
Credit Assignment Method for Learning E�ective Stochastic Policies
in Uncertain Domains

Sachiyo Arai and Katia Sycara

The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213 USA

E-Mail: fsachiyo, katiag@cs.cmu.edu

Abstract

In this paper, we introduce FirstVisit Pro�t-

Sharing (FVPS) as a credit assignment pro-

cedure, an important issue in classi�er sys-

tems and reinforcement learning frameworks.

FVPS reinforces e�ective rules to make an

agent acquire stochastic policies that cause

it to behave very robustly within uncertain

domains, without pre-de�ned knowledge or

subgoals. We use an internal episodic mem-

ory, not only to identify perceptual aliasing

states but also to discard looping behavior

and to acquire e�ective stochastic policies to

escape perceptual deceptive states.

We demonstrate the e�ectiveness of our

method in some typical classes of Partially

Observable Markov Decision Processes, com-

paring with Sarsa(�) using a replacing eli-

gibility trace. We claim that this approach

results in an e�ective stochastic or determin-

istic policy which is appropriate for the envi-

ronment.

1 Introduction

In this paper, we present the learning algo-

rithm to address the credit assignment procedure,

which is a very important issue in both classi-

�er systems and reinforcement learning frameworks

[Holland, 1986][Moriarty et al., 1999]. We focus on

the environments that have goals to be attained by

autonomous agents that learn with delayed reward.

This problem can be called a sequential decision prob-

lem, which is de�ned by a set of an agent's sen-

sory observations and a set of actions that map ob-

servations to successor observations. If an agent's

sensory observations provide the complete state of

its environment, the environment can be formulated

as Markov decision processes (MDPs), for which a

number of very successful planning[Barto et al., 1995]

and reinforcement learning[Watkins & Dayan, 1992]

approaches have been developed.

However, in many real environments, such as multi-

agent and distributed control mobile robotics' environ-

ments, only partial information about the state-spaces

can be expected. These environments can be formu-

lated as partially observable Markov decision processes

(POMDPs) where agents su�er from hidden states or

perceptual aliasing (i.e., the agent takes some di�er-

ent environmental states as the same sensory observa-

tion). Therefore, �nding an e�cient method for solv-

ing POMDPs would be a very practical contribution

to creating adaptive agents.

Recent approaches in POMDPs can be classi�ed

into two types. One is called a memory-based

approach[Chrisman, 1992][McCallum, 1995],

which attempts to overcome perceptual aliasing by us-

ing memory to estimate real-state and �nally to �nd

deterministic policies for the environment. The other

is called a memory-less approach[Jaakkola et al., 1994]

[Loch & Singh, 1998][Singh et al., 1994], which can

acquire a stochastic policy to make the agent robust

against perceptual aliasing. Recently, there also is an

intermediate approach[Lanzi, 2000] which introduces

small internal memories, not to construct a model of

the environment but to retain e�ective classi�ers by

combining these memories with a genetic algorithm.

Sarsa(�) using a replacing eligibility trace, pro-

posed in [Singh & Sutton, 1996], is highly regarded in

[Peshkin et al., 1999][Lanzi, 2000][Loch & Singh, 1998]

as a memory-less approach which can work very well

in POMDPs. Unfortunately, their results refer to dif-

ferent testbeds, so we cannot see what the resolvable

sub-class of POMDPs is by this method.

In this paper, we abstract three interesting subclasses

of POMDPs which bring agents serious confusions and

propose a FirstVisit Pro�t-Sharing (FVPS) approach

to make agents behave robustly in these confusions.

We show the performance of our approach by compar-

ison with Sarsa(�) in an episodic task where there is a

goal within a �nite number of steps from every initial

state. The episodic task is common in the real world,

where we can de�ne a desirable situation as a goal but

cannot de�ne the subgoals.

FVPS is classi�ed as a memory-less approach. Al-

though we use an internal one-dimensional episodic

memory, this memory is not used to construct the

state-transition model but only to discard looping be-

havior and to acquire an e�ective stochastic policy to

escape perceptual deceptive states. Therefore, FVPS

does not cost much computation and memory space.

It is very similar to the Monte-Carlo approach and

Sarsa(1) in that it makes no attempt at satisfying Bell-

man equations relating the values of successive states.

It is di�erent from Monte-Carlo in that the weight1

of rules acquired by our method has no meaning as

the estimation of state-action values, whereas Monte-

Carlo attempts to estimate the value of the state (or

state-action pair in Sarsa(�)) as an averaged reward.

These properties of FVPS not only make an agent be-

have robustly against perceptual aliasing but also save

memory and computation costs by �nding and retain-

ing only rules essential for surviving in the environ-

ment.

In Section 2, we describe our domain, notations, and

related algorithms. Section 3 introduces our approach,

FVPS. An empirical comparison of performance using

two learning approaches, FVPS and Sarsa(�=0, 0.9,

1), is presented via several experiments in Section 4,

and we discuss the applicability and e�ectiveness of

our approach for the real world in Section 5. Finally,

we conclude and summarize our future work.

2 Problem Domain

2.1 Agent Model

The agent is modeled as a reinforcement learning en-

tity engaged in an episodic task in an unknown envi-

ronment, where there are no intermediate subgoals for

which intermediate rewards can be given. (Note: Be-

cause our focus here is on credit assignment, the agent

does not have any genetic algorithm framework.) An

environment is de�ned by a �nite set of state S, the

agent has a �nite set of actions A, and the agent's sen-

1Weight here is similar in meaning to Value in the DP-
based approaches, and Strength in the classi�er systems.

�����
�����

�����
�����

Observation: xt
 (t=1,..,T)

Action: at
(t=1,..,T)

Reward
R(t=T)

P
artially

O
b

servab
le

 U
n

certain
 D

o
m

ain

����������������������
����������������������
����������������������State
Recognizer

Action
Selector

LookUp
Table

����������������������������������
����������������������������������
����������������������������������
Learner :

Credit Assignment
Procedure (FVPS)

 Agent

Episodic Memory

St

Figure 1: Agent Model

sors provide its observations from a �nite set X. Each

agent consists of �ve modules: a State Recognizer, a

LookUp Table, an Action Selector, an Episodic Memory

and the Learner, which includes the credit assignment

procedure, as shown in Fig.1.

Initially, the agent observes xt as st, the partially avail-

able state of its environment at time t. An action

is then selected (using a certain exploration method)

from the action set At, which contains all the available

actions at time t. If there is no reward after action at,

the agent stacks the observation-action pair, (xt; at),

into its Episodic Memory, and repeats this cycle un-

til a reward is generated. The observation-action pair

is called a rule in this paper. The process of moving

from a start state to the �nal reward state is called an

episode.

2.2 Target classes of POMDPs

We take �ve mazes, including two test prob-

lems which are treated in [Loch & Singh, 1998], as

shown in Fig.2, to show the typical confusions

which cause improper behavior of the agent. Be-

sides the mazes we treat here, the load-unload

problem[Peshkin et al., 1999] and Woods101, Maze7,

Woods1011
2
, and Woods102 [Lanzi & Wilson, 2000],

which includes confusion type (D), have been used in

researching POMDPs.

Except for maze (A), they include some perceptual

aliasing areas (such as 1a, 1b,..and 26d), which make

the agent fall into the confusion types (B), (C), and

(D). For mazes (B) and Sutton's, a common action

can be e�ective among the same observations, and

for maze (C), there exists another reliable route which

does not include the aliasing area, so a stochastic pol-

icy is not required. Therefore, in mazes of (B), (C) and

Sutton's, a deterministic policy can be found in each

observation, regardless of existing confusions.

However, in maze (D), which includes confusion

type (D), the agent cannot achieve the goal with only

Maze (A): MDP Maze (B) Sutton’s[Loch, 1998] Maze (C) Littman’s[Loch, 1998] Maze (D)
S0

(G)

1 2 3
4 5
6 7 8

9 10 11
13 14 15 16 17

12

18 19 20 21

S0
(G)1b

1a

4 5 6

7 8
9 10

11 13
14 15 16 17

12

18 19 20 21

2a

3a

2b

3b 27 28 2925 3026a 26b 26c 26d

(G)1 2 3 4 5a 5b 6
7a

7b
8 9 10a

10d

12

11b 7c 10c

10b

13a

11a

14
7d
7e

13b 15 16 17 18 19a 20

21 19b 22 23 24 10e 11c

721 11 8

S0

(G)

14 9
18 4a 2a 1a

5a 3a 10
19 15 12 4b 2b 1b
20 16

17
5b 3b 6

13

G

1a

1b

2 3a 4

6a

7b

6b

11 3c

7a

7c

7e

12

3b

3d

5

8

7d

10

13

9

1234567890123456
1234567890123456
1234567890123456
1234567890123456
1234567890123456
1234567890123456

1a 1b

4 3

2 G

S

undesirable
action

desirable
action

Confusion (C)
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456
123456

S 1a

1bG

2

3

right

left

Confusion (D)

��������������
��������������

�������������
�������������

�������������
�������������

��������������
��������������

�������������
�������������

���������������
���������������

: Observation
: Action

 V : Real Value
V_estimated :
 Estimated Value

: Reward

V(3)=7

1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567
1234567

5 steps

1b

2

3 4

V(4)=6
V(1b)=8

V(1a)=2 right

right

left

Vestimated(1) =5

1a

Confusion (B)

 For Types A-D and Sutton’s, the agent can observe its eight neighboring cells and (G) indicates the goal position of each
environment, but the agent cannot observe it as a goal position. In Littman’s environment, the agent can observe its four directions:
up, right,down and left; if G is in one of these four directions, it can observe G as a goal. Maze (A), (B) and (C) have been
reproduced from [Miyazaki and Kobayashi 1999].

�������������
�������������

Deterministic Policies will be found

S0

(G)

4 5 63
7 8
1a

13
15
18 19 20

2b
14

10 11
2a

1b16

9
12

17
21

Stochastic Policies will be required

Figure 2: Target subclasses of POMDPs and their Confusion Types

a deterministic policy. For example, if the agent is

in state 1a, down is a desirable action, but if it is

in state 1b, it needs to move up to reach the goal.

Also, stochastic policies are necessary in Littman's

maze[Loch & Singh, 1998], because the observations

are noisy, with the agent getting the correct obser-

vation only 70% of the time.

2.3 Related Algorithms

There are two types of credit assignment proce-

dures. One is inspired by dynamic programming

(e.g., [Watkins & Dayan, 1992]). The other is in-

spired by Holland's learning classi�er systems (e.g.,

[Grefenstette, 1988]). The former one basically at-

tempts to satisfy Bellman equations relating the val-

ues of successive states (or state-action pairs) to make

an agent behave optimally. The latter one does

not attempt to estimate the value of all rules that

cover the state space, but just accumulates the weight

on successful rules based on the agent's experiences.

These credit assignment procedures are called the boot-

strapped method and the non-boot-strapped method,

respectively. The equivalence between bucket brigade

algorithm, used in the classi�er system[Holland, 1986],

and Q-learning is proved in [Dorigo & Bersini, 1994],

so we can't say that all classi�er systems apply the

non-boot strapped method.

Q-learning by [Watkins & Dayan, 1992](Eq.1) com-

putes by successive approximations a table of all values

Q(x; a). At each time step in the episode n the agent

updates Qn(xt; at) by recursively discounting future

utilities and weighting them by positive learning rate

�. Here (0 < < 1) is a discount parameter. If

there is no immediate reward r, the agent uses r = 0

to update Qn(xt; at).

Q-learning often performs poorly in POMDPs due to
computing by successive approximations. Sarsa(� =
0) also updates the value of the state using suc-
cessive state values, as shown in Eq.2. However,
[Loch & Singh, 1998] demonstrated that Sarsa using
a replacing eligibility trace (as shown in Eq.3) with a
large � value (such as � > 0:9) performs well in some
classes of POMDPs.

Q-learning:

Qn+1(xt; at) (1� �) �Qn(xt; at)

+�(r+ maxb2actionsQn(xt+1; b)) (1)

Sarsa(�):

Qn+1(xt; at) (1� �) �Qn(xt; at)

+�(r+ Qn(xt+1; at+1)) (2)

Replacing Eligibility Trace and Sarsa(�):

1: �t rt + Qn(xt+1; at+1)�Qn(xt; at)

2: �t(xt; at) = 1

3: 8(x 6= xt; a 6= at); �t(x; a) = ��t�1(x:a) (3)

4: 8(x; a);Qn+1(x;a) Qn(x; a) + � � �t � �(x; a)

The eligibility traces are initialized to zero, and in

episodic tasks they are reinitialized to zero after ev-

ery episode. When � = 1 in Sarsa, it is the same

as the Monte-Carlo method[Singh & Sutton, 1996],

which does not attempt to satisfy Bellman equations

relating the values of successive states. It seems that

using a successive value for state-value estimation is

not e�ective for POMDPs. Here, we should note that

Sarsa(� > 0) requires computation time to update the

whole table of experienced rules, or in the most serious

case, must update all state spaces at each step.

Pro�t-Sharing by [Grefenstette, 1988], used in the

classi�er system, provides a hopeful non-boot strapped

credit assignment method. Pro�t-Sharing is very simi-

lar to the Monte-Carlo method in that it does not uti-

lize successive approximations to compute a table of

all state values. This is an important property which

can make Pro�t-Sharing attractive when one requires

the value of only a subset of the state.

3 Our Approach

3.1 Requirements for Acquiring a Proper

Policy

There are three requirements in the algorithm to make

an agent behave robustly in uncertain domains. The

�rst is that the algorithmneeds to update the weight of

the state independently without using successive state

values. The second is that the algorithm should not

attempt to estimate the value function. This will fail

in POMDPs in which the agent's sensory input is lim-

ited. The value estimation, mapping one value to one

rule, makes no sense when there is no unique value

to an observation. The accumulation of the weight on

successful rules is enough to make policies proper. The

third requirement is that the algorithm must guaran-

tee that the agent will reach the goal within a �nite

number of steps.

Our credit assignment approach is based on Pro�t-

Sharing[Grefenstette, 1988]. The good properties

which FVPS inherits from Pro�t-Sharing satisfy the

�rst and second requirements mentioned above. How-

ever, the Pro�t-Sharing approach does not take the

in�nite loops in the agent's episode explicitly into con-

sideration because the Pro�t-Sharing is assumed to use

in combination with a genetic algorithm which will get

rid of any bad behavior.

FVPS improves on Pro�t-Sharing in that it guarantees

that loops are discarded without evolutionary pres-

sure. In much reinforcement learning research, the tar-

get problems do not contain loops (e.g., board games),

although there are some problems which do contain

loops[Hansen, 1998]. These loops may result in the

agent exhibiting improper behavior with respect to

achieving its goal. In general, it is important to pur-

sue proper policy rather than optimal for POMDPs. A

proper policy is one that is guaranteed to converge on

a solution; i.e., the agent should not become trapped

within in�nite loops in the state machine. To guar-

antee convergence on a proper policy in POMDPs, we

introduce the FirstVisit routine and credit assignment

function.

To illustrate the advantage of this point, consider the

example in Fig. 2 Confusion (B). The state value, V,

represents the minimum number of steps to a reward.

In this example, the highest value of V is 1. The values

of states 1a and 1b, V(1a) and V(1b), are 2 and 8,

respectively. Although these two states are di�erent,

they are perceived by the agent as being the same state

(i.e., state 1). If the agent moves to state 1a and 1b

with equal weight, V(1) = 2+8
2

= 5. Therefore the

value of state 1 is equal to the value of state 3, i.e.,

V(3) = 5. If the agent uses these state values according

to a DP-based algorithm, such as Q-learning (Eq. 1),

it will move left into state 3. Otherwise, the agent

moves right into state 1. This means that the agent

learns the improper policy in which it only transits

between states 1b and 3. If the agent only reinforces

the successful rules without any propagation to other

rules, it can escape this looping behavior caused by

confusion type (B).

3.2 FirstVisit Pro�t-Sharing

Our solution to this problem is very simple. If the cur-

rent observation is the revisited one and the same ac-

tion is executed, the agent does not stack this rule into

the Episodic Memory, since the re-executed rule will

cause a cyclic loop in the agent's route. This routine

does not require any extra memory other than that

used by the current framework of the Pro�t-Sharing

algorithm, where an Episodic Memory is used to accu-

mulate rules until the goal is achieved.

Fig. 3 shows our algorithm. The FirstVisit routine

prohibits the agent from reinforcing the weight of the

rules which make up the loop, and can retain essen-

tial rules for a stochastic policy. Consider the episode

illustrated in Fig. 4(1), which is one example of a gen-

erated decision sequence in the initial stage of learning,

in the maze (C) shown in Fig. 2(C). In this episode,

the sub-sequence (1a; Up) � (9; Down):: � (9; Down)

forms an obviously needless loop; therefore the weight

of (1a; Up) should not be reinforced, while (1b; Up) is

necessary to reach the goal. However, the agent can-

not tell the di�erence between 1a and 1b, so we need

to consider which rule should be retained and which

rule should be removed from the episodic memory.

In FVPS, if the agent �nds the same rule as the ex-

begin
Initialize W (x; a) arbitrarily and TotalSteps=0.

Repeat (for each episode n)f
do f
- get sensory input xt of the environment ;
- choose at from an available action set At ;
- take action at ;
- FirstVisit Routine (episodicMemory[],
currentStackSize, (xt, at)) ;

- check reward rt ;
- TotalSteps ++ ;
g while (reward ! = 0) ;

if rt = R(> 0) at time T steps then, T=TotalSteps;

8(x; a) in the episodic memory

Wn+1(x; a) Wn(x; a) + R � �T (4)

g until enough number of episodes.
end

FirstVisitRoutine(episodicMemory[],
currentStackSize,(xt ; at)):
begin

initialize pointer pt=0,
do from the �rst rule of episodicMemory[]f
search same rule as (xt; at).
(compare (xt; at) with stacked rule(x; a)pt of
episodicMemory[]; pt++;)
if (xt; at)== episodicMemory[pt=k], break;

g while (pt == currentStackSize);
if found the same rule in the episodicMemory

(pt < currentStackSize) f
retain whole rules of episodic memory,
do not stack executed rule, (xt, at).

g

else f
stack executed rule, (xt, at) into

episodicMemory[].
currentStackSize ++;

g

end

Figure 3: FVPS algorithm

ecuted rule (xt; at) in the episodic memory, it does

not stack to the episodic memory. Finally, each exe-

cuted rule appears only once in the episodic memory

as shown in Fig. 4(2). Even in this method, assign-

ments will be done on needless rules, such as (10; Up)

in maze (C). But FVPS can eliminate these needless

rules by our reinforcement function, R ��TotalSteps(0 <
� < 1), in which the value is small when the length of

the agent's route is long (i.e., the size of TotalSteps is

large). Therefore, the assignment quantity on needless

rules (e.g., (10; UP) in maze (C)) will be smaller than

the one on e�ective rules (e.g., (10; Down)) that make

the length of the agent's route short, thereby causing

only the e�ective rules to be retained. On the other

hand, because both (1; Up) and (1; Down) in maze (C)

are necessary to reach the goal, both rules are retained

(4b, Right)12 (2b, Right)13 (1b, Up)14 G

����
����

����
����

����
����

����
����

(2) Introduce FirstaVisitRoutine :cut the re-executed rules

(1) Uncut Case :

Loop2
 (10, Up)9 (1a, Down)10 (10, Down)11

����
����

����
����

����
����

(1a, Up)4 (9, Down)5 (1a, Up)6 (9, Down) 7 (1a, Down)8

����
����

����
����

����
����

����
����

����
����

(S0, Right)0 (14, Down)1 (4a, Right)2 (2a, Right)3

����
����

����
����

����
����

����
����

Loop1

 (10, Up)9 (1a, Down)10 (10, Down)11

����
����

����
����

����
����

(1a, Up)4 (9, Down)5 (1a, Up)6 (9, Down) 7 (1a, Down)8

����
����

����
����

����
����

����
����

����
����

(S0, Right)0 (14, Down)1 (4a, Right)2 (2a, Right)3

����
����

����
����

����
����

����
����

(4b, Right)12 (2b, Right)13 (1b, Up)14 G

����
����

����
����

����
����

����
����

Figure 4: Example: How to Discard Looping Behavior

in Maze (C)

as e�ective rules. Also, if there exist shorter routes to

the goal without stochastic policies, the agent exploits

these deterministic policies and reinforcement of the

rules for the perceptual aliasing area is precluded. (We

describe this using a concrete example in Section 4.2.)

We claim that this approach brings about the e�ective

stochastic or deterministic policy which is appropriate

for the environment.

FVPS is very similar to the First-visited Monte-Carlo

method[Singh & Sutton, 1996], where the assignment

will be given only to the �rst visited state. However,

the values in the Monte-Carlo method are estimated as

sample averages of observed reward using the Widrow-

Ho� rule (Eq. 5)2, whereas FVPS just piles weight on

successful rules according to trial and error experi-

ences, as shown in Eq.4. It is important that the aver-

ages of observed reward among the aliasing states will

uctuate from episode to episode, and will make no

sense as the value of the observation. One the other

hand, piling up weights on successful rules is simple

and makes agents robust in POMDPs as well.

NewEstimate (OldEstimate

+ StepSize[Target-OldEstimate] (5)

4 Experiments

4.1 Settings

To demonstrate the e�ectiveness of the FVPS ap-

proach, we compared its performance with that of the

Sarsa(�) algorithm on the MDP(maze (A)) and �ve

POMDP problems. (Two of them are taken from

[Loch & Singh, 1998].) We describe aspects of the

empirical results here. In the cases of maze (A) to

maze (D), the agent starts from state S0, as shown in

2StepSize is represented by � in Eq.1 and Eq.2.

11

12

13

14

15

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0)
Sarsa(0.9)
Sarsa(1)
FVPS

8

9

10

11

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0.9)
Sarsa(1)
FVPS

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0.9)
Sarsa(1)
FVPS

10

20

30

40

50

60

70

80

90

100

110

120

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al
Sarsa(0.9)
Sarsa(1)
FVPS

5

6

7

8

9

10

11

12

13

14

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0.9)
Sarsa(1)
FVPS

5

10

15

20

25

30

35

40

45

0 20000 40000 60000 80000 100000
Number of Episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

Sarsa(0.9)
Sarsa(1)
FVPS

 Maze (A) Maze (B)

 Maze (C) Maze (D)

 Sutton’s[Littman, 1994] Littman’s[Littman, 1995]

After 1,000
Episodes

 12.55 (0.20)22.92 (31.88)

After 100,000
Episodes

Average & Standard Deviation of 10 Trials Av.(S.D.)

 12.45 (0.19) 22.89 (33.73)

Sarsa (0)

Algorithm

FVPS

 12.49 (0.24) 22.87 (34.66)

 11.10 (0.06) 17.54 (19.62)

Sarsa (0.9)

Sarsa (1)

After 1,000
Episodes

 30.08 (1.12)39.02 (19.15)

After 100,000
Episodes

Average & Standard Deviation of 10 Trials Av.(S.D.)

 8.79 (0.14) 18.99 (17.20)

Sarsa (0)

Algorithm

FVPS

 8.67 (0.08) 19.30 (18.10)

 8.06 (0.02) 13.98 (16.40)

Sarsa (0.9)

Sarsa (1)

 119.42 (8.32) 118.36 (13.72)

 61.91 (4.50) 70.83 (27.45)

Sarsa (0)

FVPS

 54.08 (2.66) 64.51 (29.91)

 13.24 (0.51) 17.05 (11.35)

Sarsa (0.9)

Sarsa (1)

 382.99 (35.78) 404.86 (63.13)

 100.58 (11.89) 113.25 (53.11)

Sarsa (0)

FVPS

102.79 (10.18)126.98 (71.38)

 15.31 (0.50) 38.74 (34.29)

Sarsa (0.9)

Sarsa (1)

 78.57 (9.67) 95.79 (64.92)

 12.86 (1.16) 42.05 (93.20)

Sarsa (0)

FVPS

 12.67 (0.88) 42.19 (97.19)

 9.45 (0.34) 39.93 (64.42)

Sarsa (0.9)

Sarsa (1)

 83.43 (15.59) 88.43 (13.98)

 39.61 (4.16) 42.95 (15.93)

Sarsa (0)

FVPS

 31.77 (2.75) 38.22 (19.41)

 9.31 (0.26) 14.02 (15.21)

Sarsa (0.9)

Sarsa (1)

Figure 5: Comparisons among FVPS and Sarsa(�)

Fig. 2, while in the cases of Sutton's and Littman's,

it starts from di�erent locations. At each time step,

the FVPS agent selects an action by a roulette wheel

method, where the rate of each action is p(aijx) =
W (x;ai)P

ak2At
W (x;ak)

, while the Sarsa agent uses the Boltz-

mann distribution p(aijx) =
e
Q(x;ai)=TP

ak2At
eQ(x;ak)=T (T =

0:2) to select its action. There are four actions within

the action set, At = fUp;Right;Down;Leftg, except
in Littman's case. Littman's permits an additional ac-

tion, fStayg. The weight (or value) of the rules was

initialized to 10:0 in FVPS and 0:0 in Sarsa. The re-

ward 1000:0 in FVPS and 1:0 in Sarsa is given after

achieving the goal. In the Sarsa case, 0:0 is used to

update at each time step. In all but Littman's case,

the agent can observe its eight neighboring cells and it

cannot see the goal as an entity, which means that the

agent gets the reward when it is in the goal position.

In Littman's case, the agent can observe the relative

four directions: front, back, left and right, and can see

the goal if the goal is in its relative four directions,

although the observations are noisy, with the agent

getting the correct observation only 70% of the time.

The parameters R, �, and T of FVPS are used to

update the weight of each rule in the episodic mem-

ory. In our experiments, the rules which are retained

after the FirstVisit routine will be given the value

R � �T = (1000:0) � (0:8)TotalSteps. The parameters �,

�, and of Sarsa are also used to update the Q-value

of each rule. In our experiments, both the step-size

� and the � values are held constant in each experi-

ment. We followed Loch[Loch & Singh, 1998] to select

Maze (C)
FVPS[%] Sarsa(1)[%]Observation FVPS[%] Sarsa(1)[%]Observation

2 100.0 100.01
53.3 100.0

 46.7

3
60.0
 40.0

34.0
 24.0
 21.0
 21.0

4 100.0

34.0
 24.0
 21.0
 21.0

1
33.3
 33.3
 33.3

 50.0

50.0

FVPS[%] Sarsa(1)[%]Observation

2 100.0
33.3

 33.3
 33.3

FVPS[%] Sarsa(1)[%]Observation
Maze (D)

FVPS[%] Sarsa(1)[%]Observation FVPS[%] Sarsa(1)[%]Observation

1 3
50.0
50.0

94.0
 6.0

50.0
50.0

50.0
50.0

50.0
 30.0
 20.0

 25.0
 25.0 45.0

6 7
 97.0

 3.0 25.0
 29.025.0
26.0

Littman’s [1995]

 : Stay : Up : Right : Down : Left

Figure 6: Policies of FVPS and Sarsa(�) in Uncertain

Areas

these values: � = 0:01, � = 0:9 and 1:0. We searched

over value for these problems and selected = 0:8,

which gave the best performance across all problems.

The evaluation metric is determined by averaging the

number of steps to reach the goal. Experiments consist

of 10 trials, each of which consists of 100,000 episodes.

The lookup table is reset for each trial.

4.2 Results

After every episode, the policy (which is selected by

a roulette method in FVPS and by the Boltzmann

distribution in Sarsa as mentioned in Section 4.1) was

evaluated and the learning curves of all types of mazes

shown in Fig. 2 plotted as shown in Fig. 5. The x-axis

shows the number of episodes and the y-axis shows the

average steps to the goal of 10 trials.

The maze (A) is an MDP, where Q-learning and any

other DP-based algorithms can reach the optimal pol-

icy of 11 steps. Although Sarsa also can reach the op-

timal theoretically, it seems that step-size parameter

� needs to be adjusted to reach it, because Sarsa(� =

0; 0:9; 1) starts to approach the optimal but then gets

farther away from it as episodes are repeated. FVPS

acquired the optimal policy only with the FirstVisit

routine and our reinforcement function, R ��TotalSteps.

The maze (B) includes confusion type (B), where Q-

learning and Sarsa(0) are no longer useful because

of their value estimation method as described in 3.1.

FVPS and Sarsa(� = 0:9; 1) could reach optimal pol-

icy here, although parameter adjustment seems to be

required for Sarsa.

The maze (C) includes confusion type (C), where there

are two routes to reach the goal. One route consists

of 9 steps in total, S0 � 14 � 4a � 2a � 1a � 10 �
4b� 2b� 1b�G, and the other consists of 11 steps in

total, S0� 14� 4a� 5a� 3a� 10� 4b� 5b� 3b� 6�
1b � G. The former route is the optimal one, but to

realize it, the agent must select Down in 1a and Up in

1b, whereas in the latter one the agent does not need

a stochastic policy. Sarsa(� = 0:9; 1) dropped down

here, because its value estimation failed even though

it uses replacing eligibility traces when one observation

requires di�erent actions. As shown in Fig. 6, FVPS

reached the stochastic policy in observations 1 and 3,

and in 2 and 4, the agent acquired the deterministic

policy. That is, FVPS acquired the e�ective policy

that the agent needs.

The maze (D) includes confusion type (D), where there

is no route to reach the goal with only a deterministic

policy and where a stochastic policy is required. The

Littman's maze also has this confusion because of the

noise with the agent's observation. In these environ-

ments, FVPS works best and can reach nearly optimal

policy within the agent's perceptual ability.

5 Discussion

The results demonstrate that FVPS found the proper

policies even in the POMDPs where the currently eval-

uated Sarsa(�) does not show good results. FVPS

performs much better than Sarsa in the environment

where more than one action will be reinforced due to

the aliasing, such as mazes of (C), (D) and Littman's.

In these environments, the update method of Sarsa(�),

in which the values are estimated as sample averages

of observed reward by Eq.5, seems not to work well,

because there is no unique value to be estimated as

the rule value. FVPS, however, just piles the weight

on successful rules according to the agent's trial and

error experiences. This simple method seems to work

very e�ectively in such environments.

We claim that FVPS requires an episodic memory of

moderate size. Only rules which are retained in the

episodic memory would be updated after each episode.

Sarsa(� > 0), on the other hand, requires memory to

keep eligibility traces and computation time to update

all rules at each time step. The size of state spaces

of environments such as those treated in this paper is

very small, so the computation time for updating is

not substantial. But the larger the state space, such

as in the multi-agent learning environment, the more

serious a problem it might be in practical use.

6 Conclusion

In this paper, we introduce FVPS, a variant of

the Pro�t-Sharing algorithm, and demonstrate its

e�ectiveness within some interesting subclasses of

POMDPs and its minimal memory requirements. We

believe that our method will be easily introduced into

a classi�er system, and can solve over many subclasses

of POMDPs by combining with a certain genetic algo-

rithm. In future work, we will prove the e�ectiveness

of FVPS theoretically and show the powerful results

on more di�cult classes.

Acknowledgement

This research has been sponsored in part by ONR

grant N-00014-96-16-1-1222 by DARPA grant F-

30602-98-2-0138.

References

[Barto et al., 1995] Barto, A.G., Bradtke, S.J., and

Singh, S.P. Learn to Act using Real-Time Dynamic

Programming. Arti�cial Intelligence, Vol.72, Num-

ber 1-2, pages 81-138, 1995.

[Chrisman, 1992] Chrisman, L. Reinforcement learn-

ing with perceptual aliasing: The Perceptual Dis-

tinctions Approach. Proceedings of the 10th Na-

tional Conference on Arti�cial Intelligence, pages

183-188, 1992.

[Dorigo & Bersini, 1994] Dorigo, M. and Bersini, H.

A Comparison of Q-learning And Classi�er Sys-

tems. Proceedings of the 3rd International Confer-

ence on Simulation of Adaptive Behavior, pages 248-

255 1994.

[Grefenstette, 1988] Grefenstette J. J. Credit Assign-

ment in Rule Discovery Systems Based on Genetic

Algorithms, Machine Learning, Vol.3, pages 225-

245, 1988.

[Hansen, 1998] Hansen, E.A. Solving POMDPs by

searching in Policy Space. Proceedings of 14th In-

ternational Conference on Uncertain Arti�cial In-

telligence, 1998.

[Holland, 1986] Holland, J. H. Escaping Brittleness:

The Possibilities of General-Purpose Learning Algo-

rithms Applied to Parallel Rule-Based Sysems. In

R.S.Michalsky et al. (eds.), Machine Learning: An

Arti�cial Intelligence Approach, Vol.2, pages 593-

623, Morgan Kaufman 1986.

[Jaakkola et al., 1994] Jaakkola, T., Singh,S.P. and

Jordan, M.I. Reinforcement Learning Algorithm

for Partially Observable Markov decision Problems.

Advances in Neural Information Processing Systems

7, pages 345-352, 1994.

[Lanzi, 2000] Lanzi, P.L. Adaptive Agents with Rein-

forcement Learning and Internal Memory. Proceed-

ings of 6th International Conference on Simulation

of Adaptive Behavior, pages 333-342, 2000.

[Lanzi & Wilson, 2000] Lanzi, P.L. and Wilson, S.W.

Toward Optimal Classi�er System Performance in

Non-Markov Environments. Evolutionary Compu-

tation, Vol.8(4), pages 393-418, 2000.

[Loch & Singh, 1998] Loch, J. and Singh, S.P. Using

Eligibility Traces to Find the Best Memoryless Pol-

icy in Partially Observable Markov Decision Pro-

cesses. Proceedings of 15th International Conference

on Machine Learning, 1998.

[McCallum, 1995] MacCallum, R. A. Instance-Based

Utile Distinctions for Reinforcement Learning with

Hidden State. Proceedings of 12th International

Conference on Machine Learning, pages 387-395,

1995.

[Miyazaki & Kobayashi, 1999]

Miyazaki, K. and Kobayashi, S. Proposal for and Al-

gorithm to Improve a Rational Policy in POMDPs.

IEEE International Conference on Systems, Man,

and Cybernetics, pages 285-288, 1999.

[Moriarty et al., 1999] Moriarty, D.E., Schultz A.C.

and Grefenstette J.J. Evolutionary Algorithms for

Reinforcement Learning. Journal of Arti�cial Intel-

ligence Research, Vol.11, pages 241-276, 1999.

[Peshkin et al., 1999] Peshkin, L., Meuleau N., and

Kaelbling L. Learning Policies with External Mem-

ory. Proceedings of 16th International Conference

on Machine Learning, pages 307-314, 1999.

[Singh et al., 1994] Singh, S.P., Jaakkola, T. and Jor-

dan, M.I. Learning Without State-Estimation in

Partially Observable Markovian Decision Processes.

Proc. of the 11th International Conference on Ma-

chine Learning, pages 284-292, 1994.

[Singh & Sutton, 1996] Singh, S.P. and Sutton, R.S.

Reinforcement Learning with Replacing Eligibility

Traces. Machine Learning, Vol.22 :1-37, 1996.

[Watkins & Dayan, 1992] Watkins, C. J. H., and

Dayan, P. Technical note: Q-learning. Machine

Learning, Vol.8: 55-68, 1992.

