A Framework for Very Large Teams

Elizabeth Liao, Paul Scerri and Katia Sycara

Carnegie Mellon University

eliao@andrew.cmu.edu, pscerri@cs.cmu.edu, katia@cs.cmu.edu

Abstract

Attempts at scaling previous approaches to team be-
havior have been largely unsuccessful due to inflexibility
of the algorithms. We have developed o framework for
teams that addresses the limitations of existing team-
work models for very large teams. The central idea of
the model is to organize team members into dynami-
cally evolving subteams and require tight interactions
only within subteams. A static network ensures loose
coherence across the subteams. Coupled with the use of
probabilistic reasoning techniques, our teamwork model
allows for the creation of very large teams that can be
configured for a wide range of domains.

1. Introduction

When a group of agents coordinates via team-
work they can flexibly and robustly achieve joint
goals in a distributed, dynamic and potentially hos-
tile environment[3, 6, 5]. Using basic teamwork ideas,
many systems have been successfully implemented, in-
cluding teams supporting human collaboration[1],
teams for disaster response|[9], for manufacturing|[7], for
training[12] and for games[8]. While such teams have
been very successful, their size has been severely lim-
ited, often less than 10 members. To address larger
and more complex problems, teams need to be sub-
stantially bigger but retain the desirable properties of
teamwork.

A key to the success of previous teamwork ap-
proaches is the explicit, detailed model each agent has
of the joint activity and of other members of the team.
Team members use these models to reason about ac-
tions that will aid the achievement of joint goals[6, 13].
However, when the size of a team is scaled up, it be-
comes infeasible to maintain up-to-date, detailed mod-
els of every other teammate, or even of all team ac-
tivities. Specifically, the communication required to
keep the models up to date does not scale well with

the number of agents. Without these models, key el-
ements of both the theory and operationalization of
teamwork break down. For example, without accu-
rate models of team activities, STEAM’s communica-
tion reasoning[13] cannot be applied nor can Joint In-
tention’s reasoning about commitments[6]. For exam-
ple, without accurate models in STEAM][13], an agent
may terminate a plan without first informing all other
agents working on the plan. To build large teams we
must implement the principles of teamwork without re-
lying on accurate models.

In this paper, a model of teamwork is presented that
does not rely on the accurate models of the team that
previous approaches to teamwork have. By not requir-
ing accurate models, we limit the required communi-
cation and thus make the approach applicable to large
teams. However, giving up accurate models means that
the guarantees provided by approaches such as Joint
Intentions can no longer be provided. Instead, our mod-
els are designed to lead to cohesive, flexible and robust
teamwork with high probability. In practice, the model
works well but there are no guarantees.

The model organizes the team into dynamically
evolving, overlapping subteams that work on subgoals
of the overall team goal. Members of a subteam main-
tain accurate models of each other and the specific joint
activity on which they are working. At the same time,
having subteams work on goals in a distributed man-
ner can also increase the number of conflicts and dupli-
cation of effort. To ensure cohesion and minimize ineffi-
ciency across the whole team, we connect all agentsin a
static network. This network is independent of any re-
lationships due to subteams. By requiring that agents
also keep their neighbors in the network informed of the
subgoals of subteams they are members of, there is a
high probability inefficiencies can be detected and sub-
sequently addressed. Using this model, we have been
able to develop cooperative team behavior in teams up
to 1,000 members.

To retain cohesive team behavior but eliminate the
need for accurate models when team size is scaled up,
the team is organized into dynamic subteams. Dis-

tributed plan creation is implemented by allowing in-
dividual agents to create plans on behalf of the team.
Only a subset of the team members, called the sub-
team, work together to achieve these plans. To uti-
lize the resources of the entire team, subteam mem-
bers can change dynamically to best meet the current
challenges, respond to failures, or seize opportunities.
Subteams usually have overlapping members which in-
clude agents performing tasks on two different plans
or agents assisting with enabling interactions between
subteams.

When using distributed plan instantiation, individ-
ual members can create plans without first informing
the rest of the team. A side effect is the possibility
of increasing the number of conflicting plans or dupli-
cate copies of the same plan within the team. An agent
can detect conflicts by being aware of multiple sub-
teams’ activities and hence their plans. To increase the
possibility that a single agent knows of multiple plans,
we utilize a static network called the associates net-
work. This network connects all agents on the team
and is independent of any relationships due to sub-
teams. Specifically, the network is a small worlds net-
work[14](see Figure 2). Members in the network are
connected so that any two team members are sepa-
rated by a small number of agents. A neighbor of an
agent in the network is called an inform associate. By
requiring that agents keep their inform associates up-
to-date on subteam activities, there is a high probabil-
ity of conflict detection. Although the communication
required to keep neighbors in the associates network in-
formed is low, due to the small worlds properties of the
network, there is a high probability that for every pos-
sible pair of plans, some agent will know of both and,
can thus identify inefficiencies. The alternate purpose
of the network attempts to efficiently share informa-
tion by passing domain level information to the correct
team members[15].

Although the addition of the associates network en-
ables us to detect conflicts and synergies, it is easier to
initially avoid conflicts. To reduce conflict, a rule based
method is used to determine when to create a plan.
The techniques are the always instantiate, local infor-
mation and probabilistic instantiation rules. Any re-
maining conflict still remaining after using these tech-
niques for plan instantiation, will then be handled by
the associates network.

In this paper, we report results of coordinating
teams of 200 Machinetta proxies[13] that exhibited ef-
fective, cohesive team behavior. Such teams are an
order of magnitude larger than previously published
proxy-based teams|[11], hence they represent a signifi-
cant step forward in building big teams. To ensure that

the approach is not leveraging peculiarities of a specific
domain for its improved performance, we tested the ap-
proach in two distinct domains using identical proxies!
and used a simple simulator, called TeamSim to simu-
late a wide range of domains and team sizes up to 1000
team members.

TeamSim allows observation of behavior resulting
from several thousand domain configurations. Outputs
were categorized into very good, good, bad and very
bad categories. When using C4.5 to classify simula-
tor outputs in a decision tree, several hundred rules
involving almost every input parameter was created
to describe our algorithm. Since no rule classified a
range of a domain parameter as consistently poor, this
implies our algorithm is configurable for different do-
mains. However relationships between parameters were
complex.

2. Building Large Teams

In this section, we provide a detailed model of the
organization and coordination of the team. At a high
level, team members detect events and details in the en-
vironment which is utilized as key information for cre-
ating plans to achieve the team’s top level goal. Sub-
teams are then formed to work on those plans. Within
the subteams, agents maintain accurate models to en-
sure cohesive behavior. To detect conflicts across sub-
teams, members communicate the goals of the sub-
teams to their inform associates so that conflicts are
detected with a higher probability. Depending the on
the domain, the number of conflicts and duplicate plans
can be very high so we then limit which agents may cre-
ate plans.

2.1. Plans

The team A has a top level goal, G. The team com-
mits, with the semantics of STEAM to G [13]. Achiev-
ing G requires achieving sub-goals, g;, that are not
known in advance but are functions of the environ-
ment. For example, sub-goals of a high level goal to
respond to a disaster could be to extinguish a fire and
provide medical attention to particular injured civil-
ians. To achieve sub-goals, the team follows plan tem-
plates represented in a library. These templates are pa-
rameterized while instantiated plans contain the spe-
cific details [10]. For example, when a particular fire in
a building is detected by a team member, the plan will
be instantiated because it matches a template for dis-
aster response.

1 A small amount of code was changed to interface to different
domain agents.

Individual agents may commit the team to a
sub-goal, provided that it matches a plan tem-
plate. Each sub-goal is addressed with a plan,
plan; =< g;,recipe;,roles;,d;, m; >, that matches a
plan template in the library. The overall team thus has
plans Plans(t) = {plani,...,plan,}. Individual team
members will not necessarily know all plans. To max-
imize the responsiveness of the team to changes in
the environment, we allow any team member to com-
mit the team to executing a plan, when it detects
that subgoal g; is relevant. Team members can deter-
mine which sub-goals are relevant by the plan tem-
plates specified by the library. Recipe; is a description
of the way the sub-goal will be achieved[6] includ-
ing the execution order of the components in the plan.
Roles; = {r1,re,rs3,...r-} are the individual activi-
ties that must be performed to execute recipe;. d;
is the domain specific information pertinent to the
plan. For convenience, we write per form(r,a) to sig-
nify that agent, a, is working on role, r. Subteam;
includes any agents working on plan; and their neigh-
bors in the associates network. The identities of
those agents involved in role allocation is cap-
tured with allocate(plan;). In the case when ei-
ther a conflict or synergy is detected, all but one of the
plans must be terminated. The domain specific knowl-
edge of a termination of a plan can be defined as
termyecipe;.

2.2. Subteams

Although individual agents commit the team to a
sub-goal, it is a subteam that will realize the sub-goal.
The subteams formation process commences when an
individual agent detects all the appropriate precondi-
tions that matches a plan template in the library and
subsequently instantiates a plan, plan;. For each of the
roles; in plan;, a role token is created to be allocated to
the team. We are using LA-DCOP for role allocation[4]
which results in a dynamically changing subset of the
overall team involved in role allocation. This works as
follows: the token is passed from one team member to
the next until an agent finally accepts the role. Once
accepted, the agent becomes a member of the subteam
and makes a temporary commitment to perform the
role represented by the token. Note that agents can ac-
cept multiple tokens and therefore can perform more
than one role and thus, belong to multiple subteams.
Since allocation of team members to roles may change
due to failures or changing circumstances, the mem-
bers of a subteam also change. One example of this is
when a member decides to drop a role for a more suit-
able task. This will lead to the best use of team re-

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

[Associate [d—hl Associate [l Associate bl Associate] | |[Associate] | g 2

I WRGA M WRGA | 3
HH REA]-H»[REA | >

=%

S CvrGA BB WRGA || |[wrGA |

[REA W[REA || I[REA H

=

Figure 1. Agent Model

sources because team members will execute roles that
they are most capable of doing.

All subteam members, agents performing roles and
their inform associates, must be kept informed of the
state of the plan, e.g., they must be informed if the
plan becomes irrelevant. This maximizes cohesion and
minimizes wasted effort. Typically |subteam;| < 20, al-
though it may vary with plan complexity and notice
that typically, subteam; N subteam; # () where i # j.
In the experiments that follow, a simple plan contains
1-2 roles and 1-2 preconditions compared to a com-
plex plans that have 4-5 roles and 9-10 preconditions.
This occurs because agents can accept more than one
role and usually belong to more than one subteam due
the associates network. These subteams are the basis
for our coordination framework and leads to scalabil-
ity in teams.

2.2.1. Scope of individual team members We
distinguish between two sets of agents within the sub-
team: those that are assigned to roles, roles;, in the
plan and those that are not. The subteam mem-
bers which are assigned to roles in plan;, we call the
role ezecuting agents, REA(p;) = {ala € A,3r €
roles;, per form(a,r) € perform(roles;,m;)} The
non-role executing agents are called weakly goal re-
lated agents WGRA(p;) = {ala € A,a € allocate(p;) A
associate(allocate(p;)) N associate(REA)}. Figure 1
shows the responsibilities of five agents on three dif-
ferent subteams. As illustrated, an agent may be a
member of more than one subteam. Agents 1-4 be-
long to Subteam 1, Agents 3-5 belong to Subteam 3
and all agents belong to Subteam 2.

A key to scaling teamwork is the efficient sharing
of information pertaining to the activities of the team
members. Using the definitions of subteams, we can
provide relaxed requirements on mutual beliefs, mak-
ing it feasible to build much larger teams. Mutual be-
liefs requires each agent to have identical copies of the
plan and the environment so that all agents are aware
if team members change or a plan is nulled. Specif-
ically, agents in RFA; must maintain mutual beliefs
over all pieces of information in plan;, while agents only
in WGRA; must maintain mutual beliefs over only g;
and recipe;. Maintaining these mutual beliefs within

Figure 2. Subteam model

the subteam requires relatively little communication,
and scales very well as more subteams are added.

2.3. Plan Deconfliction

In this section, we describe how to resolve plan con-
flicts. When using distributed plan creation, two prob-
lems may occur. Upon detecting the appropriate pre-
conditions, different team members may create identi-
cal plans or plans with the same p, but different p;.ccipe.
To reduce the need for plan deconfliction, we need to
choose a rule for plan instantiation to reduce the num-
ber of plans created with the same p,. These instantia-
tion rules include always instantiate, probabilistic and
local information. The choice of the plan instantiation
rule will vary on the domain setting similar to the rest
of our approach.

Team A consists of a large number of cooperative
non-homogeneous agents, A = {a1, a9,,an}. An as-
sociates network arranges the whole team into a small
worlds network defined by N (¢) = LEJA n(a), where n(a)

a

are the neighbors of agent a in the network. The min-
imum number of agents a message must pass through
to get from one agent to another via the associates net-
work is the distance between those agents. For exam-
ple (see Figure 2), agents a; and a3 are not neighbors
but share a neighbor, so distance(ai,as) = 1. We re-
quire the network, N, to be a small worlds network,
which imposes two constraints. First, |n(a,t)| < K,
where K is a small integer (typically less than 10) and
t is time. Second, Va;,a; € A, distance(a;,a;) < D
where D is a small integer, typically less than 10.
Detecting conflicts or synergies between two known
plans is a challenging task[2], but in the context of a
large team there is the critical problem of ensuring that
some team member knows of both conflicting plans.
This is the main function of the associates network. We

focus on this additional challenge because when we al-
low an individual agent to commit the team to a goal,
there is the possibility that the team may be executing
conflicting plans, plans which might be combined into a
single, more efficient plan, or duplicate plans. Plan ter-
mination or merging of conflicting plans is possible due
to fact that the team member who detected the con-
flict knows the details of both plans. The agent, pos-
sibly an associate of one subteam and an REA of the
other, would have maintained mutual belief of both
subteams. This approach leads to a high probability of
detecting conflicts and synergies, with very low over-
head.

If two plans, plan; and plan; have some
conflict or potential synergy, then we require
subteam; N subteam; # () to detect it. There must be
a common team member on both subteams to main-
tain mutuals beliefs of the plans and hence detect
the conflict. A simple probability calculation re-
veals that the probability of a non-empty intersection
between subteams, i.e., the probability of an over-
lap between the teams, is:

_nC
Pr(overlap) =1 — (n=k)~m é)’ L
n m
where ,C, denotes a combination, n = number of

agents, k = size of subteam; and m = size of subteam.

Hence, the size of the subteams is critical to the
probability of overlap. For example, if |subteamn;| =
|subteam;| = 20 and |A| = 200, then P(overlap) =
0.88, despite each subteam involving only 10% of the
overall team. Since the constituents of a subteam
change over time, this is actually a lower bound on the
probability a conflict is detected. In Section 3, we ex-
perimentally show that this technique leads to a high
probability of detecting conflicts.

After a conflict is detected, the plan needs to be ter-
minated and the same follows with completion of goals
or recipes and irrelevant or unachievable plans. We cap-
ture the domain specific knowledge that defines these
conditions with t‘”’mpmm-pe. In exactly the same way
as STEAM, when any a € subteam; detects any con-
ditions in *"™p,.cipe, it is obliged to ensure that all
other members of subteam; also know that the plan
should be terminated. In this way, the team can en-
sure that plan; C plans(t), i.e., no agent believes the
team is performing any plan that it is not perform-
ing.

2.3.1. Plan Instantiation Rules In distributed
plan instantiation, an agent can create a plan when all
preconditions have been fulfilled and the plan matches
a template in a library. However, since this may in-
crease the total number of plans created, agents can

only create a plan using one of three rule for instan-
tiating plans. These rules differ by the information
needed to compute whether the instantiation con-
ditions apply. The first rule, the always instantiate
rule, is used as a baseline for the other instanti-
ation rules. An agent is allowed to create a plan
when it knows of all the preconditions neces-
sary for the plan.

The second rule, the probabilistic instantiation rule,
requires no knowledge of other team members. This
method requires that team members wait a random
amount of time before creating the plan. If during that
time, it has not been informed by an inform associate
that another teammate is creating the same plan, it
will proceed and create the plan. Thus plans will only
be created during the time it takes for all team mem-
bers to hear of the plan. The advantage of this plan
is that no information is required of other team mem-
bers. There are two disadvantages. First, there may
be conflicting plans which must be later resolved. Sec-
ond, there may be a significant delay between detection
of the preconditions and the instantiation of the plan.
These disadvantages can be traded off in the follow-
ing manner. By increasing the length of time a team
member can wait, the number of conflicts will be re-
duced, but the delay will be increased.

We can use information about who locally senses in-
formation to define another rule. This rule which we re-
fer to as the local information rule, requires that a team
member detect some of the plan’s precondition locally
in order to instantiate the plan. Although this will lead
to conflicting plans when multiple agents locally sense
preconditions, it is easier to determine where the con-
flicts might occur and resolve them quickly. The ma-
jor disadvantage of this rule is that when a plan has
many preconditions, the team members that may de-
tect specific preconditions may never get to know all
the preconditions and thus the plan will never be cre-
ated.

3. Results

In this section, we show an empirical evaluation of
the above approach with a combination of high and low
fidelity experiments.

First, to understand the functionality of the asso-
ciates network, simulations were run to see the effect
of having associates on a dynamic subteam. We want to
show that if subteams are chosen at random, then there
is a high probability of overlap between any two sub-
teams. This overlap would then translate to improved
conflict detection. Two subteams of 1-20 members each
were formed of out 200 agents. For each subteam size,

=
3
3
3
2
a

10

15
Size of Subteam B 20 30 Size of Subteam A

(b)

Figure 3. (a) The probability of having at least one
common agent vs. subteam size (b) The average num-
ber of times that agents need to be replaced in order
to have at least one common agent

members were chosen at random and then checked
against each other for any common team members. Fig-
ure 3a shows the percent of team member overlap dur-
ing the simulations. This graph matches closely with
the calculated probability Pr(overlap) = 1 — %
where n = number of agents, k = size of subteam A
and m = size of subteam B. If both teams are mutu-
ally exclusive, an agent was chosen at random to re-
place a current subteam member. Figure 3b shows the
average number of times that team members needed to
change before a team member overlap occurs.

TeamSim, a simple simulator, was used to analyze
the effect of our model in domains with widely vary-
ing parameters. TeamSim which runs the coordination
algorithm without simulating time intensive communi-
cation, quickly evaluates different combinations of pa-
rameter settings on the order of thousands. These pa-
rameters settings, which would correspond to various
domains, include free parameters based on our model
and domain parameters. Free parameters are specific
to our algorithm and include the associate network
density, and plan instantiation rule. A few of the do-
main parameters included team size, total precondi-
tions, and roles per plan (see Figure 4). Our algorithm
is based on the fact that the associates network will de-
tect conflicts with a high probability. In Figure 7, we
show that in general, having a higher associate net-
work density will lead to better conflict detection. As
higher network density leads to larger subteams and
hence a higher probability of overlap as shown above
in figure 3a. In Figure 6, a comparison of plan complex-
ity shows that more simple plans will be created. Fig-
ure 5 shows a non-linear relationship between an input
parameter, team size and an output parameter, mes-
sages per agent.

In Machinetta, a proxy encapsulating coordina-
tion algorithm works closely with a domain level agent

Parameter Minimum Maximum Parameter Type
Number of Team Members 10 999 Domain Dependent
Number of Plan Templates 1 20 Domain Dependent
Roles Per Team Member 1 1 Domain Dependent
Total Preconditions 20 219 Domain Dependent
Preconditions Per Plan 1 10 Domain Dependent
Roles Per Plan 1 5 Domain Dependent
Number of Capability Types 2 21 Domain Dependent
Percent Capable 0.1 1.1 Domain Dependent
Instantiate Rate 0 1 Input (Free Parameter)
New Precondition Rate 0.0020 0.5020 Domain Dependent
Precondition Detection Rate 0.0020 0.2020 Domain Dependent
|Associate Network Density 2 16 Input (Free Parameter)
Information Token * 1 10 Input (Free Parameter)
Instantiation Rule** 1 3 Input (Free Parameter)
Percentage Possible 0 100 Output
Reward 0.00 85.35 Output

M jes per agent 0.10 1977.38 Output

*Parameter for information sharing in large teams[15]
**Instantiation Type(1-Always 2-Local 3-Probabalistic)

Figure 4. Parameter Table

350 T

w

o

o
T

N

a1

(=]
T

Messages per Agent
= [N)
al o
o o

100F

50"

Figure 5.
creased

Team Size

10 110 210 310 410 510 610 710 810 910

Messages per Agent as Team Size is in-

7000

6000~

5000r

40001

3000+

Plans Instantiated

2000r

10001

10 15 20
Associate Network Density

Figure 6. A comparison of simple and complex plans

5

3 x 10
2.5¢ |
o
L
g 2 1
j5
a
§2}
9
= 1.5f .
o
o
i --- Always
-- Local
—— Probabilistic
0.5 - - g
0 5 10 15 20

Associate Network Density

Figure 7. A comparison of the number of conflicts de-
tected using different instantiation rules

and coordinates with other proxies. Although Ma-
chinetta proxies build on the successful TEAM-
CORE proxies[13] and have been used to build small
teams[11], they were not able to scale to large teams
without the fundamentally new algorithms and con-
cepts described previously.

In Figure 8, we show the results of an experiment us-
ing 200 Machinetta proxies running the coordination
algorithms described in Section 2. The proxies con-
trol fire trucks responding to an urban disaster. The
trucks must travel around an environment, locate fires
(which spread if they are not extinguished) and extin-
guish them. The top level goal of the team, G, was to
put out all the fires. A single plan required that indi-
vidual fires be put out. In this experiment, the plan
had only one role which was to put out the fire. We
varied the sensing range of the fire trucks (‘Far’ and
‘Close’) and measured some key parameters. The most
critical thing to note is that the approach was success-
ful in coordinating a very large team. The first col-
umn compares the number of fires started. The ‘Close’
sensing team required extended searching to find fires,
and as a result, unsurprisingly, the fires spread more.
However, they were able extinguish them slightly faster
than the ‘Far’ sensing team, partly because the ‘Far’
sensing team wasted resources in situations where there
were two plans for the same fire (see 3rd set of columns,
‘Conflicts’). Although these conflicts were resolved, it
took an non-trivial amount of time and slightly low-
ered the team’s ability to fight fires. Resolving con-
flicts also increased the number of messages required
(see 4th set of columns), though most of the differ-
ences in the number of messages can be attributed to
more fire fighters sensing fires and spreading that infor-

180
160
140
120
100
mClose
B
a0

20
a

Average
@
=1

Fires Extingushed Conflicts MsgiAgent

Figure 8. Machinetta Proxy Simulation

&0 /

/’/‘/
40 .,/rj

Time
@
z

25 S0 73 100 125 150
Targets hit

Figure 9. Simulated UAVs

mation. The experiment showed that the overall num-
ber of messages required to effectively coordinate the
team was extremely low, which was partially due to the
fact that no low level coordination between agents was
required (as a result of using one fire truck per plan).

Figure 9 shows high level results from a second do-
main using exactly the same proxy code. The graph
shows the rate at which 200 simulated UAVs, coordi-
nated with Machinetta proxies, searched a battle space
and destroyed targets. Taken together, the experiments
in the two domains show not only that our approach ef-
fective at coordinating very large teams but also sug-
gests that it is reasonably general.

4. Conclusion and Future Work

In this paper, we describe and implement a scal-
able framework for team coordination. With dynamic
subteams and a static network, we show that cohe-
sive team behavior can be established for team of sizes
up to 1000 members. Using this model, resources of
the entire team can be utilized without keeping accu-
rate models of the entire team. Due to the distributed
nature of the team, agents can independently create
plans which increase the possibility of multiple copies
of the same plan. Plan conflicts are minimized by a
rule-based instantiation rule while the static associates
network handles the conflicts that remain.

Through implementation of Machinetta proxies and
TeamSim simulations, we have shown that our algo-
rithm can be tuned to a wide variety of domains. How-

ever, the data observed shows that the relationship be-
tween input and output parameters is non-linear as
shown in 5. An interesting area of investigation is to
discover the cause of the non-linearity and to create an
accurate model that will determine the best free pa-
rameters for a given domain.

Acknowledgments

This research has been supported by AFSOR grant
F49620-01-1-0542 and AFRL/MNK grant F08630-03-
1-0005.

References

[1] Hans Chalupsky, Yolanda Gil, Craig A. Knoblock,
Kristina Lerman, Jean Oh, David V. Pynadath,
Thomas A. Russ, and Milind Tambe. Electric Elves:
Agent technology for supporting human organizations.
AI Magazine, 23(2):11-24, 2002.

[2] B. Clement and E. Durfee. Scheduling high level tasks
among cooperative agents. In Proceedings of the 1998
International Conference on Multi-Agent Systems (IC-
MAS’98), pages 96-103, Paris, July 1998.

[3] K. Decker and J. Li. Coordinated hospital pa-
tient scheduling. In Proceedings of the 1998 In-
ternational Conference on Multi-Agent Systems (IC-
MAS’98), pages 104-111, Paris, July 1998.

[4] Alessandro Farinelli, Paul Scerri, and Milind Tambe.
Building large-scale robot systems: Distributed role as-
signment in dynamic, uncertain domains. In Proceed-
ings of Workshop on Representations and Approaches
for Time-Critical Decentralized Resource, Role and
Task Allocation, 2003.

[5] Barbara Grosz and Sarit Kraus. Collaborative plans
for complex group actions. Artificial Intelligence,
86:269-358, 1996".

[6] N.R. Jennings. Specification and implementation of a
belief-desire-joint-intention architecture for collabora-
tive problem solving. Intl. Journal of Intelligent and
Cooperative Information Systems, 2(3):289-318, 1993.

[7] Nick Jennings. Controlling cooperative problem solv-
ing in industrial multi-agent systems using joint inten-
tions. Artificial Intelligence, 75:195-240, 1995.

[8] Hiraoki Kitano, Minoru Asada, Yasuo Kuniyoshi, It-
suki Noda, Eiichi Osawa, and Hitoshi Matsubara.
RoboCup: A challenge problem for AI. AI Magazine,
18(1):73-85, Spring 1997.

[9] R. Nair, T. Ito, M. Tambe, and S. Marsella. Task al-
location in robocup rescue simulation domain. In Pro-
ceedings of the International Symposium on RoboCup,
2002.

[10] D.V. Pynadath, M. Tambe, N. Chauvat, and L. Cave-
don. Toward team-oriented programming. In Intel-
ligent Agents VI: Agent Theories, Architectures, and
Languages, pages 233-247, 1999.

[11] P. Scerri, D. V. Pynadath, L. Johnson, Rosenbloom
P., N. Schurr, M Si, and M. Tambe. A prototype in-
frastructure for distributed robot-agent-person teams.
In The Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems, 2003.

[12] M. Tambe. Towards flexible teamwork. Journal of Ar-
tificial Intelligence Research, 7:83-124, 1997.

[13] Milind Tambe. Agent architectures for flexible, practi-
cal teamwork. National Conference on AI (AAAI9T),
pages 22-28, 1997.

[14] Duncan Watts and Steven Strogatz. Collective dy-
namics of small world networks. Nature, 393:440-442,
1998.

[15] Yang Xu, Mike Lewis, Katia Sycara, and Paul Scerri.
Information sharing in large scale teams. In In AA-
MAS 2004 workshop on Challenges in the Coordina-
tion of Large Scale Multi Agents Systems, 2004.

