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ABSTRACT
Peer discovery via distributed message relaying is an impor-
tant function of a P2P system in which the resources/services
provided by peers and service/resource providers may change
frequently. The usual searching protocols create huge bur-
den on communications or cause long response time. Appro-
priate incentives are required to avoid free-riding and achieve
efficient cooperations in message relaying. We present an in-
centive mechanism that aims at solving both the efficiency
and incentive problems of message relaying for peer discov-
ery. In this mechanism rewards are passed from upstream
nodes to downstream nodes. A peer is rewarded if a service
provider is found via a relaying path composed of this peer.
The mechanism allows peers to specifically trade off commu-
nication efficiency and reliability, and maintains anonymity
and information locality. Some analytical insights are given
to the subgame perfect Nash equilibria (SPNE) and best re-
sponse strategies of this game. An approximation approach
is provided to calculate a symmetric SPNE. Experiments
show that this incentive mechanism brings a system utility
higher than in breadth-first search, and close to the optimal
utility in a centralized system. In the incentive mechanism
the distribution of relaying efforts over hops is dependent
on the convexity of the cost function. With the cost func-
tion more convex, peers in earlier hops tend to spend more
efforts on relaying.

1. INTRODUCTION
In a peer-to-peer(P2P) system information is highly dis-

tributed and stored by individual peers. Peer discovery, the
function to find peers that provide certain information or
services, is important in a P2P system for peers to exploit
the distributed resources owned by other peers. However,
to ensure the scalability and robustness of the system, as
well as to avoid some legal issues, a centralized database of
content of each peer usually does not exist in a P2P system
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(an exception is Napster). Instead a distributed catalog of
content is favored in which each peer only maintains a list
of resources/services of their own, and may also of their ac-
quaintances and neighbors. In this distributive model peer
discovery is realized via message relaying between peers so
that a message for resource searching is propagated in the
system with a ”word-of-mouth” effect.

Generally there are two ways to perform distributive peer
discovery: breadth-first search(used by Gnutella) and depth-
first search(used by Freenet) [17][15]. In breadth-first search
each search query message is assigned a maximum time-to-
live(TTL), which limits the search depth in a number of
hops. The requesting peer sends a query message to all its
neighbors, and all nodes who receive the message relay it
to all their neighbors, who forward the message to the next
depth, and so on. The process ends when TTL is reached.
In depth-first search each node relays the query to a single
neighbor at one time, and waits for the response from the
neighbor before forwarding the message to another neighbor
or forwarding the result back to the requestor or the its
upstream node. The search depth is also limited. With
BFS the messages are flooded in the system. Therefore the
consumption of bandwidth is enormous, although results can
be found very quickly. With DFS searches can be terminated
once a result is found, and therefore use less bandwidth. But
the response time could be very long and is exponential in
the depth limit. It is also more difficult to implement than
the breadth-first search model.

Although modifications of the searching protocols have
been suggested to reduce the bandwidth assumption or im-
prove the response time [17], a problem that has not been
considered in the current protocol design is the incentive
problem. The protocols assume that peers will follow the
design and contribute their bandwidth and resources to re-
laying messages as required. However, a P2P network is
a highly decentralized system and each peer may present
a different self-interested entity. A peer may manipulate
the local information to take advantage of other peers’ re-
sources [8, 13]. For example, a peer may simply drop a
message that is sent from other peers for relaying, for the
purpose of saving communication bandwidth and energy.
Therefore a message relaying P2P system is vulnerable to
the free riding problem. Since a sound P2P system relies
on the contribution of resources from each individual peers,
free riding can cause severe degradation of the system per-
formance or even paralyze the system [4, 10, 13]. It is impor-



tant to design an incentive mechanism that motivates each
peer to behave rationally in a system efficient way.

In this paper we present an incentive mechanism of mes-
sage relaying for peer discovery that overcomes the flooding
problem of BFS search while reserving the quick response
property and good reliability. We have to first note that al-
though both peer discovery and distributed routing are re-
lated to message relaying, they are different problems [5]. In
distributed routing the destination of the message is known,
but in peer discovery there is no guidance about who the
message should be sent to. The unknown destination im-
plies more uncertainty and less control in the message relay-
ing process for peer discovery, and prevents the application
of the pricing incentive mechanisms for distributed routing
that requires the prior knowledge of routing paths [9].

The mechanism we propose is as follows: The source peer
sends the query to some neighbors and promises some pay-
ment to each receiver if the resource provider is found via
a transmission route composed of the receiver. Depending
on the offer each receiver decides the number of neighbors
she relays the message to and also the promised payment
to its immediate downstream peers. Each of the new re-
ceivers again makes the same decisions, until the maximum
number of hops is reached. This mechanism does not price
the relaying activities, but instead prices the relaying result,
which influences the relaying activities. This mechanism is
motivated by the following requirements:

• Communication efficiency: Transmitting messages not
only consumes the bandwidth resource, which could
cause delay of communications, but also costs energy,
which is especially a concern in wireless networks [6].
A significant part of inefficiency in message propaga-
tion is caused by the overlapping or saturation issue.
By overlapping we mean that a peer may forward the
message to some peers that have received the mes-
sage from other peers, and these actions only waste the
communication resources. Since the number of times
that the message is transmitted in the system increases
exponentially with respect to each peer’s transmission
effort (the number of neighbors to forward the mes-
sage to), the probability of overlapping will soon get
close to 1 if each peer makes significant relaying ef-
forts, in other words, the system becomes saturated
very quickly. To reduce the communication inefficiency
caused by overlapping, a peer should explicitly con-
sider the overlapping probability, and be able to adjust
the transmission effort with the progress of propaga-
tion, or the saturation status of the network.

• Reliability: Communication efficiency and reliability
are two conflicting goals. The intensity of message
relaying is positively correlated with the reliability of
peer discovery. On an extreme a service provider will
be found with probability 1 if the searching is exhaus-
tive by flooding the messages in the system deeply
enough. A communication cost saving could in turn
cost the reliability. Therefore an efficient message re-
laying scheme should tradeoff the communication cost
and reliability. A peer should decide the optimal re-
laying effort by considering both the cost and the ex-
pected payoff of finding a service provider. The ex-
pected payoff of finding a provider not only depends
on the value of the service to the requestor, but also

on the reliability of finding a provider, which increases
with the coverage of the peers that are exposed to the
query.

• Anonymity and information locality: Although pric-
ing the scarce resource and charging for the usage of
the resource via a micro-payment system is a common
approach to provide incentive compatibility [7, 18],1,
such a mechanism for a peer to directly purchase ser-
vices from one another is not feasible in the message
relaying P2P discovery system. In a message relay-
ing system, with a micro-payment mechanism the re-
quester would “buy” relaying behaviors of other peers.
But such a mechanism requires that the source peer
can identify all the intermediate peers and their trans-
mission efforts, which is not feasible in a decentral-
ized P2P system with anonymity. On the other hand,
it is neither easy for the requestor or the mechanism
designer to decide the right price to charge for each
relaying action as the local environment, such as the
number of neighbors, of a peer is not known by the
mechanism designer or by a third party. Revelation of
these kinds of local information is called in [14] non-
private value revelation. One way to avoid this revela-
tion problem is to ask a peer to price “items” that only
require its own local information. In our mechanism
the immediate downstream nodes and their responses,
and the input incentive are all local information of a
peer.

Some people may find this mechanism similar to the multi-
level marketing(MLM) model [3, 2]. The incentive mecha-
nism proposed in this paper keeps the advantage of distribu-
tive propagation in MLM, but avoids the pyramid effect. A
peer is informed of the stage of the propagation by the cur-
rent hop number that is carried in the message. A peer
will estimate the current system state and foresee its behav-
ior on the future propagation based on its position in the
“family tree”. But the pyramid effect exists in MLM be-
cause people are unaware of their positions in the network
and the market status, but instead usually misled by the
getting-rich stories of a few big distributors that exaggerate
the potential opportunities of making money.

The rest of the paper is organized as follows. In Section
2 we present the model of the message relaying mechanism
in peer-to-peer systems. Simulation results are provided in
Section 3. Section 4 concludes.

2. THE RELAYING MODEL
The propagation of a message in the system is a sequen-

tial process. A peer that has received the message is called
a knower, otherwise it is an ignorant. The number of know-
ers increases while the number of ignorants decreases along
with the propagation. The requestor is initially a knower.
The hop that a peer is located in is defined as its distance
from the requestor on the relaying path when it receives the
message at the earliest time. Hop 0 has one single peer,
the requestor. We assume that peers in an earlier hop con-
duct relaying earlier than peers in a later hop. Therefore

1For example a well known micro-payment incentive mech-
anism in a file sharing system is to ask a peer to pay cer-
tain price for each unit of resources it downloads from other
peers [7]



if a peer receives more than once the same query message
from different peers, its hop number is defined as the small-
est hop number of these senders plus one. Figure 1 shows
an example of the construction of hops. In this figure each
arrow represents a transmission of the message between two
peers. The arrows in solid lines contribute to the identifi-
cation of the hop for the receivers and they construct the
“family tree” of peers. The arrows in dashed lines represent
the situations where the message is sent to a knower, and
that does not change the hop of the receiver. A peer will

Hop 0 (requestor)


Hop 1


Hop 2


Hop 3


Hop 4


Figure 1: Construction of hops

relay the message only once, and only respond to its earliest
sender (the immediate upstream node on the family tree),
i.e., the sender with the smallest hop number. This avoids
repeated relaying and reduces repeated queries2, and is also
used in Gnutella [1]. This is also in the self-interest of a
peer since the incentive that is passed along a relaying path
decreases by hops. An earlier sender gives a higher reward
on average.

We make the following assumptions in this initial study:

1. Single provider: There is only one service provider in
the network.

2. Homogeneity: Each node, except the requestor, has
the same ex ante probability to be the service provider.
This may be violated in a social network in which a
peer learns from the past experience on the expertise
and functionality of acquaintances and neighbors. But
it is true in a simple network such as a sensor network.

Let c(k) denote the cost of relaying a message to k neigh-
bors. The cost c(k) is an increasing convex function of k. 3

Denote by N the average number of peers in the network.

2Repeated queries cannot be completely eliminated because
a peer cannot identify a knower or an ignorant.
3There can be different interpretations for the convexity of
the cost function: (1) the resource to spend on a trans-
mission increases with the distance between the sender and
the receiver and the closer neighbors are covered before the
further neighbors; (2) the cost also includes the cost on dis-
covering neighbors, whose margin increases; (3) the cost on
bandwidth is measured by the average time delay, which is a
convex function of the arrival rate of transmission tasks [11].

Without confusion we also let N denote the collection of
peers. The value of the resource/service to the source peer
is v0. We say peer j is peer i’s downstream node if j is
located on a transmission path which includes i at the up-
stream, particularly j is i’s immediate downstream node or
a child if j is reached by i.

2.1 Equilibrium analysis
Let Di be the degree of peer i and the transmission effort

ki of peer i is defined on Ki = {0, 1, . . . , Di}. Let V = [0, v̄]
be the space of incentives and H = {0, 1, . . . , H} the set of
possible hop numbers where H is the maximum hop number.
The strategy Si of a peer i is defined as (ki, ui) = Si(hi, vi) :
H × V → K × V , where hi ∈ H is the hop number of i,
vi ∈ V is the input incentive, ki ∈ K is the transmission
effort, ui ∈ V is the output incentive. If i is the requestor,
hi = 0. Let SPi be the strategy space of peer i, and S =
{Si}N

i=1, Si ∈ SPi be a strategy profile of peers. Denote the
expected utility of peer i by Ui, and the expected number of
downstream nodes by Li. The probability that the provider
is found via peer i’s transmission is equal to Li/N . Then
the expected utility of i is equal to

Ui(S) = (vi − ui)Li(S)/N − c(ki). (1)

Note that Li not only depends on peer i’s transmission effort
ki, but also on the other peers’. This is not only because
peers compete in searching for the service provider, but also
because the total number of downstream nodes of a peer
depends on the transmission efforts of its downstream nodes,
which again are impacted by the input incentives that are
passed on from their upstream nodes.

The strategy space SP =
QN

i=1 SPi and utility functions

{Ui : SP → R}N
i=1 define a message relaying game G among

the peers. A subgame Gh is the propagation process start-
ing from the hop h to the last hop H, given peers’ strategies
{Si(l, ·)}i∈N at each earlier hop l, l = 0, 1, . . . , h− 1. A sub-
game perfect Nash equilibrium (SPNE) is a profile of peers’
strategies which constitutes a Nash equilibrium for each sub-
game Gh, h = 0, 1, . . . , H. In the rest of this section we
provide some analytical features of SPNE.

We first study a SPNE of the transmission strategies
{k∗i (hi, vi|ui)}i∈N assuming the incentive transfer strategies
{ui(hi, vi)}i∈N are given. Proposition 2.1 summarizes some
features of k∗i (hi, vi|ui).

Proposition 2.1. 4 Given the incentive relaying strat-
egy ui(hi, vi) for each peer i, a SPNE of the transmission
strategies {k∗i (hi, vi|ui)}i∈N exists. k∗i (hi, vi|ui) decreases
with the increase of hi or ui, or with the decrease of vi.

Unfortunately we cannot prove the existence of a joint
SPNE of both the transmission strategy and the incentive
transfer strategy, although the existence is guaranteed if
the incentive transfer strategy can be a mixed strategy [12].
Proposition 2.2 provides a feature of a best response strat-
egy. Proposition 2.3 shows the existence and uniqueness of
a symmetric SPNE when all peers are symmetric.

Proposition 2.2. With a best response strategy the in-
crease of the input incentive leads to the increase of the ex-
pected number of downstream nodes.

4The proofs of this proposition and other statements are all
presented in Appendix.



Proposition 2.3. If all peers have the same degree, a
symmetric SPNE exists and is unique.

Note that although based on Proposition 2.1, the trans-
mission effort decreases by hops when the input incentive
and output incentive are the same, this is not necessary in a
SPNE when the output incentive is also a decision variable.
This is because ki and ui are somehow substitutable. To ex-
pand the coverage of descendants, a peer i can increase the
number of immediate downstream nodes by increasing ki,
which incurs more transmission cost. Or it can encourage
the transmission efforts of its downstream nodes by increas-
ing ui, which sacrifices the future payoff. Which approach
to use depends on their relative expensiveness, and can be
impacted by the form of the cost functions and the position
of the peer in the propagation (the hop number).

Although the transmission efforts may not decay by hops
in the equilibrium, Proposition 2.2 shows that when the in-
put incentive decreases, either the immediate or the future
transmission efforts will decrease. Since the input incentive
decreases by hops along a relaying path, it means that with
this incentive mechanism the flooding problem and pyra-
mid effect are automatically avoided with peers’ individual
self-interested behaviors.

2.2 Approximation of symmetric SPNE
Based on Equation 1 we can see that a SPNE of the mes-

sage relaying game, if exists, is not directly computable be-
cause of the complexity of Li, i ∈ N , as a function of all
peers’ strategies. In this section we present an approxima-
tion of Li, which allows the calculation of an approximated
symmetric SPNE. In this solution peers are assumed to have
the same degree, and therefore the strategies of peers in the
same hop are identical. In the following presentations we
only differentiate the strategies by hops with a subscript h.

Suppose there are nh knowers in the system and mh know-
ers in hop h before the peers in hop h forwarding the mes-
sage, h = 0, 1, . . . , H + 1.5 Initially the only knower is the
requestor before the propagation and hence n0 = m0 = 1.
There is the connection mh = nh−nh−1 for h = 1, . . . , H+1.
If each of the peers in hop h relays the message to kh neigh-
bors, the expected number of ignorants k̂h reached by each
sender in hop h can be calculated as follows:

k̂h =

�
0 if kh = 0 or mh = 0
N−nh

mh
[1− (1− kh

N−1
)mh ] else.

(2)

The process of deriving k̂h is described in Appendix.
Taking the expectation k̂h as certainty, we can estimate

the expected number of nodes in each hop and the number
of knowers as follows:

mh+1
.
= mhk̂h = (N −nh−1−mh)[1− (1− kh

N − 1
)mh ], (3)

nh+1
.
= nh + mhk̂h. (4)

Therefore we can estimate the expected number of descen-
dants of a peer in hop h:

Lh(nh, mh) =

HX
l=h+1

ml/mh,

5By nH+1 and mH+1 we count the peers that are reached
by the last hop.

and the expected utility Uh of a peer in hop h can be ap-
proximated by:

Uh(kh, uh|vh, nh, mh, {kl}H
l=h+1)

= (vh − uh)Lh/N − c(kh) (5)

Given Uh for each hop h, we can calculate an approximate
SPNE {(k∗h, u∗h)}H

h=0 by a backward induction.

3. SIMULATION
In this section we provide experimental results comparing

the system performances of the distributed incentive mecha-
nism, the breadth-first searching mechanism and the central-
ized mechanism. The strategy in the distributed incentive
mechanism is based on the approximate symmetric SPNE
calculated following the approach in Section 2.2. The ap-
proximate optimal policy in the centralized mechanism is
calculated by searching all the possible transmission effort
profiles of the hops (in a symmetric network) to maximize
the total utility based on the approximation of the coverage
functions (3) and (4). We are interested in (1) the total
utility of the system, (2) the total coverage, i.e., the number
of peers exposed to the message, at the end of the propa-
gation, and (3) the distribution of transmission efforts and
incentives over the hops in the distributed incentive mecha-
nism, with the change of the query’s value (v0) and different
types of cost functions.

We let N = 50, v0 change from 10 to 30, H = 2 (three
hops) and D = 6. We examine two cost functions: a linear
function clinear(k) = 0.1k, and a strictly convex function
cconvex(k) = 0.015k2.

- System utility:
The system utilities based on different mechanisms are

illustrated in Figure 2. Denote by Udist, UBFS and Ucen
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Figure 2: Comparing the system utility

the system utilities in the distributed incentive mechanism,



in the breadth-first search and in the centralized system.
Figure 2 shows that UBFS < Udist < Ucen, with Udist gener-
ally higher than 80% of Ucen. Also Udist − UBFS decreases
with the increase of the query’s value because the exhaus-
tive breadth-first search is closer to a system optimal policy
if the value of the query is higher. When the query value is
small, the breadth-first search could bring a negative utility.

- Coverage:
The total number of peers that receive the query message

during the propagation process based on each mechanism
is recorded in Figure 3. Breadth-first search always covers
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more peers than the other two mechanisms, which implies
a higher reliability (but its utility is lower as shown in Fig-
ure 2). Because each peer transmits the message to all its
neighbors in breadth-first search, the coverage is indepen-
dent of the query value. In the distributed and centralized
mechanisms the coverage increases with the query value.
But the distributed mechanism cannot achieve the coordi-
nation among peers as required in an optimal propagation,
and results in the coverage lower than the coverage in the
centralized system.

- Distribution of transmission efforts and incen-
tives:

The transmission efforts and incentive transfer strategies6

in an approximate symmetric SPNE are illustrated in Fig-
ure 4 and 5 respectively.

Compare the upper (with a linear cost function) and lower
(with a convex cost function) plots in Figure 4, we can find
that with a linear cost function transmission efforts are more
concentrated in downstream hops, while with a convex cost
function earlier hops spend more efforts in relaying than
later hops. Correspondingly Figure 5 shows that with a

6We only show the output incentive from the first two hops
because in the last hop the output incentive is always zero.
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linear cost function peers pass on most of the input incen-
tives to downstream nodes, while with a convex cost function
peers keep most of the input incentives. These observations
reveal close connections between the transmission distribu-
tion and the convexity of the cost function. When the cost
function becomes more convex, the cost for inducing down-
stream propagations increases faster than the cost to directly
increase the immediate downstream nodes. Actually when
the cost is linear, a last hop peer will search all its neighbors
as long as the average payoff is no less than the unit relaying
cost.

4. CONCLUSION
In this paper we present an incentive mechanism for mes-

sage relaying in peer-to-peer discovery. In this problem the
common micro-payment protocol based on the relaying ac-
tions is not feasible for an anonymous message relaying pro-
cess. By pricing the searching result but not the searching
behavior our mechanism provides appropriate incentives for
distributed message relaying, and achieves tradeoff between
the searching cost and reliability.

In our near future work we are interested in evaluating the
incentive mechanism and understanding in greater depth
how are the strategies and performances impacted by the
system parameters (such as the cost function, TTL, the sys-
tem scale, and the query value, etc.) with more possible
analytical and simulation work. In this paper we have made
the assumptions that there is one single service provider,
peers are homogeneous, simple and do not discriminate their
neighbors. When there are more than one potential service
provider, special attention has to be given to the propaga-
tion stopping rule and other related issues. For example,
should the propagation be stopped once a service provide is
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found, and how? If more than one provider is found, how
are contributors be rewarded? In our further future work
we will also study the adaptive strategies of learning peers
in such an incentive mechanism in more complex situations
such as where peers are heterogeneous and are able to accu-
mulate knowledge from past experience.
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Appendix
Let Li(k) denote the expected number of descendants of i
when its transmission effort is k, given the incentive transfer
strategy ui, the input variables hi and vi, and other peers’
strategies. Before proving Proposition 2.1, we need to show
the following lemma first,

Lemma 5.1. Li(k+1)−Li(k) decreases with the increase
of hi.

Proof of Lemma 5.1: Let the increase of Li be denoted by
∆kLi(h) when hi = h and ki is increased from k to k + 1.

∆kLi(h) is positive. Denote by ∆kL̂i(h− 1) the increase of
the number of downstream nodes in hops from h to H − 1.
∆kLi(h) and ∆kL̂i(h−1) involve the same number of hops,

but the hops in ∆kL̂i(h−1) are one hop earlier than those in

∆kLi(h). ∆kLi(h) ≤ ∆kL̂i(h − 1) because the probability
of sending a message to a knower is smaller at earlier time
of the propagation process (corresponding to a smaller hop

number). Then ∆kLi(h− 1) ≥ ∆kL̂i(h− 1) ≥ ∆kLi(h).
Proof of Proposition 2.1: We can prove by backward in-

ductions starting from the last hop. When hi = H, Ui =
(vi − ui)Li(ki)/N − c(ki). Denote by pi(k) the marginal
probability of i reaching an ignorant by relaying the mes-
sage to one more peer when the transmission effort is k,
and ∆Li(ki) = Li(ki + 1) − Li(ki). pi(k) decreases with k
because more peers will become knowers with k bigger and
therefore it is more difficult to reach an ignorant in the fu-
ture. Therefore ∆Li(k) = pi(k) decreases with k, and L(k)



is an increasing concave function of k. Since c(ki) is a con-
vex function of ki, the optimal transmission effort k∗i that
maximizes Ui exists and is unique, and k∗i increases with vi.
For a peer i in the last hop, k∗i is independent of ui because
there is no propagation by its immediate downstream nodes.

Now we assume for a peer i in hop hi ≥ h + 1, k∗i (hi, vi)
exists and is unique, and k∗i (l, vi) ≤ k∗i (l+1, vi) for l ≥ h+1
and l ≤ H−1. In the following we prove that the conclusion
also holds for a peer i with hi = h given k∗j with hj ≥ h+1,
j ∈ N . The proof is organized in the following three steps.

Step 1: ∆Li(ki) ≥ 0 and decreases with ki.
We can analyze based on one sample path of propagation

in which peer i sends the message to ki neighbors. Now let
ki be increased by 1, and denote the new child of i in hop
hi+1, if there is any, by j. Denote by Li and L̂i the numbers
of downstream nodes of i when the transmission efforts of i
are ki and ki + 1 respectively.

Case 1: If j is not a downstream node of i in the sample
path, then the new set of downstream nodes of i includes
the old set in the sample path.

Case 2: If j is an un-immediate downstream node of i
in the sample path, then the hop number of j is reduced.
Since the transmission effort decreases with the hop number,
j relays the message to more neighbors and the number of
downstream nodes of j is increased based on the induction
assumption.

Based on the assumption of induction, Li(ki) increases
with ki given the transmission equilibrium k∗j (hj , vj) for any
peer j with hj ≥ h + 1.

Since the probability of reaching an ignorant decreases
with the number of knowers, ∆Li(ki) decreases with the
increase of ki.

Step 2: k∗i exists, and k∗i decreases with ui and
increases with vi.

Since ∆Li(ki) decreases with the transmission strategies
of other peers in the same hop, Ui is a submodular function
of the transmission efforts of all peers in the hop hi, and an
equilibrium of their transmission efforts exists [16].

Since ki = k∗i maximizes Ui(ki) = (vi−ui)Li(ki)−c(ki) =
0 and ∆Li(ki) decreases with ki, k∗i will decrease (increase)
if ui (vi) increases.

Step 3: k∗i (hi, vi) ≥ k∗i (hi + 1, vi).
Based on Lemma 5.1, if hi decreases, ∆Li(ki) will in-

crease. This leads to the increase of k∗i since Li(ki) decreases
with ki.

Proof of Proposition 2.2:
Let v′ − v = δ > 0. Denote by (u′, k′) ((u, k)) the best

response strategy, U ′ (U) the expected utility and L′ (L) the
expected number of downstream nodes at the best response
strategy when vi = v′ (vi = v). Then

U ′ = (v′ − u′)L′/N − c(k′),

U = (v − u)L/N − c(k).

But we know U ′ ≥ (v′ − u)L/N − c(k) = U + δL/N and
U ≥ (v − u′)L′/N − c(k′) = U ′ − δL′/N . Then we have
δL/N ≤ U ′−U ≤ δL′/N . Therefore L ≤ L′ since U ′−U ≥
0.

Proof of Proposition 2.3: If there exists a SPNE, the
SPNE is symmetric because it is a symmetric game. Given
a SPNE of the transmission strategy k∗i (ui) based on an in-
centive transfer strategy ui, the original game can be trans-
ferred to a game with only the incentive transfer decisions,

and the utility function is

Ui(ui|S−i) = (vi − ui)
Li((k

∗
i (ui), ui)|S−i)

N
. (6)

A symmetric SPNE {u∗i }i∈N can be found with backward
inductions with respect to the hops. Then {(k∗i (u∗i ), u

∗
i )}i∈N

is a symmetric SPNE of the original game.
Derivation of Equation 2:
Suppose the nodes in hop h forward the message sequen-

tially. Denote by k̂j
h the expected number of new nodes

reached by the j-th mover. Let lh = kh(N − nh)/N and
ph = 1− kh/N . lh can be interpreted as the number of im-
mediate downstream nodes of a peer assuming receivers of
different peers in the same hop will not overlap. ph can be
interpreted as the probability

k̂1
h = kh

N − nh

N
= lh

k̂2
h = kh

N − nh − k̂1
h

N
= lh(1− kh

N
) = lhph

k̂3
h = kh

N − nh − k̂1
h − k̂2

h

N
=

k

N − 1
(N −nh− lh− lhph) = lhp2

h

..

.

k̂j
h = lhpj−1

h

Then

k̂h =
1

mh

mhX
j=1

k̂j
h =

lh

mh

mhX
j=1

pj−1
h =

lh(1− p
mh
h )

(1− ph)mh

=
N − nh

mh
[1− (1− kh

N
)mh ]


