
Addressing Challenges to Open Source Collaboration
With the Semantic Web

 Anupriya Ankolekar James D. Herbsleb Katia Sycara

 Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
 5000 Forbes Avenue 5000 Forbes Avenue 5000 Forbes Avenue
 Pittsburgh PA 15213 Pittsburgh PA 15213 Pittsburgh PA 15213
 anupriya@cs.cmu.edu jdh@cs.cmu.edu katia@cs.cmu.edu

Abstract

Despite the remarkable success of open source
software, there are a number of challenges to
collaboration in open source software development, in
particular, with respect to supporting collaboration
among developers, supporting potential contributors,
and in bringing users and developers together. In this
paper, we examine some of the possible enhancements of
open source development environments, and consider the
application of Semantic Web technology to address
these.

1. Introduction

Because it has proven remarkably successful in
circumstances that are extremely challenging for
traditional development methods and environments, open
source software development has received the attention of
many researchers within the software engineering
community [4]. With almost no face to face
communication, and very little use of industry-style
project management and coordination, open source
developers have built a variety of widely-used, reliable,
well-known software systems, e.g. the Apache web server
and the Mozilla browser [14].

Open source software development has been described
as "extreme distributed software development" [14]. The
community around an open source software project is
usually located around the globe and interacts primarily
through asynchronous textual modes of communication,
such as email and discussion boards, that are logged in
publicly browsable archives. Although open source
software projects can vary considerably in their
particulars, they do possess a few typical features. Every
successful open source software project has a community
of people involved with the project at various levels. The
largest group within the community is usually the user
community, which is primarily interested in using the
software. Some users report bugs, but that is more
commonly the domain of a smaller group of
'contributors'. Contributors are not only users of the

software, but are also interested in the general
development of the project. They are likely to download
the most recent (possibly unstable) versions of the
software, actively report bugs, and submit code, either to
fix bugs, provide further enhancements to the software or
to contribute patches. At the centre of the community lies
a small select group, sometimes even a single person, of
'core' developers, who not only contribute code, but also
guide the project by reviewing contributed code and
selecting a subset to be committed to an 'official' release
of the software.

 There are also a number of tools and practices that
are typically found in open source software projects,
although each project customizes these to fit its own
requirements and culture. A version control system, such
as CVS, is used to maintain code, through which anyone
can browse, however, usually only core developers can
commit code [7]. Bugs and feature requests are tracked
by means of an issue tracking system such as Bugzilla.
Besides these code management tools, open source
software projects use a number of tools for collaboration
and coordination. The primary ones are group mailing
lists, asynchronous discussion forums and more recently,
chat facilities. Despite the considerable success of open
source software projects, there are a number of ways in
which open source development environments could be
improved, particularly with respect to supporting
collaboration among developers, supporting new and
potential contributors, and in bringing users and
developers together.

In this paper, we examine some of the possible
enhancements of open source development environments,
and consider the application of Semantic Web technology
to address these. The rest of the paper is organized as
follows: Section 2 examines literature on geographically
distributed software development in commercial
environments. We speculate that open source
development, as one type of geographically distributed
development, suffers some of the same limitations on
collaboration, and might benefit from tools that address
these problems. Section 3 discusses the Semantic Web
approach, a promising set of technologies to improve the

processing of information on the Web. We then discuss,
in Section 4, the use of semantic annotations and their
processing in constructing tools that address the
challenges of collaboration in open source software
environments.

2. Open source challenges

 While open source practices and tools have been
remarkably successful, we believe there are several areas
where there are opportunities for improvement:
supporting collaboration among subsets of developers,
supporting new developers, and supporting the broader
user community by heightening awareness of the needs of
non-developer users.

2.1. Collaboration

 Software development is a closely-coupled activity,
often with tight integration and interdependencies
between modules, and therefore requires a substantial
amount of coordination and communication between
developers [10] if they are to collaborate on features.
Geographically distributed collaborative work, on the
other hand, tends to result in significantly reduced
communication between team members [1, 12]. One of
the biggest needs in distance collaboration is for more
awareness of the activities of developers at remote sites.
The lack of awareness stems both from reduced
communication and from missing contextual
information, which is naturally and implicitly shared in
co-located contexts, but is difficult to obtain in
distributed work. In general, unlike their counterparts in
commercial environments, most open source software
developers work relatively independently of one another,
which makes it difficult to add substantial new features
requiring close coordination among a team. This tension
between the needs and the capabilities of distributed
software development environments leads, in commercial
development, to misunderstanding, miscommunication
and coordination problems during integration [9].
Improved collaborative capabilities might allow
developers to work together more effectively.

Another problem in geographically distributed
developments is the difficulty in finding and consulting
experts at remote locations. For ‘uncertain’ projects,
informal communication has been found to be
particularly important [13]. Open source software
projects almost epitomize uncertain projects, since the
objectives and trajectory of the project are often ill-
specified. However, informal communication is nearly
absent in open source communities. In commercial
environments, this appears to cause development to take
much longer when it is split across sites [10]. Fostering

social interaction and supporting the social structures
within the open source software community would
encourage informal communication and provide a
context for community members to interact and share
information [6].

2.2. Support for new developers

Open source software project websites are primarily
tailored to meet the needs of core developers. New or
'peripheral' developers, who would like to contribute to a
project, are in the unenviable position of having to
understand a part of the project well enough to
contribute, without the mentoring that would take place
in co-located contexts and with little support in the form
of documentation, tutorials or guides. Some of the larger
projects, such as Mozilla and Apache Cocoon [18], do
invest effort into providing documentation of code and
community procedures to an extent. However, the
creation and maintenance of this documentation requires
more resources than most open source projects can
afford.

Furthermore, often new developers have to not only
understand the code, but also the community, practices,
and culture of that particular open source software
project, which can vary considerably from project to
project. Making the social networks of the community
apparent would help new developers understand the
culture and community they want to contribute to and
ease their initiation.

2.3. Feedback from users

Finally, project websites often have relatively little to
offer users of the software. It has often been speculated
that open source development is not closely attuned to the
needs of the larger, non-developer community of users.
Early versions of Linux were extremely difficult for non-
technical users to install and use. Although there are
many channels by means of which a community can
influence the course of development [17], if it is the goal
of an open source development effort to build software
for general users, stimulating more interaction among
user and developer communities would be quite useful. It
would both help to increase the technical sophistication
of the user community and heighten the sensitivity of the
developers.

2.4. Common themes

Although these may seem to be a rather diverse set of
challenges, they do have a common underlying issue. In
each case, there is a need to get the right information to
the right person for the current task, and to present it in
an understandable, usable way. This suggests that better

integration and presentation of information from the
various tools in open source projects may address some of
the limitations of open source software development.
Furthermore, increased visibility of the social network
within a project community and improved possibilities
for social interaction between members of the community
would ease a new developer's initiation into the culture
and the community of a project.

3. The semantic web

Semantic web [8] technologies can directly address
the need for better integration and presentation of
information in open source collaboration tools. The
semantic web allows semi- or unstructured information to
be processed based on some representation of its content.
This requires ontologies, annotations, and software
(agents) that use these to process the information.

Several semantic web standards [2, 20], such as XML,
RDF, RDF-S and OWL, have been defined for
annotations, definitions of ontologies and ontological
inferencing. To understand how ontologies, annotations
and agents can work together in a semantically annotated
and linked web of documents, consider an example
which demonstrates a possible (and nearly realised)
application of semantic web technology. Many semantic
web conferences now publish their technical program,
with the schedule of talks, on the Web, annotated with
respect to several different Calendar ontologies [19]. In
the following, we visualize a scenario where data marked
up in ontologies such as these can provide useful
information.

Imagine that you are going to a conference that has
published its semantically annotated schedule. Each talk
in the schedule refers to an Event concept in the
ontology. The Calendar ontology describes an Event
concept as having a Name, Venue, Time, Duration etc.
Furthermore, the concept PaperTalk, in a separate
Conference Schedule ontology, is defined as a subclass of
an Event. In addition to the attributes of an Event,
PaperTalks are known to have an Abstract, Keywords,
and a list of Authors, each of which is a Person. The
schedule specifies the location of ontologies, whose
concepts are used in the annotation tags. When you point
your agent, similar to the Retsina Calendar Agent [16] to
the URL of the schedule, it first downloads the ontologies
referred to by the schedule. The agent then parses the
schedule with respect to these ontologies and displays a
list of talks with a summary of each talk and links to the
venue and the authors of the corresponding papers.

Now say you have an interest in knowledge capture
and representation and are keen to identify the
conference talks that are in this area. You ask the agent
to filter the list and only display the talks that have

knowledge representation and knowledge capture as
Keywords in their Abstract. Each of the talks displayed
would have links to the Authors. You click on the name
of one of the Authors and you can see their Status
(Professor, Researcher, Student etc.), Affiliation and
Contact Details along with a list of other attributes.
Clicking on Affiliation shows you a list of people
presenting at the conference who are also part of the
same institution. At the conference you meet with a few
authors you would like to keep in touch with. You pull up
the annotated schedule once again, click on the name of
the author and ask your agent to add the author to your
contact list. Since the Author is known to be a Person
and a Person can be added to a list of Contacts, your
agent adds the contact details of the Author to your
contact list.

Thus, explicit description of the semantic content
allows information from different sources to be gathered
and usefully processed by agents. In the following
section, we explore how the Semantic Web approach can
be used specifically to address the integration issues of
open source collaboration.

4. The semantic web for integrating
information in open source environments

Integrating information for an open source community
can occur at several levels. A basic level of integration
simply pulls together existing resources, such as
information from different tools on the project site, and
links them appropriately for presentation to the user.
The next level of integration is at the `computed object'
level, where data available on the web site is aggregated
and analyzed to dynamically provide new information
about the activities and changing state of the project and
community. At the final level of integration, software
agents go beyond the project website, to find, integrate,
and present resources from the broader community
elsewhere on the Web.

4.1. Integrating information across tools

There are numerous sources of information in an open
source project, from discussions within mailing lists to
bug reports within the issue tracking system to code
maintained by the version control system. At the simplest
level of integration, information from these various tools
can be organized and presented together, such that they
provide a useful summary of the current activities within
the project and its associated community. Hipikat [3] is
an example of a tool that assembles information from
these sources specifically to help an newcomer make a
change in the code. It consists of a plug-in to the open
source IDE Eclipse that builds a group memory from the

development artifacts of a project and recommends
relevant portions for a piece of code.

In order to use the Semantic Web technologies to
integrate information across tools, several ontologies
need to be created. First, an ontology that describes the
structure of the tools is needed. An ontology that
describes Bugzilla, for example, would contain the
concept of a Bug Report. Each BugReport would have
several attributes, such as ID, Component (indicating
which part of the code contains the bug), Description,
Severity and so on. In addition, an ontology that
describes the domain will be required. Such an ontology
would contain, for instance, that a Browser has several
Components, such as the Layout, the Parser, the
Rendering etc. Finally, one would need an ontology that
describes the structure of the code. This ontology would
describe the code in terms of its modules and each
module as a collection of files.

Annotating information gathered from tools such as
CVS and Bugzilla with respect to the tool ontologies is
rather straightforward. These tools contain enough
formatting and structure information to allow the
annotation to take place automatically. Automatic
annotation of more unstructured documents, such as mail
exchanges, or the annotation of documents with respect
to domain ontologies is difficult at such a fine-grained
level. Instead, given a document to be classified,
information retrieval techniques can be used to identify
the keywords of the document. These keywords will then
mapped onto the closest known ontological concepts and
the document is classified as being in that category.

Consider, for instance, the maintenance of the issue-
tracking system, such as Bugzilla. Public bug submission
entails a number of challenges for maintainers of the bug
database. Maintainers of the bug database must check to
see whether the bug has been classified correctly, provide
more specific classification if required, bring the bug
report to the appropriate developers' notice and create
dependency links between bugs. This is a difficult task
and even partial support would be very useful here.

With the ontologies described above, when a new bug
report comes in for the Browser, agents could analyze the
document, looking for keywords. If the keywords they
find are part of the domain ontology, say Color or Fonts,
and Color and Fonts are both defined to be subtopics of
Rendering, the agents could infer that this bug report
should be classified with bugs in Rendering.
Furthermore, it could infer that this bug may be related to
other bugs in Rendering. With knowledge of the code
structure of the browser, an agent could infer that this
bug may be related to other bugs within the same file or
module. Thus an agent can provide support to a bug
database maintainer by providing a short list of possible
classification and candidate dependent bugs. A new

developer wanting to contribute to a project through a
bug fix, could use such processing to locate similar bugs
that were now resolved. He could then note how they
were fixed, for example, which files and modules
required alteration, and try to use this information to fix
the bug at hand.

Another potential application of semantic web
technologies is in dynamically generating different types
of interfaces for different roles or tasks of the community
members. Each interface would link information such
that different subsets of the information on the project
site is presented. As an early example of the use of
Semantic Web technologies in organizing information,
Haystack [11] provides a platform for managing the
personal information associated with a user alongwith a
toolkit for constructing end-user semantic web
applications.

4.2. Aggregating integrated information

Beyond being searched and linked, existing
information from the various tools on the web site can be
used to derive new kinds of information that reflects the
dynamic nature of the project and raises awareness about
member activities. The Expertise Browser [15], for
example, uses CVS change data to provide information
on which people have worked extensively on a particular
module of code and are therefore likely to have much
experience and expertise in it. It uses existing data in a
novel way to address the collaboration challenge of
identifying domain experts.

This approach could be significantly facilitated and
extended with the help of Semantic Web technology.
Semantic annotations of information in CVS along with
ontologies that describe the architecture of the project can
be used to help visualize the levels of activity in various
parts of the project and the general trajectory of the
project. For a potential contributor, such information
would be useful to understand how to contribute
meaningfully to a project.

Many open source software projects are beginning to
use chat facilities for discussion, coordination and
presence awareness. During a chat session, agents can
monitor topics under discussion and, with the help of
ontologies and semantic annotation, display relevant
information from the project documentation and from
web sites. Since information is already annotated
semantically, with basic mechanisms to gather
information from various parts of the site, developers can
easily write their own widgets to monitor various parts of
the project and share these with others, much like the
Sideshow system [5].

Monitors to track changes can also be linked from
dynamically generated profile of people or topics. Thus, a

user browsing a developer's page can see whether the
person is online and check if they are ready to chat and
give advice. Similarly, when browsing dynamically
generated pages on topics or modules, the user can also
see the channels where this topic or module is currently
being discussed. Dynamic processing can also be used to
visualize mail activity and display patterns of mail
exchange, which would be useful for potential
contributors seeking to understand the community and
culture of the project group.

Other examples of useful agents could be agents that
periodically analyze activity patterns, e.g., mailing
activity following the submission of code or a bug report,
or files that tend to be changed at the same time, and
attempt to infer links from the patterns.. Other agents
could analyze activity traces to compute “contribution” or
“browsing” profiles of people and indicate people with
similar profiles. This would help community members
relate to each other and provide opportunities for social
interaction. Such agents would also help make the user
community more visible to the developers and foster a
sense of community.

4.3. Binding communities of practice

Each open source project defines its own community,
which is a ‘community of interest’ or a ‘community of
practice’ , in that it brings together people who are
interested in the same domain and issues and share
similar practices. If individual projects use the Semantic
Web to annotate, organize and integrate their
information, different such communities can be easily
located and linked, to share information, expertise and
people.

For example, consider a developer involved in an open
source project that develops software to analyze fMRI
data may want to add functionality for a particular kind
of statistical analysis of a particular type of fMRI data.
Using ontologies about statistics and fMRI, agents could
help indicate code that implements similar statistics or
other communities that work on similar kinds of fMRI
data. Using activity statistics and other such information
computed by agents, he can judge the size of the
community around the tool, its maturity, and the people
who are actively involved and thus very knowledgeable
about the domain.

Similarly, when a potential contributor raises an issue,
submits a patch or even sends email to the developer
mailing list, the developers can easily locate the past
work of the developer and make a better judgment about
his competency in writing code or raising issues.

5. Conclusion

We think that semantic web technologies can
contribute to the various aspects of collaboration in open
source environments such as supporting collaboration
among developers, supporting potential contributors, and
in bringing users and developers together. To work
towards the potential we have outlined in this paper, a
first step would be to build ontologies for collaboration
tools and build increasingly sophisticated agents that can
manipulate the data in those tools and present
meaningful information.

6. References

 [1] Allen, T. J. (1977). Managing the Flow of Technology.

Cambridge, MA: MIT Press.
[2] Brickley, D. and Guha, R. V. “RDF Vocabulary Description

Language 1.0: RDF Schema” , W3C Working Draft, January
2003.

[3] Cubranic, D. and Murphy, G. “Hipikat: Recommending
Pertinent Software Development Artifacts” , International
Conference on Software Engineering, Portland, OR, 2003.

[4] Feller, J. and Fitzgerald, B. Understanding Open Source
Software Development, Harlow, Essex, UK: Pearson
Education, 2001.

[5] Fussell, S. R., Kraut R. E., Lerch, F. J., Scherlis, W. L.,
McNally, M. M., and Cadiz, J. J. “Coordination, overload
and team performance: effects of team communication
strategies” , ACM Conference on Computer Supported
Collaborative Work, Seattle, WA, 1998.

[6] Girgensohn, A. and Lee, A. “Making Web Sites be Places
for Social Interaction” , ACM Conference on Computer
Supported Collaborative Work, New Orleans, LA, 2002.

 [7] Halloran, T. J., and Scherlis, W. L. (2002). High Quality
and Open Source Practices. Presented at the 2nd Workshop
on Open Source Software Engineering, Orlando, FL.

[8] Hendler, J., Berners-Lee, T., and Lassila, O. “The Semantic
Web” , Scientific American, May 2001.

[9] Herbsleb, J. D., and Grinter, R. E. (1999, May 16-22).
Splitting the Organization and Integrating the Code:
Conway’s Law Revisited. Paper presented at the 21st
International Conference on Software Engineering (ICSE
99), Los Angeles, CA.

[10] Herbsleb, J. D., and Mockus, A. (2003). An Empirical
Study of Speed and Communication in Globally-Distributed
Software Development. IEEE Transactions on Software
Engineering, To appear.

[11] Huynh, David, Karger, David, and Quan, Dennis.
“Haystack: A Platform for Creating, Organizing and
Visualizing Information Using RDF” , Semantic Web
Workshop, 2002.

[12] Kraut, R. E., Egido, C., and Galegher, J. (1990). Patterns
of Contact and Communication in Scientific Research
Collaboration. In J. Galegher, R. E. Kraut & C. Egido
(Eds.), Intellectual Teamwork: Social and Technological
Foundations of Cooperative Work (pp. 149-171). Hillsdale,
NJ: Lawrence Erlbaum Associates.

[13] Kraut, R. E., and Streeter, L. A. (1995). Coordination in
Software Development. Communications of the ACM,
38(3), 69-81.

[14] Mockus, A., Fielding, R. T., and Herbsleb, J. D. “Two
Case Studies of Open Source Software Development:
Apache and Mozilla” , ACM Transactions on Software
Engineering and Methodology, 11(3) 2002, pp. 309-346.

[15] Mockus, A. and Herbsleb, J. D. “Expertise Browser: A
Quantitative Approach to Identifying Expertise” ,
International Conference on Software Engineering,
Orlando, FL, 2002.

[16] Payne, Terry R., Singh, Rahul, and Sycara, Katia.
"Calendar Agents on the Semantic Web." IEEE Intelligent
Systems, Vol. 17(3), pp. 84-86, May/June 2002.

[17] Scacchi, W. “Understanding the Requirements for
developing open source software systems” , IEEE
Proceedings on Software, 149(1), 2002, pp. 24-39.

[18] The Apache Cocoon Project, http://xml.apache.org/cocoon/
[19] The First International Semantic Web Conference, 2002,

http://iswc2002.semanticweb.org/overview.html
[20] W3C Semantic Web Activity, http://www.w3.org/2001/sw/

