
> 225 WS <

1

Abstract—Mechanisms for Web services Discovery proposed so

far have assumed a centralized registry that collects information
about all the Web services available at any given time.
Centralized registr ies are per formance bottlenecks and may
result in single points of failure. In this paper, we propose an
alternative architecture based on a P2P connection between Web
services and we show how to per form capability matching
between Web services on the Gnutella network.

Index Terms— P2P, DAML-S, Discovery, Capability Matching

I. INTRODUCTION

Discovery of Web services is becoming a hot topic as Web
services become more widespread. Much of the work on Web
services discovery is based on centralized registries such as
UDDI [18] or the DAML-S Matchmaker [13][14]. An
architecture based on a centralized registry assumes that every
Web service coming on line advertises its existence and its
capabilities/functionalities with the registry; and that every
service requester contacts the registry to discover the most
appropriate Web service and gather information about it.
Centralized registries are effective since they guarantee
discovery of services that have registered. On the other hand,
they suffer from the traditional problems of centralized
systems, namely they are performance bottlenecks and single
points of failure. In addition, they may be more vulnerable to
denial of service attacks. Moreover, the possible storage of
vast numbers of advertisements on centralized registries
hinders the timely update, as changes in the availability and
capabilities of providers change. These problems can be
partially alleviated through replication of servers, to mitigate
against single point of failure and performance bottlenecks.
Leasing mechanisms may force providers to refresh their
records keeping the registry up to date. Yet, it is still an open
question whether centralized registries will scale up to the
needs of Web services.

Peer-to-Peer (P2P) computing provides an alternative that
does not rely on centralized services; rather it allows Web
services to discover each other dynamically. Under this view, a

Web service is a node in a network of peers, which may or
may not be Web services. At discovery time a requesting Web
service queries its neighbors in the network. If any one of them
matches the request, then it replies, otherwise it queries its own
neighboring peers and the query propagates through the
network1. Such architecture does not need a centralized
registry since any node will respond to the queries it receives.
P2P architectures do not have a single point of failure; rather
the high connectivity guarantees that the message reaches the
provider. Furthermore, each node contains its own indexing of
the existing Web services so there is no danger of a bottleneck
effect. Finally, nodes contact each other directly, so there are
no delays with the propagation of new information.

The reliability provided by the high connectivity of P2P
systems comes with performance costs and lack of guarantees
of predicting the path of propagation. Any node in the P2P
network has to provide the resources needed to guarantee
query propagations and response routing, which in turn means
that most of the time the node acts as a relayer of information
that may be of no interest to the node itself. This results in
inefficiencies and large overhead especially as the nodes
become more numerous and connectivity increases.
Furthermore, there is no guarantee that a request will spread
across the entire network, therefore there is no guarantee to
find the providers of a service.

Because of their respective advantages and disadvantages
P2P systems and centralized registries strike different trade-
offs that make them appropriate in different situations. P2P
systems are more appropriate in dynamic environments such as
ubiquitous computing, while centralized registries are more
appropriate in static environments where information is
persistent.

In this paper, we explore a P2P approach to Web service
discovery that relies on the Gnutella P2P protocol [3] and uses
DAML-S [6] as service description language. Gnutella is a
pure widely used P2P network principally for file sharing that
does not rely on any centralized registry. DAML-S is a
language for the description of Web Services that attempts to

1 Message propagation is usually bound by a Time To Live (TTL) that

limits the distance a message can travel.

Using DAML-S for P2P Discovery

Massimo Paolucci1, Katia Sycara1, Takuya Nishimura1,2, Naveen Srinivasan1

1Canegie Mellon University, USA

 2Media Technology Development Division, SONY Corporation, Japan

{paolucci,katia,nishi,naveen}@cs.cmu.edu

> 225 WS <

2

bridge the gap between the growing infrastructure of Web
Services based essentially on WSDL [2], UDDI [18], and
BPEL4WS [4], and the Semantic Web [1]. Previous work on
matchmaking using DAML-S described how to use DAML-S
for capability matching among Web services [13] and how to
apply such a matching process to empower a centralized
registry such as UDDI with semantic capability matching for
Web services [14]. The work presented here expands on those
works by showing how DAML-S can also be used to perform
capability based search in a P2P network.

The rest of the paper is organized as follows: first we
provide basic background on the Gnutella protocol and
DAML-S capability matching. We will then show how to
exploit the Gnutella protocol for Web services discovery; in
addition we provide a description of a Web service peer on the
Gnutella network. Finally, we conclude with a brief literature
review, discussion and future work.

II. GNUTELLA

Gnutella is both a file sharing mechanism and an
asynchronous message passing system that allows users to
locate and share files across the Internet. Each Gnutella node
(servent) acts as both a ‘ ‘SERVer’’ and a ‘ ‘cliENT’’. Gnutella
servents use their message passing system to perform two
types of operations. First, they exchange messages with other
servents that are available on the network so that they can
maintain, or increase their level of connectivity to the overall
Gnutella Network. Secondly, they exchange messages to
search for specific files that might be available from other
servents. This messaging system is primarily composed of
binary packets of information, and text strings that represent
search requests. File exchange is based on the HTTP protocol,
and uses the same mechanisms used in the retrieval of content
from web servers.

Figure1: Propagation of Ping and Pong messages

In order to discover other servents in the Gnutella Network,

Servents use a PING/PONG process. PING messages are sent
in hopes of receiving PONG messages that contain host, port,
number of files, and kilobytes shared from other servents on
the Gnutella Network. As shown in Figure 1, each servent that
receives a PING performs two operations: first it sends a
PONG back along the same path from which the message
came, so that eventually the PONG will reach the originating
servent; second it forwards the PING to other servents with a
reduced Time to Live (TTL). As soon as the TTL reduces to 0,
the message is no longer forwarded and it ceases to propagate.
Because of the high degree of connectivity between servents
on the Gnutella Network, a PING may hit up to an exponential
number of servents in its travels from servent to servent

The search mechanism of Gnutella uses the same message
passing process utilized to PING other servents. A QUERY
message that is sent to the Gnutella Network contains a
number representing the minimum acceptable communications
link speed for file downloads, and a string representing the
content that is being sought. In typical Gnutella servents, the
search string will be tokenized before a servent’s local file
system searches for filenames that match any of the string’s
keyword tokens. If a local file exists that matches one or more
of the words in the query string, its information will be formed
into a response to the QUERY packet. If more than one file
matches a pattern, the servent can reply with multiple
responses embedded in the same message. The HIT message
that is sent back contains information about the system’s link
speed and the name and size of each matching file. It also
contains an integer index value to help map the request into the
local file system’s storage.

III. DAML-S

DAML-S defines a DAML [5] ontology for the description
of Web Services. A Web Service has a Service Profile, a
Process Model and a Grounding. The Service Profile
describes what the service does, i.e. the services functionality.
For example, Amazon provides browsing of book data bases,
provides selling of books etc. The Process model provides a
description of the workflow of the service, i.e. the steps
through which the service accomplishes its functionality. The
Process model in addition, provides the inputs, outputs,
preconditions and effects that are required for proper
interaction of a service requester with the service provider.
Finally, the Grounding provides a mapping of the interactions
between the requester and provider to actual message
exchange patterns.

In this paper we concentrate on the Profile module of
DAML-S that provides capability information which is used
during the discovery process. DAML-S describes capabilities
of Web Services by the inputs they require, the outputs they
produce, the pre-conditions that must hold for the service to
take effect and the post-conditions, i.e. the effects that
executing the service will have. For example, the inputs to a

> 225 WS <

3

book selling service could be the ISBN number of the desired
book, and a credit card number; the precondition is the
existence of enough amount of money in the credit card
account. The output of the service is an invoice, and the post
condition the sending of a book to the book purchaser. In
addition, the Profile describes contact information and
accessibility conditions for the service (e.g. only employees of
the US Federal Government can access the service), and
functional parameters, i.e. parameters describing service
quality, such as accessibility, reliability, etc. As another
example, consider a travel booking Web Service. Travel
booking services usually require departure and arrival
information as inputs and produces a fight schedule and a
confirmation number as output. The effects of the Web service
are the booking a flight, the generation a ticket, and charges to
the credit card.

While DAML-S is just a Web Services representation and
therefore does not imply any form of processing, it is relatively
easy to implement a matching algorithm to recognize which
Web Services advertisements match a given request. There is
at least one such matching engine [13] that takes advantage of
the underlying DAML logic to infer the logic relations
between the input and outputs of the request, with the input
and outputs of the advertisements. While a complete
description of this algorithm is outside the scope of this paper,
the main idea is that the outputs of the request should be
subsumed by the outputs of the selected advertisements, this
condition guarantees that the selected Web Services provide
the expected information. Furthermore, the matching engine
ranks the advertisements on the basis of their input matching,
where, inputs match if inputs of the request subsume the inputs
of the advertisement. This condition selects services that the
requester can invoke since the requester and provider inputs
and outputs (partially) match.

IV. P2P DAML-S MATCHING

The core of our proposal is to combine the DAML-S
matching with the Gnutella QUERY process and use the basic
Gnutella protocol for Web services discovery. Our proposal is
based on A2A [10] which describes how to locate basic
MultiAgent infrastructure components on the Internet using the
Gnutella P2P network. A2A exploits Gnutella connectivity
schema that allows its servents to discover other servents over
wide area networks. By enabling Agents and infrastructure
components of the RETSINA Multi Agent System (MAS) [17]
to act as servents on the Gnutella Network, A2A takes
advantage of a fabric of wide-area connectivity that is already
in existence and widely deployed. The result is that whenever
an agent needs to locate a service provider, it sends a QUERY
request through the Gnutella Network. As QUERY requests
fan-out over the Gnutella Network, being sent from servent to
servent like any file request A2A servents providing
RETSINA infrastructure functionality recognize a request for a
service that they provide, and reply with HIT messages.
However, these HIT responses do not provide information

about where to find a file, but the address where service
providers can be reached. The complete protocol is described
in figure 2

Figure 2. Protocol of Web services discovery and interaction

Web services that adopt the Gnutella based protocol

proposed above should be able to verify whether they can
satisfy the functionality that they receive as well as managing
their interaction with their requesters and providers. In the
Semantic P2P architecture we are implementing, this means
that every node should contain DAML-S description of its
capabilities and the associated engines for parsing ontologies,
as well as a P2P discovery module. The resulting architecture
is shown in figure 3. The architecture is composed of three
modules that are activated in sequence. The first module is a
DAML parser, based on the Jena parser [11], that reads
DAML ontologies and DAML-S specifications off the Web,
translates them in a set of predicates, and passes them to the
DAML-S Processor. The DAML-S Processor is based on the
JESS theorem prover [8]; which is used to implement a DAML
inference engine [9] and the DAML-S semantics. The last
layer of the architecture defines the ports that the Web service
uses to interact with the rest of the World. In our architecture
the Web service has two ports, one to manage Webservice
Invocation and interaction with other Web services, the other
to interact with the P2P world and perform P2P Webservice
Discovery. Finally, the DAML-S Processor interacts with the
Application that decides which Web services to look for on the
P2P network, and the information to be exchanged during the
interaction with other Web services.

Figure 3 also shows the different roles that DAML-S rules
play in the architecture. Rules for DAML-S Process model and
Grounding are used to control the

Select Provider

Provide
Service

Provider

Ping : DAML-S Profile request

Pong : URL of Profile

Retrieve

Query

SOAP : Web Services Interaction

Requester

Match?

Relay Ping to Peers

HTTP: GET Profile

Service Request

y n

Discovery

Interaction

> 225 WS <

4

interaction with other Web services, while rules for Profile and
Matchmaking are used to manage the discovery and location
of providers. When the Application decides to look for a
provider with a given functionality φ it asks the DAML-S
Processor to generate a request ρ for it and broadcast a query
for ρ on the P2P network. When DAML-S Web services that
act as servents on the Gnutella network receive the query, they
attempt to match ρ with their own capabilities using their own
matching rules. If a match is detected they respond with a
reply signaling to the original requester that they are potential
providers. Upon receiving the replies the P2P module of the
requester asks the Application to select a provider and initiates
the interaction using the provider’s Process Model and
Grounding specifications.

V. DISCUSSION

In this paper we outlined how Web services can combine
the discovery process provided by P2P networks and
specifically by Gnutella with the DAML-S representation of
Web services capabilities exploiting the semantics of DAML
ontologies to provide a capability matching. The result of this
work is that Web services that use DAML-S can enter a P2P
network such as Gnutella as peers participating not only in
distributing Pings and Pongs or Queries and Replies, but also
discovering providers of the services they seek or requesters of
the services that they provide.

 The idea of using P2P for discovery of Web services has
already been explored by in the HyperCup project [15]. The
goal of HyperCup is to develop an overlaying structure on the
P2P network that allows efficient discovery while reducing the
overhead related with unbounded ping/pongs and query/reply
that is characteristic of Gnutella. Unfortunately, HyperCup
reduces the P2P graph to a tree, which on the one hand
guarantees that each node is pinged at most once, but on the
other hand introduces weaknesses that P2P wants to remove:

the failure of one node prevents the visibility of the rest of the
tree. Discovery in HyperCup is performed by classifying nodes
in the P2P network with concepts in service ontologies. For
example, ontologies can represent concepts such as Buying
services or Selling services, then use these ontologies to
classify nodes in the P2P network so that through the ontology
we can find Buying Web services or Selling Web services.
Unfortunately service ontologies are hard to come by since
they have to provide a concept for each type of function, and
ultimately they straightjacket different services under the same
concept. The approach followed in this paper is to provide a
schema for representing any service and an inference
mechanism that maps between representations.

Edutella [12] is a project whose goal is to apply semantic
web technology to P2P network. The major concern of
Edutella is the semantic discovery of contents, not web
services. In addition to, Edutella uses their own RDF-based
data structure (ECDM) for describing meta data. So the usage
of meta data is limited, compared to ontology approach like
DAML/DAML-S.

In this paper we assumed the use of the initial Gnutella
protocol [3] which defined a flat P2P network in which every
node participates in the message passing. Since then, work on
the Gnutella protocol has recognized the need to introduce a
structure to the network, and developed a new protocol in
which some nodes, called Ultrapeers [16], assume the load of
the connectivity of the network filtering messages for other
nodes. The use of Ultrapeers does not invalidate our proposal
since it does not modify the discovery functionalities used in
this paper. Indeed, our architecture, and implementation, can
easily be abstracted to any P2P protocol (including
HyperCup).

Performance is a major concern of the architecture we
proposed especially because it makes every node in the P2P
network performs the work of a registry. It is easy to imagine

DAML-S
Service

Application

SOAP

DAML-S Service
Description

WSDL

DAML Parser

Jena

Jena-To-Jess Converter

Jess

DAML Inference Engine

Process Model
Rules

Grounding
Rules

DAML-S Processor

Axis Web Service
Invocation Framework

DAMLS
WebServiceInvoker

Webservice Invocation

Web Services

Matchmaking Rules

P2P Webservice Discovery

P2P Network

DAML-S
Profile

Profile Rules

DAML-S
Process Model

DAML-S
Grounding

Ping/PongHTTP

P2P Library

DAMLS
Webservice Finder

ρ

Query/Query Hit

Figure 3. Architecture of P2P DAML-S based Web service

> 225 WS <

5

situations in which the Web service would be swamped by the
amounts of requests for any type of service. We are currently
evaluating trade offs of effectiveness vs. cost in our
implementation.

BIBLIOGRAPHY

[1] T. Berners-Lee, J. Hendler, and O. Lassila.: The semantic web.:
Scientific American, 284(5):34--43, 2001.

[2] E. Christensen, F. Curbera, G. Meredith, and S.Weerawarana.: Web
Services Description Language (WSDL):
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 2001.

[3] Clip2: The Gnutella Protocol Specification V.0.4:
www.clip2.com/GnutellaProtocol04.pdf

[4] F. Curbera, Y. Goland, J. Klein, Microsoft, F. Leymann, D. Roller, S.
Thatte, and S. Weerawarana: Business Process Execution Language for
Web Services, Version 1.0: http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[5] DAML Joint Committee.: Daml+oil language (march 2001):
http://www.daml.org/2001/03/daml+oil-index.html 2001

[6] DAML-S Coalition.: Daml-s: Web service description for the semantic
web: In ISWC2002.

[7] The Foundation for Physical Agents (FIPA): FIPA ACL:
http://www.fipa.org

[8] E. Friedman-Hill: Jess: The rule engine for the Java Platform:
http://herzberg.ca.sandia.gov/jess/

[9] Joe Kopena: DAMLJessKB:
http://plan.mcs.drexel.edu/projects/legorobots/design/software/DAMLJe
ssKB/

[10] Langley, B., Paolucci, M., and Sycara, K., Discovery of Infrastructure
in Multi-Agent Systems: In Agents 2001 Workshop on Infrastructure for
Agents, MAS, and Scalable MAS

[11] B. McBride: Jena Semantic Web Toolkit:
http://www.hpl.hp.com/semweb/jena.htm

[12] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmér, T. Risch: EDUTELLA: A P2P Networking Infrastructure
Based on RDF: WWW11

[13] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.: Semantic
matching of web services capabilities. In ISWC2002, 2002.

[14] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.: Importing the
semantic web in uddi. In Proceedings of E-Services and the Semantic
Web Workshop, 2002.

[15] M. Schlosser, M. Sintek, S. Decker, W. Nejdl:
A Scalable and Ontology-based P2P Infrastructure for Semantic Web
Services: P2P2002 - The Second IEEE International Conference on
Peer-to-Peer Computing

[16] A. Singla, C. Rohrs: Ultrapeers: Another Step Towards Gnutella
Scalability: http://rfc-
gnutella.sourceforge.net/Proposals/Ultrapeer/Ultrapeers.htm

[17] Sycara, K., Paolucci, M., van Velsen, M. and Giampapa, J., The
RETSINA MAS Infrastructure. To appear in the special joint issue of
Autonomous Agents and MAS, Volume 7, Nos. 1 and 2, July, 2003.

[18] UDDI: The UDDI Technical White Paper.: http://www.uddi.org/ 2000.

