Disco very of Infrastructure

iIn Multi-Ag ent Systems

Brent K Langley, Massimo Paolucci, Katia Sycara
The Robotics Institute,
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA - USA -

blangley,paolucci,katia@cs.cmu.edu

ABSTRACT

The role of the Multi-Agent System (MAS) Infrastructure
is to support agents while they create more complex virtual
communities. As agents dynamically appear and disappear
from the environment (or move from one host or network
to another) they may find that their infrastructure services
have also dynamically become transient, creating potential
disruptions to the activity of the MAS. Therefore agents
should be provided with tools that allow them to dynami-
cally reconfigure and adjust their operation, based on these
changes. We describe the protocols, of a multicast-based
discovery mechanism, that allow agents to rapidly track the
changes in the infrastructure of their local networks, in or-
der to maintain a consistently high level of interoperation
with other agents. In addition, we show how the discov-
ery protocols can be extended over the Internet through a
Peer-to-Peer connectivity model based on the Gnutella ar-
chitecture to create Agent-to-Agent™ (A2A™) communi-
ties. The combination of local and global discovery allows
agents to maintain survivable connectivity to both local in-
frastructure and to services dispersed throughout the Inter-
net. The use of this service allows the agent systems to
ultimately participate in more globally diverse and complex
agents communities.

1. INTRODUCTION

The promise of Multiagent technology is for the automatic
creation of virtual communities of heterogeneous agents that
dynamically collaborate, compete, form teams or coalitions,
and enter into auctions and negotiate on prices for services.
Yet, all of this does not happen by magic. It is not enough to
implement a set of agents, start them, and wait for them to
spring into action and create a community. Rather, agents
need a set of infrastructure services to support their interac-
tions, as well as knowledge and conventions that allow them
to understand and communicate with each other. This in-
frastructure provides white-page services that allow agents
to locate each other; and yellow-page services (or middle

agents [1, 12]) that identify which agents provide what ser-
vices. Examples of middle agents include the OAA Facili-
tator [2], the RETSINA Matchmaker [6] and the Infosleuth
Broker [3].

In order to take advantage of the infrastructure, agents must,
first and foremost, identify the MAS infrastructure services
that are currently available to them. In this paper, we show
how agents find infrastructure, such as yellow and white
page services in the RETSINA Multi-Agent System [8], us-
ing simple discovery protocols. In our schema, agents en-
tering the system will transmit requests for desired infras-
tructure services that might be available in their local area
network (LAN) or across the global network (WAN). Each
service that matches the request will reply to make itself
known, it is then up to the requesting agent to select with
which services to register its own capabilities and location.

One aspect that is often unaddressed in MAS, is that infras-
tructure services, as well as agents, can appear and disap-
pear dynamically. We suggest that as infrastructure services
enter the MAS, that they utilize the discovery mechanisms
to announce themselves so that the agents in the MAS can
contact them. One immediate gain of this process is that
agents do not need the infrastructure to be rigidly in place
when they enter the system; rather, they can monitor the
discovery messages that are transmitted to learn and adapt
to their changing infrastructure landscape.

We see discovery as a procedure that enhances or replaces
the hardcoding of infrastructure references in configuration
files and agent code. While static configuration information
may allow agents to connect to their infrastructure their use
is problematic. First, it requires high-maintenance when
the infrastructure is modified; in addition it proves to be
very brittle, restricting the agents’ ability to automatically
recover from even partial failures of infrastructure compo-
nents. Finally, the use of hardcoded references often man-
dates a specific order of system component initiation, be-
cause the existence of the MAS infrastructure often becomes
a precondition of an agent’s ability to function. Agents that
use discovery are not hindered by these problems: they al-
ways know what alternative infrastructure components are
currently available in the system, so they can switch at any
time. In addition, if the desired type of infrastructure com-
ponent is not currently available in the local network, the
agent can look for a substitute on the global network or just
wait until it is notified, through the discovery mechanism,



that the desired service has become available on the local or
wide area network.

Current protocols that implement discovery are often hin-
dered by local network boundaries and Internet routing in-
frastructure. This is a serious limitation for MAS technolo-
gies that aspire to operate across the Internet. In this paper
we show how agent discovery can utilize the fabric of a peer-
to-peer (P2P) network, and augment the P2P protocol to
guide and direct peer connectivity to form Agent-to-Agent
(A2A) communities. Furthermore, we show how we’ve en-
hanceed this A2A architecture to maximize the probabil-
ity for appropriate connectivity and to minimize extraneous
traffic.

This paper is organized as follows: in section 2 we discuss the
multicast-based discovery infrastructure used in the LAN; in
section 3 we introduce the A2A paradigm, and show how it
has been implemented and extends the discovery mecha-
nism to operate over wide area networks, such as the Inter-
net; /comment, utilizing a peer to peer architecture and, in
section 4 we provide a qualitative evaluation of the different
discovery protocols we have presented. Finally in section
5 we discuss some of the work we intend to do in the fu-
ture to unify and expand the discovery mechanisms we have
described, and then we conclude.

2. LOCAL DISCOVERY

Agents in the RETSINA system use Simple Service Discov-
ery Protocol[5] SSDP, to find the infrastructure services for
their environment. SSDP was created in conjunction with
the Universal Plug-and-Play[11] (UPnP) initiative driven by
numerous vendors including Microsoft Corp. It was devel-
oped as a lightweight mechanism to discover service providers
in an ad-hoc and dynamic environment. T'wo modes of this
protocol’s operation support the notification (and alerting)
of a service’s availability, and the search for services.

SSDP specifies three types of messages to be multicast. Alive
messages are sent out to communicate that a new service has
come online, Byebye messages are sent to communicate that
the service is leaving the system, and Search requests are
multicast to look for services that are currently available.
Responses are only sent to Search requests, and they are
transmitted via unicast. All SSDP messages are composed
with UDP (User Datagram Protocol) [10] packets which is
more lightweight protocol than TCP; but because UDP im-
plements fewer checks and balances, it carries no guarantee
of delivery. The resulting discovery process is asynchronous,
where messages are publicly accessible, and responses (if
any) may be singular, multiple, or repetitive; and possibly
time-delayed.

Upon entering the RETSINA MAS, every agent and infras-
tructure service multicasts an Alive message and a sequence
of search requests for services they need. The Alive message,
shown in figure 1, is a communication to all the other agents,
of the existence of the new agent. The message specifies the
type of message sent: using the NOTIFY header and the
ssdp:Alive indicator; the type of agent that sent out the
message (in this case a retsina:Agent); where the agent can
be found (<kriton.cimds.ri.cmu.edu:5555> which is its uni-
cast address and port); and finally, the unique name of the

agent: “SECstock”. Alive messages are cached in agents by
the appropriate service’s client module, as information for
future points of contact for locating other agents. This in-
formation is only cached for a limited duration, since agents
or the interconnecting network may fail. A value of 15 min-
utes is used in the example below (900 seconds.) At 75%
of this lease interval, if the agent is still functioning it will
automatically send a fresh Alive packet to extend their lease
cache entry.

NOTIFY * HI'TP/1.1

Host: 128.2.222.18:32786

NTS: ssdp:alive

NT: retsina: Agent

USN: uuid:SECstock

AL: <kriton.cimds.ri.cmu.edu:5555>
Cache-Control: max-age = 900

Figure 1: An Alive message from agent SECstock

In addition to Alive and Byebye messages, an agent multi-
casts one or more Search request messages to look for ser-
vices that it needs. (Service requests can specify a specific
service that the agent requires or can indicate that all avail-
able service providers should respond.) An example of an
infrastructure service request is shown in figure 2. The agent
with a unique name of SECstock, is seeking a service of type
retsina:AgentNameServer, and has provided its “return ad-
dress” Host: 128.2.179.228:1082 to indicate where the
response should be sent. This message is ignored by all
agents and services whose type doesn’t match the requested
type (in this example, anything that is not an ANS.)

All ANSs in the MAS recognize that their service is be-
ing sought and decide whether to respond to the request.
To avoid problems that might occur if numerous services
simultaneously attempt to unicast responses to the same
agent and briefly flood the network, responders will stagger
their replies by choosing a random delay time within the
boundaries of a number of seconds as indicated by the MX
parameter specified in the search request message. Similar
search messages are transmitted to look for Matchmakers,
and for other infrastructure services like Loggers, MAS vi-
sualization tools, and Multi-Agent Launchers [8].

M-SEARCH * HTTP/1.1

S: uuid:SECstock

Host: 128.2.179.228:1082
Man: ssdp:discover

ST: retsina: AgentNameServer

MX: 2

Figure 2: A Search Request from agent SECstock

When an agent or infrastructure service receives a multicast
message of interest, it will reply directly to the sender via a
unicast response. As opposed to a multicast message that is
transmitted to all the agents, a unicast message is a direct
point-to-point communication. For example, several ANS
servers may reply to an agent request by each providing their
own network address so they may be contacted. No other
system on the network will see the individual responses to



the original requester. But they all had an opportunity to
see the request.

Finally, Byebye messages are multicast when the agent leaves
the system. Every agent that had previously learned loca-
tion information about this service, can remove the reference
from its cache.

Discovery is also used as an event-based trigger to facilitate
higher level coordination and community interactions within
the MAS infrastructure. For example an ANS multicasts an
Alive message to announce its presence in the system, fol-
lowed by a search request to locate other ANSs. Existing
ANS servers learn of the new ANS from its Alive message,
and the new ANS learns of the existing ANS servers from
their responses to its query. Once they know about each
other, they will exchange information and registration re-
quests, increasing the reliability and efficiency of the over-
all MAS by ensuring redundancy of agent registration in-
formation, and by providing load balancing for each other.
The transmission of Byebye messages from ANS servers who
leave the system, will preempt the future occurance of bro-
ken connections and socket timeouts during the systems in-
tercommunications.

Agents react to Alive messages from infrastructure compo-
nents by registering with that new service if they deem it
appropriate, or by ignoring the service all together. In the
case of the Agent Name Service, an Agent will automatically
send a registration request to the new ANS as it comes alive.
This action by the Agent will help to make the Agent’s name
registration survive system outages, and automatically re-
fresh systems in an environment that operate a single ANS
server that crashes and then recovers, but has lost its regis-
tration database.

2.1 Alternative Discovery protocols

SSDP was created as a lightweight discovery protocol for
the Universal Plug-n-Play (UPnP)[11] initiative, and defines
a minimal protocol for multicast-based discovery. Because
it is so minimal and lightweight, it was advantageous to
utilize SSDP in the RETSINA architecture which supports
agents on many platforms, including handheld computers.
Nevertheless, we considered other discovery protocols such

as SLP and Jini.

Service Location Protocol (SLP)[4] defines three types of
systems that can participate in the discovery process, and
the interactions between these entities. SLP deals with User
Agents (UA), Service Agents (SA), and Directory Agents
(DA). SA’s have a service that they can provide (a pro-
ducer.) UA’s want to find a SA to perform some task (con-
sumers.) DA’s store SA advertisements as a “central clear-
ing house” for finding services (yellow-pages.) The SLP pro-
tocol states that a UA should try to “discover” a DA using
multicast when coming online. If found, all further discov-
ery will take the form of a lookup process between the UA
and the DA using directed unicast conversations. Likewise
all SA’s should have found the DA, and registered or ad-
vertised themselves with it. If a DA is not available, the
UA can directly multicast a request for a type of service;
and any SA’s that receive the message and can provide the
specified service should respond to the UA.

Java’s Jini is similar, except that it requires the a-priori
presence of a DA. The direct discovery of SAs by UAs is not
allowed. Otherwise the protocols are similar. In fact, SSDP,
SLP and Jini map the spectrum of permutations available
for discovery. The minimal case is where there is no dis-
covery. At the next level, SSDP allows any client (UA)
to discover any service (SA) without the assistance of any
other infrastructure component, such as a DA. Jini allows
UA and SA entities to discover DA systems which provide a
mediated lookup service. Finally, SLP implements the DA
to provide a mediated lookup service, but a UA can still
discover an SA directly, in the absence of a DA.

Compared with SLP, the RETSINA infrastructure already
has the equivalent of a DA service in the form of the Agent
Name Service (ANS) [7]. The use of SLP within RETSINA
would therefore create redundant services and duplication
of functionalities. A similar problem would be created with
Jini, with the addition that Jini is typically (but not nec-
essarily) a Java-specific solution, while the RETSINA MAS
infrastructure supports heterogenous agents running on a
number of platforms and implemented on a numer computer
languages (e.g. Java, C, C++, Lisp, etc.)

2.2 Limitsof Multicast

Multicast performs a controlled broadcast on the network
that prevents traffic from being propagated onto segments
of the network where the packets are not required or desired.
In addition, multicast discovery packets are limited in their
transmission by a Time-To-Live (T'TL) value that indicates
the number of routing devices that the packet should be al-
lowed to propagate over. However, not all routers or firewalls
are able (or administratively configured) to route multicast
packets, which prevents discovery protocols from being used
pervasively and globally.

Since the spread of multicast messages is controlled at the
level of packet routing in the network, it is very sensitive to
the topology of the overall network. Specifically, the use of
multicast is the result of a difficult tradeoff between spread-
ing the message to all the expected recipients and controlling
the message so that it does not needlessly consume exces-
sive bandwidth. The result is that, typically, Multicast can-
not be reliably used outside the LAN of the sender. Our
dilemma is that if we want to extend Multiagent systems
across the whole Internet, the exclusive use of multicast for
discovery provides a serious limitation.

3. GLOBAL DISCOVERY

Multi-Agent Systems exemplify the paradigm of an Inter-
net of services in which sites (agents) interoperate and ex-
change services rather than just static pages. In order for
MAS to expand to the whole Internet, the infrastructure
of MAS should also be available across the Internet. We
envision an Internet-wide MAS to be served by distributed
white and yellow pages registries. While each registry may
directly serve agents in a restricted area, they also form
an integrated network of services that exchange information
to support the communication of agents across the Internet.
For example, if a white pages service, such as the RETSINA
ANS, cannot resolve a request for an agent in its own LAN,
it asks peer ANS servers across the Internet to resolve the
reference. In turn, they forward the request to other ANSs



that they know, until either the agent is found or the request
has traveled too far and failed.

To extend the MAS infrastructure to Wide Area Networks,
discovery should also be extended to the Internet so that
infrastructure services can find each other and collaborate.
In addition, agents should be allowed to look for infrastruc-
ture services across the entire Internet when they cannot
find any service in their local network. In this section we
describe the A2A discovery and global lookup infrastruc-
ture based on the Gnutella P2P network. A2A discovery
and lookup allows agents and infrastructure components to
dynamically expand their search across the network to find
ANSs, Matchmakers, and other Middle Agents. A2A makes
it possible for communities of agents to be automatically
constructed, even though the group members are separated
across wide expanses of the Internet.

3.1 TheGnutela P2P Networ k

Gnutella is both a file sharing mechanism and an asyn-
chronous message passing system that allows its users to
locate and share (typically MP3 music) files across the In-
ternet. Each Gnutella application is both a “SERVer” and
a “ciENT?”, so the protocol’s creators coined a new term
to describe a participant of the Gnutella network as a “ser-
vent”. Other than the rapid and global deployment of this
application, the exciting part of Gnutella is that it func-
tions purely on Peer-to-Peer (P2P) connections between the
servents without a centralized server.

Gnutella servents use their message passing system to per-
form two types of operations. First, they exchange messages
to other servents that are available on the network so that
they can maintain, or increase their level of connectivity
to the overall gnutella network. Secondly, they exchange
messages to search for specific files that might be available
from other servents. This messaging system is primarily
composed of binary packets of information, and text strings
that represent search requests. File exchange is based on
the HT'TP protocol, and uses the same mechanisms as used
in the retrieval of content from web servers.

Gnutella-Network discovery, used by traditional servent ap-
plications, is “boot-strapped” by connecting to a few well-
known servents that the human operator running the ser-
vent expects to be there. Several servers have been set up
on the Internet to cache connection information of available
servent systems, so this intial phase is now typically auto-
mated. Agent applications can start with this model, and
augment it with a-priori information from previous interac-
tions, and by utilizing local discovery as described earlier in
this paper.

As each servent starts, it will connect to a few remote sys-
tems. In order to discover other servents in the Gnutella
network, it starts a PING / PONG process. PING messages
are sent in hopes of receiving PONG messages that contain
host, port, number of files, and kilobytes shared from other
servents on the Gnutella network. As shown in Figure 3,
each servent that receives a PING performs two operations:
first it sends a PONG back along the same path from which
the message came, so that eventually the PONG will reach
the originating servent; second it forwards the PING to other

Pong A
Pong(; B
S Seing
y 5 /3 b
.. n n
Originator g A 9 C
Ping
E’ongD D

Figure 3: Propagation of Ping and Pong messages
between message originators and other servents

servents with a reduced TTL. As soon as the T'TL reduces to
0, the message is no longer forwarded and the search ceases
to propagate. Because of the high degree of connectivity
between servents on the Gnutella network, a PING may hit
up to an exponential quantity of servents in its travels from
servent to servent. As an example depicted in Figure 4, if
all servents were maintaining 5 active connections, and had
aTTL of 7, a PING message could reach as many as 109,225
other servents on the network.

—
1 -

\

=

number of servents
seeing the message:

1 5 2 80 320 1280

Figure 4: Fan-out of messages

Also, as time goes on, a servent will be pinged by other
servents as they connect to the Gnutella network; and the
servent will “overhear” PONG messages from even more ser-
vents that it is routing. Many of the PONG messages that
a servent routes will be from systems that were not online
when the servent first sent its own PING message. These
additional PONG messages can be harvested, and used to
curtail the over-utilization of PING messages. The messag-
ing mechanism of Gnutella is based on the voluntary action
of every servent to actually route the messages that they
receive to other servents. The routes constructed will have
more of a resemblance to graphs than to trees, so even if
one servent does not route messages, there is a high likeli-
hood that the original message will still be transmitted via
an alternate route.



The search mechanism of Gnutella uses the same message
passing process utilized to PING other servents except that
message routing occurs first, before a servent attempts to
peform a more time-consuming local search. A QUERY mes-
sage that is sent to the Gnutella network contains a number
representing the minimum acceptable communications link
speed for file downloads, and a string representing the con-
tent that is being sought. In typical Gnutella servents, the
search string will be tokenized before a servent’s local file
system searches for filenames that match any of the string’s
keyword tokens. If a local file exists that matches one or
more of the words in the query string, its information will
be formed into a response to the QUERY packet. If more
than one file matches a pattern, the servent can reply with
multiple responses embedded in the same message. The
QUERY-HIT message that is sent back contains information
about the system’s link speed and the name and size of each
matching file. It also contains an integer index value to help
map the request into the local file system’s storage.

3.2 TheA2A Network LookUp and Discovery

Gnutella provides a basic connectivity schema that allows its
servents to discover other servents over wide area networks.
By enabling Agents and infrastructure components of the
RETSINA MAS to act as servents on the Gnutella network,
we can take advantage of a fabric of wide-area connectiv-
ity that is already in existance and widely deployed. The
result is that whenever an agent needs to locate an infras-
tructure component, such as an ANS server, it can send both
a multicast discovery message to the local network, and a
QUERY request to the Gnutella network. Since the speeds of
the two processes are quite different (Gnutella being slower
than multicast) the agent will connect first to the local ser-
vice but still learn of other remote services as they become
visible.

As QUERY requests fan-out over the Gnutella network, being
sent from servent to servent (like any other MP3 request,)
A2A servents providing RETSINA infrastructure function-
ality will recognize a request for a service that they pro-
vide, and reply with a QUERY-HIT message. However, these
QUERY-HITresponses do not provide information about where
to find a file, but the address where infrastructure compo-
nent can be reached.

To create A2A servents, we augmented the standard Gnutella
servents in several ways. A2A servents monitor their connec-
tions to develop confidence levels for remote servents, and
use these values to manage their connectivity. They cate-
gorize remote servents based on numerous attributes, to in-
crease connectivity to communities that are most beneficial.
A2A servents quickly focus incoming queries to agent tasks
that can respond, and bypass inappropriate requests. And
finally, they implement the automatic answering of requests
that can facilitate the congregation of agents into commu-
nities. In the following sections we explain further details
about the confidence, categorization, search, and discovery
mechanism within A2A servents.

3.2.1 Confidence

The A2A architecture implements a ranking operation for
connections by using several counters to indicate the confi-
dence that an agent has in the usefulness of a connection.

The counters provide a metric to indicate a positive or neg-
ative confidence in the connection’s worthiness to remain
connected, or be reestablished at a future time. The coun-
ters track repetitive messages, consecutive messages of the
same type, repeated queries, and malformed or unknown
message types.

The ranking of servents is used by an agent to help decide
which servents to remain connected to. A2A servents do
not keep their connections open forever: a connection is
open only for a set number of messages. As an agent in-
teracts with other servents, it learns from their interactions
and modifies its confidence level. The more information the
agent gets from another servent the better it ranks it and
the longer it keeps a connection open to it. On the other
hand, if the information provided by the servent is of no in-
terest, or the agent suspects that the other servent is being
disruptive, it will use the decreasing confidence level close
the connection prematurly. The ranking is also used to de-
cide with which servents to connect next, so that the agent
is more likely to open a connection to a servent with whom it
has a high confidence. The result of the ranking is that the
agent is more likely to be connected to other agents servents
that provide useful information.

3.2.2 Catgyorization
Gnutella accumulates all connectivity candidates into one
large pool. The RETSINA A2A software refines these selec-

tions and categorizes hosts into several prioritized groups.

Group Description

PRIME | preferred, agent specified

ALT high calculated confidence levels
LOCAL | nearby on the agent’s current network
HOME on agent’s home network or system
OTHER | miscellaneous unclassified servents
CACHE | systems bootstrap PONG servers

BAD servents or networks to be avoided
NEW staging area for discovered servents
USED servents active on current connections
TASK focused on specific community interactions

Table 1: A2A Servent Categories

The agent tries to keep a set number of each category of
servents connected. The total connectivity count must also
fit within the minimum and maximum allowed connections
settings. If there are insufficient “appropriate” connections
in place to perform a lookup or other agent communica-
tions task, an ordered selection from these categories will be
utilized to increase connectivity. If the total number of con-
nections exceeds a maximum limit, the A2A Agent will go
into a host-cache mode, where no new outgoing connections
will be attempted, existing connections will eventually ex-
pire and be disconnected, and incoming connections will be
limited to a very few interactions (PING/PONG and imme-
diately disconnect.) The PONGs that the host-cache mode
A2A Agent will respond with, are the PONG packets of
the servents it is currently attached to. This way, if Agent
A knew it needed to talk to Agent B, but Agent B could
not support any additional connections, Agent A could be
connected to Agent C who was already participating in a
conversation with Agent B. Any QUERYSs sent to Agent C



would fan-out and reach Agent B. Scalability is enhanced
while maintaining required connectivity and intercommuni-
cations capabilities.

3.2.3 Task-based2ASeach

The Task structure of A2A enhances the basic QUERY pro-
cess provided by Gnutella. All servents in Gnutella are
assumed to be working on the same type of process: file
sharing. When answering a query, they provide information
that facilitates the location and downloading of a file. MAS,
however, can utilize this same network transport to locate
service providers (with a response using a URL to describe
how and where a service could be contacted), or to actu-
ally have work done (with the response being the results of
the process performed.) An impediment to using the public
Gnutella network is that the agent systems should be able
to ignore non-Agent messages, or any query that relates to
a task that they cannot perform. Agent communities can
optimize their communications over the Gnutella network
if they could rapidly and more precisely determine which
of the many QUERY messages flowing through the network
are appropriate to work with. The A2A architecture does
this by explicitly categorizing conversations, and providing
a short-cut to expedite the sifting of messages.

To become part of a community with similar interests, an
agent will initiate a new “Task” to which it can pose Ques-
tions and receive Answers. Joining a Task requires that the
Agent specify a textual description of the communitity. For
example, a Task might be created to particpate in a group

like “retsina:AgentNameServer”, “retsina:matchmaker”, “auc-

tion:automobile”, “store:shoes”, or “weather”. This string
will be encoded into a numeric value that is included with
the outgoing question as the Gnutella “minimum connection
speed” value. As questions arrive at an A2A servent, each of
the agent’s Tasks can quickly examine this value to see if the
new Question’s special code matches the topic that it ser-
vices. Ifit doesn’t match, the QUERY message might be from
a normal Gnutella servent searching for “Britteny Spears”
or another agent seeking some other information. This is
a “quick-check”, and is further validated by examining the
actual query from the remote Agent.

As a question is posed to a Task object, the question’s text
will be automatically prefixed with the text that identi-
fies the Task’s actual type. For example, a query moving
across the network, might appear as: “stock:quote:IBM” or
“restina:AgentNameServer:lookup:brent”. After passing the
quick-check, described above, a receiving agent will verify
that the query actually begins with the task’s identification
string (e.g. “stock:” or “retsina:AgentNameServer:”). Once
it verifies that the incoming request was directed to this
task, the task will process and respond to the query with
an appropriate answer. Otherwise the query is ignored. To
increase privacy and further reduce the probability of false
hits being generated by non-agent servents, the questions
and answers (QUERYs and QHITSs) can have their payload

automatically encrypted and decrypted.

3.3 AZ2A Discovery

Many questions will take the form of “who can do service
X” or “where is Agent Y”. This is especially true of “Look
Up questions”. These types of questions will have responses

that are composed of host/port information so the originator
of the query can then contact that system. Since the type
of query is so common, the A2A Task object can support
Agent-specified auto-answer questions. When any of the
Questions arrive at the Agent, the underlying A2A architec-
ture will see the common Question and immediately reply
with the predefined Answer, without disturbing the Agent
to process the request. One of these Auto-Answer Questions
that is implemented when a new Task object is created is
for discovery (e.g. retsina:AgentNameServer:discover). The
answer to this question would be the hostname and port
number where this service is listening for incoming Gnutella
connections.

When a new Task begins operation, it will send one of these
discovery questions to the currently established Gnutella
P2P network. Any responses that come back are added
to the Task’s list of discovered hosts. This list is similar to
the Prime, Alt, Local, and Home category lists mentioned
previously. However, every time an Agent attempts to ask
a Question to the network, the Task object will endeavor to
ensure that a minimum number of Task-specialized connec-
tions are active before actually transmitting the question.
The Task will periodically retransmit the discovery query
in an attempt to maintain a preset number of task-specific
hosts. Over time, connectivity of an A2A agent will auto-
matically shift from the public Gnutella network, to com-
munities of similarly focused agent populations.

3.4 Scaling

A distinction between SSDP (or multicast-based discovery
protocols in general) and this Agent-to-Agent model, is that
with SSDP, systems that provide a specific service respond to
the multicast discovery messages. P2P and A2A blur the dif-
ferentiation between systems that are exclusivly client-like
or server-like in nature, and treats everyone as peers. The
systems discoverd in any P2P network might be clients or
servers of that service, or both. If required, an A2A Task can
be futher augmented with an auto-answer indicating that it
provides a specific service and clients of that type of service
can ask a question explicitly seeking servers of that spe-
cific type. Since, typically, there will be many more clients
in existence than there are services, and services may have
to limit the number of concurrent connections; discovery of
another system that is either a specific service provider, or
(more likely) connected to a provider of that service, allows
that agent to connect in a more opportunistic way. Scalable
services that operate on the Internet will need to maintain
strong connectivity to communities of clients, and not just
to massive amounts of individual clients.

The use of a form of managed broadcast, by utilizing point-
to-point fan out of messages to reach a multitude of sys-
tems, can help Agent infrastructure communications scale
to larger levels of connectivity. Rather than maintaining in-
dividual connections to many different resources, an Agent
can keep a few connections active into the P2P network fab-
ric. A2A communications riding on top of this network can
moderate the connections to increase the probability that a
system of the desired type is within the T'TL of any Agent’s
transmissions. Then, active communities of Agents working
with similar interests will congregate together to allow the
formation of robust intereconnectivity behaviors.



Discovery Sound | Complete | Adaptable Speed of Where to Use Implementations
Method Discovery
No yes yes no instantaneous static infrastructure OAA, Infosleuth
Discovery preplanned UDDI, Jinmi
Multicast yes high yes high ad-hoc local workgroup UPnP, Jini, Retsina
(LAN) probability
Peer-to-Peer yes high yes low ad-hoc global communities | Gnutella, Retsina
(LAN & WAN) probability

Table 2: The results derived from the query placed to the agent

Transmitting one request that reaches tens of thousands of
systems can increase the reach of an Agent to global pro-
portions. Tuning the selection of peers can dramatically
improve the appropriateness of message transmission. Cus-
tomizations via configuration parameters can allow limited
capability Agents to choose whether to ignore (just relay),
drop, or process specific types of Gnutella, or A2A mes-
sages. Fine-tuning parameters exist to control the initia-
tion of PING messages, and to limit message frequency and
size. “Harvesting” of information seen passing a system as it
routes messages can proactivly discover information needed
in advance of actually requiring a lookup message being sent.
The added ability to harvest ALL Questions (regardless of
there being a matching Task currently active at the Agent)
allows an Agent to monitor and fully interact with all mes-
sages flowing over the Gnutella network. This feature could
be used to monitor or categorize traffic loading, anticipate
message storms, and automatically adjust connectivity to
avoid denial of service attacks or system misuse. Private
conversation could also be created by merely restricting the
PING/PONG behavior from specific communications links
and only allowing out-bound queries and their responses to
pass.

4. QUALITATIVE EVALUATION

In this paper we have been advocating the need for a discov-
ery mechanism as part of the MAS infrastructure. Here we
make a qualitative evaluation of the various discovery mech-
anisms that we proposed in regards to: what is gained with
their use; when they are adequate; and when, instead, they
are inadequate. In the evaluation we will compare the base
condition no discovery against the two discovery mecha-
nisms described: multicast and A2A.

We will compare the three envrionments on 4 dimensions:
soundness, completeness, adaptability, and speed of discov-
ery. The summary of our analysis is displayed in table 2.

e Soundness measures whether the agent finds what it
seeks. All three methods are sound. The base condi-
tion no discovery is trivially sound because the sys-
tem administrator points the agents directly to the
service that they need; the two discovery mechanisms
only a allow the reply from infrastructure that matches
a specified type.

o Completeness measures whether the agents will find
all services that they are looking for. The base con-
dition no discovery is trivially complete in the sense
that the system administrator decides which agents
should connect with which infrastructure; so there is

no need for the agent to develop a picture of what
services are available. The two discovery mechanisms
are not complete. Multicast’s UDP packest can be
dropped or lost, and its discovery is typically limited to
LAN segements. A2A has a broader discovery range,
but does not guarantee a totally non-segemented net-
work and so some systems may be unaccounted for.

e Adaptability measures whether the agents can adapt

to changes in the infrastructure landscape. No discovery

is not adaptable because the agents have hardcoded
references to the infrastructure components, which is
the problem we were forced to address when we looked
at discovery. On the other hand, both multicast and
A2A would detect changes and be able to recover from
loss of connection from the infrastructure. (Again,
multicast discovery would be restricted to a more lo-
calized operation.)

e Speed of Discovery measures the speed at which
agents discover the infrastructure services they seek.
In the No discovery condition the information is al-
ready provided, there is no point with measuring speed.
Multicast is extremely fast and efficient; services are
hit in a few milliseconds and any delay of their discov-
ery process is due to the builtin packet-flood-prevention
mechanisms of the protocol. A24 is much slower since
requiring the message and response to be propagated
across the network by the servents.

This analysis identifies some of the tradeoffs behind the dif-
ferent configurations. No discovery is useful only when the
infrastructure is carefully pre-planned and never modified or
perturbed in any way. In such cases, the System Adminis-
trator can confidently hardcode the references to infrastruc-
ture components and decide, in advance, where the agents
are going to connect. The analysis also shows that multi-
cast is very efficient and it can perform almost as efficiently
as hardcoding, with the additional benefit of allowing auto-
matic reconfiguration of the agents. The limit of multicast
is scalability to the whole network; which is solved by the
A2A discovery that has the potential to scales to the Inter-
net. However, it suffers from increased discovery latency.
Within the RETSINA project we implemented discovery in
such a way that we use multicast as the primary discovery
mechanism, and supplement it with A2A discovery for Wide
Area implementations.

The last column of the table reports how other distributed
systems are placed with respect to discovery. OAA and In-
fosleuth did not report of any discovery mechanism in their



papers; UDDI[9] is supported by a directory service run by
IBM and it does not report of any automatic discovery of
lookup services. Jini supports discovery of lookup services
(LUS), but it does not support discovery to interconnect dis-
tributed LUS. UPnP supports multicast to locate services
within the local area network using the same SSDP proto-
col used by RETSINA; finally Gnutella based systems do
not distinguish between local and wide area networks and
support discovery only through the Gnutella PING / PONG
protocol described above.

5. FUTURE WORK
5.1 Support for Constrained Platforms

Some Agent platforms with extremly limited resources (cell
phones, embedded devices, and palm computers) might be
unable to maintain 5 concurrent open socket connections.
By allowing an outgoing connection of the P2P layer to be
a localized (low TTL) multicast connection, these small de-
vices would be capable of concurrently communicating to
multiple local systems as if each system had a separate con-
nection. Using this vehicle to connect to larger platforms,
each with multiple open connections to other Gnutella ser-
vents or A2A Agents, the resource-constrained system could
easily participate in the larger expanse of network connec-
tivity.

5.2 Wideand Local Discovery Integration
Using the multicast connectivity described above, the nor-
mal discovery operation of Gnutella PING / PONG trans-
actions, along with the higher level discovery of the A2A
layer, would remove the need for a separate local discov-
ery protocol. Tuning the multicast connection to be more
discriminating of which packets it routes to this multicast
connection could help to maintain the traffic to levels eas-
ily supported by agents and networks with lower bandwidth
capabilities.

5.3 Infrastructurelntegration
Beyond the use of basic infrastructure discovery and lookup
services, new areas of research can be examined with the

A2A enhanced converstations and interactions between Agents.

Now an advertisement to a Matchmaker could be overheard,
and waiting clients could immediately respond. Also lookups
could solicit responses from new (or hybrid) systems that
could provide augmented or enhanced services; and provide
services that the Agent might not have known to ask for.
Learning-systems that observe solutions protrayed by inter-
actions between other Agents could form their own infobase
of heuristics that have been seen to work by other systems.

6. CONCLUSIONS

There are numerous vendors and standards groups work-
ing on ad-hoc discovery recommendations, implementations,
and standards. Peer-to-peer technologies have become the
latest catch-phrase/buzzword craze to cross-over from tech-
nical publications to the popular press; and due to this
increased attention, there are (again) many vendors and
groups, including Microsoft and Sun, that are refining and
integating P2P technology into their product offerings.

We are not advocating that SSDP or Gnutella are the end-all
mechanisms to achieve the desired results described in this

paper; and it is not our role to develop the ultimate products
in these areas and to see that they are widely deployed. This
will happen with or without us. The specific technologies
chosen had features and capabilities that fit well with our
existing architecture and research goals. What we feel to
be important for our group, and all Agent Research, is that
we understand the impact that these technologies can have
on our infrastructure and how we can use them to expand
the depth of our research. Our Agent-to-Agent research
can provide valuable real-world feedback to the developers
of these new and future protocol standards. We also feel
that A2A technologies dramatically increase the ability of
Intelligent Agent Systems to dynamically interact with each
other and their “environment”; and they will produce new
operational and behavioral models for agent interaction.

7. ACKNOWLEDGMENTS

This research has been sponsored in part by the Office of
Naval Research Grant N-00014-96-16-1-1222 and by DARPA
grant F-30602-98-2-0138.

8. REFERENCES
[1] K. Decker, K. Sycara, and M. Williamson.
Middle-Agents for the Internet. In Proceedings of
1JCAI197, Nagoya, Japan, 1997.

[2] D. Martin, A. Cheyer, and D. Moran. The open
agent architecture: A framework for building
distributed software systems. Applied Artificial
Intelligence, 13(1-2):92-128, 1999.

[3] B. Perry, M. Taylor, and A. Unruh. Information
aggregation and agent interaction patterns in
infosleuth. In Proceedings of CIA99. ACM Press, 1999.

[4] SLPv2. Service Location Protocol.
http://www.ietf.org/html.charters/srvloc-
charter.html.

[5] SSDP. Simple Service Discovery Protocol.
http://upnp.org/draft-cai-ssdp-v1-03.txt.

[6] K. Sycara, M. Klusch, S. Widoff, and L. Jianguo.
Dynamic Service Matchmaking Among Agents in
Open Information Environments. ACM SIGMOD
Record, 28(1):47-53, 1999.

[7] K. Sycara, B. Langley, O. Juarez, and M. Paolucci.
An Exploration in MAS Scalability. Manuscript
submitted for publication., 2001.

[8] K. Sycara, M. Paolucci, M. van Velsen, and
J. Giampapa. The RETSINA MAS Infrastructure.
Technical Report CMU-RI-TR-01-05, The Robotics
Institute, Carnegie Mellon University, 2001.

[9] UDDI. UDDI Technical White Paper.
http://www.uddi.org/.

[10] UDP. User Datagram Protocol.
http://www .freesoft.org/CIE/RFC/1122/72.htm.

[11] UPnP. Universal Plug and Play. http://upnp.org/.

[12] H.C. Wong and K. Sycara. A taxonomy of
middle-agents for the internet. In Proceedings of

ICMAS2000, Boston, MA, July 2000.



