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Abstract. In this paper, we discuss Pro�t-sharing, an experience-based

reinforcement learning approach (which is similar to a Monte-Carlo based
reinforcement learning method) that can be used to learn robust and

e�ective actions within uncertain, dynamic, multi-agent systems. We in-

troduce the cut-loop routine that discards looping behavior, and demon-

strate its e�ectiveness empirically within a simpli�ed NEO (non-combatant

evacuation operation) domain. This domain consists of several agents

which ferry groups of evacuees to one of several shelters. We demonstrate
that the cut-loop routine makes the Pro�t-sharing approach adaptive and

robust within a dynamic and uncertain domain, without the need for pre-

de�ned knowledge or subgoals. We also compare it empirically with the
popular Q-learning approach.

1 Introduction

Many existing approaches that reason about agent interaction have used a sym-
bolic representation within multi-agent planning domains [5], and within the
context of dynamic domains [4]. These approaches normally adopt a top-down
strategy, and hence require an explicit model of the environment and a de�nition
of the communication protocol used for multi-agent cooperation. Although the
corresponding agents work successfully in complex, dynamic domains, it can be
di�cult to design whole parts of the agent's knowledge. As the number of agents
within these multi-agent communities rises, it is becoming increasingly di�cult
to design static knowledge.

For dynamic domains (such as the one presented in this paper), it is not
unreasonable to design agents that use local condition-action rules to react to
each world state [4], as it can be very di�cult to model the whole domain. The
problem therefore becomes that of determining how these rules should be de-
signed for dynamic environments. In recent years, bottom-up approaches such as
reinforcement learning have become increasingly popular for determining these
condition-action, or state-action rules, without having a priori models of the
environment. However, there are still several important issues that arise when
applying these bottom-up approaches to multi-agent domains.
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In this paper, we present an approach known as Pro�t-sharing that allows
agents to learn e�ective behaviors from their experiences within dynamic envi-
ronments, where the agents are competitive and may have to face resource con-
icts. A dynamic domain based on a NEO (non-combatant evacuation operation)

is described, which presents the agents with limited resources and introduces un-
certainty. Thus it can be very di�cult to plan the di�erent agent's activities, such
as path planning and resolving resource conicts. We demonstrate empirically
that our Pro�t-sharing approach is e�ective within this domain and clarify some
of the requirements that face multi-agent reinforcement learning problems.

In Section 2, we describe a simpli�ed NEO domain from the perspective
of a reinforcement learning approach, and present our agent model. Section 3
introduces the principles of Pro�t-sharing, the Rationality Theorem, which makes
Pro�t-sharing powerful, and its advantage over other learning algorithms which
are usually found within multi-agent domains. An empirical comparison of the
performance of multiple agents using two learning approaches: Pro�t-sharing
and Q-learning, is presented via several experiments in Section 4. Finally, we
discuss the applicability and e�ectiveness of the Pro�t-sharing based method for
real-world dynamic domains, and summarize our future work.

2 Problem Domain

Non-combatant evacuation operations, or NEOs, have been used to test a variety
of coordination strategies. Though real-world NEOs have many constraint and
resource conicts, the domain used in this study models multiple transportation
vehicles which transfer groups of evacuees to safe shelters. Each transport is
operated asynchronously by an autonomous agent, which makes its own decision
based on locally available information.

This NEO domain is an example of one that exhibits the following character-
istics. First, there are several agents which are all \self-interested"; i.e. they pur-
sue their own goals competitively rather than cooperatively. Second, the agents
must resolve conicts due to shared resources. Third, the agents should behave
rationally, even though the domain is uncertain. By \rational", we mean that
each agent should reach one of the safe shelters in a �nite time period. Fourth, the
domain is both uncertain and dynamic. Fifth, the agent should learn \on-line",
i.e. it should learn while executing some action. Because of these characteris-
tics, it is very di�cult to design rules through mathematical analysis, as the
information required by each agent is not only distributed but also changes over
time.

2.1 The NEO Domain

The NEO domain consists of a grid world with multiple transporter agents, each
of which carries a group of evacuees. The goal of a transporter agent is to ferry
its group to one of the shelters as quickly as possible. However, there may be
conicts, as transporters cannot co-exist in the same location at the same time
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Fig. 1. Two Agents move within the grid world. Fig.(a) has been reproduced from [2]

(Figure 1a). In addition, the location of the shelters changes over the time. In
dynamic domains such as this, agents should exhibit reactive behaviors rather
than deliberative ones. We claim that the only e�ective approach is to learn
reactive behaviors through trial and error experiences, since it is very di�cult
to know in advance what e�ective action should be taken at each possible state
of the environment.

2.2 Modeling

Each transporter agent is modeled as a reinforcement learning entity in an un-
known environment, where there is no communication with the other agents,
and there are no intermediate subgoals for which intermediate rewards can be
given. Thus, no reward is generated until the agent reaches its target shelter.
It should be noted that there are other agents within the environment that are
also learning independently of each other, without sharing sensory inputs or
policies. As a result, the other agents appear as additional components within
the environment, whose behavior is dynamic and unpredictable.

Each agent consists of �ve modules (Figure 2); a State Recognizer, a LookUp

Table, an Action Selector, an Episodic Memory and the Learner, which includes
the Pro�t-sharing algorithm. Initially, the agent observes Ot, the partially avail-
able state of its environment at time t. An action is then selected (using a
Roulette Selection method) from the action set At, which contains all the avail-
able actions at time t. After the action is selected, the agent determines if a
reward has been generated. If there is no reward after action at, the agent stores
the state-action pair, (Ot; at), in its Episodic Memory, and repeats this cycle
until a reward is generated. The terms \state-action pair" and \rule" are used
interchangably in this paper. The process of moving from a start state to the
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Fig. 2. Model of a Pro�t-sharing Agent and Credit Assignment Functions

�nal reward state is known as an episode. Once the agent receives the reward
R, it reinforces the rules stored in its episodic memory by modifying the lookup
table using the credit assignment function f(R; t) = R � �T�t (Figure 2, Eq.2),
in which �(0 < � < 1) is a discount rate, to acquire an e�ective policy.

2.3 Requirements of Multi-agent Reinforcement Learning

There are three problems which have previously been encountered when rein-
forcement learning approaches are applied to domains with the same character-
istic as our NEO domain. The �rst is due to the \agent's sensory limitation",
in which the agent is fooled into perceiving two or more di�erent states as the
same state. This is known as perceptual aliasing [17]. If all these di�erent states
require the same action, then perceptual aliasing is desirable, as it results in a
generalization of the state space. However, if each state requires a di�erent ac-
tion, then this can lead to the agent becoming \confused", and hence performing
the wrong action. The second problem is due to concurrent learning [12, 1], in
which the dynamics of the environment vary unpredictably as, due to learning,
each agent modi�es its own policies and behaviors asynchronously. Thus, mid-
way though the learning process, an agent cannot estimate the model of state
transitional probabilities for its environment. These two problems can result in
non-Markovian properties within state transitions. The third problem is that
the approach should minimize the amount of memory required to make an agent
behave e�ectively.
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3 Approach

3.1 Pro�t-sharing with Cut-Loop Routine

Our multi-agent reinforcement learning approach is based on Pro�t-sharing, a
type of reinforcement learning originally proposed by [6]. The original version
used Pro�t-sharing as a credit assignment method based on trial-and-error expe-
riences, without utilizing any form of value estimation. However, this approach
does not take the in�nite loops in the agent's episode into consideration. These
loops may result in the agent exhibiting irrational behavior with respect to
achieving its goal. Although in general, the acquired policy need not be optimal
for multi-agent situations, it is important that this policy is rational. A rational
policy is one that is guaranteed to converge on a solution; i.e. the agent should not
become trapped within in�nite loops in the state machine. To guarantee conver-
gence to a rational policy in a non-Markovian domain, we introduce the cut-loop
routine and credit assignment function, with the discount rate (0 < � < 1), and
describe how these augment the Pro�t-sharing method.

Though the Rationality Theorem[11] can be used to design a credit assign-
ment function that excludes the loops without our cut-loop routine, applying
this theorem becomes problematic when the length of the episode is long. In
addition, though the Rationality Theorem guarantees that the ine�ective rules,
which make up the loop, are always given smaller rewards than the e�ective
rules, these smaller rewards decrease the e�ciency of the convergence. On the

other hand, our cut-loop routine prohibits the agent from reinforcing the weight
of the rules which make up the loop, and can shorten the length of the episode.

The function that assigns a reward among rules in the episode is called a credit
assignment function, f(Rt; t) (Figure 2, Eq.1) which denotes a reinforcement
value for the rule which is �red at time t. In our Pro�t-sharing algorithm, the
weight of each rule is reinforced according to its distance from the goal. For
example, at time t, an agent enters state ot and selects action at, and continues
this cycle until it receives a reward R at time T . At this point, the episode
consists of the rules ((ot; at); (ot+1; at+1); � � � � � � ; (oT ; aT )), as shown in Figure 2.
Each rule is then assigned some credit, according to the function f = R��T�t(0 <
� < 1). Thus, the last rule, (oT ; aT ) is assigned credit R; the penultimate state,



(oT�1; aT�1), is assigned credit R � �, and so on. The weight of each rule within
the episode is modi�ed by Eq.1 in Figure 2. There are two important points to
note here: the weight of ot+1 is not required when modifying the weight of ot;
and the discount rate � assigns a greater individual reward to the most e�ective
action than to other alternative actions. For example, consider the state diagram
illustrated in Figure 3(a). If the agent's 1st(Path 1) and 2nd(Path 2) episodes
required 5 and 6 steps (respectively) to achieve the goal, the weight of action
Right at the initial state S gets a larger credit, R ��5(0 < � < 1), than the action
Left(which gets R � �6). Therefore, the agent could choose the e�ective action
which selects the shortest path within its experience.

The Pro�t-sharing algorithm is di�erent from other methods, such as Q-
learning [16] and Temporal Di�erence Learning [15], which make the assump-
tion that an environment can be modeled by a Markov Decision Process(MDP).
Under the Markovian assumption, the agent can perceive a set S of distinct
states of its environment, and has a set A of actions that it can perform. At
each discrete time step t, the agent senses the current state ot, chooses a current
action at, and performs it. The environment responds by giving the agent a re-
ward rt = r(ot; at) and by producing the succeeding state ot+1 = �(ot; at). These
functions � and r are part of the environment and are not necessarily known by
the agent. Domains that obey the Markovian assumption are called MDP as the
functions �(ot; at) and r(ot; at) depend only on the current state and action.

An agent that learns using Q-learning modi�es the value of the current rule,
Q(ot; at), using a value of sequential state V (ot+1) to estimate the current value
V (ot), as shown in Figure 2, Eq.4. At each time step, the agent updates Q(ot; at)
by recursively discounting future utilities and weighting them by a positive learn-
ing rate �. Thus, Qn(ot; at) corresponds to the nth modi�cation of Q's compo-
nents, ot and at. The parameter (0 <  < 1) is a discount parameter, and
V (ot+1) is the value of the consecutive state (as given in Figure 2 Eq.5). There-
fore, if ot+1 is an aliasing state, the agent fails to estimate not only the value
of the current rule ot, but also the values of the following states ot+1 and cor-
responding actions. This failed estimation will then be propagated through the
learning process. To illustrate this, consider the example in Figure 3(b). The
state value, V, represents the minimum number of steps to a reward. In this
example, the highest value of V is 1. The values of states 1a and 1b, V(1a), and
V(1b) are 2 and 8, respectively. Although these two states are di�erent, they
are perceived by the agent as being the same state (i.e. state 1). If the agent
moves to state 1a and 1b with equal weight, V(1) = 2+8

2
= 5. Therefore the

value of state 1 is equal to the value of state 3, i.e. V(3) = 5. If the agent uses
these state values, it will move left into state 3. Otherwise, the agent moves right
into state 1. This means that the agent learns the irrational policy where it only
transits between states 1b and 3.

3.2 Cut-loop Routine in Pro�t-sharing

Consider the state diagram illustrated in Figure 3(b). At time t, an agent starts
in state 3. If it moves left, it enters state 1. It can then return to state 3 by moving



right. Thus, the agent could cycle between these two states inde�nitely, before
movingonto another state (e.g. state 4) which will lead to the goal (state 2). If the
agent's episode consists of the rules: (3; Left), (1; Right), (3; Left), (1; Right),
: : :, (3; Right), (4; Up), (2; Right), (Goal), and function f(such as the constant
or simple geometrical decreasing function) does not satisfy the Rationality The-

orem[11], then the weight of (3; left) will be larger than that of (3; right), as
the agent will have visited (3; left) several times. If the Rationality Theorem[11]
is used to design a credit assignment function that excludes these loops, then it
will fail when the length of the episode is very long.

Our solution to this problem is very simple. If the current state is the re-
visited one, the agent \cuts o�" the rules which make up the cyclic loop from
the current Episodic Memory. This routine does not require any knowledge other
than that used by the current framework of the Pro�t-sharing algorithm, because
this algorithm uses an Episodic Memory to accumulate rules until the goal is
achieved. Therefore, the agent is able to tell whether the current state is the
�rst-visited one or the re-visited one. In the case of the above example, the
original sequence of the rules becomes (3; Right), (4; Up), (2; Right), (Goal) after
the cut-loop routine is applied. Pro�t-sharing uses trial and error experiences,
and reinforces e�ective rules instead of estimating values for the di�erent state.
Therefore, it uses this policy to escape states susceptible to perceptual aliasing.
This property also makes the agent robust within uncertain domains, and reduces
memory requirement as it only stores rules which are essential for navigating the
state space. Since the NEO domain cannot be assumed to be an MDP, and since
it has a very large state space which results in very long episodes before the goal
is reached, an approach that combines Pro�t-sharing with the cut-loop routine
is more suitable than other reinforcement learning method(such as Q-learning).

3.3 Related Work

The perceptual aliasing problem has been addressed by a number of studies,
and to date, two solutions have been proposed. The �rst is memory-based [3,
9], which maintains a history of rules for each episode. The second adopts a

stochastic policy [8] where the agent selects a random action to escape from
partially observable states. The �rst solution requires additional memory to store
the tuple history. The approach adopted by our Pro�t-sharing algorithm is based

on the later solution, which includes TD(1) and the Monte-Carlo methods [13]
in that they do not use the values of consecutive states. Our approach di�ers
from TD(1) and Monte-Carlo in that our method does not use the values of
state (or state-action pairs) which require very large memory space to keep
eligibility traces to manage the delayed reward. In the tabular version of TD(1)
and Sarsa(1) algorithms, the required memory space is twice as large as that
which is required by our Pro�t-sharing method.

A number of studies have recently explored the concurrent learning problem.
Sub-goals were used by [10,14] to �nd e�ective rules using Eq.3 (Figure 2), but
there is no theoretical background for this approach. This problem has also been
discussed theoretically for the Q-learning approach [7].



4 Experimental Results

Comparison: PS(with-Cut-loop) v.s. PS(with-Rationality Theorem) v.s.QL
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Fig. 4. Performance in the Dynamic and Uncertain Domain

To demonstrate the e�ectiveness of our Pro�t-sharing approach (presented in
the previous Section), we compared its performance with that of Q-learning[16]
on the two NEO grid worlds, as shown in Figure 1. The comparison with Q-
learning is a reasonable comparison in that the memory requirements and time
complexity of both algorithms are the same. (Note: Sarsa(�) and Q(�) need
larger memory space, as mentioned in the previous Section.)



In the case of both Figure 1(a) and (b), two agents started from di�erent loca-
tions, and their task was to learn policies for �nding one of two shelters as quickly
as possible. There are �ve actions within the action set, At = fStay; Up;Right;

Down;Leftg. However, both agents cannot occupy the same position at the
same time, nor may they pass through obstacles. In the �rst world (Figure 1(a);
this world also appeared in [2]), the number of locations is small (5�3 locations),
and the agents can see the whole environment. However, the second grid world
is larger (15 � 15 locations), and in this case the perceptual distance of each
agent is only a 5 � 5 region, as shown in Figure 1(b); i.e. each agent can only
see a shelter or the other agent when they are no more than two moves away.

In each episode, the order in which the two agents move is determined ran-
domly. Agents always start in the same location (i.e. (0; 0) & (0; 2) in the smaller
grid world, and (0; 0) & (0; 14) in the larger one). The location of the shelters
varies within the right half of the grid world in each episode. Although the �rst
experiment may appear easier to learn, the agent will require di�erent actions for
when it occupies the left or the right half of the world. Therefore, the problem of
perceptual aliasing may be greater with this than with the second experiment.
When one agent reaches its target shelter, its episode terminates, and the agent
remains in the shelter until the second agent reaches its goal. The evaluation
metric is determined by averaging the number of states required by both agents
to reach the shelters. Experiments consist of 10 trials, each of which consists of
100,000 episodes. The lookup table is reset for each trial. The learning parame-
ters were selected as follows:

Pro�t-sharing: In Pro�t-sharing(Miya) and Pro�t-sharing(Ours), a geo-
metrically decreasing function (common ratio = 0:3) and (common ratio = 0:9)
was used to assign a credit to each rule, respectively. The former one satis�es
the Rationality Theorem described above. Although the latter one does not satis-
�es this theorem, loops may still be removed by the cut-loop routine because the
common ratio succeeds as the discount rate � achieves e�ective rules. Conicting
actions are resolved using a weighted roulette selection.

Q-learning: We used the parameters learning rate = 0:05 and discounting

factor = 0:9, as these were found to be the best parameters in our experi-
ments. When the agent reaches the goal state (i.e. the shelter), it receives a
reward of 1.0. The Q-learning agent uses the Boltzmann distribution p(aijs) =

e
Q(s;ai)=TP

k2actions
e
Q(s;ai)=T

(T = 0:2) to select its action.

Environment 5� 3 (without Perceptual Aliasing)

These experiments demonstrate the e�ectiveness of Pro�t-sharing for resolving
conicts under the concurrent learning context. The average steps-per-episode
for Pro�t-sharing with the cut-loop routine, (Ours), Pro�t-sharing with the
Rationality Theorem, (Miya), and Q-learning are 6.78, 6.80 and 8.98, respec-
tively after 100,000 episodes. Initially, the di�erence is large, as Q-learning
takes a long time to propagate the reinforcement throughout all of the rules.
In contrast, Pro�t-sharing reinforces the successful rules immediately after one
episode. Speci�cally, Pro�t-sharing(Ours) with the cut-loop routine converges



to the optimal policy with a smaller number of episodes(i.e. experience) than
Pro�t-sharing with the credit assignment function which satis�es the Rational-
ity Theorem. For example, the average steps per episode after 1,000 episodes for
Pro�t-sharing(Ours) and Pro�t-sharing(Miya) are 14.21 and 26.70, respectively.
There are some di�erences between the Pro�t-sharing methods and Q-learning
towards the �nal stage of the experiments. This is because this environment
changes in every episode and due to the concurrent learning of the agents when
seeking higher rewards, and hence it is more di�cult to estimate the value of the
rule. Because Pro�t-sharing exploits successful actions in each state, its emerged
plan is very closed to the optimal one. These di�erences are due to the concurrent
learning of the agents when seeking higher rewards.

Environment 15� 15; 7� 7 (with Perceptual Aliasing)

In these experiments, two grid worlds were used; the 15 � 15 world illustrated
in Figure 1(b), and a similar but smaller 7 � 7 world. The results illustrated
in Figure 4 indicate that Q-learning fails to converge for either world (only the
results for the 7 � 7 world are shown) even after 100,000 episodes. This is not
surprising, as Q-learning learns deterministic policies for MDPs, and hence is
unsuited for dynamic domains. In addition, due to the perceptual limitation of
the agent, the environment seems to be the non-MDPs from the agent point
of view. However, Pro�t-sharing, which collects stochastic data and reinforces
only useful rules using the cut-loop routine or Rationality Theorem could acquire
an e�ective policy. Also in these experiments, Pro�t-sharing(Ours) converges to
the optimal policy with smaller experience than Pro�t-sharing with the credit
assignment function which satis�es the Rationality Theorem. Because the cut-

loop routine prohibits the agent from reinforcing the weight of the rule which
makes up the loop, the agent's stochastic policy becomes accurate even in the
earlier stages of learning.

5 Conclusion and Future Work

In this paper, we introduce the cut-loop routine, and present a variant of the
Pro�t-sharing algorithm that guarantees convergence, and demonstrate its ef-
fectiveness within a multi-agent domain characterized by conicting situation
and uncertainty. Pro�t-sharing solves the problems of perceptual aliasing and
concurrent learning whilst minimizing memory requirements. In addition, the
cut-loop routine makes Pro�t-sharing more amenable for multi-agent domains
that require a stochastic policy and in which episodes become long.

While Pro�t-sharing is appropriate for an episodic task where the reward
is only given at the end of the goal, it is less suited for domains that include
intermediate rewards. We plan to combine Pro�t-sharing with other bottom-up
approaches, such as genetic algorithms, and with top-down approaches for real
world applications.
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