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Abstract

Coordinating hundreds or thousands of unmanned aerial vehicles
(UAVs), presents a variety of new exciting challenges, over and above
the challenges of building single UAVs and small teams of UAVs. We are
specifically interested in coordinating large groups of Wide Area Search
Munitions (WASMs), which are part UAV and part munition. We are
developing a “flat”, distributed organization to provide the robustness
and flexibility required by a group where team members will frequently
leave. Building on established teamwork theory and infrastructure we
are able to build large teams that can achieve complex goals using com-
pletely distributed intelligence. However, as the size of the team is
increased, new issues arise that require novel algorithms. Specifically,
key algorithms that work well for relatively small teams, fail to scale up
to very large teams. We have developed novel algorithms meeting the
requirements of large teams for the tasks of instantiating plans, sharing
information and allocating roles. We have implemented these algorithms
in reusable software proxies using the novel design abstraction of a co-

ordination agent that encapsulates a piece of coordination protocol. We
illustrate the effectiveness of the approach with 200 WASMs coordinat-
ing to find and destroy ground based targets in support of a manned
aircraft.
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1



2

1. INTRODUCTION

Wide Area Search Munitions (WASMs) are a cross between an un-
manned aerial vehicle and a munition. With an impressive array of
onboard sensors and autonomous flight capabilities WASMs can play a
variety of roles in a modern battle field including reconnasiance, search,
battle damage assessment, communications relays and decoys. Also be-
ing able to play the role of munition makes WASMs a very valuable
asset for battlefield commanders. In the foreseeable future, it is envi-
sioned that groups of the order of 100 WASMs will support and protect
troops in a battlespace.

Getting large groups of WASMs to cooperate in dynamic and hos-
tile environments is an exciting though difficult challenge. There have
been significant successes in automated coordination[5, 8, 18, 31], but
the number of entities involved has been severely limited due to the fail-
ure of key algorithms to scale to the challenges of large groups. When
coordinating small groups of WASMs there are a variety of challenges
such as formation flying and avoiding mid-air collisions. However, when
we scale up the number of WASMs in the group, a new set of challenges,
attributable to the scale of the team, come to the fore. For example,
communication bandwidth becomes a valuable commodity that must be
carefully managed. This is not to say that the challenges of small teams
disappear, only that there are additional challenges. The focus of this
chapter, is on those challenges that occur only when the size of the group
is scaled up.

Given the nature of the domain, we are pursuing a completely dis-
tributed organization that does not rely on any specific entity, either
WASM or human, for continued operation. This makes the overall sys-
tem more robust to enemy activity. Our flat organization builds on well
understood theories of teamwork [7, 13, 19, 16, 35]. Teamwork has the de-
sirable properties of flexibility and robustness we require. Coordination
based on ideas of teamwork requires that a number of algorithms work ef-
fectively together. We encapsulate our teamwork algorithms in a domain
independant, reusable software proxy[27, 18]. A proxy works in close co-
operation with a domain level agent to control a single team member.
Specifically, the proxy works in close cooperation with an autopilot to
control a single WASM. The proxies communicate among themselves
and with their domain agent to achieve coordination.

The proxies execute Team Oriented Plans (TOPs) that break team
activities down into individual activities called roles. TOPs are specified
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a priori, typically by a human designer, and specify the means by which
the team will achieve its joint goals. Typically, TOPs are parameterized
in templates and can be instantiated at runtime with specific details of
the environment. For example, a TOP for destroying a target might
have the specific target as a parameter. Importantly, the TOP does
not specify who performs which role, nor does the TOP specify low
level coordination details. Instead, these generic coordination “details”
are handled by the proxies at runtime, allowing the team to leverage
available resources and overcome failures.

The proxies must implement a range of algorithms to facilitate the
execution of a TOP, including algorithms for instantiating TOPs, al-
locating roles and sharing relevant information. To build large teams,
novel approaches to key algorithms are required. Specifically, we have
developed novel approaches to creating and managing team plans, to al-
locating roles and to sharing information between team members. Our
approach to plan instantiation allows any proxy to instantiate a TOP.
The team member can then initiate coordination for, and execution of,
that TOP and then the whole team (or just a part) can be involved in
the coordination and execution.

We are also developing new communication reasoning that works by
simply passing pieces of information to group members more likely to
know who needs that information. Previous algorithms for reasoning
about communication have made assumptions that do not hold in very
large groups of WASMs. Specifically, previous algorithms have either
assumed that centralization is possible or have assumed that agents
have accurate models of other members of the group. Because of a
phenomenon called “small world networks”[38] (in human groups this
phenomenon is caputured informally by the notion of “six degrees of
separation”) the result of our simple communication technique is tar-
geted information delivery in an efficient manner. Our algorithm avoids
the need for accurate information about group members and functions
well even when group members have only very vague information about
other group members.

Our implementation of the proxies is based on the abstraction of a
coordination agent. Each coordination agent is responsible for a “chunk”
of the overall coordination and encapsulates a protocol for one aspect of
the coordination. We use a separate coordination agent for each plan or
sub-plan, role and piece of information that needs to be shared. Specif-
ically, instead of distributed protocols, which provide no single agent a
cohesive view of the state of coordination, that state is encapsulated by
the coordination agent and moves with that agent. Thus, the proxies
can be viewed as a mobile agent platform upon which the coordination
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agents execute the TOPs. A desirable side effect of this design abstrac-
tion is that it is easier to build and extend complex “protocols” since
the complexity of the protocol is hidden in the coordination reasoning,
rather than being spread out over many agents.

We are evaluating our approach in a WASM simulation environment
that emphasizes the coordination issues, without requiring too much at-
tention to aerodynamic or low-level control issues. We have implemented
two different forms of control, centralized and distributed, to allow us
to quickly test ideas then perform more detailed validation. Our initial
experiments have revealed some interesting phenomena including that
very simple target allocation algorithms can perform surprisingly well
under some circumstances.

2. WIDE AREA SEARCH MUNITIONS

Wide Area Search Munitions (WASMs) are a cross between an un-
manned aerial vehicle and a standard munition. The WASM has fuel
for about 30 minutes of flight, after being launched from an aircraft.
The WASM cannot land, hence it will either end up hitting a target or
self destructing. The sensors on the WASM are focused on the ground
and include video with automatic target recognition, ladar and GPS. It
is not currently envisioned that WASMs will have an ability to sense
other objects in the air. WASMs will have reliable high bandwidth
communication with other WASMs and with manned aircraft in the en-
vironment. These communication channels will be required to transmit
data, including video streams, to human controllers, as well as for the
WASM coordination.

The concept of operations for WASMs are still under development,
however, a wide range of potential missions are emerging as interest-
ing. A driving example for our work is for a team of WASMs to be
launched from an AC-130 aircraft supporting special operations forces
on the ground. The AC-130 is a large, lumbering aircraft, vulnerable
to attack from the ground. While it has an impressive array of sensors,
those sensors are focused directly on the small area of ground where the
special operations forces are operating. The WASMs will be launched as
the AC-130 enters the battlespace. The WASMs will protect the flight
path of the AC-130 into the area of operations of the special forces, de-
stroying ground based threats as required. Once the AC-130 enters a
circling pattern around the special forces operation, the WASMs will set
up a perimeter defense, destroying targets of opportunity both to protect
the AC-130 and to support the soldiers on the ground. Even under ideal
conditions there will be only one human operator on board the AC-130
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Figure 1.1. A screenshot of the simulation environment. A large group of WASMS
(small spheres) are flying in protection of a single aircraft (large sphere). Various
SAM sites are scattered around the environment. Terrain type is indicated by the
color of the ground.

responsible for monitoring and controlling the group of WASMs. Hence,
high levels of autonomous operation and coordination are required of
the WASMs themselves.

Many other operations are possible for WASMs. Given their relatively
low cost compared to Surface-to-Air Missiles (SAMs), WASMs can be
used simply as decoys, finding SAMs and drawing fire. WASMs can be
used as communication relays for forward operations, forming an adhoc
network to provide robust, high bandwidth communications for ground
forces in a battle zone. Since a WASM is “expendible”, it can be used for
reconnasiance in dangerous areas, providing real-time video for forward
operating forces. Many other operations could be imagined in support
of both manned air and ground vehicles, if issues related to coordinating
large groups can be adequately resolved.

While our domain of interest is teams of WASMs, the issues that need
to be addressed have close analogies in a variety of other domains. For
example, coordinating resources for disaster response involves many of
the same issues[23], as does intelligent manufacturing[29] and business
processes. These central issues of distributed coordination in a dynamic
environment are beginning to be addressed, but in all these domains
current solutions do not efficiently scale to large numbers of group mem-
bers.
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Figure 1.2. An example team plan for destroying a ground based target. There are
four roles, that will be instantiated in two stages, destroying the target (which requires
that two WASMs hit the target) and the subsequent battle damage assessment (which
requires both a photo and infrared imagining).

3. LARGE SCALE TEAMWORK

The job for the proxies is to take the TOP templates, instantiate TOPs
as events occur in the environment then manage the execution of the
instantiated TOPs. To achieve this a number of algorithms must work
effectively together. Events occuring in the environment will only be
detected by some agents (depending on sensing abilities). The occurance
of these events may need to be shared with other proxies so that a single
proxy has all the information required to instantiate a plan. Care must
be taken to ensure that there are not duplicate or conflicting team plans
instantiated. Events occurring in the environment need to be shared
with agents performing roles that are impacted by those events. Once
the plans are instantiated, roles need to be allocated to best leverage
the team capabilities. Plans also need to be terminated when they are
completed, irrelevant or unachievable. Other algorithms, such as ones
for allocating resources, may also be required but are not considered
here. All the algorithms must work together efficiently and robustly in
order for the team to achieve its goals.

Viewed abstractly, the reasoning of the team can be seen as a type
of hierarchical reasoning. At the top of the hierarchy are the plans that
will be executed by the team. Those plans get broken down into more
detailed plans, until the pieces, which we call roles, can be performed
by a single team member. The next layers of the hierarchy deal with
allocating those roles and finding coalitions for sets of roles that must
be performed together. Finally, at the bottom of the hierarchy, is the
detailed reasoning that allows team members performing as a part of a
coalition to work together effectively. In these small coalitions we can
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Figure 1.3. Conceptual view of teamwork reasoning hierarchy. At the top, boxes
represent team plans which are eventually broken down into individual roles. The roles
are sent to the coordination layer which allocates the roles and resources to execute
the plans. Finally, at the detailed level, specific sub-teams must closely coordinate to
execute detailed plans.

apply standard teamwork coordination techniques such as STEAM. The
basic idea is shown in Figure 1.3. The important caveat is that there is
no hierarchical reasoning imposed on the team, the hierarchical view is
simply a way of understanding what is happening. In the remainder of
this section, we describe the proxies, the coordination agents and some
of the key algorithms.

3.1. MACHINETTA PROXIES

To enable transitioning our coordination techniques to higher fidelity
simulation environments or other domains, we separate the low level
dynamic control of the WASM from the high level coordination code.
The general coordination code is encapsulated in a proxy [18, 36, 26, 32].
There is one proxy for each WASM. The basic architecture is shown in
Figure 1.4. The proxy communicates via a high level, domain specific
protocol with an intelligent agent that encapsulates the detailed control
algorithms of the WASM. Most of the proxy code is domain indepen-
dent and can be readily used in other domains requiring distributed con-
trol. The proxy code, known as Machinetta, is a substantially extended
and updated version of the TEAMCORE proxy code[36]. TEAMCORE
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Figure 1.4. The basic system architecture showing proxies, control code and
WASMs being controlled.

proxies implement teamwork as described by the STEAM algorithms
[35], which are in in turn based on the theory of joint intentions[19, 7].

Coordination Agents. In a dynamic, distributed system protocols
for performing coordination need to be extremely robust. When we scale
the size of a team to hundreds of agents, this becomes more of an issue
than simply writing bug-free code. Instead we need abstractions and
designs that promote robustness. Towards this end, we are encapsulat-
ing “chunks” of coordination in coordination agents. Each coordination
agent manages one specific piece of the overall coordination. When con-
trol over that piece of coordination moves from one proxy to another
proxy, the coordination agent moves from proxy to proxy, taking with
it any relevant state information. We have coordination agents for each
plan or subplan (PlanAgents), each role (RoleAgents) and each piece of
information that needs to be shared (InformationAgents). For exam-
ple, a RoleAgent looks after everything to do with a specific role. This
encapsulation makes it far easier to build robust coordination.

Coordination agents manage the coordination in the network of prox-
ies. Thus, the proxy can be viewed simply as a mobile agent platform
that facilitates the functioning of the coordination agents. However, the
proxies play the additional important role of providing and storing local
information. We divide the information stored by the proxies into two
categories, domain specific knowledge, K, and the coordination knowl-
edge of the proxy, CK. K is the information this proxy knows about the
state of the environment. For example, the proxy for a WASM knows
its own location and fuel level as well as the the location of some tar-
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gets. This information comes both from local sensors, reported via the
domain agent, and from coordination agents (specifically InformationA-
gents, see below) that arrive at the proxy. CK is what the proxy knows
about the state of the team and the coordination the team is involved
in. For example, CK includes the known team plans, some knowledge
about which team member is performing which role and the TOP tem-
plates. At the most abstract level, the activities of the coordination
agents involve moving around the proxy network adding and changing
information in C and CK for each agent. The content of K as it pertains
to the local proxy, e.g., roles for the local proxy, govern the behavior of
that team member. The details of how a role is executed by the control
agent, i.e., the WASM, are domain (and even team member) dependant.

A Factory at each proxy is responsible for creating coordination agents
as required.4 It creates a PlanAgent when the pre-conditions of a plan
template are met and an InformationAgent when a new piece of domain
information is sensed locally by the proxy allowing the team to share
information sensed locally by a proxy. The algorithm is shown in Figure
1.5.

Factory

loop
Wait for state change
foreach template ∈ TOP Templates

if matches ( template, K )
Create PlanAgent(template, K)

end for
if new locally sensed information in K

Create InformationAgent (new information)
end loop

Figure 1.5. Algorithm for a proxy’s factory.

3.2. TEAM ORIENTED PLANS

The basis of coordination in the Machinetta proxies are a Team Ori-
ented Plans (TOP) [28]. A TOP describes the joint activities that must
take place for the team to achieve its goals. At any point in time, the
team may be executing a number of TOPs simultaneously. TOPs are
instantiated from TOP templates. These templates are designed before
the team begins operation, typically by humans to ensure compliance

4Factory is a software engineering term for, typically, an object that creates other objects
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Figure 1.6. High level view of the implementation, with coordination agents moving
around a network of proxies.

with established doctrine or best practices. A TOP is a tree structure,
where leaf nodes are called roles and are intended to be performed by a
single team member. For example, a typical TOP for the WASM domain
is to destroy a ground based target as shown in Figure 1.2. Such a plan
is instantiated when a ground based target is detected. The plan is ter-
minated when the target is confirmed as destroyed or the target becomes
irrelevant. The plan specifies that the roles are to actually hit the target
and to perform battle damage assessment. The battle damage assess-
ment must be performed after the target has been hit. The coordination
algorithms built into the proxies handle the execution of the TOP, hence
the plan does not describe the required coordination nor how the coordi-
nation needs to be performed. Instead the TOP describes the high level
activities and the relationship and constraints between those activities.

Plan Monitoring with PlanAgents. A PlanAgent is responsible
for “managing” a plan. This involves instantiating and terminating roles
as required and stopping execution of the plan when the plan either
succeeds, becomes irrelevant or is no longer achievable. These conditions
are observed from K in the proxy state. Currently, the PlanAgent must
simply match conditions using string matching against post-conditions
in the template, but we can envision more sophisticated reasoning in the
future.

Because plans are instantiated in a distributed manner, the PlanA-
gents need to ensure that there are not other plans that are attempting
to achieve the same goal (e.g., hit the same target) or other plans that



Coordinating Very Large Groups of Wide Area Search Munitions 7 11

may conflict. We discuss the mechanisms by which a PlanAgent can
avoid these conflicts below. To facilitate the conflict avoidance (and
detection) process, as well as keeping the team appraised of ongoing ac-
tivities, the first thing a PlanAgent does is create an InformationAgent
to inform the other proxies (who will update CK.)

If the PlanAgent does not detected any conflicts, it executes its main
control loop until the plan becomes either irrelevant, unachievable or is
completed. For each role in the plan, a RoleAgent is created. RoleAgents
are coordination agents that are responsible for a specific role. We do
not describe the RoleAgent algorithms in detail here, see [12] for details.
Suffice it to say that the RoleAgent is responsible for finding a team
member to execute that role. As the plan progresses, the required roles
may change, in which case the PlanAgent must terminate the current
RoleAgents and create new RoleAgents for the new roles. It is also
possible that a previously undetected plan conflict is found and one plan
needs to be terminated. The PlanAgents responsible for the conflicting
plans jointly determine which plan to terminate (not shown for clarity).
When the plan is completed, the PlanAgent terminates any remaining
RoleAgents and finishes. The overall algorithm is shown in Figure 1.7.

PlanAgent

Wait to detect conflicts between plans
if conflict detected then end
else
Create InformationAgent to inform others of plan
Instantiate initial RoleAgents
while (¬irrelevant & ¬complete & ¬unachievable)
Wait for change in K or CK

Check if RoleAgents need to be terminated
Instantiate new RoleAgents if required
if newly detected plan conflicts then
Terminate this plan or conflicting

end if
end while

end if
Terminate all RoleAgents

Figure 1.7. Algorithm for a PlanAgent

Instantiating Team Oriented Plan Templates. The TOP tem-
plates typically have open parameters which are instantiated with spe-
cific domain level information at run time. Specifically, the Factory uses
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K to match against open parameters in plan templates. The matching
process is straightforward and currently involves simple string match-
ing.6 The Factory must also check CK to ensure that the same TOP
has not been previously instantiated. When the team is very large, it is
infeasible to have all team members agree on which plan to instantiate
or even for all team members to know that a particular plan has been
instantiated. For example, in a team with 100 members, it may take
on the order of minutes to contact all members, significantly delaying
execution of the plan. However, this is what is typically required by
teamwork models. Instead, we allow any proxy that detects all the pre-
conditions of a plan to instantiate that plan. Hence, notice that when
a factory at any proxy notices that preconditions are met, the TOP is
instanted immediately and a PlanAgent is created (see below).

Avoiding Conflicting Plans. While the distributed plan instanti-
ation process allows the team to instantiate plans efficiently and robustly,
two possible problems can occur. First, the team could instantiate differ-
ent plans for the same goal, based on different preconditions detected by
different members of the team. For example, two different plans could be
instantiated by different factories for hitting the same target depending
on what particular team members know or sense. Second, the team may
initiate multiple copies of the same plan. For example, two WASMs may
detect the same target and different factories instantiate identical plans
to destroy the same target. While our algorithms handle conflict recog-
nition and resolution (see PlanAgent algorithm), minimizing conflicts to
start with minimizes excess communication and wasted activity. When a
PlanAgent is created for a specific plan, the first thing it does is “wait to
detect conflict”. This involves checking CK to determine whether there
are conflicting plans, since CK contains coordination knowledge and will
contain information about the conflicting plans,. Clearly, there may be
conflicting plans the proxy does not know about, because they are not
in CK, and thus there may be a conflict, not immediately apparent to
the PlanAgent.

We are currently experimenting with a spectrum of algorithms for
minimizing instantiations of conflicting plans. Each of the algorithms
implements the “Wait to detect conflict” part of the PlanAgent algo-
rithm in a different way. At one end of the spectrum we have a specific,
deterministic rule based on specific information about the state of the
team. We refer to this instantiation rule as the team status instantiation

6We can envision more sophisticated matching algorithms and even runtime planning, how-
ever to date this has not been required.
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rule. When using this rule, we attached a mathematical function to each
TOP. The value of that function can be computed from information in
K. For example, the function attached to the TOP for destroying a tar-
get is based on distance to the target. Unless the PlanAgent computes
that the local proxy has the highest possible value for that function, it
should not proceed. The advantage of this rule is that there will be no
conflicts, provided that K is accurate. The disadvantage of the rule is
that many InformationAgents must move around the proxies often to
keep K up-to-date.

At the other end of the spectrum, we have a probabilistic rule that
requires no information about other team members. This rule, which we
refer to as the probabilistic instantiation rule, requires that the PlanA-
gent wait a random amount of time, to see whether another team mem-
ber instantiates that plan (or a conflicting plan.) Thus, InformationA-
gents for newly instantiated TOPs at other proxies have some time to
reach the proxy, update CK and avoid a costly conflict. The advantage
of this rule, is that no information is required about other team mem-
bers to use this rule, thus reducing the volume of InformationAgents
required. There are two disadvantages. First, there may be conflicting
plans instantiated. Second, there may be a significant delay between
detection of pre-conditions and the instantiation of the plan depending
on how long the PlanAgents wait.

In between these two extremes, we define another rule, which we refer
to as the local information rule, that requires that a proxy must detect
some of the TOP’s preconditions locally, in order to instantiate the plan.
Specifically, at least one of the TOPs preconditions must have come into
K directly from the environment, rather than via an InformationAgent.
Although this will lead to conflicting plans when multiple proxies locally
sense preconditions, it is easier to determine where the conflicts might
occur and resolve them quickly. Specifically we can look for proxies with
the ability to locally sense information, e.g., those in a specific part of the
enviornment. The major disadvantage of this rule is that when a TOP
has many preconditions the team members that locally detect specific
preconditions may never get to know all the preconditions and thus not
instantiate the plan.

Figure 1.8(a) shows the result of a simple simulation of the three in-
stantiation rules. We used simple models of the environment to work
out how often InformationAgents must move around in order to imple-
ment the three rules. This “cost” is indicated by the left-hand column
and uses a logarithmic scale. The right hand column shows the num-
ber of plan conflicts that result. A conflict occurs when two or more
PlanAgents proceed before they have been informed that the other has
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Figure 1.8. (a) The number of plan instantiations as we increase the number of
agents using the probabilistic instantiation rule. The straight line represents the
average of a large number of runs. The jagged line shows output from specific runs,
highlighting the high variance. (b) The number of plan instantiations using the three
different rules. In this simulation, there were 200 agents and a message took 600ms
to be transmitted. For the probabilistic instantiation rule, the PlanAgent would wait
upto 10s.

proceeded. Clearly, the team status rule gives a different tradeoff be-
tween conflicts and cost than the other rules. Notice that the precise
behavior of the probabilistic rule depends on the specific parameter set-
tings. Figure 1.8(b) shows how many conflicts result from this approach
as we increase the number of PlanAgents. The precise slope of the line
depends on the amount of time the PlanAgent is willing to wait and
the length of time it takes to communicate that the PlanAgent has been
instantiated.

3.3. INFORMATION SHARING

Information or events sensed locally by a agent will often not be sensed
by other agents in the team. In some cases, however, that information
will be critical to other members of the team, hence should be communi-
cated to them. For example, consider the case where one agent detects
that a ground target has moved into some trees. It needs to inform the
WASM that is tasked with destroying that target, but will typically not
know which WASM that is or whether any WASM is or whether the
WASM has already been informed of the move (perhaps many times).
A successful information sharing algorithm needs to deliver information
where it is required without over loading the communication network.
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Previous algorithms for sharing information in a multiagent system
have made assumptions that do not hold in very large groups of WASMs
(or large teams in general). Specifically, algorithms either assume that
centralization is possible[33] or assume that agents have accurate models
of other members of the group[35]. Often techniques for communication
assume that an agent with some potentially relevant information will
have an accurate model of the rest of the group. The model of the group
is used to reason about which agents to communicate the information to
(and whether there is utility in communicating at all[35, 26]). However,
in large groups, individual agents will have very incomplete information
about the rest of the group, making the decision about to whom to
communicate some information much more difficult. Moreover, both as a
design decision and for practical reasons, communication in a centralized
way is not appropriate.

We are developing new communication reasoning that reduces the
need to know details about other team members by exploiting the fact
that, even in very large groups, there is a low degree of separation be-
tween group members. We assume the agents have point-to-point com-
munication channels with a small percentage ( < 1%) of other group
members. Having a low degree of separation means that a message can
be passed between any two agents via a small number of the point-to-
point connections. Such networks are known as small worlds networks
[38]. In a small worlds network, agents are separated from any other
agent by a small number of links. Such networks exist among people and
are popularized by the notion of “six degrees of separation”[1]. When
agents are arranged in a network, having a small number of neighbours
relative to the number of members in the team, the number of agents
through which a message must pass to get from any agent to any other,
going only from neighbour to neighbour, is typically very small.

The intuition behind our approach is that agents can rapidly get in-
formation to those requiring it simply by “guessing” which acquaintance
to send the information to. The agent attempts to guess which of its
neighbours either require the information or are in the best position to
get the information to the agent that requires it. In a small worlds net-
work, an agent only needs to guess correctly slightly more often than it
guesses wrong and information is rapidly delivered. Moreover, due to the
low degree of separation, there only needs to be a small number of cor-
rect “guesses” to get information to its destination. Since the agents are
working in a team, they can use information about the current state of
the coordination to inform their guesses. While members of large teams
will not have accurate, up-to-date models of the team, our hypothesis
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is that they will have sufficiently accurate models to “guess” correctly
often enough to make the algorithm work.

InformationAgents are responsible for delivering information in our
proxy architecture. Thus, these “guesses” about where to move next are
made by the InformationAgents as they move around the network. The
basic algorithm is shown in Figure 1.9. The InformationAgent guesses
where to move next, moves there, updates the proxy state and moves on.
This process continues until the information is likely to be out of date or
the InformationAgent has visited enough proxies that it believes there
are unlikely to be more proxies requiring the information. In practice, we
typically stop an InformationAgent after it has visited a fixed percentage
of the proxies, but we are investigating more optimal algorithms.

InformationAgent

while Worth Continuing
Guess which link leads closer to proxy requiring information
Move to that proxy
Add information to proxy state (either K or CK)

end while

Figure 1.9. Algorithm for an InformationAgent

To test the potential of the approach we ran an experiment where
proxies are organized in a three dimensional grid. One proxy is ran-
domly chosen as the source of some information and another is randomly
picked as the sink for that information. For testing, a probability is at-
tached to each link, indicating the chance that passing information down
that link will get the InformationAgent a smaller number of links from
the sink. (These probabilities need to be inferred in the real proxies,
see below for details.) In the experiment shown in Figure 1.10(a) we
adjust the probability on links that actually lead to an agent requiring
the information. For example, for the “59%” setting, links that lead
closer to the sink agent have a probability of 0.59 attached, while those
that lead further away have a 0.41 probability attached. The Informa-
tionAgent follows links according to their probability, e.g., in the “59%”
setting, it will take links that lead it closer to the sink 59% of the time.
Figure 1.10(a) shows that the information only needs to move closer to
the target slightly more that 50% of the time to dramatically reduce
the number of messages required to deliver information efficiently to the
sink. To test the robustness of the approach, we altered the probability
on some links so that the probability of moving further from the sink
was actually higher than moving toward it. Figure 1.10(b) shows that
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Figure 1.10. (a) The number of messages required to get a piece of information
from one point in a network to another as we increase the likelihood that agents
pass information closer to the target. There were 800000 agents arranged in a three
dimensional grid. (b) The total number of messages required as the percentage of
agents with probabilities indicating the wrong direction to send the information.

even when a quite large percentage of the links had these “errornous”
probabilities, information delivery was quite efficient. While this exper-
iment does not show that the approach works, it does show that if the
InformationAgents can guess correctly only slightly more than 50% of
the time, we can get targeted, efficient information delivery.

Sharing Information with InformationAgents. An initial ap-
proach to determining where InformationAgents should travel relies on
inferring the need for one piece of information from the reciept of an-
other piece. To understand the motivation for the idea, consider the
following example. When a proxy receives a message about a role that
is being performed at coordinates (1,1) from neighbour a, it can infer
that if it found out about a SAM site at coordinates (1,2), passing that
information to neighbour a is likely to get the information to a proxy
that needs it. Notice, that it need not be the neighbour a that actually
needs the information, but it will at least likely be in a good (or bet-
ter) position to know who does. These inferences can be inferred using
Bayes’ Rule. In the following, we present a model of the small worlds
network and an algorithm, based on Bayes’ Rule, for updating where an
InformationAgent should move next.
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Proxy Network Models. Our proxy network model is composed of
three elements, A, N and I, where A are the proxies, N is the network
between the agent and I is the information to be shared. The team
consists of a large number of proxiess, A(t) = {a1, a2, ...., an}.

N denotes the communication of network among proxy team. An
proxy a can only communicate directly with a very small subset of its
team mates. The acquaintances, or neighbours, of a at time t are written
n(a, t) and the whole network as N(t) = ∪

a∈A(t)
n(a, t). A message can

be transferred from proxies that are not neighbours by passing through
intermediate proxies but proxies will not necessarily know that path.
We define the minimum number of proxies a message must pass through
to get from one agent to another as the distance between those agents.
The maximum distance between any two proxies is the network’s “degree
of separation”. For example, if proxies a1 and a2 are not neighbours,
but share a neighbour distance(a1, a2) = 1. We require the network,
N , to be a small worlds network, which imposes two constraints. First,
|n(a, t)| < K, where K is a small integer, typically less than 10. Second,
∀ai, aj ∈ A, distance(ai, aj) < D where D is a small integer, typically
less than 10. While N is a function of time, we assume that it typically
changes slowly relative to the rate messages are sent around the network.

I is the alphabet of information that the team knows, I = CK ∪ K.
i ∈ I denotes a specific piece of information, such as “There is a tank at
coordinates (12, 12)”.

The internal state of the team member a is represented by Sa =<

Ha, Pa, Ka >. Ha is the history of messages received by the proxy. In
practice, this history may be truncated to leave out old messages for
spaces reasons. Ka ⊆ I is the local knowledge of the proxy (it can be
derived from Ha). If i ∈ Ka at time t we say knows(a, i, t).

The matrix P is the key to our information sharing algorithm.

P : I × N(a) → [0, 1]

P maps an proxy and piece of information to a probability that that
proxy is the best to pass that piece of information to. To be “best”
means that passing the information to that proxy will most likely get
the information to a sink. For example, if P [i1, a2] = 0.9, then given the
current state of a1 suggests that passing information i1 to proxy a2 is the
best proxy to pass that information to. To obey the rules of probability,
we require:

∀i ∈ I,
∑

b∈N(a)

P [i, b] = 1
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Using P , when the proxy has a piece of information to send, it chooses
a proxy to send the message to according to the the likelihood sending
to that proxy is the best. Notice, that it will not always send to the best
proxy, but will choose an proxy relative to its probability of being the
best.

The state of a proxy, Sa, gets updated in one of three ways. First,
local sensing by the proxy can add information to Ka. Second, over
time the information in Ka changes as information becomes old. For
example, information regarding the location of an enemy tank becomes
more uncertain over time. Maintaining Ka over time is an interesting and
difficult challenge, but not the focus of this paper, hence we ignore any
such effects. Finally, and most importantly, Ka changes when a message
m is sent to the proxy a from another proxy b at time t, sent(m,a, b, t).
In the case that m contains a piece of information i, we define a transition
function, δ, that specifies the change to the proxy state. Two parts of the
δ function, namely the update to the history part of the state, Ha(t+1) =
Ha(t) ∪ m, and the knowledge part of the state, Ka(t + 1) = K(t) ∪ i,
are trivial. The other part of the transition function, the update to Pa

due to message m, is written δP . This is the most difficult part of the
transition function, and is the key to the success of the algorithm. The
function is discussed in detail in later sections.

The reason for sharing information between team mates is to im-
prove the individual performance and hence the overall performance.
To quantify the importance of a piece of information i to a proxy a

at time t we use the function R : I × A × t → R. The importance
of the information i is calculated by determining the expected increase
in utility of the proxy with the information versus without it. That is,
R(a, i, t) = EU(a,K+i)−EU(a,K−i), where EU(a,K) is the expected
utility of the proxy a with knowledge K. When R(a, i, t) > 0, it means
that the specific information i supports a’s decision making. The larger
the value of R(a, i, t) the more a needs the information.

O(A, I,N) is the objective function:

reward(A, t) =

∑

a∈A(t)

r(a, i, t)

∑

a∈A(t)

knows(a, i, t)

The numerator sums the reward recieved for getting the information
to proxies that need it, while the denominator gives the total number
of agents to whom the information was given. Intuitively, the objective
function is maximized when information is transferred to as many as
possible proxies that need that information and as few as possible of
those that do not.
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Updating Proxy Network Models. The key question for the
algorithm is how we define δP , i.e., how we update the matrix P when
a new message arrives. To update where to send a piece of informa-
tion j based on a message containing information i, we need to know
the relationship, if any between those pieces of information. Such rela-
tionships are domain dependant, hence we assume that a relationship
function, rel(i, j) → [0, 1], is given. The intuition caputured by rel is
that if rel(i, j) > 0.5 then an agent interested in i will also be interested
in j, while if rel(i, j) < 0.5 then an agent interested in i is unlikely to
be interested in j. For example, if i corresponds to a particular event
in the environment, if j corresponds to an event near the event at i, we
can expect rel(i, j) > 0.5, otherwise we expect a smaller value. If there
is no relationship between i and j, then rel(i, j) = 0.5.

Utilizing Bayes’ rule, we interpret a message containing information i

arriving from a proxy b as evidence that proxy b is the best associate to
pass information j to. Specifically, we can define define δP as follows:

δP (P, recv(i, a)) = Pr(P [j, b]|recv(i, a)) × P [j, b]

where

Pr(P [j, b]|recv(i, a)) =

{

rel(i, j) × 2
|N | if a = b

1
|N | otherwise

After δP has been applied, P must again be normalized:

P ′[i, a] =
P [i, a]

∑

b∈N(a) P [i, b]

4. RESULTS

The most important aspect of our results is that we have run a team
of 200 simulated WASMs, controlled by proxies in a simulation of a mis-
sion to protect a manned aircraft. Such a team is an order of magnitude
bigger than previously published teams. The proxies are implemented
in Java and 200 ran on two 2GHz linux machines with 1Gb of RAM
on each machine. In the following, we present selected runs from ex-
periments with this scenario, plus the results of experiments using a
simpler centralized controller that mimics the coordination, but is more
lightweight.

The first experiment compared three different algorithms for allocat-
ing WASMs to targets. We compared two centralized algorithms with
our distributed allocation. The first centralized algorithm was very sim-
ple, allocating the closest available WASM to every newly discovered
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Figure 1.11. Comparing the number of targets hit by three different role allocation
algorithms under three different target densities.

target. The second centralized algorithm was a genetic algorithm based
approach. Figure 1.11 shows the number of randomly distributed tar-
gets destroyed by each of the algorithms in a fixed amount of time. For
each algorithm we tried three different levels of target density, few tar-
gets spread out to many targets in a small area. Somewhat surprisingly,
the simple algorithm performed best, followed by our distributed algo-
rithm, finally followed by the genetic algorithm. It appears the the ran-
dom distribution of targets is especially amenable to simple allocation
algorithms. However, notice that the performance of the distributed
algorithm is almost as good as the simple algorithm, despite having
far lower communication overheads. We then performed more detailed
experiments with the distributed algorithm, varying the threshold for
accepting a role to destroy a target. The threshold is inversely propor-
tional to the distance of the WASM to the target. A team member will
not accept a role unless its capability is above the threshold and it has
available resources. Figure 1.12(a) shows that unless the threshold is
very high and WASMs will not go to some targets, the number of tar-
gets hit does not vary. Even the rate of targets hit over time does not
change much as we vary the thresholds, see Figure 1.12(b).

In our second experiment, we used the centralized version of our team-
work algorithms to run a very large number of experiments to understand
how WASMs should coordinate. The mission was to protect a manned
aircraft and the output measure was the closest distance an undestroyed
target got to the manned aircraft (higher is better) which followed a
random path. The WASMs had two options, stay with the aircraft or
spread out ahead of the aircraft path. We varied six parameters, giv-
ing them low, medium and high values and performed over 8000 runs.
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(a) (b)

Figure 1.12. (a) The number of targets hit as the threhold is varied. Threshold is
the minimum capability of an WASM assigned a target and is inversely proportional
to the WASMs distance from the target. (b) The time taken to hit a specific number
of targets as the threshold is varied.

Figure 1.13. Effects of a variety of parameters on the minimum distance a SAM
site gets to a manned aircraft the WASMs are protecting.

The first parameter was the speed of the aircraft relative to the WASM
(A/C Speed). The second parameter was the number of WASMs (No.
WASM). The third parameter was the number of targets (SAM sites).
The fourth parameter was the percentage of WASMs that stayed with
the aircraft versus the percentage that spread out looking for targets.
The fifth parameter is the distance that the WASMs which stayed with
the aircraft flew from it (Protect Spread). Finally, we varied the WASM
sensor range. Figure 1.13 shows the results. Notice the speed of the air-
craft relative to the WASMs is one of the most critical factors, alongside
the less surprising Number of WASMs.
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Figure 1.14. (a) The reduction in the number of messages as the association between
information received and information to be sent increases. (b) The reward received
over time, based on our information sharing algorithm and on a random information
passing algorithm.

Finally, we ran two experiments to evaluate the information sharing
algorithm. In the first experiment, we arranged around 20000 agents in
a small worlds network. Then we passed 150 pieces of information from
a particular source randomly around the network. After these 150 pieces
of information had been sent, we created a new piece of information ran-
domly and applied our algorithms to get it to a specific sink agent. In
Figure 1.14(a) we show the average number of steps taken to deliver the
message from the source to the sink as we varied the strength of the re-
lationship between the information originally sent out and the new piece
of information. As expected, the stronger the relationship between the
originally sent information and the new information the better the in-
formation delivery. In the second experiment, we started information
from various sources, moving them 150 steps, as in the first experiment.
In this case, there were multiple “sinks” for the piece of information
that we randomly added. The reward recieved, based on the objective
function above, is proportional to the ratio of the number of agents re-
ceiving the information that wanted it and the number that did not need
it. Figure 1.14(b) shows that our algorithm dramatically outperforms
random information passing. While important work remains, the initial
information sharing experiments show the promise of our approach.
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5. RELATED WORK

Coordination of distributed entities is an extensively studied prob-
lem[7, 6, 21, 25, 34]. A key design decision is how the control is dis-
tributed amoung the group members. Solutions range from completely
centralized[11], to hierarchical[10, 17] to completely decentralized[39].
While there is not yet definitive, empirical evidence of the strengths
and weaknesses of each type of architecture, it is generally considered
that centralized coordination can lead to behavior that is closer to op-
timal, but more distributed coordination is more robust to failures of
communications and individual nodes[2]. Creating distributed groups of
cooperative autonomous agents and robots that must cooperate in dy-
namic and hostile environments is an huge challenge that has attracted
much attention from the research community[22, 24]. Using a wide range
of ideas, researchers have had moderate success in building and under-
standing flexible and robust teams that can effectively act towards their
joint goals[5, 8, 18, 31].

Tidhar [37] used the term “team-oriented programming” to describe
a conceptual framework for specifying team behaviors based on mu-
tual beliefs and joint plans, coupled with organizational structures. His
framework also addressed the issue of team selection [37] — team se-
lection matches the “skills” required for executing a team plan against
agents that have those skills. Jennings’s GRATE* [18] uses a teamwork
module, implementing a model of cooperation based on the joint inten-
tions framework. Each agent has its own cooperation level module that
negotiates involvement in a joint task and maintains information about
its own and other agents’ involvement in joint goals. The Electric Elves
project was the first human-agent collaboration architecture to include
both proxies and humans in a complex environment[5]. COLLAGEN [30]
uses a proxy architecture for collaboration between a single agent and
user. While these teams have been successful, they have consisted of at
most 20 team members and will not easily scale to larger teams.

Jim and Giles[20] have show that communication can greatly improve
multiagent system performance greatly by analyzing a general model
of multi-agent communication. However, these techniques rely on a
central message board. Burstein implemented a dynamic information
flow framework and proposed an information delivery algorithm based
on two kinds of information communication: Information Provision ad-
vertisements and Information Requirements advertisements[4]. But its
realization was based on broadcast or using middle agents as brokers
who respond to all the information disseminated. Similar research can
be found in Decker and Sycara’s RETSINA multiagent system[9, 13]
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which defined information agent and middle agent who was supposed
to be able to freely delivery information with any of the others without
delay. Such approaches, while clearly useful for some domains, are not
applicable to large scale teams.

Yen’s CAST proposed a module that expedites information exchange
between team members based on a shared mental model, but almost the
same shortcoming exists because in a huge team who is working in an
ad-hoc environment, any team member can only sense a very limited
number of teammates’ status as well as their mental[42]. Xuan[41] and
Goldman[15] proposed a decentralized communication decision model
in multi-agent cooperation based on Markov decision processes (MDP).
Their basic idea is that an explicit communication action will incur a
cost and they assume the global reward function of the agent team and
the communication cost and reward are known. Xuan used heuristic ap-
proaches and Goldman used a greed meta-level approaches to optimize
the global team function. Moveover, Goldman[14] put forward a decen-
tralized collaborative multiagents communication model and mechanism
design based on MDP, which assumed that agents are full-synchronized
when start operating, but no specific optimal algorithm was presented.
Furthermore, there are no experiment result was shown that their algo-
rithm can work on huge team very well.

Bui[3] and Wie[40] solved the information sharing problems in novel
ways. In Bui’s work, he presented a framework for team coordination
under incomplete information based on the theory of incomplete infor-
mation game that agents can learn and share their estimates with each
other. Wie’s RHINO used a probability method to coordinate agent
team without explicit communication by observing teammates’ action
and coordinating their activities via individual and group plan infer-
ence. The computational complexity of these approaches makes them
inapplicable to large teams.

6. CONCLUSIONS AND FUTURE WORK

In this Chapter we have presented a novel approach and initial re-
sults to the challenges presented by coordination of very large groups
of WASMs. Specifically, we presented Machinetta proxies as the basic
arhictecture for flexible, robust distributed coordination. Key coordi-
nation algorithms encapsulated by the proxies were presented. These
algorithms, including plan instantiation and information sharing, ad-
dress new challenges that arise when a large group is required to co-
ordinate. These novel algorithms replace existing algorithms that fail
to scale when the group involves a large number of entities. We imple-
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mented the proxies using the novel abstraction of coordination agents,
which gave us high levels of robustness. With the novel algorithms and
architecture we were able to execute scenarios involving 200 simulated
WASMs flying coordinated search and destroy missions.

Our initial experiments reveal that while our algorithms are capable
of dealing with some of the challenges of the domain, many challenges
remain. Perhaps more interestingly, new unexpected phenomena are
observed. Understanding and dealing with these phenomena will be a
central focus of future efforts. Further down the track, the coordinated
behavior must be able to adapt strategically in response to the tactics of
the hostile forces. Specifically, it should not be possible for enemy forces
to exploit specific phenomena of the coordination, the coordination must
react to such attempts by changing their coordination. Such reasoning
is currently far beyond the capabilities of large teams.
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