Middle-Agents for the Internet*

Keith Decker
Computer and Information Sciences
University of Delaware
decker@cis.udel.edu

Abstract

Like middle-men in physical commerce, middle-
agents support the flow of information in electronic
commerce, assisting in locating and connecting the
ultimate information provider with the ultimate in-
formation requester. Many different types of middle-
agents will be useful in realistic, large, distributed,
open multi-agent problem solving systems. These
include matchmakers or yellow page agents that pro-
cess advertisements, blackboard agents that collect re-
quests, and brokers that process both. The behav-
iors of each type of middle-agent have certain per-
formance characteristics—privacy, robustness, and
adaptiveness qualities—that are related to character-
istics of the external environment and of the agents
themselves. For example, while brokered systems are
more vulnerable to certain failures, they are also able
to cope more quickly with a rapidly fluctuating agent
workforce and meet certain privacy considerations.
This paper identifies a spectrum of middle-agents,
characterizes the behavior of three different types, and
reports on initial experiments that focus on evaluat-
ing performance tradeoffs between matchmaking and
brokering middle-agents, according to criteria such
as load balancing, robustness, dynamic preferences or
capabilities, and privacy.

1 Introduction

One of the basic problems facing designers of open, multi-agent
systems for the Internet is the connection problem [Davis and
Smith, 1983]—finding the other agents who might have the in-
formation or other capabilities that you need. There are two
special types of information used in this process—preferences
and capabilities. In multi-agent information systems, a prefer-
ence is (meta) knowledge about what types of information have
utility for a requester, both in form (John follows the price of
SUNW) and other characteristics (John wants only free infor-
mation; John wants stock quotes at least every 35 minutes). A

*This work was supported by ONR Grant #N-00014-96-1-1222.

Katia Sycara and Mike Williamson
The Robotics Institute
Carnegie-Mellon University
(sycara,mikew)@cs.cmu.edu

capability is (meta) knowledge about what types of requests can
be serviced by a provider (Mary can provide the current price of
any NASDAQ stock, 15 minute-delayed, for free at a rate of 10
quotes per minute). While this paper will focus on information
providing agents, providers might also accomplish other types
of tasks.

From a privacy standpoint, preference information can flow
from a requester to a provider, and capability information can
flow the other way. Agents that deal with preference or capabil-
ity information that are neither requesters nor providers (from
the standpoint of the transaction under consideration) we call
middle-agents. Different organizational solutions to the connec-
tion problem stop this flow of information at different points.
We will discuss the full scope of design possibilities presented
by our model and a full experimental implementation of two
possible designs. In one, known variously as matchmaker, yel-
low pages, or directory agent systems [Genesereth and Ketch-
pel, 1994; Finin et al., 1994; Kuokka and Harada, 1995], ca-
pabilities come to be known by all including the requesters,
but preferences are kept initially private. In the other, which
we call in general brokered systems, only the broker comes to
know both preferences and capabilities of a class of requesters
and providers. Market-based programming systems [Wellman,
1993] are a popular subclass of brokered system.

Privacy, however, is only one concern when choosing a solu-
tion to the connection problem. A designer also needs to con-
sider other characteristics, such as the efficiency with which re-
quests are handled and resources are used, the vulnerability of
the system to the failure of some component, and the ability
to quickly adapt as an open system to changing preferences and
capabilities. Our ongoing research aims to develop empirically-
validated models of the relationships between the various per-
formance characteristics and system parameters.

This paper will first present our privacy based model of the
connection problem, and briefly lay out the space of organiza-
tional solutions and their characteristics. We then briefly de-
scribe how matchmaking and brokering behaviors can be de-
fined in terms of well-understood communicative acts. By
defining these behaviors and how they interact, we are able to
better understand how our space of solutions to the connection



preferences initially known by

Capabilities initially known by

provider only | provider + middle agent | provider + middle + requester

requester only (broadcaster) “front-agent” matchmaker/yellow-pages
requester + middle agent anonymizer broker recommender
requester + middle + provider blackboard introducer/bodyguard arbitrator

Table 1: Middle-agent roles in the solution space to the connection problem, categorized by explicit initial privacy concerns.

problem constrain agent architecture and behavior design.

Finally, we will examine some empirical results on the com-
parative performance of brokered and matchmade systems.
The questions we will be examining include first the quanti-
tative end-to-end response time advantages and disadvantages
of matchmaking and brokering behavior. Second, we will
examine characteristics of these behaviors with respect to ro-
bust and adaptive open systems, where agents might enter and
exit the system at any time. Our experimental results were
achieved using an implementation of the WARREN multi-agent
financial portfolio management system [Sycara et al., 1996;
Decker et al., 1996].

2 Definitions and Model

We will examine the connection problem from the standpoint
of privacy considerations. In particular, we examine knowledge
about requester agent preferences, and provider agent capabili-
ties. A specific request is an instance of an agent’s preferences,
and a specific reply or action in service of a request is an in-
stance of an agent’s capabilities. Furthermore, an agent can
have a mental state with respect to a particular specification of
a preference or capability. An advertisement is a capability spec-
ification such that the agent creating the advertisement is com-
mitted to servicing any request that satisfies the advertisement’s
constraints. Symmetrically, a want-ad is a preference specifica-
tion by a requester who is committed to accepting any reply that
meets the constraints in the preference spec.

Preference information can initially be kept private at the
requester, be revealed to some middle agent (neither the re-
quester nor the ultimate provider), or be known by the provider
itself. The same three possibilities exist for capability info
(see Table 1). This leads to nine general middle-agent roles
in information-gathering organizations, of which this paper
has room to examine three. A blackboard is a middle-agent
that keeps track of requests. Requesters post their problems;
providers can then query the blackboard agent for events they
are capable of handling. This class includes newsgroups and
bulletin boards. A broker is a middle-agent that protects the
privacy of both the requester and provider. The broker under-
stands both the preferences and capabilities, and routes both
requests and replies appropriately. Neither the requester nor
provider ever knows directly about the other in a transaction.
A matchmaker/yellow-pages is a middle agent that stores ca-
pability advertissments that can then be queried by requesters.
The requesters then choose and contact any provider they wish

directly.

Clearly whenever a requester and provider come into direct
contact multiple times it is possible for one to learn the pref-
erences or capabilities of the other. For example, some work
describe agents that attempt to learn the preferences of peo-
ple [Maes and Kozierok, 1993]. Other work reports on agents
that learn capabilities [Kautz et al., 1996]. Hybrid organi-
zations can be used to protect both requesters and providers
from learning agents; e.g., requesters can use an anonymizer
middle-agent even if the nominal organization is blackboard-
like. An anomynizer middle-agent knows the preferences of the
requester, posting on the requester’s behalf (such systems are re-
ally used on the Internet). Such hybrids add to communication
costs and potential for failures, however. We will later discuss
another hybrid, the combination of matchmade and brokered
organizations, that avoids some of these problems and brings
together robustness and efficiency characteristics.

We will focus our attention on the 3 diagonal boxes repre-
senting minimal information travel: the blackboard organiza-
tion where preference commitments or individual requests are
posted for everyone to see, but true capabilities remain hidden; a
matchmaker organization where providers freely advertise their
capabilities but requesters remain private; and brokered orga-
nizations where preferences/requests are joined to capabilities
using either market allocation mechanisms, OS load balancing
algorithms, or managerial task assignment schemes. Because our
interest is in open systems, where all agents may come and go,
and preferences and capabilities may change dynamically, we are
limiting our discussion to middle-agent systems where the capa-
bilities of all agents are not known and hard-coded at compile
time.

2.1 Organizational Role Behaviors

Each organizational model relies on three basic roles: that of the
requester, the middle-agent, and the provider. Any one agent in
a domain system might take on multiple roles, for example an
agent that requests basic info from several providers, does some
complex integration, and then serves the integrated info to other
requesters. In this model, communicative acts are limited to re-
quests, replies, and commitments. This has two benefits: first,
the semantics of requests and commitments are well-understood
[Finin et al., 1994; Cohen and Levesque, 1995], and second,
such a model allows us to build simpler agents that can work in
an open environment with hybrid behaviors (e.g., both match-
making and brokering).



In a matchmade organization, providers advertise! their ca-
pabilities with a matchmaker?. If those capabilities change, or
the agent exits the open system, the provider unadvertises. A
matchmaker stores these advertisements in a local database. A
requester wishing to ask a query first formulates a meta-query
asking for advertisements from agents that could respond to the
query. This meta-query is asked of a matchmaker, which re-
sponds with a set of matching advertisements. The requester
can then use its full preferences to choose a provider, and make
its request directly. Furthermore, if this type of query is asked
often, then the requester can subscribe to updated advertise-
ments from a matchmaker, and keep a local cache of the cur-
rent advertisements (see Section 2.3). Blackboard organizations
are extremely similar, but with requester and provider behav-
ior reversed (e.g. requesters send want-ads to the blackboard).
In brokered organizations, requester behaviors remain the same.
In a pure brokered organization the brokers are generally known
by all the agents, just like a matchmaker is. However, for prac-
ticality in an open system hybrid brokered organizations use a
matchmaker so that providers and requesters can find the appro-
priate broker (see Section 2.5). Providers query a matchmaker
to find an appropriate broker, and then advertise with one bro-
ker. Brokers advertise summary capabilities built from all the
providers that have advertised with them; these capabilities are
advertised in turn to the matchmaker. When a request comes
in, the broker matches it with a provider and sends it on; the re-
ply is then sent back to the original requester. The methods by
which a broker assigns requests to providers can drawn from sev-
eral areas of research, including OS load balancing, managerial
task assignment, and market-based economics. Which methods
to choose will depend on several environmental factors (such as
whether the providers are self-interested or cooperative agents)
and will be a subject for future work.

2.2 Efficiency

The main performance attribute which we have measured (Sec-
tion 3) is r, the total elapsed time taken by a requester to sat-
isfy a service objective. It includes: (1) time spent planning
and scheduling by the requester, middle-agent, and provider, .S
(2)time spent communicating between agents (given that we al-
ways use a middle-agent rather than compiling in fixed agent
name, this feature of our agents, denoted C, includes four com-
munication actions); (3) time spent by the provider providing
the service T; (4) time spent waiting at a provider which is busy
fulfilling prior requests, denoted () (this is a function of the re-
quest generation period, P, and of the number of providers,
N).

)Our system can be roughly described by a queuing network
model [Lazowska et al., 1984]. According to queuing network

theory, the total elapsed time to fulfill a requestisr = D + @,
where D is total computational demand of the request (in our

LAll communications here are done via the appropriate KQML per-
formatives [Finin et al., 1994].

2 At some fixed location; there could be more than one; this can be
handled like the Internet DNS.

case, D =T + S+ C). Note that r, like @, is a function of the
request generation period and of the number of providers. If re-
quests are generated at a rate greater than the maximum system
throughput, i.e. if P < % then the system will be saturated and
r will grow without bound. Otherwise, a fundamental result of
queuing theory is that the expected elapsed time per request is:

— 1)

This result depends on the service request load being equally dis-
tributed across all providers, or else the elapsed time per request
will be greater. Since a brokered system can precisely balance the
load on providers, while a matchmaker or blackboard organiza-
tions only stochastically does so, we would expect the broker to
provide better elapsed times. Of course some decentralized load
balancing can be done even in a matchmade organization, at the
expense of extra communication.

2.3 Robustness

Decentralized organizations such as matchmade or blackboard
orgs with caching are significantly more robust than centralized
organizations such as brokered orgs. Malone [Malone, 1987]
examines the basic vulnerability of decentralized and central-
ized markets, defined as the sum of the expected costs of each
possible failure times the probability of that failure. Let p,., pp,
and p,, be the probability of failure of a requester, middle-agent,
and provider respectively; and C), be the cost of reassigning a
task upon provider failure, C,. be the cost of losing all the re-
quests at a single requester (this is a function of » and P above),
and C,,, be the cost of losing all access to a single class of ca-
pabilities. Assuming N providers, A requesters, and B brokers
each brokering a single class of capabilities, the vulnerability of
a brokered organization is

Ap,C, + BpmCp, + Np,C,

Interestingly, a matchmade system where every requester must
check the matchmaker/yellow-pages every time, does no better!
However, it is easy to have a requester cache matchmaker results
so that if a matchmaker fails, the cached information can be
used temporarily. This behavior changes the vulnerability of a
matchmade system to

Ap.Cr + Np,Cp

which agrees with Malone’s predictions for decentralized mar-
kets. Blackboard systems are similar to the matchmade systems,
but it is more unlikely for cached requests to be useful, as op-
posed to cached capabilities.

2.4 Adaptivity

The final characteristic we will discuss is the effect of dynam-
ically changing preferences and capabilities. An example of a
preference change in the WARREN domain is the need to track
a new stock, or an old stock at a new frequency. An example of



a capability change is the entry or exit of a new provider. The
ability of an organization to quickly adapt to new preferences or
capabilities is a function of the distance that the information has
to travel, and the costs of keeping that information up-to-date.
For example, in a matchmade organization, capability informa-
tion is available locally to the requesters, and so a change in pref-
erences can be acted on instantaneously. The reverse holds for
blackboard organizations and changing capabilities. In either
case, the primary costs are in keeping the local cache of public
information (capability info, in the matchmade case). Brokered
organizations again represent a useful design alternative, requir-
ing only that the broker be notified of changes, but requiring

such messages for both capability and preference changes.

Since we are interested in an open system, let us look at what
happens to the maximum service time R when providers come
and go. R will obviously change as the number of providers
N changes, but Eqn 1 only holds when the system is not sat-
urated. When the system is saturated, the queues of the re-
maining agents will begin to grow (along with R) until the lost
providers are restored. If we define the excess capacity of the
system at time ¢ as:

_N@) 1
then the maximal queue length MQL at time ¢ is:
MQL(#) = max(0, MQL(t — 1) — Ex(t)) ®3)

and we can predict the maximal response time as the max of
the steady state response time and the response time implied by
the maximal (FIFO) queue length. As usual, this only holds
for a brokered system where the load is perfectly balanced as
providers come back on line. In a matchmade system, if the
agents make no attempt at load balancing, the MQL may con-
tinue to grow even after providers come back on line, and when
it falls it will do so more slowly than in the brokered system
(Section 3).

2.5 Hybrid Organizations

Real solutions to real world problems will often require hy-
brid approaches. If capabilities and matching preferences can
be clearly partitioned (creating different connection problem
classes) then each class can use a different organization simul-
taneously. For example, how do agents find an appropriate bro-
ker? If we ignore precompiled solutions, one way is to use a
matchmaker. Providers advertise their capabilities privately to a
broker, and the broker in turn advertises a (usually) more ab-
stract capability(ies) to a matchmaker.

Another way to use hybrid MM/Broker organizations is to
take advantage of the best characteristics of each organization
alone, at the cost of reduced privacy in emergency situations.
Brokered organizations have higher efficiency because of their
centralized load-balancing, but are critically non-robust to bro-
ker failure. By switching automatically to a matchmade organi-
zation (and thus losing provider privacy) the system as a whole
becomes robust to broker failure.

Due to our careful definitions of roles earlier, such a hybrid
system requires only a small change to the behavior of provider
and broker agents: brokers must advertise their brokering as a
capability to a matchmaker, and providers must upon initial-
ization register with the matchmaker for broker-capability up-
dates. When a broker is available, the provider uses it; if not,
the provider advertises with a matchmaker until one becomes
available. A broker failure (once detected via a KQML “Sorry”
or timeout) can then transform into a matchmade organization.

3 Performance Tradeoffs

The decision to use matchmaking or brokering to solve the con-
nection problem offers many performance tradeoffs. In our re-
maining space we present two short representative experiments.

System performance is dependent upon a large number of
parameters, including the rate at which service requests are gen-
erated; the number of providers in the system; the time needed
by each provider to fulfill a request; agent failure rates, and so
on. We will consider two alternative systems. Each consists
of some number of homogeneous providers and requesters. All
agents run on serial processors, and the basic service action is
non-interruptible. In the “Matchmade” system, each provider
advertises itself to one matchmaker agent. Requesters query the
matchmaker to obtain a current list of providers, choose one
randomly, and send it a service request. In the “Brokered” sys-
tem, providers advertise themselves to a distinguished broker
agent. Requesters send all service requests directly to the bro-
ker, who farms them out to the providers—seeking to equalize
the load among them.

Our implementation of these systems consists of real, imple-
mented agents, who experience real communication and proces-
sor latencies, etc. These agents are part of the WARREN multi-
agent financial portfolio management system. [Sycara et al.,
1996; Decker et al., 1996] The broker and matchmaker are the
same agents used in the actual portfolio management system.
Providers and requesters are instances of WARREN providers
and requesters, but we have standardized on a single abstract
service to be provided (modeled after stock ticker services).

The actual service time for each request and the period be-
tween requests are generated randomly; the service time is dis-
tributed normally around the mean 7', and the request genera-
tion period is distributed exponentially around the mean P. But
because we are using real rather than simulated agents, some pa-
rameters are beyond our control, such as the inter-agent com-
munication latency, the computational needs of the broker or
matchmaker, and the amount of time spent by the providers
and requesters on planning, scheduling, and other internal op-
erations.

We make some further assumptions about the ranges of val-
ues that our system parameters will take on. First, we assume
that the service time is relatively long compared to the com-
putational overhead of the matchmaker, broker, and providers
themselves. This is consistent with actual WARREN agents,
which typically require 30 seconds or more to access Internet



200 L T T T T
Matchmade system ~o—
Brokered system +H—i
Theoretical -------

Elapsed time (sec)
=
o
1S}
T
L

Request generation period (sec)

Figure 1: Mean time for 100 service requests as a function of
request generation period

resources. Second, we assume that the number of providers is
relatively small (we have experimented with systems of up to 20
providers), which is again consistent with the operational WAR-
REN system.

3.1 Experiment One: Response Time

In our first experiment, we validate the theoretical model of
Eqg. 1, and empirically compare the brokered and matchmade
systems. For a fixed service time 7" and number of providers
N, we vary the request generation period P. For each period,
we generate 100 requests, and measure the mean and standard
deviation of their elapsed times. Figure 1 shows the results as
the request generation period varies between 5 and 15 seconds,
for systems with 3 providers and a service time of 15 seconds.

Note that despite the crudeness of Eq. 1, it gives a good in-
dication of the expected response time, especially for larger re-
quest generation periods®. It is clear that the load balancing of
the brokered system confers a response time advantage over the
matchmade system.

3.2 Experiment Two: Provider Failure and Recovery

In our second experiment, we investigate the effect of provider
failure and recovery on our two systems. We begin with three
providers, and fix the service time and request generation pe-
riod at 15 and 10 seconds, respectively. After five minutes, we
kill one of the providers, and after five more minutes, we kill a
second one. Five minutes after that, we bring one of the servers
back on line, and then ten minutes later the third one returns.
When a provider dies, it sends a SORRY message for each out-
standing request. Each of these requests must be reallocated (by
either the broker or the original requester) to another provider.

3For shorter periods, when the system is more highly loaded—or
even saturated—our measured values fall below the predictions because
we are performing only 100 queries. The earlier requests experience less
queuing time, and so skew the results downwards.

Figure 2 shows the results of this experiment. Each point
represents the completion of a service request. The response-
time superiority of the brokered system stems from the differ-
ence in behavior of the two systems when the failed providers
come back online. When there is only one provider left operat-
ing, the system is saturated, so that provider begins to build up a
large backlog of requests. When the second and third providers
become available again, the requesters in the matchmade sys-
tem continue to allocate one-half or one-third of their requests
to the overloaded provider, so the backlog persists for a long
time.* In the brokered system, on the other hand, all new re-
quests are allocated to the new provider, allowing the backlog at
the congested provider to quickly dissipate.

600
Request fulfillment <«
f o> Number of servers
> o 8 < ¢ Predicted
500 8 /& LS s
g o >
<4 ¢ ® <@
%g s R Q$ % 2%
> 3 3
200 . o245 6‘0 >
B ® 270 %
o 4 A 4
g ° ° 9
£ 300 ¢ = > 3z
5
H 3l e ? o S
s 3 s i o: ® Py 5
200 4 s ¢ > 2%
s & 4 o
§ 6 Q0 s 8 3
9 A £ g
@
100 ] 2 1
R R ¢ b
’ » R e Aal
9 N
. Lp NI 4s R s s I s S0 DS
0 500 1000 1500 2000 2500 3000
Time (sec)
(@) In a matchmade system
600
Request fulfillment <
Number of servers ——
Predicted
500
__ 400
o
&
o
= 300 4
= 3
3 % g
g 0%l E
& ¢ %o 2
200 s 58
8& o )
i %
) > ]
@
100 &L BB 1
¥ R4
» e W, |
o 1B o MW‘*
0 500 1000 1500 2000 2500 3000

Time (sec)

(b) In a brokered system

Figure 2: Predicted and actual effect of provider failure and re-
covery

Figure 2 also shows the predicted response time (for the max-
imally loaded provider) in the brokered organization as derived
from Eqgs. 1, 2, and 3 in Section 2.4. Regression analysis shows
that the predicted response matches the actual response of the
maximally loaded provider with R = 0.77 (77% of the vari-

ance explained).
Of course this prediction does not hold for the matchmade

“This effect could be reduced if requesters make an effort at active
load balancing.



system. Rewriting Eqg. 2 for matchmade organizations as a re-
currence equation Ex s (t) =:

Exa(t — 1) N(t) = N(t —1)
2L - o5 N(t) < N(t —1)
Exu(t—1)+ % (58 — 1) N > N(E—1)

This is the same as before except when adding new agents after
being saturated, in which case the maximal queue length is re-
duced by an amount proportional to the optimum experienced
by the brokered system. Using this excess capacity equation re-
sults in an regression 122 value of 83% with respect to the mea-
sured experimental data.

4 Conclusions

This paper examined solutions to the agent connection prob-
lem using third-party “middle-agents.” Using privacy as an or-
ganizing paradigm, we outlined 9 alternative types of middle-
agents that result in corresponding organizational classes. We
examined analytically the efficiency, robustness, and adaptive-
ness characteristics of three common alternatives. Finally, we
validated two of our models using experimental implementa-
tions for matchmade and brokered organizations in a real multi-
agent system, concentrating on the speed at which the alterna-
tives adapt to provider failures and reappearances.

Although we did not have space to discuss all 9 alternatives,
we hope to stimulate discussion about, and work on, these al-
ternate approaches, each applicable to different situations. Al-
though the concepts of matchmaking, recommending, and bro-
kering have been described in general elsewhere, only Kuokka
has provided any detailed experiences with matchmaking. This
paper outlines a much larger playing-field for middle-agents,
and includes implementation experiences with both matchmade
and brokered systems. This is the first work to analyze some of
the detailed characteristics of these organizations, drawing on
queuing theory and Malone’s modeling work with human orga-
nizations.

Matchmaker organizations can become elegant decentralized
markets with the proper caching mechanisms. They offer pref-
erence privacy to requesters, and each requester keeps total con-
trol over its own control decisions (so adapting to changing pref-
erences is immediate). Each agent needs to be smart enough
to construct a meta-query and evaluate the resulting alterna-
tive provider choices. With local caching, matchmade organi-
zations are highly resistant to total failure, but rather degrade
gracefully. No simple optimal load balancing is possible; we de-
scribed an analytical model that predicts system response times
without load balancing. Using a matchmaker has slightly higher
overhead due to the extra queries.

Brokered organizations include centralized economic markets
or traditional bureaucratic managerial units. They can also han-
dle the dynamic entry and exit of agents, and provide an easy
way to do load balancing. They can protect the privacy of both
requester preferences and provider capabilities. However, they

suffer from the need of agents to have static knowledge of the
brokers (in a pure, non-hybrid system). In addition, a broker is
a communication bottleneck (since all requests and replies need
to go through the brokers). Worst of all, they form a single
point of failure that cannot be mitigated via local caching.

The solution that we are currently working on is a hybrid
system with both matchmakers and brokers. By design, our
specified agent behaviors work interchangeably with both orga-
nizational roles. A hybrid system allows us to capitalize on the
lower overhead and efficient load balancing of a brokered system
while retaining the dynamic naming capabilities and greater ro-
bustness of a matchmaker system. By trading off privacy in an
emergency, a hybrid system can continue to function even in
the face of broker failure.

References

[Cohen and Levesque, 1995] PR. Cohen and H.J. Levesque.
Communicative actions for artificial agents. In Proc. ICMAS-
95, pages 65-72. AAAI Press, June 1995.

[Davis and Smith, 1983] R. Davis and R. G. Smith. Negotia-
tion as a metaphor for distributed problem solving. Artificial
Intelligence, 20(1):63-109, January 1983.

[Decker et al., 1996] K. Decker, A. Pannu, K. Sycara, and
M. Williamson. Designing behaviors for information agents.
In Proc. Autonomous Agents 97, pages 404-413. ACM Press,
February 1997.

[Fininetal., 1994] T. Finin, R. Fritzson, D. McKay, and
R. McEntire. KQML as an agent communication language.
In Proc. CIKM-94. ACM Press, November 1994.

[Genesereth and Ketchpel, 1994] M.R. Genesereth and S.P.
Ketchpel. Software agents. CACM, 37(7):48-53,147,1994.

[Kautzetal., 1996] Henry Kautz, Bart Selman, and
Al Milewski.  Agent amplified communication. In
Proc. AAAI-96, pages 3-9, August 1996.

[Kuokka and Harada, 1995] D. Kuokka and L. Harada. On
using KQML for matchmaking. In Proc. ICMAS-95, pages
239-245. AAAI Press, June 1995.

[Lazowska et al., 1984] E.D. Lazowska, J. Zahorjan, G.S. Gra-
ham, and K.C. Sevcik. Quantitative System Performance.
Prentice Hall, 1984.

[Maes and Kozierok, 1993] P. Maes and R. Kozierok. Learning
interface agents. Proc. AAAI-93, pages 459-465, July 1993.

[Malone, 1987] Thomas W. Malone. Modeling coordina-
tion in organizations and markets. Management Science,
33:1317-1332,1987.

[Sycaraetal., 1996] K. Sycara, K. Decker, A. Pannu,
M. Williamson, and D. Zeng. Distributed intelligent
agents. IEEE Expert, 11(6):36—46, December 1996.

[Wellman, 1993] Michael Wellman. A market-oriented pro-

gramming environment and its application to distributed
multicommodity flow problems. JAIR, 1:1-23, 1993.



