Distributed Intelligent Agents

Katia Sycara Keith Decker Anandeep Pannu
Mike Williamson
Dajun Zeng
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.
Voice: (412) 268-8825 Fax: (412) 268-5569
URL: http://www.cs.cnu.edu/“softagents/

Abstract

We are investigating techniques for developing distributed and
adaptive collections of agents that coordinate to retrieve, filter and
fuse information relevant to the user, task and situation, as well as
anticipate a user’s information needs. In our system of agents, in-
formation gathering is seamlessly integrated with decision support.
The task for which particular information is requested of the agents
does not remain in the user’s head but it is explicitly represented and
supported through agent collaboration. In this paper we present the
distributed system architecture, agent collaboration interactions, and
a reusable set of software components for constructing agents. We
call this reusable multi-agent computational infrastructure RETSINA
(Reusable Task Structure-based Intelligent Network Agents). It has
three types of agents. Interface agents interact with the user receiving
user specifications and delivering results. They acquire, model, and
utilize user preferences to guide system coordination in support of
the user’s tasks. Task agents help users perform tasks by formulating
problem solving plans and carrying out these plans through querying
and exchanging information with other software agents. Information
agents provide intelligent access to a heterogeneous collection of infor-
mation sources. We have implemented this system framework and are

developing collaborating agents in diverse complex real world tasks,
such as organizational decision making (the PLEIADES system), and
financial portfolio management (the WARREN system).

1 Introduction

Effective use of the Internet by humans or decision support machine sys-
tems has been hampered by some dominant characteristics of the Infosphere.
First, information available from the net is unorganized, multi-modal, and
distributed on server sites all over the world. Second, the number and va-
riety of data sources and services is dramatically increasing every day. Fur-
thermore, the availability, type and reliability of information services are
constantly changing. Third, information is ambiguous and possibly erro-
neous due to the dynamic nature of the information sources and potential
information updating and maintenance problems. Therefore, information is
becoming increasingly difficult for a person or machine system to collect, fil-
ter, evaluate, and use in problem solving. As a result, the problem of locating
information sources, accessing, filtering, and integrating information in sup-
port of decision making, as well as coordinating information retrieval and
problem solving efforts of information sources and decision-making systems
has become a very critical task.

The notion of Intelligent Software Agents (e.g., [1, 19, 20, 25, 13, 22])
has been proposed to address this challenge. Although a precise definition
of an intelligent agent is still forthcoming, the current working notion is that
Intelligent Software Agents are programs that act on behalf of their human
users in order to perform laborious information gathering tasks, such as lo-
cating and accessing information from various on-line information sources,
resolving inconsistencies in the retrieved information, filtering away irrele-
vant or unwanted information, integrating information from heterogeneous
information sources and adapting over time to their human users’ informa-
tion needs and the shape of the Infosphere. Most current agent-oriented
approaches have focussed on what we call interface agents—a single agent
with simple knowledge and problem solving capabilities whose main task is
information filtering to alleviate the user’s cognitive overload (e.g., [15, 16]).
Another type of agent is the Softbot ([6]), a single agent with general knowl-
edge that performs a wide range of user-delegated information-finding tasks.

We believe that such centralized approaches have several limitations. A sin-
gle general agent would need an enormous amount of knowledge to be able to
deal effectively with user information requests that cover a variety of tasks.
In addition, a centralized system constitutes a processing bottleneck and a
“single point of failure”. Finally, because of the complexity of the infor-
mation finding and filtering task, and the large amount of information, the
required processing would overwhelm a single agent.

Another proposed solution is to address the problem by using multi-agent
systems to access, filter, evaluate, and integrate this information [23, 17].
Such multi-agent systems can compartmentalize specialized task knowledge,
organize themselves to avoid processing bottlenecks, and can be built ex-
pressly to deal with dynamic changes in the agent and information-source
landscape. In addition, multiple intelligent coordinating agents are ideally
suited to the predominant characteristics of the Infosphere, such as the het-
erogeneity of the information sources, the diversity of information gathering
and problem solving tasks that the gathered information supports, and the
presence of multiple users with related information needs. We therefore be-
lieve that a distributed approach is superior, and possibly the only one that
would work for information gathering and coherent information fusion.

The context of multi-agent systems widens the notion of intelligent agent
in at least two general ways. First, an agent’s “user” that imparts goals to
it and delegates tasks might be not only a human but also another agent.
Second, an agent must have been designed with explicit mechanisms for com-
municating and interacting with other agents. Our notion is that such multi
agent systems may comprise interface agents tied closely to an individual
human’s goals, task agents involved in the processes associated with arbi-
trary problem-solving tasks, and information agents that are closely tied to
a source or sources of data. An information agent is different from an inter-
face agent in that an information agent is tied more closely to the data that
it is providing, while an interface agent closely interacts with the user. Typ-
ically, a single information agent will serve the information needs of many
other agents (humans or intelligent software agents). An information agent
is also quite different from a typical World Wide Web (WWW) service that
provides data to multiple users. Besides the obvious interface differences, an
information agent can reason about the way it will handle external requests
and the order in which it will carry them out (WWW services are typically
blindly concurrent). Moreover, information agents not only perform infor-

mation gathering in response to queries but also can carry out long-term
interactions that involve monitoring the Infosphere for particular conditions,
as well as information updating.

In this paper, we report on our work on developing distributed collec-
tions of intelligent software agents that cooperate asynchronously to perform
goal-directed information retrieval and information integration in support of
performing a variety of decision making tasks [23, 2]. We have been devel-
oping RETSINA, an open society of reusable agents that self organize and
cooperate in response to task requirements. In particular, we will focus on
three crucial characteristics of the overall framework that differentiate our
work from others:

e ours is a multi-agent system where the agents operate asynchronously
and collaborate with each other and their users,

o the agents actively seek out information,

o the information gathering is seamlessly integrated with problem solving
and decision support

We will present the overall architectural framework, our agent design
commitments, and agent architecture to enable the above characteristics.
We will draw examples from our work on Intelligent Agents in the domains
of organizational decision making (the PLEIADES system), and financial
portfolio management (the WARREN system).

The rest of the paper is organized as follows. Section 2 briefly lists some
agent characteristics we consider desirable. Section 3 motivates the dis-
tributed architecture for intelligent information retrieval and problem solv-
ing, and presents an overview of the system architecture, the different types
of agents in the proposed multi agent organization, and agent coordination
mechanisms. Section 4 presents in detail the reusable agent architecture and
discusses planning, control, and execution monitoring in agent operations.
Description and examples from the application of RETSINA to everyday or-
ganizational decision making and financial portfolio management are given
in Section 5. Section 6 presents concluding remarks.

2 Desirable Agent Characteristics

Many different definitions of intelligent agents have been proposed. In this
section, we give a brief list of what we see as essential characteristics of
intelligent agents.

o taskable. By "taskable” we mean agents that can take direction from
humans or other agents.

o network-centric: by this we mean that agents should be distributed and
self organizing. When situations warrant it, agent mobility may also

be desirable.

o semi-autonomous rather than under direct human control all the time.
For example, in an information gathering task, because of the large
amount of potential requests for information, humans would be swamped,
if they had to initiate every single information request. The amount of
agent autonomy should be user controllable.

o persistent, i.e. capable of long periods of unattended operation.

o trustworthy: An agent should serve users’ needs in a reliable way so
that users will develop trust in its performance.

o anticipatory: An agent should anticipate user information needs through
task, role and situational models as well as learning to serve as an in-
telligent cache, acquiring and holding information likely to be needed.

e active: An agent should initiate problem solving activities (e.g. mon-
itor the infosphere for the occurrence of given patterns), anticipate
user information needs and bring to the attention of users situation-
appropriate information, deciding when to fuse information or present
“raw” information.

o collaborative with humans and with other machine agents. Collabora-
tive agent interactions allow them to increase their local knowledge,
resolve conflicts and inconsistencies in information, current task and
world models, thus improving their decision support capabilities.

o able to deal with heterogeneity of other agents and information re-
sources.

o adaptive to changing user needs, and task environment.

3 Distributed Intelligent Agents in Informa-
tion Processing and Problem Solving

In this section, we motivate and describe the distributed agent framework for
intelligent information retrieval and problem solving, and then present the
agent coordination mechanisms. The issues of how to engineer these agents
are the topics of Section 4. RETSINA has been motivated by the following
considerations:

o Distributed information sources: Information sources available on-line
are inherently distributed. Furthermore, these sources typically are
of different modalities. Therefore it is natural to adopt a distributed
architecture consisting of many software agents specialized for different
heterogeneous information sources.

o Sharability: Typically, user applications need to access several services
or resources in an asynchronous manner in support of a variety of tasks.
It would be wasteful to replicate agent information gathering or prob-
lem solving capabilities for each user and each application. It is desir-
able that the architecture support sharability of agent capabilities and
retrieved information.

o Complexity hiding: Often information retrieval in support of a task
involves quite complex coordination of many different agents. To avoid
overloading the user with a confusing array of different agents and
agent interfaces, it is necessary to develop an architecture that hides
the underlying distributed information gathering and problem solving
complexity from the user.

o Modularity and Reuseability: Although software agents will be operat-
ing on behalf of their individual patrons—human users, or other agents,
pieces of agent code for a particular task can be copied from one agent

to another and can be customized for new users to take into consid-
eration particular users’ preferences or idiosyncrasies. One of the ba-
sic ideas behind the distributed agent-based approach is that software
agents will be kept simple for ease of maintenance, initialization and
customization. Another facet of reuseability is that pre-existing infor-
mation services, whose implementation, query language and communi-
cation channels are beyond the control of user applications, could be
easily incorporated in problem-solving.

Flexibility: Software agents can interact in new configurations “on-

demand”, depending on the information requirements of a particular
decision making task.

Robustness: When information and control is distributed, the system
is able to degrade gracefully even when some of the agents are out of
service temporarily. This feature of the system has significant practical
implications because of the dynamic and unstable nature of on-line
information services.

Quality of Information: The existence of (usually partial) overlapping
of available information items from multiple information sources of-
fers the opportunity to ensure (and probably enhance) the correctness
of data through cross-validation. Software agents providing the same
piece of information can interact and negotiate to find the most accu-
rate data.

Legacy Data: Many information sources exist prior to the emergence
of the Internet-based agent technology. New functionalities and access
methods are necessary for them to become full-fledged members of the
new information era. Directly updating these systems, however, is a
nontrivial task. A preferable way of updating is to construct agent
wrappers around existing systems. These agent wrappers interface to
the information sources and information consumers and provide a uni-
form way of accessing the data as well as offer additional functionalities
such as monitoring for changes. This agent wrapper approach offers
much flexibility and extensibility. Practically speaking, it is also easier
to implement since the internal data structure and updating mechanism
of the legacy information systems don’t need to be modified.

The above considerations clearly motivate the development of systems of
distributed software agents for information gathering and decision support
in the Internet-based information environment. The critical question then
is how to structure and organize these multiple software agents. Our major
research goal is to construct reusable software components in such a way
that building software agents for new tasks and applications and organizing
them can be relatively easy. It seems difficult to engineer a general agent
paradigm which can cover in an efficient manner a broad range of differ-
ent tasks including interaction with the user, acquisition of user preferences,
information retrieval, and task-specific decision making. For example, in
building an agent that is primarily concerned with interacting with a human
user, we need to emphasize acquisition, modeling and utilization of user in-
formation needs and preferences. On the other hand, in developing an agent
that interacts with information sources, issues of acquiring user preferences
are de-emphasized and, instead, issues of information source availability, effi-
ciency of data access, data quality and information source reliability become
critical. Therefore, reusable software components must efficiently address
the critical issues associated with each of these three agent categories.

3.1 Agent Types

In the RETSINA framework, each user is associated with a set of agents
which collaborate to support him /her in various tasks and act on the user’s
behalf. The agents are distributed and run across different machines. The
agents have access to models of the user and of other agents as well as the
task and information gathering needs associated with different steps of the
task. Based on this knowledge, the agents decide how to decompose and
delegate tasks, what information is needed at each decision point, and when
to initiate collaborative searches with other agents to get, fuse and evaluate
the information. In this way, the information gathering activities of the
agents are automatically activated by models of the task and processing needs
of the agents rather than wholly initiated by the user. The user can leave
some of the information gathering decisions to the discretion of the agents.
This saves user time and cognitive load and increases user productivity. The
degree of agent autonomy is user-controlled. As a user gains more confidence
in the agents’ capabilities, more latitude over decisions is given over to them.
During search, the agents communicate with each other to request or provide

information, find information sources, filter or integrate information, and
negotiate to resolve conflicts in information and task models. The returned
information is communicated to display agents for appropriate display to the
user.

RETSINA has three types of agents (see Figure 1): interface agents,
task agents and information agents. Interface agents interact with the user
receiving user specifications and delivering results. They acquire, model and
utilize user preferences to guide system coordination in support of the user’s
tasks. For example, an agent that filters electronic mail according to its
user’s preferences is an interface agent. The main functions of an interface
agent include: (1) collecting relevant information from the user to initiate a
task, (2) presenting relevant information including results and explanations,
(3) asking the user for additional information during problem solving, and
(4) asking for user confirmation, when necessary. From the user’s viewpoint,
having the user interact only through a relevant interface agent for a task
hides the underlying distributed information gathering and problem solving
complexity and frees the user from having to know of, access and interact
with a potentially large number of task agents and information seeking agents
in support of a task. For example, the task of hosting a visitor in a university
(see Section 5.1), one of the tasks supported by our intelligent agents, involves
more than 10 agents. However, the user interacts directly only with the
visitor hoster interface agent.

Task agents support decision making by formulating problem solving
plans and carrying out these plans through querying and exchanging in-
formation with other software agents. Task agents have knowledge of the
task domain, and which other task assistants or information assistants are
relevant to performing various parts of the task. In addition, task assistants
have strategies for resolving conflicts and fusing information retrieved by in-
formation agents. A task agent performs most of the autonomous problem
solving. It exhibits a higher level of sophistication and complexity than ei-
ther an interface or an information agent. A task agent (1) receives user
delegated task specifications from an interface agent, (2) interprets the spec-
ifications and extracts problem solving goals, (3) forms plans to satisfy these
goals, (4) identifies information seeking subgoals that are present in its plans,
(5) decomposes the plans and coordinates with appropriate task agents or
information agents for plan execution, monitoring and results composition.
An example of a task agent from the financial portfolio management domain

is one that makes recommendations to buy or sell stocks.

Information agents provide intelligent access to a heterogeneous collection
of information sources depicted at the bottom of Figure 1. Information agents
have models of the associated information resources, and strategies for source
selection, information access, conflict resolution and information fusion. For
example, an agent that monitors stock prices of the New York Stock Exchange
is an information agent. An information agent’s activities are initiated either
top down, by a user or a task agent through queries, or bottom up through
monitoring information sources for the occurrence of particular information
patterns (e.g., a particular stock price has exceeded a predefined threshold).
Once the monitored-for condition has been observed, the information agent
sends notification messages to agents that have registered interest in the
occurrence of particular information patterns (See Section 5.2). For example,
in the financial domain, a human or machine agent may be interested in being
notified every time a given stock price has risen by 10%. Thus, information
agents are active, in the sense that they actively monitor information sources
and proactively deliver the information, rather than just waiting for and
servicing one-shot information queries.

An information agent may receive in messages from other agents three
important types of goals: (1) Answering a one-shot query about associated
information sources, (2) Answering periodic queries that will be run repeat-
edly, and the results sent to the requester each time (e.g., “tell me the price
of IBM every 30 minutes”), and (3) Monitoring an information source for
a change in a piece of information (e.g., “tell me if the price of IBM drops
below $80 within 15 minutes of the occurrence of that event”).

A useful capability that can be added to all types of agents is learning.
The agents can retain useful information from their interactions as training
examples and utilize various machine learning techniques to adapt to new
situations and improve their performance [18, 26, 16].

3.2 Agent Organization and Coordination

In RETSINA, agents are distributed across different machines and are di-
rectly activated based on the top-down elaboration of the current situation
(as opposed to indirect activation via manager or matchmaker agents [12],

10

USER 1 USER 2 USER h

Goal's 'and_ Task ‘ Results ‘
Specifications

Interface Agent 1 I nterface Agent 2 Interface Agent k
i/ Task
Task Proposed Solution
TaskAgent 1] Conflict
Resolution

Information Integratibn

InfoAgent 2

Information
Request
Reply

Collaborative

InfoAgent
Query Processing

quer T answer

nfoAgent)

(

Figure 1: The RETSINA Distributed Agent Organization

11

or self-directed activation)'. These agent activations dynamically form an
organizational structure “on-demand” that fits in with the task, the user’s
information needs and resulting decomposed information requests from re-
lated software agents. This task-based organization may change over time,
but will also remain relatively static for extended periods. Notice that the
agent organization will not change as a result of appearance or disappear-
ance of information sources but the agent interactions could be affected by
appearance (or disappearance) of agents that are capable of fulfilling task
subgoals in new ways. Information that is important for decision-making
(and thus might cause an eventual change in organizational structuring) is
monitored at the lowest levels of the organization and passed upward when
necessary. In this type of organization, task-specific agents continually inter-
leave planning, scheduling, coordination, and the execution of domain-level
problem-solving actions.
This system organization has the following characteristics:

e There is a finite number of task agents that each agent communicates
with.

o The task agents are eventually responsible for resolving information
conflicts and integrating information from heterogeneous information
sources for their respective tasks.

o The task agents are responsible for activating relevant information
agents and coordinating the information finding and filtering activity
for their task.

In our organization, the majority of interactions of interface agents are
with the human user, the most frequent interactions of information agents
are with information sources, whereas task agents spend most of their pro-
cessing interacting with other task agents and information agents. We briefly
describe the distributed coordination processes. When a task-specific agent
receives a task from an interface agent or from another task-specific agent,
it decomposes the task based on the domain knowledge it has and then del-
egates the subtasks to other task-specific agents or directly to information-
specific agents. The task-specific agent will take responsibility for collecting
data, resolving conflicts, coordinating among the related agents and reporting

!Matchmaking is, however used for locating agents.

12

to whoever initiated the task. The agents who are responsible for assigned
sub-tasks will either decompose these sub-tasks further, or perform data re-
trieval (or possibly other domain-specific local problem solving activities).

When information sources are partially replicated with varying degrees
of reliability, cost and processing time, information agents must optimize
information source selection. If the chosen information sources fail to provide
a useful answer, the information agent should seek and try other sources to
re-do the data query. Because of these complexities, we view information
retrieval as a planning task itself[11]. The plans that task-specific agents
have (see 4) include information gathering goals, which, in turn are satisfied
through relevant plans for information retrieval. This type of intelligent
agent differs from traditional Al systems since information-seeking during
problem solving is an inherent part of the system. In effect, the planning and
execution stages are interleaved since the retrieved information may change
the planner’s view of the outside world or alter the planner’s inner belief
system.

Information is filtered and fused incrementally by information or task
agents as the goals and plans of the various tasks and subtasks dictate, be-
fore it is passed on to other agents. This incremental information fusion
and conflict resolution increases efficiency and potential scalability (e.g., in-
consistencies detected at the information-assistant level may be resolved at
that level and not propagated to the task agent level) and robustness (e.g.,
whatever inconsistencies were not detected during information assistant in-
teraction can be detected at the task-assistant level). A task agent can be
said to be proactive in the sense that it actively generates information seeking
goals and in turn activates other relevant agents.

Obviously, one of the major issues involved in multi-agent systems is the
problem of interoperability and communication between the agents. In our
framework, we use the KQML language [7] for inter-agent communication.
In order to incorporate and utilize pre-existing software agents or informa-
tion services that have been developed by others, we adopt the following
strategy: If the agent is under our control, it will be built using KQML as a
communication language. If not, we build a gateway agent that connects the
legacy system to our agent organization and handles different communication
channels, different data and query formats, etc.

In open world environments, agents in the system are not statically pre-
defined but can dynamically enter and exit an organization. This necessi-

13

tates mechanisms for agent locating. This is a challenging task, especially in
environments that include large numbers of agents, and where information
sources, communication links and/or agents may be appearing and disap-
pearing. We have made initial progress in implementing matchmaker agents
[12, 3] that act as yellow pages[9]. When an agent is instantiated, it ad-
vertises its capabilities to a matchmaker. An agent that is looking to find
another that possesses a particular capability (e.g. can supply particular
information, or achieve a problem solving goal) can query a matchmaker.
The matchmaker returns appropriate lists of agents that match the query
description, or "null” if it does not currently know of any agent that has this
capability. Architecturally, matchmakers are information agents. A match-
maker is an information agent who can find other agents rather than finding
pieces of information. One nice property that falls out of this matchmaker
design is that, if currently a matchmaker does not know of any agent that
can provide a particular requested service, the requesting agent can place a
monitoring request that directs the matchmaker to keep looking for an agent
whose advertised capability matches the service specification of the request-
ing agent (the customer). When the matchmaker finds such an appropriate
agent, it notifies the customer.

Matchmaking is advantageous since it allows a system to operate robustly
in the face of agent appearance and disappearance, and intermittent com-
munications (the customer can go back to the matchmaker, looking for a
new supplier agent). Matchmaking is significant in another respect: it lays
the foundation for evolutionary system design where agents with enhanced
capabilities can be gracefully integrated into the system.

4 Agent Engineering: How To Structure An
Agent?

In order to operate in rich, dynamic, multi-agent environments, software
agents must be able to effectively utilize and coordinate their limited com-
putational resources. As our point of departure in structuring an agent, we
use the Task Control Architecture [21] and TAEMS[4], which we extend and
specialize for real-time user interaction, information gathering, and decision
support.

14

Domain-Independent Control Constructs

|

Scheduling Communication
\ / & Coordination

Task
Tree

Execution

T Planning
Monitoring

Y

-

Agent
Knowledge

Domain-Independent
Plan Fragments

|

Domain-Specific
Plan Fragments

|

<>[Beliefs, Facts Base]

\

Figure 2: The Agent Architecture: A Functional View

15

The planning module takes as input a set of goals and produces a plan
that satisfies the goals. The agent planning process is based on a hierarchical
task network (HTN) planning formalism. It takes as input the agent’s current
set of goals, the current set of task structures, and a library of task reduction
schemas. A task reduction schema presents a way of carrying out a task
by specifying a set of sub-tasks/actions and describing the information-flow
relationships between them. That is, the reduction may specify that the
result of one sub-task (e.g. deciding the name of an agent) be provided as
an input to another sub-task (e.g. sending a message). Actions may require
that certain information be provided before they can be executed, and may
also produce information upon execution. For example, the act of sending a
KQML messages requires the name of the recipient and the content of the
message, while the act of deciding to whom to send some message would
produce the name of an agent. An action is enabled when all the required
inputs have been provided. (See [24] for a complete description of our task
network representation.)

The communication and coordination module accepts and interprets mes-
sages from other agents in KQML. In addition, interface agents also accept
and interpret e-mail messages. We have found that e-mail is a convenient
medium of communicating with the user and/or other interface agents, for
example agents that provide event notification services. Messages can contain
request for services. These requests become goals of the recipient agent.

The scheduling module schedules each of the plan steps. The agent
scheduling process in general takes as input the agent’s current set of plan
instances, in particular, the set of all executable actions, and decides which
action, if any, is to be executed next. This action is then identified as a
fixed intention until it is actually carried out (by the execution component).
Whereas for task agents, scheduling can be very sophisticated, in our current
implementation of information agents, we use a simple earliest-deadline-first
schedule execution heuristic.

To operate in the uncertain, dynamic Infosphere, software agents must
be reactive to change for robustness and efficiency considerations. Agent
reactivity considerations are handled by the execution monitoring process.
Execution monitoring takes as input the agent’s next intended action and
prepares, monitors, and completes its execution. The execution monitor
prepares an action for execution by setting up a context (including the results
of previous actions, etc.) for the action. It monitors the action by optionally

16

providing the associated computation limited resources—for example, the
action may be allowed only a certain amount of time and if the action does
not complete before that time is up, the computation is interrupted and the
action is marked as having failed.

When an action is marked as failed, the exception handling process takes
over to replan from the current execution point to help the agent recover
from the failure. For instance, when a certain external information source is
out of service temporarily, the agent who needs data from this information
source shouldn’t just wait passively until the service is back. Instead, the
agent might want to try another information source or switch its attention
to other tasks for a certain period of time before returning to the original
task.

The agent has a domain-independent library of plan fragments (task struc-
tures) that are indexed by goals, as well as domain-specific library of plan
fragments from which plan fragments can be retrieved and incrementally in-
stantiated according to the current input parameters. The retrieved and
instantiated plan fragments are used to form the agent’s instantiated task
tree that is incrementally executed.

The belief and facts data structures contain facts and other knowledge
related to the agent’s functionality. For example, the belief structures of
an interface agent contain the user profile, and the belief structures of an
information agent contain a local data base that holds relevant records of
external information sources the agent is monitoring. Since an information
agent does not have control of information sources on the Internet, it must
retrieve and store locally any information that it must monitor. For example,
suppose an information agent that provides the New York Stock FExchange
data is monitoring the Security APL Quote Server web page to satisfy another
agent’s monitoring request, for example, “notify me when the price of IBM
exceeds $80”7. The information agent must periodically retrieve the price of
IBM from the Security APL web page, bring it to its local data base and
perform the appropriate comparison. For information agents, the local data
base is a major part of their reusable architecture. It is this local database
that allows all information agents to present a consistent interface to other
agents, and re-use behaviors, even in very different information environments
[2].

An agent architecture may also contain components that are not reusable.
For example, the architecture of information agents contains a small amount

17

of site-specific external query interface code. The external query interface is
responsible for actually retrieving data from some external source or sources.
The external query interface is usually small and simple, thus minimizing the
amount of site-specific code that must be written every time a new informa-
tion agent is built.

Since task structure management, planning, action scheduling, execution
monitoring, and exception handling are handled by the agent in a domain-
independent way, all these control constructs are reusable. Therefore the
development of a new agent is simplified and involves the following steps:

e Build the domain-specific plan library
e Develop the domain-specific knowledge-base

o Instantiate the reusable agent control architecture using the domain-
specific plan library and knowledge-base

5 Application Domains

We have implemented distributed cooperating intelligent agents using the
concepts, architecture, and reusable components of the RETSINA multi-
agent infrastructure for everyday organizational decision making and for fi-
nancial portfolio management.

5.1 Everyday Organizational Decision Making

In performing everyday routine tasks, people spend much time in finding,
filtering, and processing information. Delegating some of the information
processing to Intelligent Agents could increase human productivity and re-
duce cognitive load. To this end, recent research has produced agents for
e-mail filtering, [15], calendar management [5], and filtering news [13]. These
tasks involve a single user interacting with a single software agent. There
are tasks, however, which have more complex information requirements and
possible interaction among many users. A distributed, multi-agent collection
of Intelligent Agents is then appropriate and necessary. Within the con-
text of our PLEIADES project, we have applied the distributed RETSINA

framework to multi user tasks of increased complexity, such as

18

o distributed, collaborative meeting scheduling among multiple human
attendees [14, §]

e finding people information on the Internet
e hosting a visitor to Carnegie Mellon University [22]

e accessing and filtering information about conference announcements
and requests for proposals (RFPs) from funding organizations and no-
tifying Computer Science faculty of RFPs that suit their research in-
terests [18].

5.1.1 An Extended Example: The Visitor Hosting Task

We will use the task of hosting a visitor to Carnegie Mellon University (CMU)
as an illustrative example of system operation. Hosting a visitor involves
arranging the visitor’s schedule with faculty whose research interests match
the interests that the visitor has expressed in his/her visit request. A different
variation of the hosting visitor task has also been explored in [10].

For expository purposes, we refer to the collection of agents that are in-
volved in the visitor hosting task as the Visitor Hosting system. The Visitor
Hosting system takes as input a visit request, the tentative requested days
for the meeting and the research interests of the visitor. Its final output is
a detailed schedule for the visitor consisting of time, location and name of
attendees. Attendees in these meetings are faculty members whose interests
match the ones expressed in the visitor’s request and who have been automat-
ically contacted by the agents in the Visitor Hosting system and have agreed
to meet with the visitor at times convenient for them. The Visitor Host-
ing system has an interface agent, referred to as the Visitor Hoster, which
interacts with the person hosting the visit. It also has the following task
agents: (1) a Personnel Finder task agent, who finds detailed information
about the visitor, and also finds detailed information about CMU faculty for
better matching the visitor and the faculty he/she meets, (2) the visitor’s
Scheduling task agent and (3) various personal calendar management task
agents that manage calendars of various faculty members. In addition, the
Visitor Hosting system has a number of information agents that (1) retrieve
information from a CMU data base that has faculty research interests (Inter-

19

ests agent), and (2) retrieve personnel and location information from various
university data bases.

We present a detailed visitor hosting scenario to illustrate the interactions
of the various agents in the Visitor Hosting task.

e The user inputs a visitor request to the Visitor Hoster agent.

Suppose Marvin Minsky wants to visit CMU CS department. Minsky
has requested that he would prefer to meet with CMU faculty inter-
ested in machine learning. The user inputs relevant information about
Minsky, such as first name, last name, affiliated organization, date and
duration of his visit, and his preference as to the interests of faculty he
wants to meet with, to the Visitor Hoster agent.

o The Visitor Hoster agent extracts the visitor’s areas of interest and
visitor’s name and organization.

o The Visitor Hoster agent passes to the Interests agent the visitor’s areas
of interest and asks the Interest agent to find faculty members whose
interest areas match the request.

o The Visitor Hoster agent passes the name and organization of the vis-
itor to the Personnel Finder agent and asks it to find additional infor-
mation about the visitor.

o The Personnel Finder agent accesses Internet resources to find re-
quested information about the visitor, such as visitor’s title, rank, office
address etc. The visitor information is used by faculty calendar soft-
ware agents, such as CAP (see [16]), to decide level of interest of a
faculty member to meet with the visitor.

o Meanwhile, the Interests agent queries the faculty interests data base
and returns names of CMU faculty whose research matches the request.

Using “machine learning” as the keyword to search through faculty in-
terests database, the Interests agent finds a list of faculty whose interest
areas match machine learning.

e The Visitor Hoster agent passes the returned faculty names to the
Personnel Finder agent requesting more information on these faculty.

20

o The Personnel Finder agent submits queries to three personnel infor-
mation sources (finger, CMU Who’s-Who, CMU Room Database) to
find more detailed information about the faculty member (e.g., rank,
telephone number, e-mail address), resolves ambiguities in the returned
information, and integrates results.

Sources: Personnel Info for Tom Mitchell

Figure 3: Information Sources and Returned Items

Figure 3 shows in detail the information sources used for querying per-
sonnel information about Tom Mitchell, one of the Machine Learning
faculty found by the Interests agent, and the information attributes re-
turned by these sources. The columns correspond to different informa-
tion sources. The rows are the attributes of personnel information that
can be obtained from the sources. The checks and cross marks indicate
which information sources return answers for which attributes. From
this figure, we observe that for some information attributes (e.g., of-
fice room number), more than one information source (Room Database
and finger) offer answers, which may be potentially conflicting. To
resolve this conflict, the Personnel Finder applies one of the rules kept
in its domain-specific knowledge base saying that the office information

21

based on Room Database is always more relevant and up-to-date than
other sources. In this case, the value as to office room number returned
by finger is overruled by the one returned by Room Database (indi-
cated by the check mark). The cross mark in the “Office” row and
“CS-FINGER” column means that although finger finds the office
information, the retrieved value is overruled by another information
source (Room Database).

Based on the information returned by the Personnel Finder, the Visitor
Hoster agent selects an initial set of faculty to be contacted. The user
can participate in this selection process.

The Visitor Hoster agent automatically composes messages to the cal-
endar assistant agents of the selected faculty asking whether they are
willing to meet with the visitor and at what time. For those faculty that
do not have machine calendar agents, e-mail is automatically composed
and sent.

The Visitor Hoster agent collects responses and passes them to the
visitor’s Scheduling agent.

The visitor’s Scheduling agent composes the visitor’s schedule through
subsequent interaction and negotiation of scheduling conflicts with the
attendees’ calendar management agents?. The final calendar is shown
in Figure 4.

The Visitor Hosting system has many capabilities. It automates informa-

tion retrievals in terms of finding personnel information of potential appro-

priate meeting attendees. It accesses various on-line public databases and

information resources at the disposal of the visit organizer. It integrates

the results obtained from various databases, clarifies ambiguities (e.g., the

same entity can be referred by different names in different partially replicated

data bases) and resolves the conflicts which might arise from inconsistency

between information resources. It creates and manages the visitor’s sched-

ule as well as the meeting locations for the various appointments with the

faculty members (e.g., a faculty’s office, a seminar room). It interacts with

the user, getting user input, confirmation or dis-confirmation of suggestions,

2For details on the distributed meeting scheduling algorithm, see [14, 8].

22

& February = ¢ 1996 =

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 IO

112 13 14 16 17

18 19 20 21 2 23 24
25 26 27 28 29

Z:00am

9:00am

Katia Sycara
Doherty Hall 3315

10:00am

Tom Mitchell
Wean Hall 5313

11:00am

Andrew Moore
Smith Hall 211

Prev.. | Today | Next

12:00pm

Visitor Schedule

[Visitor] Marvin Minsky

[Institution] MIT

[Title] Toshiba Professor Of Media Arts
And Sciences

[Interests] Machine Learning

1:00pm

Manuela Veloso
‘Wean Hall 7122

2:00pm

Jack Mostow
Wean Hall 4623

3:00pm

Seminar

4:00pm

3:00pm

Figure 4: Final Schedule of Minsky’s Visit

23

asking for user advice and advising the user of the state of the system and
its progress.

5.2 Financial Portfolio Management

The second domain of applying the RETSINA framework is financial port-
folio management (the WARREN system ?). In current practice, portfolio
management is carried out by investment houses that employ teams of spe-
cialists for finding, filtering and evaluating relevant information. Based on
their evaluation and on predictions of the economic future, the specialists
make suggestions about buying or selling various financial instruments, such
as stocks, bonds, mutual funds etc. Current practice as well as software
engineering considerations motivate our multi-agent system architecture. A
multi-agent system approach is natural for portfolio management because of
the multiplicity of information sources and the different expertise that must
be brought to bear to produce a good recommendation (e.g. a stock buy or
sell decision).

The overall portfolio management task has several component tasks. These
include eliciting (or learning) user profile information, collecting information
on the user’s initial portfolio position, and suggesting and monitoring a re-
allocation to meet the user’s current profile and investment goals. As time
passes, assets in the portfolio will no longer meet the user’s needs (and these
needs may also be changing as well). Our initial system focuses on the on-
going portfolio monitoring process.

We briefly describe the main agents in the portfolio management task,
shown in figure 5:

The portfolio manager agent is an interface agent that interacts graph-
ically and textually with the user to acquire information about the user’s
profile and goals. The fundamental analysis agent is a task assistant that
acquires and interprets information about a stock from the viewpoint of a
stock’s (fundamental) “value”. Calculating fundamental value takes into
consideration information such as a company’s finances, forecasts of sales,
earnings, expansion plans etc. The Technical Analysis agent uses numerical
techniques such as moving averages, curve fitting, complex stochastic models,

3The system is named after Warren Buffet, a famous American investor and author
about investment strategies.

24

USER 1 USER 2 USER h

Portfoli
Manager

- =

Techni cal Br eaki ng Anal yst
Anal ysi s Tracki ng
Agent

Agent

Ear ni ngs
Anal ysi s
Agent

Ti cker
Tr acker

Mar ket
Tr acker

Hi storic
mar ket
| nf or mat

| nf osphere

Figure 5: The Portfolio Management Application

25

neural nets etc., to try to predict the near future in the stock market. The
Breaking News agent tracks and filters news stories and decides if they are
so important that the user needs to know about them immediately, in that
the stock price may be immediately affected. The Analyst Tracking agent
tries to gather intelligence about what human analysts are thinking about a
company. These agents gather information through information requests to
information agents. The information agents that we have currently imple-
mented are the Stock Tracker agents that monitors stock reporting Internet
sources, such as the Security APL, the News Tracking agents that track and
filter Usenet relevant financial news articles (including CMU’s Clarinet and
Dow Jones news feeds), and the SEC (Securities and Exchange Commission)
fillings of companies financial information tracker agent that monitors the
EDGAR database. The information retrieved by these information agents
is passed to the display agents which display in an integrated fashion the
retrieved information to the user.

Figure 6 shows an example WARREN portfolio. Currently, a user may
interact with his or her own portfolio display (interface) agent via HTML
4 The portfolio display consists of a summary of
the user’s portfolio, including which issues are owned, and for each issue
the total number of shares owned, the current price, the date of the last
news article, and the current value. Below the portfolio table, the current
value of the entire portfolio is displayed along with the portfolio’s net gain in

forms and a web browser.

equity (current values compared to purchase values minus commissions). The
interface also allows the user to buy and sell stocks (Trade) and to request the
preparation of a Financial Data Summary (Fetch FDS), which uses historical
price, earnings, and revenue information from the SEC’s EDGAR database
to do a simple fundamental analysis of the stock.

The other display available to the user (by clicking on a stock’s cur-
rent value) is a price/news graph that dynamically integrates intra-day trad-
ing prices and news stories about a stock. Figure 7 shows an example for
Netscape Communications (NSCP) during the period of roughly December 5
to December 23. Prices are plotted at mostly 1 hour (sometimes 15 minute)
intervals, and connected during the trading day (there’s no trading at night
or during the weekends). The numbers on the graphs correspond to the news
articles whose subjects are listed below the graph. The articles are numbered

4We are currently constructing a more interactive Java interface.

26

Figure 6: WARREN’s Netscape interface.

27

from earliest to latest (left to right on the graph). Each article number is
positioned at the time the news story appeared, and vertically at the approx-
imate price of the stock at that time. The article subjects are hyperlinked
to the actual news stories themselves.

The example graph covers a time period just after the $30 price rise in
NSCP triggered by the joint Sun and Netscape announcement of JavaScript
(2). However, the new record high caused some profit-taking, and then the
Dec 7 news hits that Smith Barney had begun coverage of Netscape and rec-
ommended SELL (4,5), dropping the stock for the rest of the day. Although
our University access is to delayed price and news sources, such information
from realtime data feeds is the bread and butter of many types of institutional
investment decision-making.

6 Conclusions

In this paper, we have described our implemented, distributed agent frame-
work, RETSINA, for structuring and organizing distributed collections of
intelligent software agents in a reusable way. We presented the various
agent types that we believe are necessary for supporting and seamlessly in-
tegrating information gathering from distributed internet-based information
sources and decision support, including (1) Interface agents which interact
with the user by receiving user specifications and delivering results, (2) Task
agents which help users perform tasks by formulating problem solving plans
and carrying out these plans through querying and exchanging information
with other software agents, and (3) Information agents which provide in-
telligent access to a heterogeneous collection of information sources. We
have also described and illustrated our implemented, distributed system of
such collaborating agents. We believe that such flexible distributed architec-
tures, consisting of reusable agent components, will be able to answer many
of the challenges that face users as a result of the availability of the vast,
new, net-based information environment. These challenges include locating,
accessing, filtering and integrating information from disparate information
sources, monitoring the Infosphere and notifying the user or an appropriate
agent about events of particular interest in performing the user-designated
tasks, and incorporating retrieved information into decision support tasks.

28

Graph for MSCP
188 T T T T T

178 Iﬁ B

led - 1

158 ~ B

Stock Price
]

148 [% . 6 g7 %
e %JBIE \a ? i

128 -
11\ 1 1 1 1 1
12,85 12-88 12-11 12714 12-17 12,28 12723
aa: ag Baa: Qe aa: ag Baa:ae HA: B8 Aa: Qe HE: 88
Date
Time

Matching News Articles for N5CP

® [1] #*#¥Eilicen Graphics/Bun/MNetscape To Merge Web Technologies 12/05/85 [Tue Dec & 16:00:41 1585]
® [?] Netzsmpe Stocl Surges en JavaSeipt Plans [Tue Dee & 18:00:15 1865]

® [3] Sun Microsystems Unit To Offer Netscape Pdts »8UNW MSCP [Wed Dec 6 08:31:13 1855]

[4] *3mith Barney Starts Netscape Communictions At Sell =MN3CP [Thu Dec ¥ 05:55:38 1995]

® [5] Smith Barney-Internet Stlkes —2: Initiates & Cos>aMER M3CP [Thu Dec ¥ 05:23:22 1505]

® [6] CA Announces Internet Products, Partnership With Metscape 12/07/55 [Thu Dec ¥ 15:00:35 1585]

® [7] Netscape, Other Internet Shares Pressured [Fri Dec 8 15:00:20 1855]

[5] Netsmpe wvows "dog—fight" ws Microsoft [Fri Dec 5 15:00:32 1985]

® [0] Metsmape, other Internet shares pressured [Fri Dec 5 16:50:058 15856]

® [10] Metzscape Wows "Dog—Fight" ws Microsoft [Fri Dec 8 18:20:26 1905]

® [11] Metscape Gives 2 §1, 000 Apiece [Fri Dec 8 20:30:24 1995]

® [12] Metscape, Cther Internet Shares Pressured [Sat Dec 8 07:50:12 1885]

® [13] Hot Stodsz In Barron's: CPOQ TECC ITW MECF MSFT IBM T [Men Dec 11 10:17:31 1585]

® [14] H-P, Microsoft, Netsmpe 3ign Pact To Develop Web Standards [Tue Dec 12 06:05:22 1585]

® [15] ****HD Teams With MNetsmpe & Microsoft On Internet Printing 12/12/05 [Wed Dec 13 14:20:32 1555]
® [15] ****Metzmape Creates Java Conference 12/20/95 [Wed Dec 20 1511:05 1955]

® [17] Werldview Sys To Use Netsmpe Software To Create Travel Swe [Thu Dee 21 11:33:43 19095]

Written by the Stods: Display Agent, Fri Dec 22 17:03:01 1295

Figure 7: A Price/News graph constructed by the WARREN system for
Netscape Communications (ticker symbol NSCP).

29

7

Acknowledgements

The current research has been sponsored in part by ARPA Grant #F33615-
93-1-1330, by ONR Grant #N00014-95-1-1092, and by NSF Grant #IRI-
9508191. We want to thank Tom Mitchell, Dana Freitag, Sean Slittery, and
David Zabowski for insightful discussions.

References

1]

2]

P. R. Cohen and H. J. Levesque. Intention=choice + commitment. In

Proceedings of AAAI-87, pages 410-415, Seattle, WA., 1987. AAAL

K. Decker, K. Sycara, and M. Williamson. Modeling information agents:
Advertisements, organizational roles, and dynamic behavior. In Proceed-
ings of the AAAI-96 Workshop on Agent Modeling, Portland, Oregon,
August 1996. AAAL

K. Decker, M. Williamson, and K. Sycara. Matchmaking and brokering.
In Proceedings of the Second International Conference in Multi-Agent
Systems (ICMAS’96), Kyoto, Japan, December 1996.

Keith Decker. Environment Centered Analysis and Design of Coordina-
tion Mechanisms. PhD thesis, University of Massachusetts, 1995.

Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and David
Zabowski. A personal learning apprentice. In Proceedings of the Tenth
National Conference on Artificial Intelligence. AAAT, 1992.

Oren Etzioni and Daniel Weld. A softbot-based interface to the internet.
Communications of the ACM, 37(7), July 1994.

Tim Finin, Rich Fritzson, and Don McKay. A language and protocol to
support intelligent agent interoperability. In Proceedings of the CE and
CALS Washington 92 Conference, June 1992.

Leonardo Garrido and Katia Sycara. Multi-agent meeting scheduling:
Preliminary experimental results. In Proceedings of the Second Interna-
tional Conference in Multi-Agent Systems (ICMAS’96), Kyoto, Japan,
December 1996.

30

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. R. Genesereth and S. P. Katchpel. Software agents. Communications
of the ACM, 37(7):48-53,147, 1994.

Henry A. Kautz, Bart Selman, and Michael Coen. Bottom-up design of
software agents. Communications of the ACM, 37(7), July 1994.

Craig K. Knoblock. Integrating planning and execution for information
gathering. In Craig Knoblock and Alon Levy, editors, Working Notes
of the AAAI Spring Symposium Series on Information Gathering from
Distributed, Heterogeneous Environments, Stanford, CA, March 1995.
AAAL

D. Kuokka and L. Harada. On using KQML for matchmaking. In Pro-
ceedings of the First International Conference on Multi-Agent Systems,
pages 239-245, San Francisco, June 1995. AAAT Press.

Kan Lang. Newsweeder: Learning to filter netnews. In Proceedings of
Machine Learning Conference, 1995.

JyiShane Liu and Katia Sycara. Distributed meeting scheduling. In
Proceedings of the Sixteenth Annual Conference of the Cognitive Science
Society, Atlanta, Georgia, August 13-16 1994.

Pattie Maes. Agents that reduce work and information overload. Com-

munications of the ACM, 37(7), July 1994.

Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and
David Zabowski. Experience with a learning personal assistant. Com-

munications of the ACM, 37(7), July 1994.

Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser. Cooper-
ative information gathering: A distributed problem solving approach.
Technical Report 94-66, Department of Computer Science, University
of Massachusetts, September 1994.

Anandeep Pannu and Katia Sycara. Learning text filtering preferences.
In 1996 AAAI Symposium on Machine Learning and Information Ac-
cess, 1996.

31

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Anand S. Rao and Michael P. Georgeff. A model-theoretic approach to
the verification of situated reasoning systems. In Proceedings of IJCAI-
93, pages 318-324, Chambery, France, 28 August - 3 September 1993.
[JCAL

Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51-92, 1993.

Reid Simmons. Structured control for autonomous robots. IEFE Journal
of Robotics and Automation, 1994.

Katia Sycara and Dajun Zeng. Towards an intelligent electronic secre-
tary. In Proceedings of the CIKM-9/ (International Conference on Infor-
mation and Knowledge Management) Workshop on Intelligent Informa-
tion Agents, National Institute of Standards and Technology, Gaithers-
burg, Maryland, December 1994.

Katia Sycara and Dajun Zeng. Coordination of multiple intelligent soft-
ware agents. International Journal of Cooperative Information Systems,

To Appear, 1996.

M. Williamson, K. Decker, and K. Sycara. Unified information and
control flow. In Proceedings of the AAAI-96 Workshop on Theories of

Action, Planning and Control: Bridging the Gap, Portland, Oregon,
August 1996. AAAL

M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2):115-152, 1995.

Dajun Zeng and Katia Sycara. Bayesian learning in negotiation. In
1996 AAAT Symposium on Adaptation, Co-evolution and Learning in
Multiagent Systems, 1996.

32

