fig. 4

fig. 5

fig. 6

Ratio

Ratio

Ratio

Simulation profits / Optimal profits

0-; . [| F.' :. = . =]
0.8 "
0.7 =
06
05
04
03
0.2
0.1

0.6 1.1 16 21 26
Agents / Tasks

Smulation task execution/ Optimal task execution

09

08 » L

0.7 n

06

05 =« "]
04 "

03

02

0.1

06 11 16 2.1 26
Agents/ Bisks

Simulation profits/ Optimal profits

09 n u
og ™ . "
0.7

0.5
04
0.3
0.2
0.1

0.6 1.1 1.6 2.1 26
Agents/ Tasks

24

of resources per agent is significantly smaller than the average amount of
resources necessary for each task execution. In each graph the z axis represents
the ratio between the number of agents and the number of tasks, and the y axis
represents the ratio between the simulation results and the optimal results 2¢ .
Figures 1,3,5 measure this ratio of task execution and figures 2.4,6 measure
this ratio of the global system profits. In all six graphs, each square repersents
the result of a single simulation (however some squares overlap due to similar
results of different experiments).

Via the simulations, we have examined the number of executed tasks with
respect to the number of tasks that would have been executed in the optimal
case, given the same settings (figures 1,3,5). In addition, we have tested the
ratio between the profits gained by the agents (as a result of task execution via
coalition formation) and profits that would have been gained in the optimal
case (figures 2,4,6). The results in both cases are very close to optimal, as can
be seen in the figures.

The main results of the simulations performed are as follows:

(i) The ratio between the simulation task-fulfillment and the optimal task-
fulfillment is, in most cases, close to one, which means that the simulation
task-fulfillment is near-optimal (figures 1,3). Only when the ratio between
the agents’ resources and the tasks’ resources is significantly smaller than
1, does the task execution ratio decrease (figure 5). Nevertheless, the
profit ratio remains sub-optimal. The reason for the decrement in the
task-fulfillment is that the algorithm leads to the choice of the most
beneficial tasks. Thus, it may perform fewer tasks, yet reach a sub-optimal
profit.

(ii) The ratio between the profits from task execution via our algorithm and
the optimal case is close to one (figures 2,4,6). Note that this ratio is
significantly better than the theoretical ratio bound.

(iii) The run time for all of the simulations was usually a few seconds (running
on a Sparc station) and always less than a minute, even when dealing with
50 to 60 agents and tasks (and running on a PC).

(iv) During the simulation, coalitions of various sizes have formed.

9 Implementation in a dynamic, open MAS

In this section we report an implementation of the coalition formation meth-
ods presented previously in a dynamic, open MAS. For this implementation

26 We have computed an upper bound on the optimal results and not the optimal
results themselves (due to complexity).

25

we have chosen an existing framework, the RETSINA agent system, which
is a web-based system where tasks arrive dynamically to agents and agents
may appear and disappear. A brief description of this system is provided be-
low (the reader is referred to [52] for details). Implementing our algorithms
in a RETSINA framework required some adjustments to the openness and
dynamism of the system, however proves the applicability and usefulness of
these algorithms to real-world MAS.

9.1 The multi-agent system

RETSINA (REusable Task-based System of Intelligent Networked Agents)
[51-53] is a cooperative multi-agent system that was developed to integrate
information gathering from web-based sources and perform decision support
tasks. The agents in RETSINA compartmentalize specialized task knowledge,
organize themselves to avoid processing bottlenecks, and can be constructed
specifically to deal with dynamic changes in information, tasks, number of
agents and their capabilities.

In RETSINA; the agents are distributed and run across different machines.
Based on models of users, agents and tasks, the agents decide how to decom-
pose tasks and whether to pass them to others, what information is needed
at each decision point, and when to cooperate with other agents. The agents
communicate with each other to delegate tasks, request or provide informa-
tion, find information sources, filter or integrate information, and negotiate to
resolve inconsistencies in information and task models. The system consists of
three classes of agents: interface agents, task agents and information agents.
Note that a similar infrastructure is used in InfoSleuth [36]. Interface agents
interact with users receiving their specifications and delivering results. They
acquire, model and utilize user preferences. Task agents formulate plans and
carry them out. They have knowledge of the task domain, and which other
types of task agents or information agents are relevant to performing various
parts of the task. In addition, task agents have strategies for resolving con-
flicts and fusing information retrieved by information agents. They decompose
plans and cooperate with appropriate task agents or information agents for
plan execution, monitoring and results composition. Information agents pro-
vide intelligent access to a heterogeneous collection of information sources.
They have models of the information resources and strategies for source se-
lection, information access, conflict resolution and information fusion. Several
typical tasks cannot be executed by a single agent and agents form teams, on
demand, for such tasks.

For instance, suppose a user has requested an interface agent to monitor its
investment portfolio and maintain a given level of risk. The interface agent

26

must involve in this task information agents that can provide various types
of information with regards to the assets in the portfolio (e.g. price, relevant
news). It also needs task agents that can analyze the information (e.g. compute
risk) and critique it and make decisions and suggestions with regards to the
portfolio. There may be several agents that can provide such services, and
selecting the most appropriate ones is part of the coalition formation process.
Note that there may be multiple tasks arriving simultaneously at different
agents in the system, therefore there may be several attempts to form such
coalitions. The coalition formation algorithm serves for this purpose.

A basic design problem of cooperative, open, multi-agent systems is the con-
nection problem [13]. That is, each agent must be able to locate the other
agents who might have capabilities which are necessary for the execution of
tasks, either locally or via coalition formation. In an open system where par-
ticipating agents may dynamically enter and leave, which is distributed over
the Internet, broadcast communication solutions are precluded. The solution
provided in RETSINA relies on some well-known agents and some basic inter-
actions with them — matchmaking [14,32]. In general, the process of match-
making allows an agent with some tasks, the requester, to learn the contact
information and capabilities of another agent, the server, who may be able to
execute part of the requester’s tasks via a matchmaker which is an agent that
maintains the contact information, capabilities, and other service characteris-
tics (e.g. cost, availability, reliability) of other agents.

During the operation of the multi-agent system, agents that join the system
advertise themselves and their capabilities to a matchmaker, and when they
leave the agent society, they un-advertise (for more details, see [51]). In search
of agents with which they may possibly form coalitions, agents approach a
matchmaker and ask for names of relevant agents. After having acquired the
information about other agents they can directly contact these agents and
initiate cooperation as needed. Note that there may be several matchmaker
agents to relax the problem of unavailable or overwhelmed single matchmaker
and to avoid a centralized solution.

9.2 Cooperation via coalition formation

The RETSINA system can receive several tasks from several users. Incorpora-
tion of the coalition formation mechanism increases the efficiency of groupwise
task execution, resulting in near-optimal task performance. We report such re-
sults in section 9.3. In addition, this mechanism enables agents to decide upon
the importance (and possibly — the order?”) of tasks to be performed. Such

2T A RETSINA agent has an internal scheduling mechanism, but our algorithm
provides priority generation, which is not part of the scheduler.

27

decision making is important in real-world domains, where there may be sit-
uations in which a system cannot fulfill all of its tasks. A RETSINA agent
considers cooperation if one of the following holds: the agent cannot perform
a specific task by itself; the agent can perform a specific task, but other agents
are more efficient in performing this task (e.g., they require less resources or
perform faster); the agent can perform a specific task, but working on it col-
laboratively will increase the benefits from the task (or reduce the costs).

The implementation of the coalition formation mechanisms required that we
modify them due to several differences between the assumed agent-systems
and the RETSINA infrastructure, as discussed below:

— The number of goals and agents assumed in previous sections is fixed, while
RETSINA is a dynamic system where agents appear and disappear and
tasks vary constantly.

— The method in which the information with regards to the existence of tasks
and their details is distributed is not discussed in the original algorithms.

To resolve the above restrictions, we made various modifications to the algo-
rithms #®. We describe below how agents behave within the RETSINA frame-
work when coalition formation is applied, with the addition of the required
modifications. Note that some functional issues of the RETSINA agents are
described in an extremely simplified manner (elaborate details can be found
in [51]). The activity of the system entails tasks which dynamically arrive
from users or agents. The activity of a single agent for each arriving task is as
follows.

1) When a task . arrives at agent A; (either from a user or from another
J g
agent) it performs:

(a) Adds t; to T; (its task list).

(b) Finds possible decompositions of ¢; to subtasks t}, e ,té- using its
tasks reduction library which includes pre-given possible decomposi-
tions 2.

(¢) According to the possible decompositions, A; determines the capabil-
ities needed for performing ¢; (e.g. information gathering) and con-
tacts a matchmaker to find agents that have those capabilities and
may be able to work on the task. It adds these agents to NV; (its agent

28 Note that the original algorithms do not discuss capability reuse and tasks with
complex time dependencies, such as partial overlapping use of a resource, which are
typical in the RETSINA dynamic system. RETSINA agents take care of these even
without the coalition formation (e.g., the agent’s scheduling resolves time depen-
dencies). The implemented coalition formation algorithm inherits these properties.
29 For example, checking whether a portfolio is balanced requires (at least) a subtask
of finding the prices of assets in the portfolio and a subtask of computing balance
according to some criteria.

28

(i)
(iii)

list) and sends them each the relevant subtasks of ¢; (or the whole ¢;,
if it is not decomposable). If the sender of ¢; to A; is an agent, it is
added to N, as well.

(d) To avoid cyclic task delegation and to allow propagation of results
back to the requester, the origin of the task (user or agent) as well
as the delegation path (i.e., the agents through which the task has
passed) are added to each delegated task.

When A;’s local schedule allows, it computes coalitions and their values
and forms coalitions as follows:
Computing coalitions values®°: for each task ¢; in 7; it considers the
possible coalitions that can be formed to perform it (based on its task
reduction library) and computes the coalition value for each such possi-
bility. The value calculation is performed by evaluating linear functions
attached to each capability which takes into account the typical amount
of computational resources (e.g. cpu, memory, disk space) necessary for
such a task, as studied from past behavior of the RETSINA system and
the time interval for execution.

Choosing Coalitions?!:

(a) Among the values computed in step (iii), A; chooses the one with the
highest value (correspondingly, the lowest cost ¢;), denotes it C;, and
registers C; and its value at the matchmaker.

(b) A; checks whether the value it registered is the highest registered at
the matchmaker. If so it forms with the members of C; the coalition
and performs the associated task and subtasks. If no other values are
registered A; re-checks for values after a waiting period ®?.

(c) Upon completion (on which the members of the coalition report to
A;), A; removes t; from T;. In case of task execution failure (and if ¢;’s
deadline has not passed) t; is kept in the list for future handling. Note
that updates to capabilities are performed individually by agents at
their matchmaker.

(d) Concurrently, if T; is not empty, A; performs (as its local schedule
allows) occasional polling of the matchmaker for changes in coali-
tions, values, agent availability, and continually performs the coali-
tion formation algorithm by skipping to step (ii) (and possibly being
a member of several coalitions).

30This step corresponds to the algorithm in section 4.2. However, while in the
original algorithm tasks are associated with coalitions, here coalitions are associated
with tasks. That is, for each task the best coalition is found. This is simpler to
implement in an open system, where tasks are not known to all agents.

31 This step corresponds to the algorithm in section 4.3.

32 Such situations may occur due to asynchrony in the system as well as differences

in agent computation time and network latency. Waiting for additional values may
be beneficial if the task’s deadline allows.

29

In RETSINA the communication- and computation-time for value calculation
and coalition design are significantly small as compared to the task execution
time and tasks can dynamically appear. Therefore, the modified algorithm
includes a re-design process. When a new task is received by an agent, we
require:

— If tasks that were assigned to coalitions have not been performed yet within
the current iteration of the coalition formation algorithm, agents who are in
these coalitions and are informed about the new task will re-calculate the
coalitional values to take into consideration the arrival of the new task.

- if inclusion of the newly arrived task in coalition recalculations in the
current iteration introduces a new coalition value, greater than currently
known values, then the agents re-design the coalitions, selecting again the
best among the actual, re-designed, coalitions®*.

- otherwise, the agents avoid coalition re-design, and consider the new task
for inclusion in coalitions at the next iteration.

— If all previous tasks are in process, the new task, has it arrived at A;, will
be added to the group of tasks 7; and be dealt with in the next coalition
formation iteration.

— In case of a rapid high-frequency stream of new tasks, the re-design process
may be dis-enabled. If such a rate of new tasks is expected in advance, or
the agents statistically infer such a rate by sampling the task stream and
interpolating the statistical data, the re-design process shall be avoided.

9.3 Analysis of the modifications

The dynamic addition of tasks to the agent system may change the overall
order of complexity of the algorithm. In the worst case, the re-design process
will be performed for every new task. This will result in performing the whole
process |Ty| times, where |T,| is the number of dynamically received tasks.
Therefore, the original complexity analysis should be multiplied by |7|. Since
Ty C T, the re-design process implies an increase in complexity by an order
of magnitude with respect to the number of tasks.

The communication requirements of the original algorithms are, in the worst
case, rather large. We designed the implemented algorithm to avoid the worst
case of communication complexity. This was performed by the requirement
that on each contact of A; with A; it implicitly commits to compute the max-
imal 5;;. This results in a communication complexity for commitment which is
O(n - Ty) per agent (however the average is O(T})). In the modified algorithm
the communication complexity in the value calculation and task assignment

33 Note that re-design may not be allowed if the expected task flow is rapid, lest
the system will constantly re-design and not perform its tasks.

30

stages is similar to the original (i.e., O(n-|T|) per agent). However, additional
communication is required for informing other agents about dynamically ar-
riving tasks. Therefore, while the worst case remains unchanged, the average
case becomes O(|Ty| - n). Yet this is a low linear complexity. Nevertheless,
in web information gathering (in which RETSINA operates), the network la-
tency causes the computation time for coalition formation to be dwarfed by
comparison. This was observed in the course of our experiments.

Originally, the number of agents n was assumed to be constant. However,
in RETSINA, n may dynamically change, hence the complexity analysis is
slightly modified. Let v = maxz(n), where this maximum may be decided upon
by designers according to their expectations with regards to the agent system.
Then, substitute n in the original complexity expression by v, resulting in

O(W* =t |T| - |Tu]).

RETSINA agents are able to perform task reductions [60]. In practice, the
internal complexity of a sub-task is determined within the task reduction and
task schema libraries (in general, these libraries provide details for planning
and executing tasks). The libraries are domain-specific, hence the designers of
the domain-specific components have control over the complexity of sub-tasks.
In the information domain of RETSINA sub-tasks, each sub-task can typically
be performed by a small number of agents. This implies that the coalition
formation procedure will concentrate on the formation of small coalitions of
agents with particular expertise to perform a task.

For example, one of the domains in which RETSINA was implemented is
satellite tracking. One of the tasks that the agents can cooperatively perform
is finding if and when a specific satellite will be observable in a specific location.
For this, up to 4 information agents are involved in the information gathering,
and up to 4 other agents are involved in other related tasks. This means that
the maximal coalition size for this task type is 8. Since other tasks of the
system are of the same order of complexity, the sizes of coalitions are limited
as well. The system may include other active agents, however these will be
involved in other tasks or be idle.

The specialization of agents in RETSINA results in the incorporation of agents
into coalitions according to their specialty/capability (when more than one
agent with the same specialty are present, their utility functions enables com-
parison which results in the choice of the one with the highest payoff). Thus,
a coalition size is limited to the number of different specialties which are nec-
essary for the execution of the task that this coalition performs. In current
RETSINA implementations, the number of specialties which are necessary for
a given task execution is small and hence such is also the size of coalitions.
The maximal number of specialties necessary for sub-task execution complies
with the k restriction on the size of coalitions. However, since different decom-

31

positions of tasks along different specialty dimensions are possible, a specific
agent system may have several k’s. Among them, the maximal will determine
the worst case complexity.

9.4 Implementation settings

Ratio of performance

0.81

0.6

Relative| Tt
quality (T T e

0.41

0.21

Fig. 1. The average performance (solid line) and the worst case (broken line), ex-
pressed as a fraction of the optimal performance, as a function of the maximal
coalition size permitted k.

To apply the modified coalition formation algorithm to a RETSINA frame-
work we had to simulate some of the RETSINA properties, while maintain-
ing its openness and distribution as well as interaction mechanisms, including
matchmaking and advertisement. This was performed by running degenerated
RETSINA agents that were able to register at a matchmaker and query it for
other agents, and could receive tasks as RETSINA agents do. The degener-
ated agents did not perform the tasks but only simulated the task performance.
However, the simulated computational resources availability and consumption
in the simulated task performance were similar to these values in the original
system, as studied from the performance of RETSINA.

The implementation was performed by running up to 20 agents on several ma-
chines, and a stream of tasks was supplied to the agents, totalling to 1000 tasks.
Each agent was represented by an agent-thread that simulated the resource-
consumption and the task-queue of a real agent. The agents were running on
several Sun workstations. Each agent-thread received an initial set of tasks,
and additional tasks arrived at each agent dynamically in a random man-
ner (i.e., the frequency of tasks, their type and the required capabilities were
chosen in a random manner, according to the typical distributions as studied
from RETSINA). Each task was associated with a vector of capabilities nec-
essary for its execution and a payoff function for calculating the value of the
task. For each task the agent creates a task-object that consumes time and

32

memory and requires communication. The agent informs other agents about
these tasks by passing references to task-objects. The CPU, communication
and memory consumption are similar to those consumed by RETSINA agents.
This resource consumption was previously measured as presented in [47].

During the simulation, coalitions of agents were formed, where a task was
allocated to each, and the value of its execution by this coalition was calcu-
lated. The sum of these values was calculated to find the total payoff. When
new tasks arrived, the re-design procedure was followed. We have performed
this simulation several hundreds of times, and compared the total payoffs to
the optimal payoffs (calculated off-line) and to the theoretical ratio bound, as
depicted above.

In section 6 we have shown that the ratio bound increases logarithmically with
respect to the number of coalition members. However, by implementing the
algorithm in a simulated RETSINA agent system we show that the average
case (for this specific domain) is close to the optimal case (see figure 1). The
figure shows that the average performance (in terms of task allocation and
execution) reached in the simulated RETSINA agents, depicted by the solid
line, is around 0.9 of the optimal performance **, while the worst case (the ratio
bound), depicted by the broken line, declines fast to less than 0.5 of the optimal
performance. Note that although in this implementation the asynchrony of
the system prohibits the choice of the best value each time (instead, the best
currently known value is selected), we still get near-optimal results.

10 Related work

Distributed task allocation has been discussed in the context of DPS systems.
A well-known example of such a task allocation mechanism is the Contract
Net Protocol (CNP)[49]. The CNP discusses cases in which an agent that
attempts to satisfy a task may divide it into several sub-tasks and then sub-
contract each sub-task to another agent via a bidding mechanism. In the CNP,
tasks are allocated to single agents and a procedure for task-partitioning is
necessary. The CNP allows single agents to perform more than one sub-task.
This is similar to our approach as we, too, allow that agents be involved in
the performance of more than one task in some of our algorithms. However,
we do not deal with the case of single agents. Rather, we solve the problem
of assigning tasks to groups of agents. In cases where single agents cannot
perform tasks by themselves and tasks cannot be partitioned, or the parti-
tion is computationally too complex, close cooperation (within coalitions) is

34 We calculated the optimal performance explicitly, off line, when a small number
of agents are involved in coalition formation. Small here means up to 20.

33

required. In the CNP the efficiency of the solution was evaluated through sim-
ulations. However, since the issue of efficiency and complexity is crucial for
the implementation of a solution, we provide a formal analysis of the quality
and the complexity of our solutions, in addition to a simulation.

The allocation of tasks to teams of agents in order that they perform these
tasks was discussed by several DAI researchers, e.g., [25,38,55]. Although dis-
cussing the assignment of roles to groups of agents, the process of designing and
forming these groups, and the emphasis on seeking near-optimal performance,
are not addressed there. Jennings [25] presents a system that handles task al-
location by having a central organizer that uses information it has about the
abilities of all other agents to assign tasks. Recipe selection for the complex
group action is also managed by this central organizer. The team members
select their own recipes for the single-agent constituent actions; there is no
description of the mechanism according to which agents will form teams. In
addition, the solution requires a central agent. Both of these limitations are
avoided in our solution. Jennings discusses the joint intentions and the shared
plans, whereas such planning issues are beyond the scope of our research.

As mentioned in the introduction, one can find two main extreme approaches
in DAI: one is Distributed Problem Solving (DPS), which is concerned with
cases where a group of agents faces satisfaction of a common task. DPS deals
with the ways in which the agents distribute the task among them and indi-
vidually or cooperatively fulfill the resulting sub-tasks [15,17,48]; the other ex-
treme is Multi-Agent Systems (MAS), which focuses on systems of autonomous
agents who are self-motivated and act in order to achieve their own personal
tasks and increase their own personal utility. However, DPS and MAS are the
two extremes in a variety of multi-agent situations lying between those two
confines. In our paper we deal with autonomous agents’ systems which are
closer to the DPS type, although they may be acting as individuals and who
try, under certain restrictions of the system, to increase their own benefits. Co-
operation among autonomous agents may be mutually beneficial even if the
agents are selfish and try to maximize their own expected utilities [30,50,63],
as they do in MAS. In the case of DPS, the benefits of cooperation may be
even greater than in the MAS case, since competition among the agents is
restricted. In both cases, benefits may arise from cooperation via resource
sharing and task redistribution.

DAI research has previously addressed the problem of tasks with precedence
order and of overlapping problem solvers, as in [16]. There, coordination is
based on an organizational view of node activity, where each node acts subject
to its local control, solving a sub-goal of the global goal. The organizational
view implicitly resembles the idea of a coalition. However, Durfee et al do not
discuss coalitions nor do they address the problem of forming groups of nodes
to improve the overall performance of goals.

34

Coalition formation is an important method of cooperation in multi-agent
environments. Game theory provides an analysis of the possible coalitions
that shall form as a result of a coalition formation process, and the resulting
disbursements to the agents, assuming that agents do not have multiple mem-
berships in coalitions. For example, see [18,27,40,61]. However, game theory
does not provide algorithms which agents can use in order to form coalitions.
Given a previously formed coalitional configuration (that is, a partition of the
agents to subsets), game theory usually concentrates on checking its stability
% and on the calculation of the corresponding payments. Game
theory rarely takes into consideration the special properties of a multi-agent
environment. That is, the communication costs and limited computation time

or its fairness

are seldom considered, and the solutions are not distributed. In our case, we
are particularly interested in the coalition formation mechanism and how to
distribute it among the agents. We also seek a dynamic evaluation of the
coalitions *® where game theory usually provides a static evaluation, and we
allow agents to be members of more than one coalition. Therefore, the game-
theoretic coalition formation theories are not appropriate for the multi-agent
situation with which we are concerned.

Sandholm and Lesser [42] present a coalition formation model for bounded-
rational agents and a general classification of coalition games. As in [42], we
also allow for varying coalitional values. In [42], the value of a coalition de-
pends on the computation time. However, we consider cases in which the time
for computing the coalition values is polynomial, and the values vary with re-
spect to the resource-consumption by previously-formed coalitions. The model
presented by Sandholm and Lesser refers to a non-restricted number of con-
figurations, whereas we present greedy algorithms that bound the number of
configurations to be considered.

The problem of coalition formation can be approached as a Set Partitioning
Problem (SPP). Coalition formation where coalitions may overlap can be ap-
proached as a Set Covering Problem (SCP)®7. Set partitioning entails the
partition of a set into subsets, and the set partitioning problem is finding a
partition with the least cost. Since coalition formation of agents results in
the partition of the agents into subgroups, SPP and SCP may be appropriate
for determining which coalitions will form as a result of coalition formation
algorithms. The SPP and the SCP have been dealt with widely in the context
of NP-hard problems [19]. Exact solutions and approximations to SPP and

35 Stability and fairness have several different definitions in the context of game
theory.

36 The values of the coalitions change dynamically due to rapid changes in the tasks
and resource-availability, and therefore relying on the initial values is misleading.
37The SCP, which is very similar to the SPP. Both are described in in detail in
section 3.2.

35

SCP have been proposed in the fields of operations research, combinatorial
algorithms, and graph theory [3,4,8,9,20]. However, the solutions that have
been proposed do not provide an appropriate solution to the problem of coali-
tion formation among agents, due to three main deficiencies: 1) the exact and
optimal solutions are solutions for NP-hard problems. That is, the complexity
of the solution is exponential in the number of agents. Such a solution cannot
be applied in cases where there are many agents in the environment, since the
agents will be unable to calculate it; 2) the approximation algorithms, which
lead to near-optimal solutions®® are of polynomial complexity, but they deal
with a tightly restricted number of pre-defined possible subgroups of a given
set. This may be overly restrictive for the case of agent coalition formation,
where there are 2" subsets of a given set of n agents. This limitation may be
resolved by artificially limiting the possible coalitions (as we do in our solu-
tion); 3) all of the present solutions are centralized. That is, the solutions can
be calculated and implemented only by a central agent which dominates the
coalition formation process and supervises the other agents. Such a situation
is not typical in distributed agents’ environments, and is inappropriate for
our case, since it may result in a single point of failure as well as a computa-
tional bottleneck. In contrast MAS, among other goals, aim at reducing such
problems and increasing robustness.

Distributed computing systems (DCS) research has dealt with problems of
task allocation with precedence order. Optimal solutions were provided only
for strongly constrained cases of two-processor systems (e.g. [10]). Sub-optimal
solutions were also presented, (see e.g. [24]), yet these are constrained as well.
The general problem is NP-complete, but some approximation algorithms [57]
provide good solutions for the multi-processor system. In [7] an algorithm
for such a task assignment was presented. The proposed solution is aimed at
reducing the task turnaround time. The minimization of the task turnaround
time is the main objective of task assignment within distributed computing
systems. In our work, the main issue is the development of a task allocation
that will increase the benefits of the agent-system, and not necessarily reduce
the execution time. While DCS research usually discusses a fully-connected
multi-processor system, we assume only a multi-agent system in which agents
try to maximize the outcome of the system as a whole. Agents may be of
various types, belong to different owners, be located in remote places and be
indirectly connected. We discuss the specific case where single agents cannot
perform the tasks alone, and they must join together in order to do so.

Research on the Loading Time Scheduling Problem (LTSP) [5] presents ap-

proximation algorithms for precedence-ordered task execution in cases where

38 Near-optimal solutions are such that the ratio between them and the optimal
solution is not large. In our case the available solutions have such a ratio for a small
number of agents, but this ratio is growing logarithmically with in number of agents.

36

tasks may be performed either by a single machine or by several machines, but
each task can be performed only by a subset of the machines. This appears to
be similar to our research however, there are several differences, as follows: (i)
our research concentrates on cases in which part of the tasks can only be per-
formed by groups of agents and not by single agents; (ii) the main factor in the
LTSP is the loading time of the first task in a sequence of tasks on a specific
machine, while we discuss neither the loading time nor the effect of task-
sequences on a single agent; (iii) we discuss the utility that arises from task
execution given the precedence order and subject to the resource-distribution
among the agents. The differences of our case from the DCS research requires
another approach, as presented above.

A study of planning in MAS has been presented by Wellman [58]. In this
research, the general-equilibrium approach from economics serves as the the-
oretical basis for the planning mechanism. Mechanisms in which competition
is applied are used to construct a market-oriented programming environment,
which is employed as a means for the construction and analysis of distributed
planning systems. In his research, Wellman concentrates on competitive agents
whereas we discuss cooperative agents. In addition, the formation of coalitions
is not addressed there. The theoretic model underlying market-oriented pro-
gramming is more suitable for large-scale systems of agents, although under
some restriction may provide good results even for small number of agents, as
proved by simulations in [34].

A Market-oriented approach was also utilized for task allocation, as presented
in [56]. There, Walsh and Wellman present a simple auctioning protocol for the
pricing and allocation of tasks among self-interested agents. In contrast, we
address the case of cooperative agents. As a result, while Walsh can only prove
convergence to a solution, we can, in addition, prove to that our protocols
lead to near-optimal solutions. One important issue which is not addressed
by Walsh and Wellman is the effects of the formation of groups agents. Such
groups may allow for executing tasks which single agents cannot perform. Task
execution by groups may also increase the efficiency of the execution. These
have a major effect on the overall benefits of the agent system, hence we focus
on groups (in our terms — coalitions) in our work.

Hard computational problems, including the class of NP-complete problems,
are addressed Huberman et al in [23]. This research suggests, instead of em-
ploying a single approximation algorithm, using a portfolio of such algorithms
where the algorithms are performed interleavingly. As proved in that research,
such an approach may result in a solution that is preferable to any of the sin-
gle component algorithm results. As the authors state, this economics-based
approach can be used for the distribution of computational resources thus
increase the efficiency of task performance. This might have been useful to
address the problems discussed here, however no method is provided for dis-

37

tribution of the proposed approach and, more importantly, the issue of forming
groups of agents as a means of increasing performance is not the goal of Hu-
berman et al, therefore not addressed in that research.

Cooperation among agents for the solution of complex optimization problems
is discussed in [54]. There, a team of multiple asynchronous programs (A-
Team) works cooperatively to solve a problem. Although A-Teams improve
upon other imperfect algorithms, the cooperation among the team members
is very simplistic, as it refers to “non-zero intersection of output-space” of the
cooperating agents. According to this approach, it is sufficient for the agents
in an A-Team to have some common information with respect to the tasks or
their solutions to claim cooperation among them. We refer to cases in which
a higher level of cooperation is applied and these allows not only for improve-
ment in solutions, but near-optimality. In addition, we deal with the formation
of multiple groups of cooperating agents, not a single team. One interesting
property of A-Teams is their scale-effectiveness, that is, the performance is
better for greater teams. As opposed, we consider a comparatively small num-
ber of agents. This A-Team property is similar to the market-based systems
as described above.

11 Discussion

In this paper we presented algorithms for task allocation among computational
agents via coalition formation in a non-super-additive environment. The al-
gorithms are suitable for cases where agents are motivated to act in order to
maximize the benefits of the system as a whole. They are most appropriate
for the incidents in which the agents cannot perform the tasks by themselves.
However, they may also improve the efficiency of task execution when the per-
formance of single agents is worse than their performance within groups. The
algorithms are adjusted to cases in which the tasks have a precedence order
as well, and still yield sub-optimal results.

Although general task allocation problems are computationally exponential
(they are at least NP-complete), we present polynomial-complexity algorithms
that yield results which are close to the optimal results and, as we have proven,
are bounded by a logarithmic ratio bound. Our distribution method prevents
most of the possibly overlapping calculations, thus saving unnecessary com-
putational operations and leads to an even distribution of computation that
takes into account the individual computational capabilities of the agents. In
addition, the distribution of calculations is an outcome of the algorithm char-
acteristics, since each agent performs primarily those calculations that are
required for its own actions during the process. In cases with no precedence
order, this distribution method prevents most of the calculations that may

38

have been repeated by individual agents, thus saving unnecessary computa-
tional operations. However, this last property is less significant in the case of
precedence-ordered tasks.

The algorithms are any-time algorithms. If halted before normally terminated,
they still provide the system with several coalitions that have already formed
and task allocated to them. In the non-precedence case the results, when
halting, are of good quality. In the precedence-order case, better subgroups
of tasks and coalitions are formed prior to others. However, if the algorithm
is halted before the performance of such a subgroup has been completed,
the accumulative value of the tasks within the subgroup is not necessarily
the best. This means that although the any-time property of the algorithm
exists for both cases, the case of precedence order may yield less beneficial
intervention results. The any-time property of an algorithm is important for
dynamic environments, wherein the time-period for negotiation and coalition-
formation processes may be changed during the process.

The coalition formation methods were implemented in a real-world, informa-
tion multi-agent system, to improve multi-agent cooperation (in terms of the
joint payoff). To enable the implementation we had to relax several binding
assumptions and limitations, taking into account requirements and constraints
arising from the dynamism and openness of the system. We have shown that
the incorporation of the coalition formation method induces a near-optimal
task allocation while not significantly increasing the execution time.

To summarize, the algorithms presented in this paper can be used for task
allocation and execution in dynamic, open systems of distributed computa-
tional agents, as we have demonstrated. They are not a general solution to
the distributed task allocation problem. Some restrictive assumptions do ap-
ply. Nevertheless, the algorithms are appropriate for several realistic cases,
where tasks may have a precedence order due to interdependencies and where
agents can be involved in the performance of more than one task. The algo-
rithms may be used in distributed cooperative agent-systems (in which tasks
shall be assigned to agents in order that the agents will perform them) to
maximize the expected outcome of the system as a whole and minimize the
computational overhead.

References

[1]R. J. Aumann. The core of a cooperative game without side-payments.
Transactions of the American Mathemaltical Society, 98:539-552, 1961.

2] R. J. Aumann and B. Peleg. Von Neumann-Morgenstern solutions to
cooperative games without side-payments. Bulletin of the American

39

Mathematical Sociely, 66:173-179, 1960.

[3] E. Balas and M. Padberg. On the set covering problem. Operations Research,
20:1152-1161, 1972.

4] E. Balas and M. Padberg. On the set covering problem: An algorithm for set
g g g
partitioning. Operations Research, 23:74-90, 1975.

[5] R. Bhatia, S. Khuller, and J. Naor. The loading time scheduling problem. In
Proc. of the 36th Annual IEEE Conf. of Computer Science (FOCS-95), pages
72-81, Wisconsin, 1995.

[6] A. H. Bond and L. Gasser. An analysis of problems and research in DAL
In A. H. Bond and L. Gasser, editors, Readings in Distributed Artificial

Intelligence, pages 3-35. Morgan Kaufmann Publishers, Inc., San Mateo,
California, 1988.

[7] G. H. Chen and J. S. Yur. A branch-and-bound-with-underestimates algorithm
for the task assignment problem with precedence constraint. In Proc. of the

10th international conference on Distributed Computing Systems, pages 494—
501, France, 1990. IEEE Computer Society.

[8] N. Christofides and S. Korman. A computational survey of methods for the set
covering problem. Mathematics of Operations Research, 21(5):591-599, 1975.

[9] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4(3):233-235, 1979.

[10] E. G. Coffman and L. R. Graham. Optimal scheduling for two-processor
systems. Acta Informatica, 1:200-213, 1972.

[11] R. Conte, M. Miceli, and C. Castelfranchi. Limits and levels of cooperation:
Disentangling various types of prosocial interaction. In Y. Demazeau and
J. P. Muller, editors, Decentralized A.I. - 2, pages 147-157. Elsevier Science
Publishers, 1991.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, 1990.

[13] R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem
solving. Artificial Intelligence, 20(1):63-109, January 1983.

[14] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. In
Proceeding of IJCAI-97, pages 578583, Nagoya, Japan, 1997.

[15] E. H. Durfee and V. R. Lesser. Negotiating Task Decomposition and Allocation
Using Partial Global Planning. In L. Gasser and M. N. Huhns, editors,
Distributed Artificial Intelligence, Volume II, pages 229-244. Pitman/Morgan
Kaufmann, London, 1989.

[16] E. H. Durfee, V. R. Lesser, and D. D. Corkill. Coherent cooperation
among communicating problem solvers. In A. H. Bond and L. Gasser,
editors, Readings in Distributed Artificial Intelligence, pages 268-284. Morgan
Kaufmann Publishers, Inc., California, 1988.

40

[17] E. H. Durfee and V.R. Lesser. Global plans to coordinate distributed problem
solvers. In Proc. of IJCAIS7, pages 875883, 1987.

[18] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the
Theory of NP-completeness. W. H. Freedman and Company, New York, 1979.

[20] R. S. Garfinkel and G. L. Nemhouser. The set-partitioning problem: set covering
with equality constraints. Operations Research, 17:848-856, 1969.

[21] J. C. Harsanyi. A simplified bargaining model for n-person cooperative game.
International Fconomic Review, 4:194-220, 1963.

[22] J. C. Harsanyi. Rational Behavior and Bargaining Fquilibrium in Games and
Social Situations. Cambridge University Press, 1977.

[23] B. A. Huberman, R. M. Lukose, and T. Hogg. An economic approach to hard
computational problems. Science, 275:51-54, 1997.

[24] O. H. Ibarra and C. E. Kim. On two-processor scheduling of one- or two-unit
time tasks with precedence constraints. Journal of Cybernetics, 5(3):87-109,
1976.

[25] N. R. Jennings. Controlling cooperative problem solving in industrial multi-
agent systems using joint intentions. Artificial Intelligence Journal, 75(2):1-46,
1995.

[26] S. Jha, O. Shehory, and K. Sycara. Viewing contingent contracts between agents
as options. Unpublished manuscript.

[27] J. P. Kahan and A. Rapoport. Theories of coalition formation. Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1984.

[28] S. P. Ketchpel. Forming coalitions in the face of uncertain rewards. In Proc. of
AAAIYY, pages 414-419, Seattle, Washington, 1994.

[29] S. Kraus. An overview of incentive contracting. Artificial Intelligence,
83(2):297-346, 1996.

[30] S. Kraus, J. Wilkenfeld, and G. Zlotkin. Multiagent negotiation under time
constraints. Artificial Intelligence, 75(2):297-345, 1995.

[31] T. Kreifelts and F. Von Martial. A negotiation framework for autonomous
agents. In Proc. of the Second Furopean Workshop on Modeling Autonomous
Agents in a Mullti Agent World, pages 169-182, France, 1990.

[32] D. Kuokka and L. Harada. On using KQML for matchmaking. In Proceedings
of the First International Conference on Mulli-Agent Systems, pages 239-245,
San Francisco, June 1995. AAAI Press.

[33] R. D. Luce and H. Raiffa. Games and Decisions. John Wiley and Sons, Inc,
1957.

41

[34] T. Mullen and M. Wellman. A simple computational market for network
information services. In Proc. of the First International Conference on
Multiagent Systems, pages 283-289, California, USA, 1995.

[35] B. Nadel. Constraint satisfaction algorithms. Computational Intelligence,
5:188-224, 1989.

[36] M. Nodine and A. Unruh. Facilitating open communication in agent systems:
the infosleuth infrastructure. In M. Singh, A. Rao, and M. Wooldridge, editors,
Intelligent Agents 4, Lecture Notes in Artificial Intelligence No. 1365, pages
281-296. Berlin:Springer-Verlag, 1997.

[37] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.
Computational Intelligence, 9:268-299, 1993.

[38] A. S. Rao, M. P. Georgeff, and E. A. Sonenberg. Social plans: A preliminary
report. In Decentralized Artificial Intelligence, Volume 3, pages 57-76. Elsevier
Science Publishers, 1992.

[39] A. Rapoport. N-Person Game Theory. University of Michigan, 1970.

[40] E. Rasmusen. Games and Information. Basil Blackwell Ltd., Cambridge, Ma,
1989.

[41] T. W. Sandholm. An implementation of the contract net protocol based on
marginal cost calculations. In Proc. of AAAI-93, pages 256-262, Washington
D.C., 1993.

[42] T. W. Sandholm and V. R. Lesser. Coalitions among computationally bounded
agents. Artificial Intelligence, 94:99-137, 1997.

[43] L. S. Shapley. A value for n-person game. In H. W. Kuhn and A. W. Tucker,
editors, Contributions to the Theory of Games. Princeton University Press,
1953.

[44] O. Shehory and S. Kraus. Coalition formation among autonomous agents:
Strategies and complexity. In C. Castelfranchi and J. P. Muller, editors, Lecture
Noles in Artificial Intelligence No. 957, From Reaction to Cognition, pages 57—
72. Berlin:Springer-Verlag, 1993.

[45] O. Shehory and S. Kraus. Task allocation via coalition formation among
autonomous agents. In Proc. of IJCAI-95, pages 655-661, Montreal, 1995.

[46] O. Shehory and S. Kraus. Formation of overlapping coalitions for precedence-
ordered task-execution among autonomous agents. In Proc. of ICMAS-96,
pages 330-337, Kyoto, Japan, 1996.

[47] O. Shehory, K. Sycara, and S. Jha. Multi-agent coordination through coalition
formation. In M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent
Agents 4, Lecture Notes in Artificial Intelligence No. 1365, pages 143-154.
Berlin:Springer-Verlag, 1997.

42

[48] R. G. Smith. A framework for distributed problem solving. In Proc. of IJCAI-
79, pages 836-841, 1979.

[49] R. G. Smith. The contract net protocol: high-level communication and control
in a distributed problem solver. IEEE Transaction on Computers, 29(12):1104—
1113, 1980.

[50] K. Sycara. Persuasive argumentation in negotiation. 7Theory and Decision,
28:203-242, 1990.

[61] K. Sycara, K. Decker, A. Pannu, and M. Williamson. Designing behaviors for
information agents. In Proceeding of Agents-97, pages 404-412, Los Angeles,
1997.

[62] K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng. Distributed
intelligent agents. IFEF Fzpert — Inteligent Systems and Their Applications,
11(6):36-45, 1996.

[53] K. Sycara and D. Zeng. Coordination of multiple intelligent software agents.
International Journal of Intelligent and Cooperative Information Systems, 5(2
& 3):181-211, 1996.

[54] S. N. Talukdar, L. Baerentzen, A. Gove, and P. S. deSouza. Asynchronous
teams: Cooperation schemes for autonomous, computer-based agents. Technical
Report EDRC-18-59-96, Carnegie Mellon University, Engineering Design
Research Center, 1996.

[55] G. Tidhar, A. S. Rao, and E. A. Sonenberg. Guided team selection. In Proc.
of ICMAS-96, pages 369-376, Kyoto, Japan, 1996.

[56] W. E. Walsh and M. P. Wellman. A market protocol for distributed task
allocation. In Proc. of ICMAS-98, Paris, France, 1998.

[57] L. Wang and W. Tsai. Optimal assignment of task modules with precedence for
distributed processing by graph matching and state-space search. Bit, 28:54-68,
1988.

[58] M. P. Wellman. A market-oriented programming environment and its
application to distributed multicommodity flow problems. Journal of Artificial
Intelligence Research, 1:1-23, 1993.

[59] E. Werner. Toward a theory of communication and cooperation for multiagent
planning. In Proc. of the Second Conference on Theoretical Aspects of
Reasoning about Knowledge, pages 129-143, Pacific Grove, California, March
1988.

[60] M. Williamson, K. Decker, and K. Sycara. Unified information and control
flow in hierarchical task networks. In Proceedings of the AAAI-96 workshop on
Theories of Planning, Action, and Control, 1996.

[61] L. Zhou. A new bargaining set of an n-person game and endogenous coalition
formation. Games and Fconomic Behavior, 6:512-526, 1994.

43

[62] G. Zlotkin and J. Rosenschein. Negotiation and task sharing among
autonomous agents in cooperative domain. In Proc. of the 11th International
Joint Conference on Artificial Intelligence, pages 912-917, Detroit, MI, 1989.

[63] G. Zlotkin and J. Rosenschein. Cooperation and conflict resolution via
negotiation among autonomous agents in noncooperative domains. I[EFFFE
Transactions on Systems, Man, and Cybernetics, Special Issue on Distributed
Artificial Intelligence, 21(6):1317-1324, December 1991.

[64] G. Zlotkin and J. Rosenschein. Coalition, cryptography, and stability:
Mechanisms for coalition formation in task oriented domains. In Proc. of
AAAL94, pages 432-437, Seattle, Washington, 1994.

44

