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Abstract

The point we want to make in this paper is

that Pro�t-sharing; a reinforcement learning ap-

proach is very appropriate to realize the adap-

tive behaviors in a multi-agent environment. We

discuss the e�ectiveness of Pro�t-sharing theo-

retically and empirically within a Pursuit Game

where there exist multiple preys and multiple

hunters. In our context of this problem, hunters

need to coordinate adaptively one another to cap-

ture all the preys, without sharing information,

prede�ned organization and any prior knowledge

around their environment. Pursuit Game itself is

very simple but can be extended to a real prob-

lem. Our approach, Pro�t-sharing, is contrastive

to other reinforcement learning approaches which

are based on Dynamic Programming , such as

Temporal Di�erence method and Q-learning, in

that Pro�t-sharing guarantees convergence to a

e�ective policy even in domains that do not obey

the Markov property, if a task is episodic and

a credit is assigned in an appropriate manner.

Pro�t-sharing is also di�erent from Q(1) and

Sarsa(1) methods in that it does not need eligi-

bility trace to manage the delayed reward.

Though our monolithic implementation here

seems to be an impractical in a real word, we need

to discuss the validity of algorithm as a multi-

agent reinforcement learning context before in-

troducing some structured frameworks into the

monolithic method to extend its application. The

contribution of this paper is that we introduce

Pro�t-sharing as the e�ective algorithm in the

multiagent domain and report its advantages and

limitations without hierarchies.

1. Introduction

Many existing approaches have used a symbolic repre-

sentation to reason about agent interaction within multi-

agent planning domains (George� 1983), and within the

context of dynamic domains (Firby 1987). These ap-

proaches normally adopt a top-down strategy, and hence

require an explicit model of the environment and a de�ni-

tion of the communication protocol used for multi-agent

cooperation. Although the corresponding agents work

successfully in complex, dynamic domains, it can be dif-

�cult to design whole parts of the agent's knowledge. As

the number of agents within these multi-agent commu-

nities rises, it is becoming increasingly di�cult to design

this knowledge statically.

For dynamic domains (such as the one presented in

this paper), it is not unreasonable to design agents that

use local condition-action rules to react to each world

state, as it can be very di�cult to model the whole

domain. The problem therefore becomes that of deter-

mining how these rules should be designed for dynamic

environments. In recent years, bottom-up approaches

such as reinforcement learning have become increasingly

popular for determining these condition-action, or state-

action rules, without having a priori models of the en-

vironment. Furthermore, the structured reinforcement

learning approach has also presented for recent years to

extend its performance in a single agent's context. How-

ever, there are still several important issues that arise

when applying these bottom-up approaches to multi-

agent domains, such as a Pursuit Game, where the

agents may have to face perceptual aliasing and uncer-

tainty of other agents' intentions. Our implementation

using Pro�t-sharing here is monolithic and not intro-

duced any hierarchical structure, which seems to be an

impractical in a real word, on purpose to make sure of the

validity of this algorithm as a multi-agent reinforcement

learning context as is often the case with an animal's

society.

Pro�t-sharing is contrastive to other reinforcement

learning approaches which are based on Dynamic Pro-

gramming (DP), such as Temporal Di�erence method

and Q-learning, in that Pro�t-sharing guarantees con-

vergence to a e�ective policy even in domains that do not
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Figure 1: Pursuit Game of Multiple Preys

obey the Markovian property, if a task is episodic and a

credit is assigned in an appropriate manner. The domain

including multiple learning entities does not seem to

be assumed as the Markov Decision Processes (MDPs).

Even though the domain can be assumed as the MDPs,

the state transition probabilities of domain appear to be

changed from the animal's viewpoint, because its sen-

sory limitation causes the perceptual aliasing problem.

Therefore, it seems reasonable to suppose that the adap-

tive behavior of animals' is realized by the Pro�t-sharing,

which collects stochastic data on a successful action of

each state rather than by DP-based algorithms which

require Markovian property of the domain. We demon-

strate empirically that our Pro�t-sharing approach is ef-

fective within this domain and clarify some of the re-

quirements that face multi-agent reinforcement learning

problems.

In Section 2, we describe our Pursuit Game de�ni-

tion from the perspective of a reinforcement learning

approach, and present our agent model. Section 3 in-

troduces the principles of Pro�t-sharing, the Rational-

ity Theorem, which makes Pro�t-sharing powerful, and

its advantage over other learning algorithms which are

usually found within multi-agent domains. An empiri-

cal comparison of the performance of multiple agents us-

ing other learning approaches; Pro�t-sharing, Q-learning

and Modular-Q approach, is presented via several exper-

iments in Section 4. The acquired rules that result in

near-optimal behavior for the agents in Pursuit Game

domain are also presented. Finally, we discuss the ap-

plicability and e�ectiveness of the Pro�t-sharing based

method for real-world dynamic domains, and summarize

our future work.

2. Problem Domain

Pursuit Game, originally suggested in (Benda 1985), has

been used to test a variety of coordination strategies.

There are many researchers which treat this problem

with di�erent motivations respectively. The focus in

(Gasser 1989),(Stephens 1989) and (Stephens 1990) is

on the generally e�ective organization among hunters.

And (Levy 1992) focuses on the coalition problem among

hunters from the viewpoint of game theory. Usually, the

environment is a grid world in which four hunters and

a single prey are placed randomly initially and the goal

of the hunters is to surround the prey, which moves ran-

domly.

In this paper, we treat hexagonal-world where there

exist multiple preys and three hunters as a multiple-

preys domain as shown in Figure1(a). Each hunter is

assumed to be a learning agent, whereas the prey does

not learn and moves randomly in the environment. The

�nal goal of the hunters' is to capture all the preys in the

environment. Because of the well known problem of state

explosion in reinforcement learning approaches, we are

obliged to create an environment with triangular cells to

reduce the size of the state space to observe an emergence

of a scheduling strategy among the hunters . Here, three

hunters are required to capture each prey. In our set-

tings, each hunter can know the location of a prey(preys)

only when the prey(preys) is(are) in the hunter's sight

which is de�ned as shown in Figure1(b). The sight of

hunter is decomposed into nine di�erent areas and each

area represents its status in terms of fvacancy, existence
of the hunter, existence of the preyg(Note: other hunters
and preys are distinguishable from each other, and they

cannot co-exist in the same location at the same time.)

This Pursuit Game domain is an example of one that

exhibits the following characteristics. First, there are

several agents which are all \self-interested"; i.e. they

pursue their own goals but can not achieve them without

cooperation. Second, the agreement among the agents

must be required to purse the common goal. Third, the

agents are required to behave rationally rather optimally,

in such an uncertain domain. By \rational", we mean

that each agent should reach their goals in a �nite time

period; i.e. the agent should not become trapped within

in�nite loops in the state machine. Although in a real

animal world, the acquired policy need not be optimal,

it is important that this policy is rational. Fourth, the

domain is both uncertain and dynamic as a real animal

world. Because these characteristics,it is very di�cult to

design rules through mathematical analysis, as the infor-

mation required by each agent is not only distributed but

also changes over time.

2.1 Modeling

Each hunter is modeled as a reinforcement learning agent

in an unknown environment, where there is no commu-

nication with the other agents, and there are no inter-

mediate subgoals for which intermediate rewards can be
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Figure 2: Model of a Pro�t-sharing Agent

given. Thus, no reward is generated until the agent

reaches a prey. It should be noted that there are other

agents within the environment that are also learning in-

dependently of each other, without sharing sensory in-

puts or policies. As a result, the other agents appear as

additional components within the environment, whose

behavior is dynamic and unpredictable.

Each agent consists of four modules (Figure 2); a

State Recognizer, a LookUp Table, an Action Selector, an

Episodic Memory and the Learner, which includes the

Pro�t-sharing algorithm. Initially, the agent observes

Ot, the partially available state of its environment at

time t. An action is then selected from the action set

At, which contains all the available actions at time t,

using a Roulette Selection method, which select an ac-

tion in proportion to its weight (see Fig.2(a)(b)). After

the action is selected, the agent determines if a reward

has been generated. If there is no reward after action

at, the agent stores the state-action pair, (Ot; at), in its

Episodic Memory, and repeats this cycle until a reward

is generated. The process of moving from a start state

to the �nal reward state is known as an episode. Once

the agent receives the reward, R, it reinforces the rules

stored in its episodic memory by modifying the look-up

table using the credit assignment function which satis�es

Rationality Theorem(Miyazaki 1999)(see Section 3.).

2.2 Requirements of Multi-agent Reinforce-

ment Learning

There are three problems which have previously been en-

countered when reinforcement learning approaches are

applied to domains with the same characteristic as our

domain. The �rst is due to the \agent's sensory lim-

itation", in which the agent is fooled into perceiving

two or more di�erent states as the same state. This

is known as perceptual aliasing (Whitehead 1990). If

all these di�erent states require the same action, then

perceptual aliasing is desirable, as it results in a gen-

eralization of the state space. However, if each state

requires a di�erent action, then this can lead to the

agent becoming \confused", and hence performing the

wrong action. The second problem is due to concurrent

learning (Sen 1995)(Arai 1997), in which the dynamics

of the environment vary unpredictably as, due to learn-

ing, each agent modi�es its own policies and behaviors

asynchronously. Thus, midway though the learning pro-

cess, an agent cannot estimate the model of state transi-

tional probabilities for its environment. These two prob-

lems can result in non-determinism within state transi-

tions. The third problem is that the approach should

minimize the amount of memory required to make an

agent behave e�ectively.

3. Pro�t-sharing Approach

The Pro�t-sharing algorithm is di�erent from other

methods, such as Q-learning (Watkins 1992) and Tem-

poral Di�erence Learning (Sutton 1988), which make the

assumption that an environment can be modeled by a

Markov Decision Process(MDP). Under the Markovian

assumption, the agent can perceive a set S of distinct

states of its environment, and has a set A of actions that

is can perform. At each discrete time step t, the agent

senses the current state ot, chooses a current action at,

and performs it. The environment responds by giving

the agent a reward rt = r(ot; at) and by producing the

succeeding state ot+1 = �(ot; at). These functions � and

r are part of the environment and are not necessarily

known by the agent. Domains that obey the Markovian

assumption are called MDP as the functions �(ot; at) and

r(ot; at) depend only on the current state and action.

An agent that learns using Q-learning modi�es the

value of the current state-action pair, Q(ot; at), using

the value of sequential state V (ot+1) to estimate the cur-

rent value V (ot), as shown in Figure 3, Eq. (1). At each

time step, the agent updates Q(ot; at) by recursively dis-

counting future utilities and weighting them by a positive

learning rate �. Thus, Qn(ot; at) corresponds to the nth

modi�cation of Q's components, ot and at. The parame-

ter (0 <  < 1) is a discount parameter, and V (ot+1) is

given by Figure 3, Eq.(2). Therefore, if ot+1 is an alias-

ing state, the agent fails to estimate not only the value

of the current state-action pairs ot, but also the values

of the following states ot+1 and corresponding actions.

This failed estimation will then be propagated through

the learning process.

Pro�t-sharing uses trial and error experiences, and re-

inforces e�ective rules, instead of estimating values us-

ing the sequential state's value. Therefore, it uses this

policy to escape states susceptible to perceptual alias-
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ing. This property also makes the agent robust within

uncertain domains, and reduces memory requirement as

it only stores rules which are essential to navigate the

state space. Since our Pursuit Game domain cannot be

assumed to be an MDP and has a very large state space,

Pro�t-sharing is a more suitable approach.

3.1 Concept of our Rationality

Our multi-agent reinforcement learning approach

is based on Pro�t-sharing, originally proposed by

(Grefenstette 1988). The original version used Pro�t-

sharing as a credit assignment method based on

trial-and-error experiences, without utilizing any form

of value estimation. However, this approach does

not guarantee the rationality of an acquired policy.

To guarantee convergence to a rational policy in a

non-Markovian domain, we introduce the Rationality

Theorem (Miyazaki 1999), which the credit assignment

function should satisfy. Although in general, the

acquired policy need not be optimal for multi-agent

situations, it is important that this policy is rational.

A rational policy is one that is guaranteed to converge

on a solution; i.e. the agent should not become trapped

within in�nite loops in the state machine. The function

that assigns a reward among rules in the episode is

called a credit assignment function, f (in Figure 3,

Eq.(3)(4)), where L is the number of available actions

(;L appears in Eq.(4) in Figure 3) at each time step, and

f(R; t) denotes an assignment value for the state-action

pair which is �red at time t.

In our Pro�t-sharing algorithm, the weight of each

rule is reinforced according to its distance from the

goal. For example, at time t, an agent enters state

ot and selects action at, and continues this cycle

until it receives a reward R at time T . At this

point, the episode consists of the state-action pairs

((ot; at); (ot+1; at+1); � � � � � � ; (oT ; aT )), as shown in Fig-

ure 3. Each state-action pair is then assigned some

credit, according to the function f(R; t). Thus, the last

state-action pair, (oT ; aT ) is assigned credit R; the penul-

timate state, (oT�1; aT�1), is assigned credit f(R; T�1),

and so on. The weight of each state-action pair within

the episode is modi�ed by Eq.(3) in Figure 3. It is im-

portant to note that the weight of ot+1 is not required

when modifying the weight of ot.

3.2 How to realize an E�ective behavior

To illustrate the di�erence between our approach and

the DP-based one, consider the state diagram in Figure

4, where the state value, V, represents the minimum step

to a reward. In this example, the highest value of V is

1, and an agent moves to the smaller valued state. The

values of states 1a and 1b, V(1a), and V(1b) are 2 and

8, respectively. Although these two states are di�erent,
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they are perceived by the agent as being the same state

(i.e. state 1).

If the agent visited to state 1a and 1b with equal fre-

quency, and it estimates these state values using DP-

based algorithm, V(1) = 2+8
2

= 5. Therefore the value

of state 1 became smaller than the value of state 3, i.e.

V(3) = 7. If the agent uses these state values, it will

move left into state 3. Otherwise, the agent moves right

into state 1. This means that the agent learns the ir-

rational policy where it only transits between states 1b

and 3.

On the other hand, the agent using Pro�t-sharing just

reinforces the state-action pairs; (1; Right) as a success-

ful rule when its observable state is state 1. Therefore,

it uses this policy to escape states susceptible to percep-

tual aliasing. This property also makes the agent robust

within uncertain domains, and reduces memory require-

ment as it only stores rules which are essential to navi-

gate the state space, while DP-based methods require to

keep the value of whole state spaces.

In order to acquire the e�ective policy, we need to

use the credit assignment function which satis�es this

theorem. Take the state diagram in Figure 4, for ex-

ample, to explain how to discard cases that result in

cyclic behavior. At time t, an agent is in the state 3.

If it moves left, it enters state 1. It can then return

to state 3 by moving right. Thus, the agent could cy-

cle between these two states inde�nitely, before mov-

ing onto another state (e.g. state 4) which will lead

to the goal (state 2). If the agent's episode consists of

the state-action pairs: (3; Left)t=1 ! (1; Right)t=2 !
(3; Left)t=3 ! (1; Right)t=4 : : : (3; Right)t=T�3 !
(4; Up)t=T�2 ! (2; Right)t=T�1 !, (Goal)t=T , and the

function f is constant, the weight of (3; left) will be

larger than that of (3; right), as the agent will have vis-

ited (3; left) several times. Also in the cases where the

function f is an arithmetic decreasing function, or an

geometric function without consideration of the number

of available actions, the agent is not guaranteed to get

out of the loop. On the other hand, if f satis�es the

theorem, the weight of (3; right) will always larger than

that of (3; left), whatever path an agent moves in its

trials. Even though the agent falls into the several loops

in one trial, the weight of action which make it escape

from there will dominate the other actions which caused

the looped behavior.

3.3 Related Work

The perceptual aliasing problem has been addressed

by a number of studies, and to date, two solu-

tions have been proposed. The �rst is memory-based

(Chrisman 1992)(MacCallum 1993), which maintains a

history of state-action pairs for each episode. The sec-

ond adopts a stochastic policy (Jaakkola 1994) where

the agent selects a random action to escape from par-

tially observable states. The �rst solution requires addi-

tional memory to store the tuple history. The approach

adopted by our Pro�t-sharing algorithm is based on the

latter solution, which includes TD(1) and the Monte-

Carlo methods (Singh 1996) in that they do not use the

values of consecutive states. Our approach di�ers from

TD(1) and Monte Carlo in that our method does not use

the values of state (or state-action pairs) which require

extra memory to keep eligibility traces to manage the

delayed reward.

A number of studies have recently explored the con-

current learning problem. Sub goals were used by

(Mataric 1997)(Stone 1999) to �nd e�ective rules using

Eq.(5) (Figure 3), but there is no theoretical background

for this approach. This problem has also been discussed

theoretically for the Q-learning approach (Hu 1998).

There are many context of the Pursuit Game

with di�erent motivations in the research of Multi-

agent reinforcement learning. Q-learning is applied in

(Tan 1993)(Ono 1997). The focus of (Tan 1993) is to

evaluate the e�ectiveness of information sharing among

agents where the relations among them are pre-de�ned.

(Ono 1997) suggests a method to avoid the state explo-

sion problem in reinforcement learning. Their results

show that Q-learning could work well even in the multi-

agent environment. But in their experiments, a hunter

does not need to consider the e�ects of other hunters,

i.e.; the relative positions among the hunters could be ig-

nored, the randomly moving prey is independent of the

hunters' policies, and the hunters are given a common

goal to move in the same direction towards the prey.

There has also been research work concerned with

multiple goals in a single agent environment. In

(Humphry 1997) and (Whitehead 1993), the active goals

are changing in the environment, but the agent does not

need to achieve all the goals but only to act appropri-

ately for each combination of goals. A composite goal



is de�ned by sequentially combined multiple elemental

goals in (Singh 1992), where rewards are generated only

when the system achieves a subgoal in a prescribed order.

The de�nition of Singh's(Singh 1992) composite goal is

related to ours, but our elemental goal, which correspond

to capturing one prey, is not independent of capturing

the rest of the preys.

4. Experiments

To compare our Pro�t-sharing approach (presented

in the previous Section) with Q-learning, Modular-Q-

learning(Ono 1997) and Whitehead's(Whitehead 1993)

approach, we experimented with there conditions, each

of which is labeled H3P1, H3P2 and H3P3, where the

number of non-learning-preys are 1, 2 and 3 in the envi-

ronment respectively.

In our experiments, three hunters started from dif-

ferent locations and their task was to capture the

whole prey(s) in the environment as quickly as pos-

sible. There are four actions within the action set,

At = fStay;Right; Left; Straightg, but hunters and

preys cannot occupy the same position. Each hunter

could see other hunters and prey only when they exist

in his sight. Hunters and preys act in turns. In each

episode, they are set in random positions of the trian-

gular toroidal environment as shown in Figure 1. The

reward R is given only when hunters have �nished cap-

turing all the preys.

The parameters are set as follows.

Pro�t-sharing: A geometrically decreasing function

f(R; t) = R_(0:3)T�t (common ratio= 0:3) was used

to assign a credit to each state-action pair sharing a

reward(R). It satis�es the Rationality Theorem de-

scribed above. The hunter selects its action by a

roulette-based weighting of the conicting rule set.

Q-learning: The learning rate= 0:05 and discounting

factor= 0:9. When the hunter reaches the goal state (i.e.

capturing 1 prey), it receives a reward of 1.0. The Q-

learning agent uses the Boltzmann distribution, as shown

in Eq.(6), to select its action.

p(aijs) =
eQ(s;ai)=TP

k2actions e
Q(s;ai)=T

(T = 0:2) (6)

In the Modular-Q-learning, the learner of each hunter

consists of two modules, and the action which has highest

Q-value will be selected in each step.

When one prey is captured, the episode of each hunter

terminates and each hunter assigns credit on the rules of

his history(episode). Then the hunters repeat the above

process until there is no prey in the environment. The

evaluation metric is determined by averaging the number

of steps required by hunters to capture the whole preys.
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426.3(83.2)

22.1(2.8)
34.3(4.8)

  87.0(9.4)

17.6(1.4)
22.3(1.7)

  28.0(2.4)

19.4(1.6)
23.1(1.8)

  34.5(3.0)P
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672.9(547.6)
3Hunters & 1 Prey
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217.4(54.6) 120.5(21.6) 52.4 (11.8)79.4(19.6)
3Hunters & 2 Prey
3Hunters & 3 Prey Unstable behavior  after 1,000,000 episodes 2188.4(6624.6)

3Hunters & 1 Prey

M
od

ul
ar

*
Q

-l
ea

rn
in

g

88.9(28.7)  58.3(15.6) 21.8 (6.3) 35.3(7.6)
3Hunters & 2 Prey
3Hunters & 3 Prey inapplicable

Modular Q-learning [Ono 1997]

(a) Comparison "Required steps to Capture the 1st Prey "
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Figure 5: Performance of Learning: Comparison \Required

steps to Capture the 1st Prey

Experiments consist of 10 trials, each of which consists

of 1,000,000 episodes. The lookup table is reset for each

trial.

4.1 Result1: Emerging Behavior without Com-

munication

First, we apply Pro�t-sharing, Q-learning(Monolithic)

and Modular-Q-learning (Ono 1997) to the hunters with-

out communication among them. Monolithic-Q-learning

is the simple One-step Q-learning without any pre-

de�ned structure. Figure 5 shows the learning curves of

the required steps to capture the �rst prey in the cases

of H3P1, H3P2, and H3P3. Figure 6 shows the learn-

ing curves of the required steps to capture one prey in

the H3P3. In each �gure, the x-axis indicates the num-

ber of episodes and the y-axis indicates the average of

required steps in 10 trials. The purpose of these experi-

ments are to show the performance of the Pro�t-sharing

in the multiple-goals and agents environment overcom-

ing perceptual aliasing and agents' concurrent learning.

When the hunter learns by Pro�t-sharing, each hunter

does plan as to the path and schedule of the preys with-

out global information. But the larger the number of

preys exist in the environment, the more steps are re-

quired and also increase the standard deviation in cap-

turing the �rst prey. In addition, convergence becomes

slower for larger number of preys, because the state

spaces are getting larger. The state space in this exper-

iment is ((Num:ofHunters � 1) + (Num:ofPreys))15.

This indicates that it is getting more di�cult to coordi-



Environments
 Required Number of Steps to capture One Prey

After  5,000
Episodes

After  50,000
Episodes

After  500,000
Episodes

After  1,000,000
Episodes3 Hunters ,3 Preys

Av.(S.D)

To capture the 1st Prey
To capture the 2nd Prey
To capture the 3rd Prey

486.6(190.7)
218.7(61.5)

    50.9(22.0)

78.0(5.3)
53.7(3.8)

  23.5(3.6)

28.6(1.8)
26.8(1.5)

  14.8(1.2)

34.3(2.0)
29.5(1.8)

  16.4(2.6)
C.f. To capture one Prey
in the H3P1*

   35.6(  7.6)    22.3(3.9)    19.3(3.2)    17.0(1.8)

Comparison "Required Steps to Capture One Prey"
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* Note : To capture one prey in the H3P1 Env. is Not the same as the case with
Global-agent to manage the target prey in each stage of capture the prey.

Figure 6: Performance of Learning in H3P3: Compari-

son:"Required steps to Capture each Prey in H3P3

nate the hunters' decisions as to which prey to attack.

But, what we notice in Figure 6 is that the required

steps to capture the last(3rd) prey in H3P3 environment

is less than that in H3P1 condition after episode 80,000.

This fact implies that hunters pursue multiple preys not

independently but simultaneously as we expected. The

results illustrated in Figure 5 indicate that Q-learning-

approaches(Monolithic and Modular) fail to converge for

either world (only the results for H3P1 world are accept-

able).

We found that the hunter created the determinis-

tic policy, which means that one observable state oi is

mapped to one action aj , even in the kind of deadlocked

situation where we could not design the knowledge such

as the multiple preys are in the same distance from the

hunters (as de�ned in Eq.(7)). But in some states (24:6%

of the hunter's state space in H3P3 case), the hunter cre-

ated the stochastic policy where two actions dominated

over other actions. These stochastic policy works e�ec-

tively in our domain where the hunter does not have any

information about actions(output) of other hunters' and

preys'. i.e.; the number of whole state space is around

9240 and the number of state which has deterministic

policy is around 2290, In the other states (6950), hunter

takes a stochastic policy.

As to the state spaces, we found that only 46:2% of the

states are necessary to capture the preys in H3P3. Be-

cause the rest of these states are reinforced little, there

are no certain strategy toward them. Therefore, when

we use this learning result in the o�-line situation, we

can shrink the state space. On the other hand, DP-

based methods like Q-learning require to keep the value

Environments  Required Number of Steps
After  5,000
Episodes

After  50,000
Episodes

After  500,000
Episodes

After  1,000,000
Episodes3 Hunters ,3 Preys

Av.(S.D)

To capture 3 preys Without Global 762.9(186.4)
136.4(  32.6)

    49.5(    9.8)

155.1(7.2)
  69.3(7.8)

    28.6(4.3)

76.2(1.8)
59.4(6.4)

  22.1(2.6)

84.5(3.4)
59.6(7.1)

  24.7(3.7)
C.f. To capture one Prey
in the H3P1*    35.6(    7.6)     22.3(3.9)   19.3(3.2)    17.0(1.8)

To capture 3 preys With Global
To capture 1 prey  With Global

Comparison : with-Global v.s. without-Global
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Figure 7: Performance of Learning in H3P3: Comparison

with the Global-agent-Environment

of whole state spaces, because they use the value of con-

secutive state to learn.

4.2 Results2 : Comparison with Centralized

Scheduling of Prey capture

Second, we compared with the condition in which a

global agent schedules the order of prey capturing.

To evaluate performance of the hunters without global

knowledge, we compared with the baseline condition in

which a single global agent schedules the ordering of prey

capture. In this case, the global agent is given the infor-

mation about the location of all the preys and hunters,

then selects the target prey by Eq.(7).

Preyj = arg min
j2preys

X

i

distance(Preyj ;Hunteri) (7)

Then, all hunters converge on the target prey and ne-

glect the other preys. In this case, a hunter ignores the

other preys although they could be in his sight. After

capturing the 1st prey, the global agent decides the next

target and hunters repeat the same procedure as men-

tioned above.

Figure 7 shows the learning curves of the required

steps to capture the 3 preys and 1 prey in both meth-

ods. The x-axis indicates the number of episodes and

the y-axis indicates the average of required steps in 10

trials.

The with-global-agent condition shows more e�ective

performance than without-global-agent to capture whole

preys because the hunters' target is always consistent

among them. In the with-global-agent method, the state

space size of each hunter's is constant (((Hunters�1)+

1))15), regardless of number of preys. And also the ac-



quired policy of capturing the 1st prey could reuse to

capture the second and third prey. But, what we notice

here is that the required steps to capture the 1 prey in

the H3P3-with-global is larger than that in the H3P1-

without-global condition. This fact implies that hunters

in the H3P3-with-global seem to be thrown into a kind

of perceptual aliasing and to be compelled them to move

unnatural way because they are concealed non-target

prey from their sights. And in with-global method, the

hunters could not pursue multiple preys opportunisti-

cally which is realized in the without-global-method.

To understand what caused these results, we draw out

the change of the policy through their learning process

as shown in Table 1. When a hunter does not see any-

thing in its sight, the perceptual aliasing problem occurs

in this toroidal triangular world. The hunter has a set of

four available rules in this situation. While, the Q-value

of each rule changes every episode, both of methods us-

ing Pro�t-sharing are signi�cantly reinforced in the early

stage due to exploitation-intensive property of the Pro�t-

sharing; i.e. they just add credit on the successful rules

after an episode. The interesting results in Table 1 is

that each Pro�t-sharing hunter learned di�erent policies

among one another, and they seem to play its own role

for capturing the prey, though their initial policies were

the same as one another.

This is the worthy of notice because each hunter

speci�ed the e�ective actions though their initial po-

sition changes randomly in every episodes. In the

without global method, Hunter1 and Hunter2 acquired

the deterministic policy which is Right(99.8%) and

Straight(95.3%) respectively. On the other hand,

Hunter3 got the stochastic policy which consists

of Left(58.5%) and Straight(39.6 %) after 1,000,000

episodes. Such a combination seems the best for get-

ting out of this perceptual aliasing state. Also in the

with global method, hunters acquired almost same deter-

ministic policy and e�ective stochastic policy as the case

of without global, but it is faster to converge on their �rm

resolution than without global case. Because the number

of state spaces of without global case is much larger than

that of with global one.

5. Discussion

Pro�t-sharing succeeds in �nding an e�ective plan and

schedule without any control knowledge. From our sev-

eral experiments, we can observe some interesting be-

haviors as follows.

1. Despite the absence of a global scheduling

mechanism, the hunters capture the preys in

a "reasonable" order (e.g., capture closest prey

�rst). The arrangement of hunters at each time step

is determined by the independent learning of the re-

inforcement agents.

Table 1: Convergence Processes of Hunter's Policy when

there is no other entity in a hunter's sight.

H

Observation Percentages of the weight (%)

After 50,000
Episodes

After 500,000
Episodes

After 1,000,000
Episodes

Profit-sharing
without Global

Profit-sharing
with Global

Stay Stay StayRight Right RightStraightLeft Left LeftStraight Straight

H
un

te
r’

s 
ID

H1

H2

H3

H1

H2

H3

23.4   0.199.8  0.1  0.3  2.894.3  2.6  2.419.654.6   0.0

15.3   4.0  0.4  0.389.7  6.4  1.9  2.040.326.517.9 95.3

16.7 58.5  1.9  0.040.054.6  3.4  2.022.742.618.0 39.6

  5.3   0.099.9  0.1  0.3  0.498.6  0.7  2.111.381.3   0.0

  4.7   1.2  0.1  0.195.6  1.2  1.8  1.485.6  4.7  5.0 98.6

13.9   0.447.7  0.848.6  2.946.5  2.032.414.439.3 51.1

Monolithic
Q-learning

All
Hunters the policy is changed from beginning to end.

2. Each hunter plays its own role for capturing

the prey. After learning by Pro�t-sharing, each

hunter plays its own role for capturing the prey, even

when their initial position is randomly changed at

every episode. The roles of hunters are determined

probabilistically. The di�erentiation among them de-

pends on the seed of random numbers used in the

early stages of their learning processes.

3. He who runs after two hares will catch neither.

The larger the number of preys, the more steps are

required to capture the �rst prey. In fact, as the num-

ber of preys increases, the number of options (i.e.,

preys to pursue) available to each hunter increases,

thus making coordination among hunters more di�-

cult. This fact implies that target of each hunter is

scattered. Here, the proverb, \He who runs after two

hares will catch neither" seems to be true.

4. Kill two birds with one stone. The required num-

ber of steps to capture the last prey in the multiple-

prey environment is less than the number of steps

required to capture the �rst prey in the single-prey

environment. This fact implies that hunters pursuit

multiple preys simultaneously. Here, the proverb,

\Kill two birds with one stone" is realized.

Though Q-learning cannot be applied in non-

Markovian environments in nature, it has been often

used as an engine of multi-agent reinforcement learning.

The �rst experiment shows that the method based on

Q-learning oscillates between perceptual aliasing states,

it fails to acquire a stable policy in the multiple-prey

environment. The cause of the oscillation is not only

the limitation of the sensory input but also the change

of hunters' policies even with the smaller learning rate

(� = 0:05). Some control knowledge, such as hierarchi-

cal structure will be necessary to overcome this problem

of Q-learning.

On the other hand, Pro�t-sharing can be applied in

non-Markovian environments without any control knowl-



edge. Though Pro�t-sharing cannot always �nd an op-

timal policy, it can �nd an e�ective policy very quickly

because it reinforces the successful state-action pairs im-

mediately after one episode. In other words, the Pro�t-

sharing-agent needs only one successful episode to ac-

quire its e�ective policy, and then its following itera-

tions of the episode improve its policy. In contrast, Q-

learning takes a long time to propagate the reinforce-

ment throughout all the state-action pairs. This feature

of Pro�t-sharing is appropriate for multi-agent learning

systems where the agent needs to adapt as quick as pos-

sible.

The results of our experiments suggest that Pro�t-

sharing also needs a hierarchical structure to reduce the

state spaces, and to handle higher level of the agents'

behaviors. However, the traits of Pro�t-sharing we ob-

served here indicate that it is easier to introduce hierar-

chy into Pro�t-sharing-agent than Q-learning-agent. Es-

pecially, the trait which Pro�t-sharing does not require

to keep the value of whole state-space in its look-up ta-

ble, makes it easy to scale up to be a structured algo-

rithm. In other words, when we use this learning result

in the o�-line situation, we can shrink the state space

and keep only the useful part of the look-up table.

6. Conclusion

In this paper, we present a variant of the Pro�t-sharing

algorithm, and demonstrate its e�ectiveness within a

multi-agent domain where agreement among the agents

is required without sharing information. Pro�t-sharing

solves the problems of perceptual aliasing and concurrent

learning while minimizing memory requirement. This

makes reinforcement learning more amenable for multi-

agent domains. While Pro�t-sharing is appropriate for

an episodic task where the reward is only given at end

of the goal, it is less suited for domains that include in-

termediate rewards.

We plan to combine Pro�t-sharing with other bottom-

up approaches, such as genetic algorithms, and with top-

down approaches for real world applications.
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