Security for DAML Web Services: Annotation
and Matchmaking*

Grit Denker!, Lalana Kagal?, Tim Finin?, Massimo Paolucci®, and Katia
Sycara®

! SRI International, Menlo Park, California, USA
denker@csl.sri.com
2 University of Maryland Baltimore County, Baltimore, Maryland, USA
{1kagall, finin}@cs.umbc.edu
3 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
{paolucci+, katia}@cs.cmu.edu

Abstract. In the next generation of the Internet semantic annotations
will enable software agents to extract and interpret web content more
quickly than it is possible with current techniques. The focus of this paper
is to develop security annotations for web services that are represented in
DAML-S and used by agents. We propose several security-related ontolo-
gies that are designed to represent well-known security concepts. These
ontologies are used to describe the security requirements and capabili-
ties of web services providers and requesting agents. A reasoning engine
decides whether agents and web service have comparable security charac-
teristics. Our prototypical implementation uses the Java Theorem Prover
from Stanford for deciding the degree to which the requirements and ca-
pabilities match based on our matching algorithm. The security reasoner
is integrated with the Semantic Matchmaker from CMU giving it the
ability to provide security brokering between agents and services.

1 Introduction

Today’s Internet is a vast information resource. However, its lack of structure and
computer understandable metadata make it difficult to extract the desired infor-
mation in a reasonable time. The Semantic Web is a vision of a future Internet
in which web resources are enriched with machine-processable metadata, which
describes their meaning. This metadata will enable software agents or search
engines to find and interpret web content much more quickly and precisely than
is possible with current techniques, such as keyword search or data mining. The
DARPA Agent Markup Language DAML+OIL [1] is a language that allows
the annotation of web pages to indicate their meaning. One of the advantages
of DAML+OIL over other markup languages like XML or RDF is its expres-
siveness through built-in semantic concepts. For instance, DAML+OIL allows

* Supported by the Defense Advanced Research Projects Agency through the Air
Force Research Laboratory under Contract F30602-00-C-0168 to SRI and contract
F30602-00-2-0592 to CMU and DARPA contract F30602-97-1-0215 to UMBC.

the definition of relationships between classes such as inheritance (subclassing),
equivalence, or construction of classes as boolean combinations of other classes
(e.g., intersection or union of classes). These features allow to capture relevant
semantic information in an ontology that proves useful when reasoning about
ontologies and web resources that are marked-up with such ontologies.

In this paper, we are bridging the gap between the Semantic Web and security
through DAMLized security annotations and by providing brokering over these
annotations. Information security plays an increasingly critical role in society.
Given the increased importance of the World Wide Web for business, industry,
finance, education, government and other sectors, security will play a vital role
in the success of the Semantic Web. It is essential to have tools and techniques
in place that will allow the storage, maintenance, and processing of information
of the Semantic Web in ways that meet security requirements such as authenti-
cation, authorization, and data integrity.

Our work focuses on security aspects for DAML web services. DAML-S [2]
is a set of ontologies that support the description of Web services at three levels
of abstraction: capability, process and invocation. The capabilities of a Web ser-
vice are expressed by the Service Profile which describes high level features of
the Web service and, most importantly, input/output transformations produced
by the invocation of the Web service. The process, expressed by the Service
Model describes what the service does. Finally, the invocation is described by
the Service Grounding that describes how to contact the service, for example
through asynchronous messaging or remote procedure call, and the format of
the information to exchange.

In this paper, we aim to provide a framework that will allow the annotation
of web services and agents with security information on a very high abstrac-
tion level. Motivating examples are given in Section 2. In Section 3 we propose
several security-related ontologies that are designed to represent well-known se-
curity techniques in terms of their characteristics like credentials, mechanisms
supported, notations used, etc. These ontologies are used to describe the secu-
rity requirements and capabilities of web services and requesting agents. The
requirements and capabilities can be specific by stating the particular stan-
dards/protocols supported or more generally in terms of the security mechanisms
used, the credentials required or notations specified. Security markup adds value
to the semantic web when used in connection with inference systems that sup-
port the process of deciding which web services matches a request. In Section
4 we propose an algorithm that decides whether agents and web service have
comparable security characteristics by verifying that the agent’s requirements
are satisfied by the web service’s capabilities and the service’s requirements are
met by the agent’s capabilities. Our prototypical implementation uses JTP, the
Java Theorem Prover from Stanford [3], for deciding the degree to which the
requirements and capabilities match based on our matching algorithm. The se-
curity reasoner is integrated with the Semantic Matchmaker from CMU [4, 5]
giving it the ability to provide security brokering between agents and services.

An extended example explains the working of the system. Section 5 concludes
with a brief summary and future work.

1.1 Related Work

Over the last couple of years many security-related frameworks for web applica-
tions have been proposed. A fair number of them are based on XML, like XML
Signature [6,7], SAML [8], and WS-Security [9]. Our work aims to provide an
layer of abstraction on top of the various existing security-related standards,
addressing general security mechanisms (such as confidentiality etc.) without
re-defining all the details for specific implementation choices (such as XMLSig-
nature Syntax).

To our best knowledge, no integrating formal framework for this wide array
of security-related approaches exists. An overview about security formats by G.
Klyne [10] mentions many of the security notions that we formally specified
in our ontologies. The openness of the semantic web dictates that there will
be no such thing like one standard for security that will be adopted. Rather
we expect that new protocols or mechanisms for security will emerge as research
progresses. Nevertheless, we think that languages like DAML+OIL could be used
to provide bridges between different formalism and enable interoperability. This
is our motivation in providing a security ontology that is able to describe security
mechanism of various different kinds on a very high abstraction level. Another
advantage of using an ontological approach and a language like DAML4OIL
is, that our approach is extensible. As new mechanisms become available, we
can extend the existing classes and instances in order to incorporate the latest
developments.

Most web based application servers like Apache, Tomcat, and Websphere
include basic security functionality including authenticating users (via user-
name/password, certificate, etc.), securing the communication (via https, ssl,
etc.), support for sessions, etc. We are modeling these commonly present secu-
rity features and services so that our ontologies can be used to describe and
reason about a wide range of security related concepts.

2 Context and Motivating Example

Our work is targeted toward situations in which agents and web services have
security markup as well as other more functionally-oriented markup. An agent
has the task to find a web service with a specific functionality. Additionally,
the agent is interested only in those web services that fulfill certain security
properties, such as communicating via encrypted messages without needing au-
thentication, to name an example. The agent itself has capabilities such as the
credentials it holds or protocols it is able to use, that will determine which web
services are a possible match for the agent’s request. Similarly, a web service has
capabilities including which security mechanism it utilizes, which credentials it
is able to accept etc. Along with capabilities, a web service may also have its own

requirements on agents that it is willing to communicate with. For example, a
web service might have the capability to sign all outgoing messages and it might
require subscribing agents to authenticate using a login. Therefore, though the
web service may provide the functional capabilities that the agent is looking for
(for instance, an online reservation service), the web service and agent may not
match in terms of their security requirements and capabilities.

Our work defines necessary notations to express security-related capabilities
and requirements of web services, so that they can be exploited by a special-
purpose reasoner and matched against agent requests. Web services register
with a matchmaker service describing both their functional capabilities (such
as name, parameters, etc.) as well as security-related information. The ontolo-
gies we suggest in Section 3 can be used for this purpose. Examples for security
requirements are ”authentication by X.509 certificates” or "use of SSH proto-
col”. Examples for security capabilities are ”possession of a login” or ”possibility
to authenticate oneself.” An agent making a request essentially fills out a web
service template, describing the desired characteristics of the requested-service.
Along with describing its own security capabilities, it includes requirements for
the requested service. The request is sent to a matchmaker who, after finding
services that meet the functional requirements of the agent, will utilize the se-
curity reasoner to decide the subset of all discovered services that also meet the
security requirements of the requester agent.

Here are some examples how one can make use of security capability and
requirement markups. For our work we are assuming that the matchmaker is
trusted.

Example: Match. An agent, A, is looking for a travel web service. Agent A,
using a matchmaker interface, fills out a template for a requested web service,
describing the desired functionality of the web service as well as the agent’s se-
curity requirements and capabilities. Let’s assume that the agent is only capable
of performing Open-PGP encryption and requires that the travel service be ca-
pable of authenticating itself and communicating in XML. A travel web service,
T, registers with the same matchmaker. It provides its name, description, func-
tional capabilities, security requirements and security capabilities. We assume
that the travel service requires an agent to be able to perform encryption and
the service itself is capable of the XKMS protocol for message exchanges.

When the agent submits its request, the matchmaker goes through the de-
scription of all services registered with it to find a set of services that provide
travel functionality. So, the matchmaker finds service T as a functional match
and checks the security requirements and capabilities of agent A against those of
the web service T. In this case there is a match, because the agent’s requirements
are fulfilled by the service’s capabilities and the service’s requirements are met
by the agent’s capabilities. But what happens if the security capabilities and the
security requirements are not subsumptions of each other? This brings us to the
next scenario.

Example: Negotiation. We do not assume that agents and services always register
with their full capabilities. For example, an agent registers with the capability of

ISimpleCredential
""“"::::"' | S~.TFSI177---- OneTimePassword

\ Cerlificate‘ \Ei;)Metric \
e T AN

‘LoginWitIlPass:)hrase‘ ‘ mbliclzey‘ ‘Syn;;%aricKey‘ ‘XSOQCértificate‘ ‘ Voio/e ‘ ‘Fin\gerprimi
¥

,,,,, — dami-subClassof [XMLSignaturex509Certificate|

subclasses are pairwise disjoint

Fig. 1. A credential ontology (class hierarchy I)

having some certificate but the web service requires specifically X.509 certificates.
The requirement of the web service is a stronger condition than what can be
asserted by the capabilities of the agent and, thus, there is no match. Cases
like this might be useful when agent or service first want to go through another
protocol in which they establish some level of trust before they release specifics
about the credentials or other capabilities they hold. Protocols for negotiation
in the context of our work will be subject of future work.

3 DAML Ontologies

Our goal is to define security ontologies in DAML+OIL that allow the annotation
of agents and web services with respect to various security related notions such
as access control, data integrity and others. These ontologies are the basis for
doing automatic subsumption reasoning over security annotations. All ontologies
can be found at www.csl.sri.com/users/denker/daml-sec/. We start with an
ontology that summarizes various ways in which authentication using credentials
can take place.

3.1 Credentials

The process of establishing and verifying the identity of a requesting party in
a web application, so-called authentication, is often the basis of the decision
whether access is granted or not. Authentication is based on some token, also
called credential, that the requesting party would know or have. Credentials are
one of the various well-known authentication techniques such as name-passphrase
login, public and private keys or certificates. Our goal is to be able to specify
access control restrictions of web pages or web services that use authentication
as a requirement for authorized access.

Different types of credentials are at the core of access restrictions. Thus,
our first ontology in DAML+OIL defines the kind of credentials that are most
commonly used in today’s Internet security.

We distinguish between “SimpleCredential” and “ComposedCredential”. The
top-level class “SimpleCredential” (see Figure 1) is subclassed to “Cookie, Login,

| 1DCard|. | Credential |
T 7

\
ot \
Vo \

! \
N

Badge | | !
9 v ComposedCredential
DebitCard | |

I |

CreditCard | !
= . (ared> | SimpleCredential

DriversLicense|

IH

—O—= Property

Fig. 2. A credential ontology (class hierarchy II)

Key, Certificate, BioMetric”, and “OneTimePassword” (subclass relationships
are depicted using dotted arrows). All subclasses are pairwise disjoint. “Public
Key” and “Symmetric Key” are disjoint subclasses of the key class. The certifi-
cate class is specialized to “X509Certificate”, and further to the specific class of
X509 certificates in the XML Signature [7].

We have defined some of the most commonly existing classes of composed
credentials (see Figure 2), such as “IDCard” and “SmartCard”. For example,
a smart card can contain data such as keys, biometric templates or PINs for
authentication. Thus, composed credentials often contain simple credentials, as
modeled in our ontology with a property “cred”. Various specializations of iden-
tity cards are given. A simple credential is also a subclass of the composed
credential class. Our ontology is extensible to allow for more credential classes
or further properties.

Figures 1 and 2 only depict classes and their inheritance relationships. Prop-
erties and other restrictions are defined in the ontologies as well. For example the
LoginWithPassphrase class has two datatype properties defined, “loginName”
and “passphrase”, both of type string (see Figure 3). We are using the DAML “re-
striction” concept to express that the cardinality on these properties for the login
class is constrained to one. That means each LoginWithPassphrase-credential
comes along with exactly one name and one passphrase. For the certificate class
we defined an object property, that is a property with a DAML class as its range
type. The property “assoc” associates with each certificate some data (such as
issuer name, serial number, etc). In the special case of an XML Signature cer-
tificate, the object property is restricted to be of type “X509Data”. This class
is defined to be equivalent to the X509 element of the XML Signature definition
in [7]. This way we tie our ontology into an ontology that is being standardized.
For instance, a certificate that complies with the syntax of the XML Signature
X509 key data element can be defined as follows:

<daml:0ObjectProperty rdf:ID="assoc">
<daml :range rdf:resource="CertificateData"/>
</daml:0bjectProperty>

<daml:Class rdf:ID="XMLSignatureX509v3Certificate">

ISimpleCredential

! CertificateData
;

LoginWithPassphrase ;

OCertificate

dami:Restriction

e arcinality [XMLSignaturex509Certificate|

—O— daml:Property .Nn
daml: Restriction .-

onProperty/toClass XML SignatureX509Data|

Fig. 3. A credential ontology (some properties)

<daml :subClass0f rdf:resource="#Certificate">
<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#assoc"/>
<daml:hasClass rdf:resource="http://www.w3.org/2000/09/xmldsig#X509Data"/>
</daml:Restriction>
</daml:Class>

The tie into the standardized specifications is useful to (1) exploit other con-
cepts of widely-distributed specifications or (2) to express more detailed security
policies. As an example for (1) one could use the KeyInfo element in an XML
Signature element. KeyInfo indicates the keys that need to be used in order to
validate the signature. XML Signature has syntax elements to define key data
related to X509 certificates [7], to PGP public key pairs [11], and SPKI public
key pairs [12]. We can exploit those structures by defining specific instance of
the class Credential in our security ontology. As an example for (2) one can
imagine situations in which a web page only accepts X509 certificates that have
been issued by a particular certification authority such as VeriSign or Thawte.
Such information will be extremely helpful in directing software agents to web
resources that are available to them. A software agent that searches for a par-
ticular web service could be equipped with a collection of certificates. Whenever
the agent encounters a service that satisfies other functional aspects of its re-
quest, it may do some simple computation to conclude whether the service will
be available.

3.2 Security Mechanisms

With our ontologies for security mechanism we aim to capture high-level security
notations that are commonly used in describing user, agent or service security
policies.

We propose an ontology that allows to interface on a high level of abstrac-
tion among various security standards and notations. Several properties are de-
fined for the top class “SecurityMechanism” (not shown in Figure). For example,

[oymaxt--

- SecurityMecanism -------

‘ “S\ecuri tyNotati on‘

Protocol

Encryption ‘

‘ Signa;L;re

‘ KeyProtocol ‘ ‘DataTrar;sferProtocoI‘
AA

A

3 KeyRegistrationProtocol

| | KeylnformationProtocol
KeyDistributionProtocol

Fig. 4. A security ontology I

the ontology defines an object property “syntax” that has the class “Syntax”
as range, another property “relSecNotation” has the class “SecurityNotation”
as its range, and “reqCredential” has the credential class as range. There are
various instances for the defined classes. For example, instances of syntax are
“ASCII, DAML+OIL, OWL, XML, MIME”; security notations are “Authentica-
tion, Authorization, AccessControl, Datalntegrity, Confidentiality, Privacy, Ex-
posureControl, Anonymity, Negotiation, Policy, KeyDistribution,” and “X.509”
is an instance of the KeyFormat class. “XML-DSIG” is an instance of the sig-
nature class and “OpenPGP-Enc” is of type “Encryption.” Specific protocols
such as “X-KRSS, X-KISS, Kerberos,” or “SOAP” are defined as instances of
the appropriate protocol subclasses that satisfy certain restrictions.

Restriction classes are classes in which we constrain the range of one of the
object properties “reqCredential, syntax, relSecNotation” etc. Restriction classes
are used as “patterns” for certain security notations. For example, an “Authen-
ticationSubClass” is a class that has as one of its related security notations
“Authentication”.

<daml:restriction rdf:ID="AuthenticationSubClass">
<daml:onProperty rdf:resource="#relSecNotation"/>
<daml :hasValue rdf:resource="#Authentication""/>
</daml:restriction>

Thus, if a web service has the authentication class as one of its requirement
then it means that the service requires the user to authenticate.

One can define other restriction classes. For example, one can define a class
where one of the required credentials is X.509 or where one of the syntax used
is XML. We defined protocols in terms of their characteristics. For example,
XKMS is specified as follows in our ontology.

<security:KeyProtocol rdf:ID="XKMS">
<daml:intersection0f rdf:parseType="daml:collection">
<daml:Class rdf:ID="#AuthenticationSubClass"/>
<daml:Class rdf:ID="#KeyDistributionSubClass"/>
<daml:Class rdf:ID="#XMLSubClass"/>

</daml:intersection0f>
<security:documentation rdf:resource="#XKMS-Ref"/>
</security:KeyProtocol>

XKMS is a protocol that provides authentication and key distribution and
it uses XML as syntax. For more examples of restriction classes and protocols
see www.csl.sri.com/users/denker/daml-sec/security.daml. How web ser-
vices can make use of the restriction classes is illustrated in the next section.

We choose to define restriction classes to represent security requirements be-
cause we want to make use of the inherent features of description logic (DL), on
which DAML+OIL is based, and the tools that are available for DL approaches.
Subsumption reasoning is one of the well-defined techniques for description logics
we which employ for our purposes. It allows to decide whether security capa-
babilities and requirements are identical or whether they are in an appropriate
inheritance relationship. Thus, we spare ourselves to define special-purpose algo-
rithms that could achieve the same for lists of specific capabilities. Our approach
takes advantage of the current technology to the best of its ability.

3.3 Merging Security Ontologies and DAML-S

The missing link between our security ontologies and web services is introduced
next. We define a SecurityMechanism to be a subclass of ServiceParameter. Then
we can declare two new properties for web services, namely “securityRequire-
ment” and “securityCapability” of type SecurityMechanism.

An agent requesting a web service that is able to do authentication would
result in the following “requested web service markup.”

<security:KeyProtocol rdf:ID="Sec2">
<security:relSecNotation rdf:resource="&security;#Authentication" />
</security:KeyProtocol>

<profile:Profile rdf:ID="RequestServiceProfilel">
<profile:serviceName> ... </profile:serviceName>
<profile:textDescription> ... </profile:textDescription>
<sec-requirement rdf :resource="#Sec2"/>
</profile:Profile>

A registered web service claims to be able to communicate using the XKMS
protocol.

<security:XKMS rdf:ID="Secl"/>
<profile:Profile rdf:ID="RegisteredServiceProfilel">

<sec-capability rdf:resource="#Secl"/>
</profile:Profile>

The question is, whether the registered service is a match for the request.
Here is where our security reasoner comes into play. For the given example,

a subsumption reasoner like JTP can resolve that the requirements of the re-
quest are fulfilled by the capabilities of the registered web service. The security
reasoning algorithm that handles security matching requests is discussed below.

4 Security Reasoner

Consider the example from Section 2. Agent A that is capable of performing
Open-PGP encryption and requires a communicating service to be capable of
authenticating itself and communicating in XML, makes a request to the match-
maker for a travel web service. A travel web service T, registered with the same
matchmaker, meets the requirements of the agent A. It requires an agent to be
capable of encryption and itself to be capable of the XKMS protocol for message
exchanges. Our security reasoner accepts as input the requirements and capa-
bilities of the agent and of the service and decides to what degree they match.
In this case, the reasoner finds that there is a close match as the capabilities of
the service meet the requirements of the agent and the capabilities of the agent
meet the requirements of the service.

Requirements and capabilities of agents and services are described using our
security ontologies. They can be either instances of defined security protocols
like XKMS and Open PGP or collections of instantiated characteristics of these
protocols like encryption and authentication. Every agent and service can have
more than one requirement and capability. For ease of development, we assume
that they are disjunctively related. Adding conjunction does not involve redesign
only additional coding. Our security reasoner is implemented in Java and uses
Java Theorem Prover (JTP) and our matching algorithm to decide the relation-
ship between the requirements and capabilities. This relationship can be either
perfect match, close match, general match, negotiation possible or no match.
Perfect match is the best match possible and no match is the worst.

4.1 Security Matching Algorithm

In this section we describe the algorithm used to decide whether two security
descriptions are related. The matching algorithm exploits the subsumption capa-
bility of JTP to extract the most specific type of a requirement and a capability
and then proceeds to match them. The most specific type is the lowest class in
the security ontology that the requirement/capability is an instance of. How-
ever, the requirement and/or capability need not be of a certain protocol type,
but instead can be a collection of characteristics associated with protocols. The
matching algorithm considers three general cases : when both the requirement
and the capability are instances of a protocol, when one of them is an instance
of a protocol, and when neither is an instance of a protocol. The algorithm is as
follows:

— Case I: Both the requirement and the capability are instances of a security
protocol

e Perfect Match: A capability and a requirement are perfectly matched
if they are both instances of the same specific type. For example, if a
capability and a requirement are of type XKMS, then there is a perfect
match. However, if a capability is of type XKMS and a requirement is
of a type which is a subclass of XKMS, then it is not a perfect match.

e Close Match: If the most specific type of capability is lower in the hierar-
chy than the most specific type of the requirement, it is said to be a close
match. The requirement in this case is more general than the capability.
For example, if the requirement is of type XKMS and the capability is
of a type which is a subclass of XKMS.

e Possibility of Negotiation: If the requirement is more specific than the
capability, there is a possibility of negotiation as the capability may not
adequately represent the entities actual abilities. The most specific type
of capability is lower in the hierarchy than the most specific type of the
requirement.

e No Match: If the most specific types of the requirement and capability
are not related, then there is no match.

— Case II: Either capability or requirement are instances of a security protocol

e General match: The capability is an instance of a protocol but the re-
quirement is not. There is a general match if the characteristics of the
requirement are a subset of the characteristics of the specific type of
the capability. Let us assume that SSH is the most specific type of the
capability and the requirement only has authorization as its related se-
curity notation, then, as the protocol SSH has authorization as related
notation, there is a general match.

o Possibility of Negotiation: If the requirement has a protocol as its most
specific type and the capability does not, then there is a possibility of
negotiation if every characteristic of the protocol type of requirement is
also a characteristic of the capability. For example, the requirement is
Kerberos, which includes authentication and key distribution, and the
capability has the key distribution feature.

e No Match: If there is no general match or a possibility of negotiation in
this case, then there is no match.

— Case III: Neither capability or requirement are instances of a security pro-
tocol

e General Match: This is the case if the features of the requirement are
a subset of the features of the capability. Consider as an example, the
requirement includes only authentication and the capability has authen-
tication as one of its features.

e No Match: If in case III there is no general match, then it is considered
a no match. If for example, the requirement is for authorization and the
capability is authentication and key distribution.

4.2 Integration into the Service Matchmaker

The main objective of Agents and Web services is to perform tasks such as
providing information about a stock quotes, or Weather patterns, or purchasing
and exchanging goods. To this extent, agents have two types of capabilities: a
functional capability that describes the tasks performed by the agent and what
the agent achieves; and security capabilities that specify constraints on agent
and Web services communications. Any Internet wide registry of agents and Web
services should provide a matching mechanism that applies to both dimensions:
matching functional capabilities allows requesters to locate providers on the
bases of what they do, security matching guarantees that the requester and the
provider can interact.

The DAML-S/UDDI Matchmaker greatly improves on current web services
registries, specifically UDDI. First, it expands UDDI by supporting the represen-
tation of capabilities of Web services; in addition, via the ontologies and security
reasoning algorithm presented in this paper, it allows the representation of secu-
rity capabilities and requirements that restrict the ability of two agents or Web
services to interact.

The security reasoner has been integrated with the DAML-S/UDDI Match-
maker [4,5] which uses DAML-S to empower the UDDI web services registry
[13] with functional capability matching. The DAML-S Matchmaker performs
two tasks, the first one is to store advertisements of capabilities expressed as
DAML-S profiles, the second one is to locate which advertisement matches the
requests of capabilities the matchmaker received from requesting agents. Cur-
rently, the matchmaker uses only input and output information of DAML-S pro-
file specifications. Thus, currently the matchmaker would not be able to handle
our security specifications if we would specify them as preconditions of the web
service. Moreover, the matchmaker does only consider subsumption on classes,
whereas in our example (see Section 4.3) it is necessary to also include subsump-
tion reasoning on instances of classes. For these reasons, we decided to use JTP’s
subsumption reasoning in connection with our restriction classes. Moreover, we
proposed the security matching algorithm in Section 4.1 because we wanted to
support a broader range of subsumption decisions, from perfect match, over
close or general match and possibility of negotiation to no match, that are not
supported in the current Matchmaker implemenation.

When matching advertisements and requests, the DAML-S/UDDI Match-
maker first locates those web services that satisfy the capabilities that the re-
quester expects, second it removes all the web services that do not match the
security requirements imposed by the requester. The latter test requires two
matches, the first one is that the requester’s requirements are satisfied by the
provider’s capabilities, then that the requirements that the provider are satisfied
by the requester. For this purpose, the DAML-S/UDDI Matchmaker calls twice
the security reasoning algorithm with the corresponding parameters. Depending
on the result of the security reasoning algorithm, the matchmaker accepts a web
service as a possible match or not.

4.3 Walk-Through Example

This section is a walk through of two examples of how security annotations
of web services and agents are used by our system to provide security specific
brokering. The examples demonstrate several features of our security ontology
and illustrate the operation of the security reasoner.

Example 1 : We revisit Example 1 from Section 2. Agent A is looking for a
travel web service and registers its functional requirements (what it wants the
functional description of the matched service to be) and its security requirements
(what it expects the security capabilities of a matched service to be) and capabil-
ities (what security functionality it is capable of) with the DAML-S Matchmaker.
Agent A is capable of performing OpenPGP encryption and requires a commu-
nicating service be capable of authenticating itself and communicating in XML.
The following is the a part of the request made by agent A.

<security:0OpenPGP-Enc rdf:ID="Capabilityl" />
<security:KeyProtocol rdf:ID="Requirementl">
<security:relSecNotation rdf:resource="#Authentication" />
<security:syntax rdf:resource="#XML" />
</security:KeyProtocol>
<Agent rdf:about="#A">
<securityCapability rdf:resource="#Capabilityl" />
<securityRequirement rdf:resource="#Requirementi" />
</Agent>

A web service T registers its functional description as travel and its security
capabilities (what the service is capable of) as XKMS and its requirements (what
it expects communicating agents to use) as encryption. The following is a portion
of the service’s description

<security:XKMS rdf:ID="Capability2" />

<security:KeyProtocol rdf:ID="Requirement2">
<security:relSecNotation rdf:resource="Encryption" />

</security:KeyProtocol>

<profile:Profile rdf:about="#T">

<securityCapability rdf:resource="#Capability2" />
<securityRequirement rdf:resource="#Requirement2"/>
</profile:Profile>

The DAML-S Matchmaker uses the functional requirements of the agent to
extract a list of registered agents that match in functionality. Then the Match-
maker uses the security reasoner to decide whether the agent matches any of
the services in terms of security characteristics. Both the agent’s request and
the description of the service are input to the security reasoner. The following
steps are taken by the security reasoner to decide whether the agent and service
match in terms of their security annotations and to what degree.

— Based on the input the security reasoner makes the following inferences.
e A’s capability has OpenPGP-Enc as the most specific type
e A’s requirement does not have a most specific type and instead has a list
of features of a security protocol (authentication and xml)
e T’s capability has XKMS as the most specific type
e T’s requirement does not have a most specific type and is a list of features
of a security protocol (encryption)
— The reasoner tries to find the degree of matching between A’s requirement
and T’s capability.
e As T’s capability has a most specific type (XKMS) and A’s requirement
(authentication and xml) does not, the reasoner selects Case II.
e The reasoner tries General Matching, which is the first case of Case II.
e It locates all the features associated with XKMS, which are authentica-
tion, xml and key distribution.
e The features of the requirement are a subset of the features of XKMS,
so General Matching holds.
— The reasoner tries to find the degree of matching between T’s requirement
and A’s capability.
e As A’s capability has a most specific type (OpenPGP-Enc) and T’s re-
quirement. (encryption) does not, the reasoner selects Case II.
e The reasoner tries the General Matching case of Case II.
o It locates all the features associated with OpenPGP-Enc, among which
encryption is.
e The features of the requirement are a subset of the features of A’s capa-
bility, so General Matching holds.
— The security reasoner decides that the agent and service match in terms of
their security annotations and the degree is general match.

The DAML-S Matchmaker uses the above result of the security reasoner to
decide that the agent and the service match in both functionality and security
and informs the agent A that the service T generally matches its request.

Example 2 : As another example, consider a web service W1 looking for a
banking service. It registers its functional description, security capability (SSH)
and security requirement (authorization) with the Matchmaker. The security
portion of its description is as follows

<security:SSH rdf:ID="Capability3" />

<security:KeyProtocol rdf:ID="Requirement3">
<security:relSecNotation rdf:resource="#Authorization" />
<security:syntax rdf:resource="#XML" />

</security:KeyProtocol>

<profile:Profile rdf:about="#W1">
<profile:serviceName>... </profile:serviceName>
<profile:textDescription>...</profile:textDescription>
<securityCapability rdf:resource="#Capability3" />
<securityRequirement rdf:resource="#Requirement3" />

</profile:Profile>

The Matchmaker finds a matching service, W2, with the functional description of
personal banking and SSH as both its security requirement and capability.

<security:SSH rdf:ID="Capability4" />
<security:SSH rdf:ID="Requirement4" />
<profile:Profile rdf:about="#W2">

<securityCapability rdf:resource="#Capability4" />
<securityRequirement rdf:resource="#Requirement4" />
</profile:Profile>

5 Concluding Remarks

As shown in this paper, the formal definition of ontologies that will enable inter-
operability of various security frameworks has several advantages. The uniform
representation becomes amenable to formal reasoning and it supports agents in
selecting appropriate web services. We have presented a security ontology for
DAML+OIL that is extensible in that it allows the definition of further secu-
rity aspects as well as new links to existing standards and frameworks. With
the given security framework for DAML+OIL many of the common access con-
trol, authentication, and data integrity measures of existing web services can be
described. We described our prototype implementation that uses JTP and the
DAML-S Matchmaker to enable security matching between DAML+OIL-aware
software agents and services.

The current work is restricted to annotation and matchmaking of services
with respect to security requirements. In the future we will address the con-
nection between a service’s profile and its implementation as defined in the
grounding.

In the current framework, we focus on some common security notations.
These are often embedded into the broader context of trust policies. We plan
to extend our work and prototype to allow for security policy specifications.
Logics for trust management is another topic of future investigations. There
exists already a large body of work on trust management, e.g., [14-16] to name
a few. Recent work on frameworks for distributed trust management and policy
in multi-agent systems [17,18] and existing authentication and delegation logics
have to be taken into consideration for future logical extensions of DAML+OIL.
The first step will be the development of further basic ontologies for deontic
concepts (permissions, obligations, and rights), as well as a basic agent and
action ontology (requesting a resource, delegating rights, etc) [19]. A theory for
reasoning about trust relations will be at the core of decision procedures for web
agents that search for reliable information.

Another direction for future work is to extend our framework to composed
services. Composition of security features from atomic services is non-trivial and
the derivation of security features of a composite service on the basis of the
security descriptions of its components will be addressed in future work.

Acknowledgements. We thank the anonymous reviewers for their com-
ments that helped to improve the paper.

References

1.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

DAML+OIL Committee: DAML4OIL. http://www.daml.org/2001/03/daml+
oil.daml (2001). See http://www.daml.org/committee/ for committee members.
DAML Services. (http://www.daml.org/services)

Fikes, R., Jenkins, J., Frank, G.: JTP: A System Architecture and Component
Library for Hybrid Reasoning. http://www.ksl.stanford.edu/KSL-Abstracts/KSL-
03-01.html (2003)

. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of Web

Services Capabilities. In: ISWC2002. (2002)
Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the Semantic
Web in UDDI. In: Proceedings of E-Services and the Semantic Web Workshop.

2002

%ETF)W?)C XMLSignature Working Group: XML Signature. (http://www.w3.
org/Signature/)

Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E.: XML-
Signature Syntax and Processing Rules. http://www.w3.org/TR/2001/

PR-xmldsig-core-20010820/ (2001)

OASIS Security Service Technical Committee: Security Assertion Markup Lan-
guage (SAML). (http://wuw.oasis-open.org/committees/security/)
Atkinson, B., Della-Libera, G., Hada, S., Hondo, M., Hallam-Baker, P., Klein,
J., LaMacchia, B., Leach, P., Manferdelli, J., Maruyama, H., Nadalin, A., Na-
garatnam, N., Prfullchandra, H., Shewchuk, J., Simon, D.: WS-Security (2002).
http://www-106.ibm. com/developerworks/webservices/library/ws-secure/.
Klyne, G.: Framework for Security and Trust Standards. (http://www.
ninebynine.org/SWAD-E/Security-formats-20021202.html)

Zimmermann, P.: The Official PGP User’s Guide. MIT Press (1995)

SPKI: Simple Public Key Infrastructure. http://www.ietf.org/html.charters/
spki-charter.html.

UDDI: http://www.uddi.org/pubs/whitepapers.

Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in
distributed systems. ACM Transactions on Programming Languages and Systems,
15:706-734, 1993.

Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Proc.
1996 IEEE Symposium on Security and Privacy, IEEE Computer Society (1996),
164-173.

Li, N., Grosof, B., Feigenbaum, J.: A Practically Implementable and Tractable Del-
egation Logic. In: Proc. 2000 IEEE Symposium on Security and Privacy (S&P’00),
IEEE Computer Society (2000), 27-42.

Kagal, L., Finin, T., Joshi, A.: Developing Secure Agent Systems Using Delegation
Based Trust Management. In: Security of Mobile MultiAgent Systems (SEMAS
02) held at Autonomous Agents and MultiAgent Systems (AAMAS 02). 2002.
Bradshaw, J., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M., Acquisiti, A.,
Benyo, B., Breedy, M., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S., Lott, J.,
Sierhuis, M., Hoof, R.V.: Representation and Reasoning for DAML-Based Policy
and Domain Services in KAoS and Nomads. In: Submitted to AAMAS03, July
14-18, 2003, Melbourne, Australia, 2003.

Kagal, L., Finin, T., Joshi, A.: A Policy Language for A Pervasive Computing
Environment. In: IEEE 4th International Workshop on Policies for Distributed
Systems and Networks, 2002.

