
Matchmaking and Brokering

Keith Decker, Mike Williamson, and Katia Sycara
The Robotics Institute, Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
(decker,mikew,sycara)@cs.cmu.edu

May 16, 1996

Abstract

In this paper we define the notions of agent matchmaking and brokering
behaviors that are used while processing requests among initially unacquainted
sets of agents. These behaviors are basic components of common organiza-
tional roles and thus must be understood by computational agents. Broker-
ing and matchmaking behaviors can be used to construct organizational forms
such as centralized or distributed markets, ad hoc teams, and bureaucratic func-
tional or product hierarchies. Each behavior brings with it certain performance
characteristics—cost, robustness, and adaptiveness qualities—that are related
to characteristics of the external environment and of the agents themselves. For
example, while brokered systems are more vulnerable to certain failures, they
are also able to cope more quickly with a rapidly fluctuating agent workforce.
We present several agent design constraints and related models, which are ex-
perimentally validated using the WARREN multi-agent portfolio management
system.

Topic Areas: Organization and Social Structures, Communication Issues and Pro-
tocols
Word Count: 4993

1 Introduction

One of the basic problems facing designers of open, multi-agent systems for the
Internet is the connection problem [4]—finding the other agents who might have
the information or other capabilities that you need. The fact that the system is open
(participants may enter and exit at any time) and distributed over the entire Internet
precludes broadcast communication solutions.

The solutions that have been proposed rely instead on well-known agents and
some basic interactions with them: matchmaking and brokering [8, 10]. Standard
agent communication languages (i.e., KQML [7]) even define specific ‘performatives’
(RECRUIT, BROKER, FORWARD) for these behaviors. These behaviors are also com-
mon in human open systems as well.

Since these behaviors are both common and appear to be useful for computational
multi-agent systems, it is important to carefully define these behaviors and under-
stand their effects with respect to environmental and individual agent characteristics.
Sections 2 through 4 will define these behaviors; rather than define them in terms of
new classes of communicative acts, we will define them in terms of simpler request
actions. This has two benefits: first, the semantics of requests are well-understood
[11, 2], and second, such a definition allows us to build simpler agents that can work
in a open environment with hybrid behaviors (both matchmaking and brokering).
By defining these behaviors and how they interact, we are able to better understand
what constraints there are on agent architecture and behavior design.

The decision to use matchmaking or brokering to solve the connection problem
offers performance tradeoffs along a number of dimensions, both quantitative (such
as the time needed to fulfill a request) and qualitative (such as the robustness and
adaptivity of the system to the failure or addition of agents). Our ongoing research
aims to develop empirically-validated models of all the relationships between the var-
ious performance attributes and system parameters. In this paper, though, we will
focus our attention on one particular issue: what is the comparative performance of
a brokered vs. a matchmade system?

The questions we will be examining include first the quantitative end-to-end re-
sponse time advantages and disadvantages of matchmaking and brokering behavior.
Secondly, we will examine characteristics of these behaviors with respect to robust
and adaptive open systems, where agents might enter and exit the system at any
time. Experimental results are reported in Section 5, using our implementation of
the WARREN multi-agent portfolio management system.

Another problem faced by open multi-agent system designers is the ontological
mismatch problem—we will not address this problem in this paper (c.f. [3]). We

2

will assume that useful, shared domain ontologies exist and are being used by enough
agents to provide basic domain services. Another assumption that we will make is
that agents are sincere in their communications to one another [2].

2 Approach

We have chosen to define matchmaking and brokering behaviors so that they use re-
questing speech acts (in KQML, ASK, ASK-ALL, STREAM-ALL, etc.) and avoid using
the additional special KQML performatives RECRUIT, BROKER, and RECOMMEND

for several reasons:

1. Requests are fairly well defined and understood. Although no complete formal
semantics for KQML exists yet, several definitions exist for simple requests
[11, 2]. This previous work allows us to understand more clearly what is going
on with respect to matchmaking and brokering

2. Requests are very basic communication actions, and our agents necessarily have
considerable knowledge about how to deal with them: how to construct simple
or periodic queries, how to monitor for future events of interest, how to process
various replies, and how to deal with problems that arise when the communi-
cation is sent or if the remote agent later has a problem. Making requests is
such a basic activity that it is hard to imagine an agent without this behavior.
By using requests as a foundation for matchmaking and brokering behaviors,
we can capitalize on this part of an agent’s knowledge.

3. By eliminating the communicative difference between answering and broker-
ing a query, the resultant system of agents gains in openness—the ability to
add, subtract, and reorganize participants—without adding communicative
complexity (new performatives and associated behaviors for every participant).

3 Matchmaking

In general, the process of matchmaking allows one agent with some objective to learn
the name1 of another agent that could take on that objective. This process involves
three different agent roles (Figure 1):

1We will assume that knowing a fully qualified name is enough to enable direct communication.

3

Requester: an agent with an objective that it wants to be achieved by some other
agent.

Matchmaker: an agent that knows the names of many agents and their correspond-
ing capabilities.

Server: an agent that has committed itself to fulfilling objectives on behalf of other
agents.

A single agent may (and often does) take on more than one of these roles. Because
the successful fulfillment of the matchmaker role requires collecting and maintaining
special knowledge, real systems typically allow one or a small number of agents to
specialize in the matchmaker role.

agent name service class price reliability duration characteristics
Matchmaker

Requester

(ASK-ALL "who can servicemy request")

(REPLY "name1 + info, name2 + info,...")

(STREAM-ALL "request" ...)

(REPLY ...)
(ADVERTISE ...)

(UNADVERTISE ...)

Server

Figure 1: Communications between three agents taking on the roles of matchmaker,
requester, and server.

3.1 Requester Role Behaviors

We will discuss the behaviors involved in the requester role in some detail, because
they are basic to the construction of larger multi-agent systems as a whole, and are
the same for each of matchmaker, broker, and hybrid matchmaker/broker systems.

An objective is a generalization of a simple goal. While a goal is either achieved
or not, an objective may be partially achieved to some level of “quality” (in a worth-
oriented environment [13]). An agent R taking the role of a requester has some
objective that either:

4

1. R believes it cannot achieve on its own, or

2. R believes might be better achieved elsewhere to maximize its own or the sys-
tem’s utility (the objective can be achieved with higher quality elsewhere, or at
a lower cost).

In particular, we do not require at this point (before communicating with the match-
maker) that the requester has made an internal commitment to the objective (in the
Cohen & Levesque sense[1, 2]). This is a fairly important assumption, as it sim-
plifies the reasoning that can be expected at the matchmaker—since agents may ask
questions about services without any formal intention of using those services. For ex-
ample, asking who might be able to repaint my car does not give you license to reason
that, in fact, I am committed to actually having my car repainted. This assumption
does not hold when a requester communicates with either a server or a broker.

The behavior of a requester with respect to accomplishing some objective re-
motely is thus, in general:

1. Find the names of agents who are able and willing to take on the objective.
In addition, discover what is known about the utility of using each such agent
(e.g., will the quality of the result vary? how long will it take? is there a price
involved?). This behavior is accomplished by contacting an agent that can
answer such a query—one that has taken on the role of a matchmaker.

2. If you decide to commit, chose a server and send the initial request.

3. Form an expectation with respect to the future arrival of communications from
the server (results, status reports, or even errors or other failure notifications).

The requester agent builds an appropriate KQML request (e.g. ASK-ALL) to query
the matchmaker about who might be able to accomplish the agent’s objective, and at
what cost (money, time, solution quality, etc.).

A requester agent can also locally cache matchmaking knowledge. Cached knowl-
edge can make the system more robust in case of a matchmaker failure. Locally
cached matchmaking information can also reduce the load on a matchmaker. The
downside is that the cache may be outdated. In our implementation, a matchmaker
agent is a type of information agent. Any information agent can handle queries stated
so that the requester is kept informed if the results of this query change (i.e. new
agents enter the system, agents leave the system, etc.).2

2Kuokka [10] cites several other justifications for this useful behavior.

5

3.1.1 Querying the Matchmaker

The point of a matchmade system is to keep the decision-making responsibility at
the requester (compare this to the brokered system, were the broker takes on much
of this responsibility). Thus the matchmaker should not limit the potential names
returned in any way unrelated to the query itself.

To construct the matchmaker query, we are developing an agent service ontology
[5]. Agents in a server role advertise their services using this ontology (committing to
certain future classes of action under specified conditions) and requesters can query
such advertising assertions. The advertisement serves as a model of another agent’s
general capabilities. We will discuss advertisements in more detail in the section on
server role behaviors; for now it is sufficient to comment that a requester can query
for general service characteristics (such as duration or price constraints) as well as for
service-specific characteristics.

3.1.2 Robust Requests

In an open system, agents may come and go at any time. Agents playing a requesting
role need to orient their behaviors to deal with such a dynamic environment. A basic
robustness behavior is to detect and recover from matchmaker failure (when there is
no local cache). Either the current plan is aborted, or the requester waits and tries
to contact the matchmaker again. This behavior depends on the assumption that
matchmaker services are themselves robust, and that if a matchmaker goes down, it
will be back as soon as the underlying hardware and software can recover.

If the attempt to find an agent to service an objective succeeds, the agent may
decide to make an internal commitment to the objective, and make a request to that
remote agent to service the objective. At this point several things can still go wrong.
First, even though each agent acts to the best of its beliefs about the true state of the
world, the beliefs may be incorrect. For example, the remote agent may not exist or
no longer be servicing the stated objectives. The remote agent may even accept the
objective, but later come to believe that it cannot be achieved. As with human agents,
even the most rational, considerate, and well-behaved agents may simply die without
warning. In the first two cases, the requester is notified of the failure. The default
requester behavior (remember, the requester at this point is internally committed to
the objective) is then to retry to achieve the objective via other means (typically, other
agents that may be able to service the commitment). Only after all such attempts
are exhausted might the agent have to abandon the commitment as unachievable.
Currently, we assume that all agents in the system are semi-permanent, and thus will

6

return eventually. Under this assumption, it makes sense to retry a previously failed
servicing agent.

The final error, one of untimely agent death without warning, is potentially the
most problematic. For structured objectives, it may be possible to monitor the behav-
ior of the servicing agent. Currently, no special KQML performatives exist for this
type of request, so we would suggest using the existing KQML request performatives
and defining a meta-objective ontology to delineate questions that can be asked about
ongoing processes: “When do you think you will send me the next message in reply
to objective request X?” Of course, when an agent is monitoring for a condition, in
many cases there is no expectation of when that condition will actually become true.
Since accidents do happen, there are two possible solutions. One solution is to sub-
sume agent death as one way an objective may become “unachievable”—but unlike
the other cases this state cannot be recognized by the dead agent. The requester is
left to periodically murmur “Are you still there (and thus still committed to the ob-
jective)?”. The second solution is to require that the agent architecture support the
persistent storage of remote commitments (so that they will survive the agent) and
the automatic restart of failed agents. The re-animated agent then carries on with the
commitments it had in its previous life.

Finally, if the requester agent wishes to withdraw from the organization and has
active outstanding requests at server agents, it must inform those server agents of the
fact that it is abandoning those commitments.

3.2 Server Role Behaviors

Agents taking on a server role in a matchmade system also need a set of standard
behaviors. In particular, any agent that will take on a server role must clearly declare
this intention by making a long term commitment to taking on a well-defined class
of future requests. This declaration is called an advertisement, and it is communi-
cated to the matchmaker. The advertisement contains both a specification of the
agent’s capabilities with respect to the type of requests it can accept, and both general
and service-specific constraints on those future requests (see [5]). It is possible in
an advertisement to express that some request constraints cannot be determined in
advance of a specific request. For example, the price of a service may not be fixed
beforehand, but need to be quoted (and perhaps negotiated) on a case-by-case basis.
In this paper, we will only concern ourselves with services whose characteristics are
fixed beforehand.

Thus, when an agent takes on a server role it creates an advertisement and sends
it (using the KQML ADVERTISE performative) to the well-known matchmaker. If

7

the matchmaker is not up, it will continue to attempt to advertise until it is success-
ful. When it succeeds, the agent has publicly declared a commitment to take on any
future requests that fit the advertisement’s constraints. A successful advertisement
behavior also places the agent in a state in which it cannot leave the system with-
out withdrawing the advertisement (otherwise the advertisement would not be a true
commitment). An agent that has undertaken a server role must thus send a success-
ful UNADVERTISE KQML message before it can intentionally terminate. We view
advertisement and unadvertisements, then, as commisive speech acts. Note however
that the advertisement makes no meta-commitment about the length of the server
role—the agent can leave the system at any time but must unadvertise (decommit)
first.

The primary behavior of an agent taking on a server role is to respond to requests
that the agent achieve objectives that meet the advertised conditions. These requests
might contain conditions such as deadlines, but the server role is still an extremely
basic one. In particular, a server does not enter into a shared plan [9] or communicate
with the requester about its internal objectives [6].

Our most carefully worked out and empirically validated server role behaviors
center on answering queries. We have created a class of agents called information
agents that can answer one-shot and periodic queries, or monitor for conditions, on
external information sources. This class of agents can work either with traditional
databases or the more ubiquitous Internet information sources such as WWW pages
and Usenet news. Upon receiving a KQML request (i.e. ASK, ASK-ALL, STREAM-
ALL, etc.), the server creates a local commitment to achieve the stated objective. By
definition, the agent cannot give up that commitment until it is achieved or believed
to be unachievable—this could occur because of pending agent failure (i.e. scheduled
maintenance) or an external source failure. In either case the requester is notified (via
the SORRY performative). Alternately, with long-term requests (i.e. monitor for a
condition), the requester might wish to retract the request (most commonly because
the requester is withdrawing from the society). This also causes the server to give up
on the request.

3.3 Matchmaker Role Behaviors

A matchmaker’s most important feature is that it has a well-known name, i.e., all
agents have a predefined, static procedure for contacting a matchmaker.3 An agent

3For example, using the Lockheed KAPI Agent Name Server, the matchmaker can be given a
fixed name to satisfy this constraint (it does not have to reside at a fixed physical address or port

8

fulfilling the matchmaker role participates in at least two different types of conversa-
tions. The first is its interaction with agents who take on server roles. These agents
send advertisements and unadvertisements which are used to update the match-
maker’s local database. The second is its interaction with requesters, agents that want
to find the names of servers for their objectives. These interactions take place exactly
as if the matchmaker were a server—in fact in our implementation matchmakers are
a subclass of information agents and reuse all of their standard behaviors.

Should there be more than one matchmaker, and if so, how many? Certainly
as the number of agents grows, the ability of a single matchmaker to handle all re-
quester queries in a timely manner will falter. The onset of this saturation point can
be mitigated by local caching as previously mentioned. While it is possible to use
several “well-known” matchmakers, this solution is not a very open one. Instead,
we assert that complex multi-matchmaker organizations should be insulated from
ordinary requesters by allowing brokering matchmakers, i.e., matchmakers that may
(transparently) contact others in order to answer queries. Any system designed to use
a single matchmaker can then add an arbitrary multi-matchmaker organization at any
time, and it will be transparent to the existing agents (other than a potential increase
in matchmaker query service times). We will not discuss multi-matchmaker organi-
zations further in this paper; one possible organizational structure often mentioned
might mirror Internet domain name resolution systems [7].

4 Brokering

In general, the process of brokering involves how one agent with an objective comes
to have that objective achieved by another agent. We intentionally and clearly de-
fine brokering behavior as separate and different from matchmaking (agent-name-
finding) behavior. Hybrid organizations, where for example a requester uses a match-
maker to find a broker, are both possible and desirable. The brokering process again
involves three different agent roles (Figure 2):

Requester: an agent that has an objective that the agent wants to has achieved by
another agent.

Broker: an agent that knows the names of some other agents and their corresponding
capabilities, and advertises its own capabilities as some function of the capa-
bilities of these other agents. From the requester’s point of view, a broker is

number). Thus an agent becomes a matchmaker—committing to answer queries about other agent’s
capabilities—just by using this well-known name.

9

indistinguishable from a server (with perhaps slower response time and higher
price characteristics).

Brokered Server: an agent that has committed to the broker to taking on a predeter-
mined class of objectives.

agent name load balancing info other service characteristics

Broker

Server

Requester(STREAM-ALL "request" ...)

(REPLY ...)

(A
D

V
E

R
T

IS
E

...
)

(U
N

A
D

V
E

R
T

IS
E

...
)

(STREAM-ALL "re
quest" ...)

(REPLY ...)

Figure 2: Communications between three agents taking on the roles of broker, re-
quester, and brokered server.

4.1 Requesters and Servers in a Brokered Organization

By design, an agent making a request changes little in a brokered system. In a purely
brokered system there are no matchmakers, so a requester must rely on knowledge
of who the brokers are. In the limit, such as “facilitator” systems [8], an agent goes
through a single broker for everything, so the necessary pre-compiled knowledge at an
agent differs little from a matchmaker system. Although allowing brokers to specialize
in different classes of objectives can add to the amount of static knowledge agents
need in order to make requests, it does not necessarily limit the openness of the
resulting system, since many different agents at many different physical locations may
advertise and unadvertise with the appropriate brokers just as in a matchmade system.
What is quite different is the ability to add new classes of brokers dynamically, and
the way the system acts under a failure of a broker or matchmaker.

10

Similarly, agents taking on a server role in a brokered organization use mostly
the same behaviors. The only difference is in the advertising behavior. In a purely
brokered organization, an agent that wants to take on a server role advertises to the
appropriate broker—knowledge of that broker name must be static. This is a clear
case where hybrid organizations can excel: a server may contact a matchmaker in
order to find an appropriate broker, and if a broker does not exist, may advertise with
the matchmaker directly.

4.2 Brokering Role Behaviors

The core behavior of an agent taking on a brokering role is quite different from any
of the previous roles (requester, server, matchmaker) that we have discussed. It does
share some basic behaviors with each of these other roles:

� Like a matchmaker, a broker accepts advertisements and unadvertisements
from servers.

� Like a server, a broker accepts requests from requesters, and supplies appropri-
ate replies.

� Like a requester, a broker (having accepted an objective from another requester)
passes on an objective to a server agent and processes the replies.

The behaviors associated with advertisements are identical for brokers and match-
makers. Unlike real servers, however, when a broker accepts a request, it does nothing
locally to process the request, but instead uses its internal matchmaking information
to choose a server for the request. It then contacts the server and passes on the request
and formulates an expectation to process the eventual reply(s).

Because a broker stands at a filtering and control point in the information flow
of an organization, one natural service to provide is load balancing—the broker can
choose servers not just to satisfy requester objectives, but also to optimize resource
usage of the servers. However, powerful, low-overhead load balancing algorithms re-
quire a strong constraint on server behavior: servers cannot advertise with more than
one broker (or with both a broker and multiple matchmakers in a hybrid system).
There was no such constraint in a pure matchmaker system—servers can advertise
with as many matchmakers as they want. In a brokered system the broker needs to
control all request flows to the servers in order to provide cheap and efficient load
balancing (this may also include keeping track of other information, such as the
amount of work in each request and the resources available at each server). There

11

do exist more complex load balancing algorithms that do not require this constraint
(e.g., where the load at the remote agent is reverified when the request is made [14]),
but they are also applicable at the requester in a pure matchmaker system. In our
implementation, the work associated with each request is assumed to come from a
single statistical distribution, and agents are assumed to have similar computational
resources.

5 Performance tradeoffs: some experimental results

The decision to use matchmaking or brokering to solve the connection problem offers
many performance tradeoffs. System performance is dependent upon a large number
of parameters, including the rate at which service requests are generated; the number
of servers in the system; the time needed by each server to fulfill a request; agent
failure rates, and so on.

5.1 Experimental systems

We will consider two alternative systems. Each consists of some number of homoge-
neous servers and requesters. All agents run on serial processors, and the basic service
action is non-interruptible. In the “Matchmade” system (Figure 1), each server ad-
vertises itself to one matchmaker agent. Requesters query the matchmaker to obtain
a current list of servers, choose one randomly, and send it a service request. In the
“Brokered” system (Figure 2), servers advertise themselves to a distinguished broker
agent. Requesters send all service requests directly to the broker, who farms them out
to the servers—seeking to equalize the load among them.

Our implementation of these systems consists of real WARREN agents, who expe-
rience real communication and processor latencies, etc. The broker and matchmaker
are the same agents used in the actual portfolio management system. Servers and
requesters are instances of WARREN servers and requesters, but we have standardized
on a single abstract service to be provided (modeled after stock ticker services).

There are several parameters that we can vary in our systems. We can specify the
number of servers (N), the time required by each server to fulfill a request (T), and
the periodic rate at which new requests are generated (P).4 The actual service time
for each request and the period between requests are generated randomly; the service

4Given some reasonable independence assumptions, the number of requesters is irrelevant. There
is no difference between five requesters each sending two requests per minute, and one requester
sending ten requests per minute. We therefore only discuss variation of the request rate.

12

time is distributed normally around the mean T , and the request generation period
is distributed exponentially around the mean P . But because we are using real rather
than simulated agents, some parameters are beyond our control, such as the inter-
agent communication latency, the computational needs of the broker or matchmaker,
and the amount of time spent by the servers and requesters on planning, scheduling,
and other internal operations.

We make some further assumptions about the ranges of values that our system
parameters will take on. First, we assume that the service time is relatively long
compared to the computational overhead of the matchmaker, broker, and servers
themselves. This is consistent with actual WARREN agents, which typically require
30 seconds or more to access Internet resources. Second, we assume that the number
of servers is relatively small (we have experimented with systems of up to 20 servers),
which is again consistent with the operational WARREN system.

5.2 Theoretical expectations

The main performance attribute which we will measure is R, the total elapsed time
taken by a requester to satisfy a service objective. It includes:

� Time spent by the server providing the service (defined by the controllable
parameter T).

� Time spent planning and scheduling by the requester, matchmaker or broker,
and server, and time spent communicating between agents. This is a fixed
feature of our agents, denoted F .

� Time spent waiting at a server which is busy fulfilling prior requests, denoted
Q. This is a function of the request generation period, P , and of the number
of servers, N .

Our system can be roughly described by a queuing network model [12]. Accord-
ing to queuing network theory, the total elapsed time to fulfill a request isR = D+Q,
where D is total computational demand of the request (in our case, D = T + F).
Note that R, like Q, is a function of the request generation period and of the num-
ber of servers. If requests are generated at a rate greater than the maximum system
throughput, i.e. if

P <
D

N

13

then the system will be saturated and R will grow without bound. Otherwise, a
fundamental result of queuing theory is that the expected elapsed time per request is:

R =
D

1�
D

PN

This result depends on the service request load being equally distributed across all
servers, or else the elapsed time per request will be greater. Since the brokered system
precisely balances the load, while the matchmade system only stochastically does so,
we would expect the broker to provide better elapsed times.

5.3 Experiment One: Response Time

In our first experiment, we validate the theoretical model, and empirically compare
the brokered and matchmade systems. For a fixed service time and number of servers,
we vary the request generation period (the independent variable). For each period, we
generate 100 requests, and measure the mean and standard deviation of their elapsed
times (the dependent variable). Figure 3 shows the results as the request generation
period varies between 5 and 15 seconds, for systems with 3 servers and a service time
of 15 seconds.

Note that despite the crudeness of the model, it gives a good indication of the
expected response time, especially for larger request generation periods. (For shorter
periods, when the system is more highly loaded—or even saturated—our measured
values fall below the predictions because we are performing only 100 queries. The
earlier requests experience less queuing time, and so skew the results downwards.) In
any case, it is clear that the load balancing of the brokered system confers a response
time advantage over the matchmade system.

5.4 Experiment Two: Server Failure and Recovery

In our second experiment, we investigate the effect of server failure and recovery on
our two systems. We begin with three servers, and fix the service time and request
generation period at 15 and 10 seconds, respectively. After five minutes, we kill one
of the servers, and after five more minutes, we kill a second one. Five minutes after
that, we bring one of the severs back on line, and then ten minutes later the third
one returns. When a server dies, it sends a SORRY message for each outstanding
request, and they must be reallocated (by either the broker or the original requester)
to another server.

14

0

50

100

150

200

4 6 8 10 12 14 16

E
la

ps
ed

 ti
m

e
(s

ec
)

Request generation period (sec)

Matchmade system
Brokered system

Theoretical

Figure 3: Mean time for 100 service requests as a function of request generation
period

15

Figure 4 shows the results of this experiment. Each point represents the comple-
tion of a service request. The dashed line represents the number of servers active at
each time. The response-time superiority of the brokered system is very dramatic.
It stems from the difference in behavior of the two systems when the failed servers
come back online. When there is only one server, the system is saturated, so that
server begins to build up a large backlog of requests. When the second and third
servers become available again, the requesters in the matchmade system continue to
allocate one-half or one-third of their requests to the overloaded server, so the backlog
persists for a long time.5 In the brokered system, on the other hand, all new requests
are allocated to the new server, allowing the backlog at the congested server to quickly
dissipate.

6 Conclusions

This paper has provided a detailed description of two very important basic open
multi-agent system behaviors—matchmaking and brokering. For each behavior, we
described the component agent roles, and the individual agent behaviors within those
roles. When design options were present, we discussed the effect of the choices on
common performance criteria (e.g., local caching to increase reliability in the face of
matchmaker failure). Finally, we conducted an experimental evaluation of these pure
organizations. We showed that they obey basic theoretical models, but also that they
can differ substantially in some characteristics such as recovery times when agents
enter and exit an open system.

Matchmaker-based organizations can be expanded into organizations such as de-
centralized markets. They offer the most flexible responses to arbitrary agents enter-
ing and exiting the system, and each agent keeps total control over its own control
decisions. However, pure matchmaker systems present a single point of failure (mit-
igated by local caching or multi-matchmaker structures), and each agent needs to be
smart enough to construct a meta-query and evaluate the resulting alternative server
choices. No easy load balancing is possible. Using a matchmaker has slightly higher
overhead due to the extra queries, and there is no centralized ontological translation
facility.

Brokered organizations can be expanded into centralized markets or traditional
bureaucratic managerial units. They can also handle the dynamic entry and exit of
agents, and provide an easy way to do load balancing, centralized ontological trans-
lation, or even simple integration facilities. However, they suffer from the need of

5This effect could be reduced if requesters make an effort at active load balancing.

16

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000

E
la

ps
ed

 ti
m

e
(s

ec
)

Time (sec)

Request fulfillment
Number of servers

(a) In a matchmade system

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000

E
la

ps
ed

 ti
m

e
(s

ec
)

Time (sec)

Request fulfillment
Number of servers

(b) In a brokered system

Figure 4: Effect of server failure and recovery

17

agents to have static knowledge of the brokers and also form a communication bot-
tleneck (since all requests and replies need to go through the brokers). Worst of all,
they form a single point of failure that cannot be mitigated via local caching.

The solution that we are currently working on is a hybrid system with both
matchmakers and brokers. By design, our specified agent behaviors work inter-
changeably with both organizational roles. A hybrid system allows us to capitalize
on the lower overhead and efficient load balancing of a brokered system while re-
taining the dynamic naming capabilities and greater robustness of the matchmaker
system.

Acknowledgments

This work has been supported in part by ARPA contract F33615–93–1–1330, in part
by ONR contract N00014–95–1–1092, and in part by NSF contract IRI–9508191.

References

[1] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment.
Artificial Intelligence, 42(3):213–261, 1990.

[2] P.R. Cohen and H.J. Levesque. Communicative actions for artificial agents.
In Proceedings of the First International Conference on Multi-Agent Systems, pages
65–72, San Francisco, June 1995. AAAI Press.

[3] C. Collet, M.N. Huhns, and W. Shen. Resource integration using a large
knowledge base in Carnot. Computer, December 1991.

[4] R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem
solving. Artificial Intelligence, 20(1):63–109, January 1983.

[5] K. Decker, M. Williamson, and K. Sycara. Modeling information agents: Ad-
vertisements, organizational roles, and dynamic behavior. In Proceedings of the
AAAI-96 Workshop on Agent Modeling, 1996.

[6] Keith S. Decker and Victor R. Lesser. Designing a family of coordination al-
gorithms. In Proceedings of the First International Conference on Multi-Agent
Systems, pages 73–80, San Francisco, June 1995. AAAI Press. Longer version
available as UMass CS-TR 94–14.

18

[7] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent com-
munication language. In Proceedings of the Third International Conference on In-
formation and Knowledge Management CIKM’94. ACM Press, November 1994.

[8] M.R. Genesereth and S.P. Katchpel. Software agents. Communications of the
ACM, 37(7):48–53,147, 1994.

[9] B. Grosz and S. Kraus. Collaborative plans for group activities. In Proceedings of
the Thirteenth International Joint Conference on Artificial Intelligence, Chambéry,
France, August 1993.

[10] D. Kuokka and L. Harada. On using KQML for matchmaking. In Proceedings
of the First International Conference on Multi-Agent Systems, pages 239–245, San
Francisco, June 1995. AAAI Press.

[11] Y. Labrou and T. Finin. A semantics approach for KQML. In Proceedings of
the Third International Conference on Information and Knowledge Management
CIKM’94. ACM Press, November 1994.

[12] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative Sys-
tem Performance: Computer System Analysis Using Queueing Network Models.
Prentice Hall, 1984.

[13] J. S. Rosenschein and G. Zlotkin. Designing conventions for automated ne-
gotition. AI Magazine, pages 29–46, Fall 1994.

[14] J. A. Stankovic. Simulations of three adaptive, decentralized controlled, job
scheduling algorithms. Computer Networks, 8:199–217, 1984.

19

