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Abstract

The WWW is increasingly being used for announcements of important
events and solicitations such as conference announcements and requests for
proposals. This information is accessed by users using direct manipulation
tools. The volume of this information is increasing daily and users currently
must sift through large amounts of text to access relevant information. We
describe a reusable agent that learns a model of the user’s preferences, scouts
appropriate information sources, filters the information, and notifies the user
when relevant information becomes available. The agent is a Personal As-
sistant which operates autonomously with minimal user intervention. The
agent’s task is to identify conferences and request for proposals that fit a
user’s research interests. For this task, there is a large volume of irrelevant
documents and the proportion of relevant documents is very small. It is
also critical that the agent not misclassify relevant documents, if need be at
the cost of misclassifying a few irrelevant documents. Information Retrieval
and Neural Network techniques were utilized to learn the model of user’s
preferences. Readily available textual information was used for training, so
that the agent’s performance at startup is quite high. The agent has been
evaluated through extensive experimentation under a variety of conditions.
The results are analyzed and the comparative performance of the learning
techniques used are discussed. An interesting result observed is that though
Neural Network techniques are inferior in performance to Information Re-
trieval techniques for learning from text in more general text filtering tasks,
in our task they had comparable performance.

1 Introduction

The WWW is increasingly being used to propagate time sensitive and important
information. There are newsgroups and Web pages announcing calls for papers,
requests for proposals and new publications. A user may know the location of
such information but has to repeatedly access the information using direct manip-
ulation computer tools such as Mosaic, Netscape and news-readers. Even if the
access is automated, the problem of sifting through all the information remains,
since the information sources have a high percentage of “noise” or irrelevant
data. In this paper, we investigate how a Personal Agent could be structured to
acquire a user profile which enables it to distinguish between relevant and irrel-
evant documents in text form on the WWW. This user profile is then used to
accomplish the task of automating the retrieval and selection of documents from



information sources that otherwise have to be constantly monitored by the user.
In particular, our agent is learning profiles for notifying users about conference
announcements and requests for proposals that match their research interests.

In contrast to environments where the goal is to avoid information overload
(eg., the Learning Interface Agent [Maes and Kozierok1993] and NewsWeeder
[Lang1995]) the filtering task for our agent involves judging whether an article
is relevant or irrelevant to the user based on the user profile, in an environ-
ment where the prior probability of encountering a relevant document is very
low compared to the probability of encountering an irrelevant document. In
such an environment, it would be very frustrating and time consuming for a
user to interact with an agent that starts with no knowledge but must obtain all
its training examples through user feedback. Therefore, our Learning Personal
Agent (LPA) gets trained from available relevant knowledge as well as from user
feedback. In this way when the agent starts interacting with the user, although
it needs additional training, it can be of immediate use. Since the user pref-
erence model learned by the LPA involves retrieving conference announcements
and requests for proposals which are related to the research interests of the user,
papers written by the users in their research areas can be used to model a priori
preferences. This ensures that when the LPA starts interacting with the user
it correctly classifies a large proportion of the conference announcements and
requests for proposals.

Learning Personal Agents have been used for the information filtering from
the WWW [Lang1995], [Armstrong et al.1995], [Pazzani et al.1995]. In case of
the WebWatcher [Armstrong et al.1995] and the agent described in [Pazzani et al.1995]
the agent tries to find an “interesting” link in a Web Page that has already been
preselected by a user, which means that the probability of finding relevant links
is relatively high. Similarly in the Newsweeder the user is subscribed to news-
groups which are of interest to the user and have a large proportion of relevant
articles. In the information sources monitored by our agent the proportion of
relevant documents is quite small and irrelevant documents predominate. The
cost of missing a relevant document to the user in the environment of our agent
is very high. Our agents predominant concern is to interpret the user profile in
such a way as to not miss a relevant document. The intent of the other agents is
to avoid information overload since the cost of missing a relevant news article or
a link is not high, given the redundancies in articles and links.

In the rest of the paper we present the design decisions and learning methods
used in our LPA. Our agent learns utilizing Information Retrieval and Neural
Network techniques. The agent is evaluated through extensive experimentation
under a variety of conditions.

2 The Design Characteristics of the Learning
Personal Agent
Figure 1 shows an instantiation of our architecture to accomplish the task of

forwarding relevant documents to the agent’s owner (the user who has control
of the Learning Personal agent). The goal of this research effort is to put in
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Figure 1: Learning Personal Agent and Environment

the hands of faculty members an LPA to retrieve conference announcements and
requests for proposals based on their research interests. FEach LPA uses the
same learning methods and interface but learns a different user model. We have
experimented (see Section 6) with the LPA of one user and we are currently
setting up the LPA’s of other users.

The News Information agent polls the newsgroups for messages. When a
new message arrives it forwards the article to all the Personal agents (owned by
different individuals) that have registered with it. Each Personal agent activates
itself on receipt of the message and runs the text of the article through a filter.
This filter is based on a model of the owner’s preferences and has been learned
earlier. If the learned filtering model judges the article as being relevant the
article is allowed to ‘filter’ through to the owner. The owner is notified by e-mail
or a pop-up window.

The task of retrieving relevant documents entailed:

1. building a model of the features in the text predicting the relevance of the
text to the user

2. developing a learning mechanism which utilizes the feature model to infer
different relevance criteria for each user

3. classifying a body of text based on the inference and making the decision
as to whether to notify the user or not, based on a decision making policy.

In designing the agent some explicit design criteria were kept in mind. We
needed to avoid excessive set up costs. We felt that the cost of setting up the
agent for a new user should be minimal in term of the user’s involvement in



training the system. The agent should have the capability to track evolving user
preferences without excessive user time investment. Finally it was desired that
the agent not be computationally expensive when functioning autonomously and
be able to delay tasks that were computationally expensive to times when system
load is low.

We found that some types of filtering models were more suited to our task
than others. For example Static Filtering Models are models that involve no
learning. These could be rule based models of user preference for instance. These
models had high initial set up costs because a complete set of rules need to be
acquired. They would not incorporate a change in user preferences without ma-
jor modification. Hence we ruled them out. Dynamic Learning Filtering Models
could easily incorporate evolving user preferences since they are constantly up-
dated. User feedback is incorporated while carrying out the task, and filtering
and learning take place simultaneously. The WebWatcher [Armstrong et al.1995]
and the Learning Interface Agents [Maes and Kozierok1993] construct user pref-
erence models for filtering which are Dynamic Learning Filtering Models. The
owner looks at a document and decides whether it is relevant or not, giving ap-
propriate feedback to his/her Learning Personal agent. In a Dynamic Learning
Filtering system the agent modifies its model of the user’s preferences based on
this criteria. This would be very time consuming and frustrating if the user had
to spend a lot of time sequentially classifying documents till the agent reached
a reasonable level of expertise. In these systems there is no initial training set
as the system acquires knowledge based solely on user feedback. This is a not a
structural problem but one that is based on the operational needs of the agent. To
ensure that the agent starts up with a reasonable performance level we decided
to use a Semi-Dynamic Filtering model. These models have a training phase
which is computationally intensive. Once the training phase is over the model is
learned and can be used for filtering. The training phase can be repeated to learn
from new instances periodically ie. learning based on user feedback. The user is
asked to provide the agent with readily available relevant and irrelevant docu-
ments. For our agent, abstracts from conference, journal and workshop papers
could be used to learn user research interests that are used in retrieving confer-
ence announcements and requests for proposals. The agent used these documents
to acquire off-line a high degree of classification competence, so its performance
when it starts interacting with the user is quite high.

3 Learning the User Profile

The learning mechanism used to construct the model of user preferences is based
on using features of the text in training examples. The training examples are
text files supplied by the user. For a Personal Agent that monitors the WWW
for conference announcements and requests for proposals, the training examples
comprise text files that contain abstracts of papers and proposals written by the
owner and abstracts of papers/proposals written by persons who do not share any
of the research interests of the owner. The learning mechanism uses the owner’s
abstracts as positive examples of the concept (relevant articles) to be learned and



the other abstracts as negative examples.

Much of the data found on the Web is in unstructured text form. The agent
has to alert the user to the presence of relevant documents based on the text in
the document. Learning programs require that the examples be presented as a set
of feature vectors. For learning from text, the features we picked to be included
in the vectors were the words occurring in a document. For the purposes of this
paper a word is a sequence of letters, delimited by non-letters. This is similar to
NewsWeeder’s [Lang1995] approach of using tokens which are generalized words.
The granularity of feature size has been kept to word level to avoid the enormous
task of developing linguistic knowledge needed for Natural Language Processing.

The assumption is that there is some underlying or “latent” structure in
the pattern of word usage across documents [Foltz and Dumais1992]. The need
therefore is to come up with a method to estimate the latent structure. Thus
words are used as the building blocks of the structures that result in the prediction
of the relevance of text to a user. Not all words that appear in a document are
used as features, only the ones that are expected to contribute significantly to
the estimation of the latent structure and indirectly to the classification of the
document as relevant or irrelevant. Statistical criteria and heuristics are used to
decide which words contribute significantly.

In the techniques described later in this paper we used the vector space infor-
mation retrieval paradigm, where documents are represented as vectors [Salton1989].
Assume some dictionary vector D where each element d; is a word. Each docu-
ment then has a vector representation ‘7, where element v; is the weight of the
word d; for that document. If the document does not contain d; then v; = 0.
The term feature refers to an element of the vector V for a document and so is
denoted by wv;.

4 Using an Information Retrieval Based Technique
for Filtering

Once we decided on a representation of the documents as described in Section 3,
one of the techniques adopted for learning a user preference model was a standard
well tested technique from Information Retrieval called term frequency-inverse
document frequency weighting (tf-idf) [Salton1989]. This is a simple technique
that is hard to beat [Lang1994] and provides a well tested benchmark to which
other learning models can be compared.

This technique relies on the occurrence properties of the terms in document
collections. In the composition of written texts grammatical function words such
as “and”, “of” and “or” exhibit approximately equal frequencies of occurrence
in all the documents of a collection and the frequencies of occurrence are high.
Other words, including words that relate to document content, tend to occur
with varying frequencies in the different texts of a collection. The more times
a word f occurs in a document d the more likely it is that ¢ is related to the
topic of d. The number of times t occurs throughout all documents is called the
document frequency of t or df;. The larger df; the worse ¢ discriminates between
documents. So for a given document, the relevance of the document based on



a term is directly proportional to ¢f; 4 (the number of times word ¢ occurs in
document d) and inversely proportional to df;. We allocate a weight for each
word encountered in a collection of documents as follows

w(t,d) =tfialog(|N|/df:)

where N is the entire set of documents. The classification power of a word
in a document is indicated by this weight.

Each document is represented by a vector V as explained in the previous
section. Each element v; of this vector contains the tf-idf weight calculated as
shown above for the word d; from the dictionary D.

Once each document is represented as a vector, the similarity or dissimilarity
of two documents can be measured by using the cosine angle between two vectors
representing the two documents. To learn a user profile a set of documents
intended for training is converted into vectors and each document’s classification
noted. For each vector V; classified in the same category each corresponding
individual element v;; is summed up. The average of each vector element is then
taken forming a prototype vector for that category. When a new document is to
be classified the “similarity” or “dissimilarity” of the tf-idf vector representation
of the new document to each prototype vector is calculated, using the cosine
angle measure.

The vectors used in tf-idf could potentially be the size of the total vocabulary
of the documents in the training set. The large size of the vector can give rise to
the problem of learning in high dimensional spaces. Heuristics are needed to cut
down the size of the vector. We used an information-based and a keyword based
approach to make the problem manageable.

In the information based approach we threw out from the dictionary vector
D the k most common words. We used only n words from the dictionary for
classification. These n words corresponded to the top ranking n vector elements
in the documents vector in terms of tf-idf weight. The values of k and n for best
performance were determined empirically. & values tested were 10, 20, 50, 75 and
100. n took the values 200, 1000 and 2000.

The keyword based approach uses a dictionary vector D of words that we
know are important in the documents (ie. keywords). These words were gleaned
from the Research Interests Database at Carnegie Mellon University for the con-
ference proceedings and research proposal retrieval domain. The size of the tf-idf
document vector is fixed for every document though the value of each element
in the vector (ie. the tf-idf weight) differs across documents. This means that
in the domain knowledge based approach we are making inferences from the
distribution of a fixed set of words over a collection of documents. We report
the results obtained by using this technique and compare its’ performance to a
Neural Network based technique in Section 6.



5 Using a Neural Network Based Technique for Fil-
tering

As an alternative we used a Neural Network based technique to learn a model
of user preferences. The learning process used the same document vector as
the tf-idf process described above. The network was trained using the same
positive and negative examples as the tf-idf technique. The dimensionality of
the document vectors was reduced using the domain knowledge based on the
approach described in section 4. The significant differences between the NN
technique and the Information Retrieval based technique involve the assumptions
underlying the model and the representation of the document vector.

The NN technique does not make any assumptions regarding the statistical
properties of the words in the training set, unlike the tf-idf approach which
weights the effect of a word in a document based on its frequency of occurrence.
We use a simple three layer back-propagation network to learn the association
between these properties given a training set of documents. These emergent
associations are then used to classify new documents. Our belief was that the
network would be able not only to learn the model that tf-idf (for instance) uses
but also learn more associations that are implicit in the training data.

In the Information Retrieval technique the document vector is a real number
vector in which the tf-idf weight of each word is represented as explained in a
previous section. For the Neural Network we used a zero-one Boolean document
vector, with a one indicating that a word is present in the document. So each v;
in a document vector V could either be a 0 or a 1.

To classify documents using a Neural Network a threshold value was chosen.
A high output is an output value which exceeded the threshold value. Once the
Neural Network is trained, a high output value during the classification of a new
document indicates that the document being classified is of interest to the user
and that the agent should notify the user about the arrival of the document.

6 Experimental Setup and Results

6.1 The Information Retrieval based Filtering Technique

The tf-idf technique was tested with both the information-based and domain
knowledge based approach. We were able to make use of documents from two
different users. For one user we obtained 179 documents that were used as pos-
itive examples and for the other user we obtained 112 documents for use as
positive examples. The number of negative examples (i.e documents classified
as irrelevant to the user) was also of the same order (178 and 112 respectively).
The documents contained abstracts from conference, workshop and journal pa-
pers that were written by the users (positive examples) or others with different
research interests (negative examples) in addition to a smaller number of calls for
papers and conference announcements. It should be noted that both the users
were able to provide us these documents quite easily.



The documents available for learning the user profile were not randomly se-
lected from the same distribution as the documents that the LPA would be classi-
fying. The positive examples in particular shared the same author and therefore
were correlated with each other. The training examples thus biased the learning.
They had the advantage that using them allowed the agent to acquires a degree
of competence that is of immediate advantage to the user.

However the true test of the agent’s performance would be when it was pre-
sented with conference announcements and request for proposals from WWW
sources distinct from the training set. Therefore we used 50 documents acquired
from the WWW not previously seen by the agent. This set of documents were
set aside for testing and evaluation purposes and were not used for training.

The training set (the original set of documents) was used to form the prototype
vector for each category as described earlier. The documents from the test set
were used to evaluate the performance of the technique. After a document was
classified by the system, user feedback was solicited. The user classified the
document and the document was added to the training set. Training was done
off-line with the augmented training set. The performance of the technique was
evaluated after retraining.

We evaluated the performance of the two techniques using the measures of re-
call and precision. These are information retrieval measures rather than machine
learning measures of performance. Recall is the ratio of relevant documents (i.e.
positive examples) identified as relevant by the system by the number of relevant
documents present. Precision is the ratio of the number of relevant documents
identified as relevant, to the total number of documents presented to the system.
The classification accuracy of the technique was quite good. The initial perfor-
mance was high in both the information based and keyword based approaches.
This performance was as high as a recall of 100% and a precision of 93% despite
the training examples being picked from a biased sample. The performance also
increased when additional feedback was given by the user. This is desirable per-
formance for our agent, which can start up with an initially high performance
and a biased training set, but can rid itself of the bias as the user gives feedback
during regular operation of the agent.

A surprising result observed was that the information based approach per-
formed better than the keyword based approach despite the greater domain
knowledge incorporated into the latter approach.

6.2 The Neural Network based Filtering Technique

It is well known that the Neural Network’s performance is sensitive to the training
process used. We were careful to avoid some of the pitfalls such as over-training.
The approach we used was to divide up all the example documents available into
a training set and a coordination set in a certain proportion, randomly choosing
the documents to go into each set. These sets were mutually exclusive collections
of documents. The test set used to evaluate performance was the same as the
one used to evaluate the Information Retrieval Approach.

The training set was the set of documents that were used to train the network.
The document vectors were presented to the network at the input nodes after



being converted to a Boolean zero-one feature vector. Each input node represent

an element v; of the document vector V. The output of the network was compared
to the representation of the relevance of the document called the expected output
(1 for a relevant example and -1 for an irrelevant example). The error between
the expected output for the document and the forward propagated output was
then back-propagated for a number of epochs. In case the network output was
greater than 0.5 for an expected value of 1, or less than 0.5 for an expected
value of -1 the document was marked as being classified correctly. Otherwise
the document was marked as being classified incorrectly. The documents in the
test set were used to test the performance of the network previously unseen text.
The performance measures were the same as the ones used in the Information
Retrieval based technique. The coordination set is a third set that is used neither
to train the network nor to evaluate its performance. The documents belonging
to the coordination set were used to decide how many epochs to train the network
for to give optimum performance in classification of new examples.

In order to get the maximum performance on previously unseen documents
the training process needs to be carried out for a number of epochs. The decision
of the number of epochs at which to stop training is critical to the performance
of a NN. If the performance of the training set (in terms of minimizing the total
error between the expected output and the network generated output on all the
feature vectors in the training set) is used to decide when to stop training - there
is a danger that the network will be over-trained. That is, the network will pick
specific features of the individual examples presented to it to classify rather than
features that are truly predictive of class membership. Performance (in terms of
network error) of the test set cannot be used to guide training since the test set
is used for evaluation.

The coordination set is not used to train the network. The documents in
the coordination set were used to decide how many epochs to train the network
for, to give optimum performance in classification of new examples. In every
epoch after the network is trained it is used to classify the documents in the

coordination set. Each document vector V is presented to the input nodes, each
of which represents an element v; of the vector. The error between the network
output for the document vectors and the expected output is summed up for each
document in the set. This is compared to the same quantity calculated in the
previous epoch. Figure 2 shows a plot of the sum of the error between expected
output for a document vector and the output from the neural network when the
document vector was presented as input for all documents in the coordination
set versus the number of epochs the NN has been trained for. The same plot is
repeated for the documents training set. The optimum performance occurs at
point A in the training. The error of the training set keeps decreasing from point
A but the error of the coordination set increases. This means that training the
network beyond the number of epochs at point A will result in “over-training”
in which the network learns particular associations to get better performance
on the training set but loses power of generalization. Thus the decision to stop
training is made when the total error on the coordination set shows a rising trend
ie. error in the previous epoch is less than the error in the current epoch.

The network was then trained to the point corresponding to A in Figure 2 be-
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Figure 2: Error versus number of epochs for NN

fore being evaluated. Other Neural Network parameters were chosen to maximize
classification accuracy on a set of documents split randomly from the training set.
The coordination error decreased significantly for a number of epochs but starts
stagnating before increasing. To keep the time for the experimental runs within
manageable limits the NN training was terminated when the error decrease was
less the 1% 1076 between epochs or when the trend was towards increasing error.

The results reported are for a 360 word vector of keywords, and training time
was roughly comparable to the tf-idf algorithm using the keyword based approach
(which resulted in a document vector length of 360 words). The training time
for tf-idf was significantly longer for the longer length vectors. The vector length
did not have a significant impact on the training time for the NN.

The performance of the Neural Network was worse than the performance of
the Information Retrieval technique both in terms of precision and recall. The
results obtained by us are not completely disappointing however. Despite the
small number of training examples used (357) compared to those reported in
other literature (for instance [Lang1994] which used 20000 examples), we were
able to get performance approaching 60% recall and a precision of 94%. For the
Cascade 2 neural network growing algorithm trained on a 1000 articles, Lang
[Lang1994] reported 25% correct classification. In our case the Neural Network
has approximately 3 times the performance achieved by the Cascade 2 algorithm.
This is no doubt due to the fact that our text filtering task is more specialized
than the task for [Lang1994]. The precision of increases with user feedback as is
expected.
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7 Conclusions and future work

We described a Learning Personal Assistant that learns a model of the user’s pref-
erences in order to notify a user when relevant information becomes available.
The learning task entailed using Information Retrieval and Neural Network tech-
niques to identify conferences and request for proposals that fit a user’s research
interest. The results reported in this paper are preliminary. The two approaches
used here are both good candidates for the task of creating a user profile to filter
documents. The Information Retrieval based approach is the most promising.
The Neural Network based approach uses an extremely simple representation
for a document (a Boolean zero-one vector). Another approach that we are ex-
perimenting with is to combine the strengths of tf-idf and the Neural Network.
Currently we are setting up experiments to collect data from a number of users.
We have concluded that it is possible to use a biased set of training examples, in
order to get high initial performance and yet get acceptable performance when
classifying documents that are not part of the biased set.
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