Protecting Individuals’ Interests
in Electronic Commerce Protocols

Hao Chi Wong
August 2000
CMU-CS-00-160

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Thesis Committee

Jeannette Wing, Chair
Marvin Sirbu
Doug Tygar

Nevin Heintze, Bell Labs

Copyright (©2000 Hao Chi Wong

This research is sponsored by the United States Postal Services (USPS) under a series of grants to Carnegie
Mellon University. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the USPS or the U.S. government.

Keywords: Protocols, electronic commerce, security, correctness properties, formal methods,
models, trust (assumptions), deviation modes, distributed systems.

Abstract

Commerce transactions are being increasingly conducted in cyberspace. We not only browse
through on-line catalogs of products, but also shop, bank, and hold auctions on-line.

The general goal of this research is to answer questions such as: What electronic commerce pro-
tocols try to achieve? What they must achieve? And how they achieve it? My thesis in this
dissertation is that 1) In electronic commerce transactions where participants have different inter-
ests to preserve, protection of individual interests is a concern of the participants, and should be
guaranteed by the protocols; and 2) A protocol should protect a participant’s interests whenever
the participant behaves according to the protocol and trusted parties behave as trusted.

In this dissertation, we propose a formal definition of protection of individual interests and a frame-
work in which protocols can be analyzed with respect to this property. Our definition is abstract
and general, and can be instantiated to a wide range of electronic commerce protocols. In our
framework, we model electronic commerce systems as state machines, make trust assumptions part
of protocol specifications, and distinguish executions by deviation modes.

We specify and analyze three protocols using this framework. Our analysis uses standard mathe-
matical techniques. We found protocol weaknesses that have not been found before.

To my dad Tomé (in memoriam).
To Nhd, Zico, and Tica.

Also to Marshall.

Acknowledgments

Working towards a Ph.D. degree is known to be arduous. For me, it was more challenging than
anything I had done before. I owe my successful completion to many people, and I want to thank
them.

First and foremost, I want to thank Frank Pfenning for being an advisor, a mentor, and a
friend. I greatly appreciate his guidance, both technical and non-technical, during the first years of
my career at CMU. But, above all, | am grateful for his support later on, when my thesis research
stalled and I was discouraged. Frank stood by my side, gave me perspective, reminded me of my
strengths, and offered to help however he could. My gratitude is beyond words.

I would also like to thank the members of my thesis committee for sharing their knowledge,
insight, and wisdom, specially in earlier stages of this work. I especially would like to thank my
thesis advisor, Jeannette Wing, without whom I would not have finished. I am grateful for her
patience, fairness, and relentless pursuit of precision and clarity. This dissertation is infinitely
better because of her advising.

In the last two years, | was fortunate to be associated with Katia Sycara’s research group. Katia
is caring and understanding, and her support made finishing this dissertation a much easier task.
Her enthusiasm for building real systems has had an important influence on me; I especially thank
her for giving me the opportunity of working on concrete cryptographic and security systems. This
practice gave me a different and valuable perspective on things that I had previously dealt with
only at an abstract level in my thesis work.

Like everybody else, I thank Sharon Burks and Catherine Copetas. They make it possible for
us to forget that we are part of an university with rules, calendars, and policies. I felt spoilt in the
magic kingdom they have created.

CMU’s Computer Science Department is full of interesting, stimulating, and supportive people.
I was lucky to have become friends with many of them. I thank Henry Rowley for being an
infallible source of hacking expertise and a patient sounding board for my thesis ideas. 1 treasure
our countless dinners and walks, which often had a therapeutic effect. I thank Andrzej Filinski for
his friendship, support, and eagerness to discuss all things POP-related. I thank Anurag Acharya
for being the wiser, senior officemate. And I thank Juergen Dingel for making the initial coursework
fun.

Many other people enriched my graduate school experience. I feel blessed to have enjoyed the
support, companionship, and camaraderie of Arup Mukherjee, Bwolen Yang, Siegfried Bocionek,
David Tarditi, Manish Pandey, Girija Narlikar, Rujith de Silva, Hank Wang, Yirng-An Chen, Joyoni
Dey, Rohini Brahme, Jeff Polakow, Rich Goodwin, Oliver Schulte, Stefan Weiske, Puneet Kumar,
Claudson Bornstein, Ekkehard Rohwedder, Peter Dinda, Carsten Schuermann, Joseph O’Sullivan,
and Lars Birkedal.

In the last two years, the RETSINA group in the Robotics Institute provided me with a friendly
and stimulating home. I thank each and every one of its members. Special thanks to Massimo
Paolucci (for his great friendship), Terry Payne (for being a patient and understanding officemate,
and especially for providing a quiet environment for my thesis writing), Joe Giampapa, Alan
Guisewite, Zhendong Niu, Michelle Agie, Carol Boshears, Gita Suthankar, and Martin van Velsen.

For some mysterious reason (or was it?), I had to go to CMU’s Student Health Center more
often than I wished. I thank its friendly and competent stafl. Special thanks to Diane Dawson,
whose attention, friendliness, and warmth always made me feel special.

My development as a researcher did not take place exclusively at CMU. I was lucky to have
spent one summer with Amy Felty at (the old) AT&T Bell Labs, and another with Vijay Saraswat
and Markus Fromherz at Xerox PARC. I thank them for their mentoring and friendship.

Federal University of Minas Gerais (UFMG) and Pontificia Universidade Catolica do Rio de
Janeiro (PUC-Rio) were my academic cradles, where my interest in doing computer science research
was forged. Several people inspired me and contributed directly or indirectly to my coming to
CMU. Special thanks to Jose Nagib Contrim Arabe, Virgilio e Augusto Fernandes Almeida, Nivio
Ziviani, Jose Monteiro da Mata, Clarindo da Silva e Padua, Osvaldo de Carvalho, Marcio Bunte de
Carvalho, Diogenes da Silva, Luiz Fernando da Costa, Berthier Ribeiro de Neto, Rodolfo Resende
from UFMG; and Carlos Lucena, Paulo Veloso, Valeria de Paiva, and Luiz Carlos Pereira from
PUC-Rio. I feel fortunate to have them as friends and collegues.

Going for graduate school away from one’s home country is not always fun. I thank the Brazilian
gang for re-creating a little Brazil here in Pittsburgh. Special thanks to Sergio (for making my
transition to Pittsburgh and CMU easier) and Alessandra, Marcel and Clara, Gilberto and Vanessa,
Fernando and Helena, Tsen and Ivonne, Alexandre and Ana Paula, Jair and Hiroko, Evandro, and
Eduardo.

[came to the United States to attend graduate school, but gained an American family as a
bonus. I thank Paula and Joseph for making me actually feel their daughter. I thank my husband,
Marshall, for always trying to squeeze fun into my otherwise stressed life, for providing feedback
on selected sections of my dissertation, and for never having asked why I was not finished yet.

Obtaining a Ph.D. is as much about mastering and contributing to a field as about perseverance,
inner strength, and self-confidence. I could have never obtained my degree without my family. My
mother, Nha, has always been a source of inspiration. Her strength and self-reliance, unconditional
love and support are in great part responsible for who I am. My brother Zico and my sister Tica
are my best friends and are constant reminders of how fortunate I am as a person. From thousands
of miles away, they gave me strength, support, and love that I needed to overcome the obstacles.
Finally, I am sure that my father was cheering for me from above.

Wong Hao Chi
August, 2000

ii

Contents

1 Introduction

1.1 Context and Motivation L L e
1.2 Protection of Individuals” Interests 0oL
1.3 Trusted Parties and Trust Assumptions
1.4 Thesis Overview 0 0 i e e e e
1.4.1 Modeling Electronic Commerce Systems
1.4.2 Specifying and Using Trust Assumptions
1.4.3 Defining Protection of Individuals’ Interests
1.4.4 Case Studies e e
1.5 Contributions e
1.6 Related Work o L o e
1.6.1 Atomicity, Fairness, and Related Properties
1.6.2 Other Properties e
1.6.3 Trust e e e e
1.7 Roadmap o e e
2 The Model
2.1 System Characterization and Assumptions L.
2.2 Modeling Electronic Commerce Systems as Transition Systems
2.2.1 MeSsages e e e e e e
2.2.2 Modeling processeso e e e e e e
2.2.3 Modeling Electronic Commerce Systems
2.3 Protocol Specificationo o
2.3.1 Specification of Initial Conditions oo,
2.3.2 Specification of Local Protocols 0oL
2.3.3 Specification of Trust Assumptionso 0oL,
2.4 Formalizing p-Protective Protocols in Our Model
2.4.1 Preliminaries L e e
2.4.2 Protocol Executions oo
2.4.3 p-Protective Protocols L
2.5 Assumptions and Their Implications oo oL
3 Franklin and Reiter’s Protocol
3.1 Introduction L e
3.1.1 Preliminaries

iii

13
13
15
15
16
18
20
20
21
22
22
22
24
27
28

3.1.2 The Protocol e e 32

3.1.3 Discussion e e e e e e 33
3.2 Abstract Formulation of the Building Blocks 34
3.3 Formalizing the Protocol and the Protection Properties 35
3.3.1 Specification of the Protocol oo o 36
3.3.2 Specification of Protection Properties 38
3.4 Analysis of the Protocol 39
3.4.1 Preliminaries L e 39
3.4.2 Protection Under Compliance Mode 40
3.4.3 Protection Under Abortion Mode oL, 41
3.4.4 Protection Under Deception Mode 44
3.5 Formal Analysis of the Protocol L oo 46
3.5.1 Preliminaries L e 46
3.5.2 Protection Under Compliance Mode 49
3.5.3 Protection Under Abortion Mode Lo oo 52
3.5.4 Protection Under Deception Mode 55
3.6 Summary ... oL e e e e e e 59
The NetBill Protocol 61
4.1 Introduction L e e e e e 62
4.1.1 Preliminarieso 62
4.1.2 The protocol 63
4.1.3 Our abstractions L 64
4.2 Abstract Formulation of the Building Blocks 65
4.2.1 Cryptographic Building Blocks 0. 65
4.2.2 Product Types and Projection Functions 67
4.3 Formalizing the Protocol and the Protection Properties 68
4.3.1 Protocol Specification Lo Lo 68
4.3.2 Specification of Protection Properties 72
4.4 Analysis of the Protocol 76
4.4.1 Preliminaries oL 76
4.4.2 Protection under Deception Mode L. 7
4.4.3 Protection under Compliance Mode 81
4.4.4 Protection under Abortion Mode L L o oL 81
4.5 Formal Analysis of the Protocol o o L 82
4.5.1 Preliminaries Lo 82
4.5.2 Protection Under Deception Mode 83
4.6 Summary and Conclusion L L L e 94
4.6.1 Summary . . .o .. e e 94
4.6.2 Conclusion and Insights oo 95
Brands’s Off-line Cash with Observers Protocol 97
5.1 Electronic Cash Systems — Preliminaries 98
5.1.1 Ecoins and Blind Signature Protocols 99
5.1.2 Ecoins and Rights Certificates 99
5.2 Brands’s Protocol — An Introduction Lo oo L 100

iv

5.2.1 The Setup of the System o 101

5.2.2 The Withdrawal Protocol 102
5.2.3 The Payment Protocol 103
5.2.4 The Deposit Protocol o 104
5.2.5 Assumptionso e e 105
5.3 Abstract Formulation of the Building Blocks 106
5.3.1 Cryptographic Building Blocks o000, 106
5.3.2 Product Types and Projection Functions 109
5.4 Formalizing the Protocol and the Protection Properties 110
5.4.1 The Withdrawal Protocol 110
5.4.2 The Payment Protocol 113
5.4.3 The Deposit Protocol o 116
5.5 Analysis of the Protocol: Preliminaries 119
5.6 Analysis of the Withdrawal Protocol 0. 120
5.6.1 Protection under Deception Mode 0oL, 120
5.6.2 Protection under Compliance Mode 0oL, 125
5.6.3 Protection under Abortion Mode L Lo Lo 125
5.6.4 Summary Lo e e e e e e e e 127
5.7 Analysis of The Payment Protocol 127
5.7.1 Protection under Deception Modeo, 127
5.7.2 Protection under Compliance Mode 0L, 133
5.7.3 Protection under Abortion Mode oo Lo 133
B4 Summary e e e e e e 135
5.8 Analysis of The Deposit Protocolo o o oo 136
5.8.1 Protection under Deception Mode 0oL, 136
5.8.2 Protection under Compliance Mode L oL, 140
5.8.3 Protection under Abortion Mode oL Lo oL 141
B84 Summaryo e e e e e e 142
5.9 Conclusion e 143
5.10 Feedback from Stefan Brands o o 144
Conclusions and Future Work 145
6.1 Summary and Reflections of Results 0. 145
6.1.1 The Framework 145
6.1.2 The Case Studies e 146
6.2 Future Work o L 148
6.3 Closing Remarks e 150

vi

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

5.1
5.2
5.3
5.4
5.5
5.6

Classification of local protocol executions. 0., 25
FR’s protocol. o 33
An abstract formulation of FR’s protocol. o 0 0. 35
Examples of trustworthy abortive executions of Z. 43
Examples of untrustworthy abortive executionsof Z. 43
An untrustworthy deceptive local execution of Z. 46
A trustworthy deceptive local execution of Z. L. 46
Summary table 60
The NetBill protocol. 63
An abstract blind signature protocol. oo 0oL 99
What the principals have once the systemisset up. 101
The withdrawal protocol. 102
The payment protocol. L 103
The deposit protocol. e 105
Examples of two different coins sharing the first component of their substrates. . . . 139

vii

viii

List of Tables

4.1

5.1
5.2
5.3

Summary table. e 94
Summary table for the withdrawal protocol 000, 127
Summary table for the payment protocol. 00000, 135
Summary table for the deposit protocol. o000 oo, 143

ix

Chapter 1

Introduction

1.1 Context and Motivation

Commerce transactions are being increasingly conducted in cyberspace. We not only browse
through on-line catalogs of products, but also shop, bank, and hold auctions on-line.

For electronic commerce to sustain its current growth rate, and prevail as a definitive alternative
to traditional physical commerce, nothing should happen to undermine consumers’ confidence in
the new technology. Thus, both electronic transactions and entities should satisfy a minimal set of
properties, expected by users of electronic commerce systems. For instance, in an electronic sale
transaction, a customer should receive the goods which he or she pays for, and a merchant should
be paid for goods delivered. Similarly, electronic cash should always be exchangeable for goods and
services. Note that since the electronic world has characteristics of its own, these properties may
or may not have a correspondence in the physical world.

These requirements can be hard to meet. First, some intrinsic constraints of the physical world
are absent in the electronic world. For instance, due to the resources and knowledge it takes to
counterfeit cash, spurious bills and coins are less common in the physical world than they would
be. In the electronic setting, however, where copying data items is cheap, fast, and easy to disguise,
spurious currency will likely to be much more common.

Second, participants of electronic commerce transactions are often geographically distributed,
and informal mechanisms that require face-to-face interactions and that can help bring transac-
tions to successful completion are now unavailable. For example, customers can no longer judge
merchants by their storefronts, and different parties of a transaction can no longer easily moni-
tor each other and enforce fulfillment of individual obligations in the transaction. Some types of
transactions are more vulnerable than others. For example, in the physical world, a customer does
not pay with cash unless he or she is given goods or receipts on the spot. But electronic cash
protocols have users send electronic cash over networks. This capability prompts hard-to-settle
disputes, such as a merchant and a customer disagreeing over whether or not the electronic cash
was sent. Was the cash not sent by the customer? Or was it actually received by a lying merchant?
Problems with the network bring in other possibilities: the cash might have been lost during the
transmission, due to a network failure.

Third, unlike certain other classes of protocols (e.g., key distribution), where participants share a
common goal (e.g., obtaining a secret key for a secure communication) [32, 71, 74], here participants
typically have separate and often conflicting goals in mind [42, 28, 89]. For instance, while honest

customers will try to pay for goods received, dishonest ones may cheat and try to obtain goods for
free. Similarly, while conscientious merchants will strive for customer satisfaction, unscrupulous
ones may not care if goods are not delivered, or may deliver something else. In cyberspace, where
one is likely to interact with complete strangers, the threat of cheating is real.

To achieve properties they are expected to satisfy, electronic commerce protocols rely on cryp-
tography, trusted parties, and tamper-resistant hardware. These protocols are usually filled with
details whose purposes are not immediately clear. To make matters even worse, critical assump-
tions are often left implicit in their specifications. Given this scenario, it is not always clear what
these protocols try to achieve, what they must achieve, and how they achieve it.

This research addresses these questions, and focuses on a requirement called protection of indi-
viduals’ interests.

The rest of this chapter is structured as follows. In Section 1.2, we introduce the notion
of protection of individuals’ interests starting from the notion of fairness. In Section 1.3, we
introduce the notion of trust assumptions, and discuss their importance in protocol design, analysis,
implementation, and deployment. In Section 1.4, we give an overview of this thesis work. In
Section 1.5, we summarize our contributions. Section 1.6 presents related work, and Section 1.7
gives a roadmap for the rest of this dissertation.

1.2 Protection of Individuals’ Interests

The notion of protection of individuals’ interests is a generalization of the notion of fairness. In
this section, we give an intuition about the former starting from a common interpretation of the
latter.

The notion of fairness first appeared in the context of protocols for exchange of secrets, contract
signing, and certified electronic mail [10, 11, 7, 27, 38, 65, 85, 75, 83, 88]. More recently, fairness
has also been studied in the context of protocols for exchange of documents, electronic sale, and
non-repudiation [6, 5, 20, 28, 31, 53, 57, 58, 89, 90].

The most widely used intuitive interpretation of fairness says that a protocol is fair if no protocol
participant can gain any advantage over other participants by misbehaving. Gaining advantage
means different things in different contexts. For example, in a sale transaction, a customer gains
advantage if she receives the goods, but the merchant does not receive the payment; and a merchant
gains advantage if he receives the payment, but the customer does not receive the goods. In certified
electronic mail, the recipient of a message gains advantage if the sender does not receive the proof
of delivery; similarly, the sender gains advantage if she has a proof of delivery, even though the
recipient did not receive the message.

The usual notion of fairness, however, is not subtle enough. In particular, one party’s interests
can be compromised even if no one else has gained any advantage. This situation can happen, for
example, in sale transactions where customers pay by electronic cash. If the payment sent by the
customer gets lost while in transit, and never reaches the merchant, and the merchant does not send
the goods, then we are in a scenario where neither the customer nor the merchant receives their
shares in the exchange, even though the customer has effectively lost money. Under this scenario,
no one has gained any advantage, but the customer’s interests have certainly been hurt: she did
not receive anything in return for the money she has now lost. Users of ecommerce protocols need
to be protected against such losses.

To handle this and other examples, we introduce a new property called protection of individuals’

interests, which is centered on the notion of protection of different participants’ interests in a
transaction. Intuitively, a protocol protects a participant’s interests if his or her interests cannot
be hurt even if everybody else misbehaves.

Protection of individuals’ interests generalizes fairness in two ways. First, it has a wider domain
of applicability: while fairness is applicable only in transactions where the zero-sum rule holds,
protection of individuals’ interests is applicable in any transaction where participants have different
interests to preserve. In addition to exchange protocols, which are the only ones that have been
studied with respect to fairness, we can now examine an assortment of other types of protocols
with respect to protection of individuals’ interests. Payment protocols, withdrawal protocols, and
auction protocols are some examples. In payment protocols, the payer’s interest is protected if the
money she gives up is actually received by the payee; and the payee’s interest is protected if what
he receives is worth real money. In withdrawal protocols, the withdrawer’s interest is protected
if the amount deducted from her account is never bigger than the amount of cash she receives;
the bank’s interest is protected if the withdrawer cannot obtain cash without having her account
deducted. Finally, in auction protocols, the auctioneer’s interest is protected if she always sells
her goods at the highest price bidders are willing to pay; and a bidder’s interest is protected if he
is sold the auctioned goods if his offer is the winning bid, and the sale price was not artificially
inflated by bidding frauds.

Second, protection of individuals’ interests assumes a less restricted failure model. To analyze
a protocol with respect to fairness, one considers scenarios where a participant misbehaves, and
checks whether the participant himself can obtain any advantage [3, 42]. To analyze a protocol
with respect to protection of individuals’ interests, one considers scenarios where everything (other
participants and the network) except the participant’s local execution can go wrong, and checks
whether the same participant’s interests can be hurt. This second failure model takes into account
threats that are not considered when one is concerned with fairness. They include sabotage attacks
where a participant misbehaves not to obtain advantages for herself, but to hurt someone else’s
interests. (These attacks can sometimes hurt the interests of even the perpetrator herself.) They
also include system failures that are out of control of the participants themselves. Network failures
are an example. Finally, they include collusions among multiple participants. This failure model,
in essence, assumes that one should not rely on anyone other than oneself or anything other than
the protocol to protect one’s own interests.

This assumption can be too stringent however. When a designer uses trusted parties in a
protocol, protection of the various individuals’ interests typically rely on certain parties behaving
as trusted. We will discuss trusted parties and their roles in protection of individuals’ interests in
the next section.

1.3 Trusted Parties and Trust Assumptions

Executions of security and electronic commerce protocols are subject to potential disruptions by
third party intruders/participants of a protocol themselves. These disruptions can lead to inad-
missible outcomes, where basic properties of a transaction are violated. For example, a disrupted
execution of an authentication protocol may wrongly authenticate a party A as a different party
B.

One way of preventing corruption of outcomes is to use trusted parties. In a protocol, trusted
parties are parties entrusted with correctly and reliably carrying out protocol steps that are decisive

to guaranteeing satisfaction of a targeted property. For example, trusted parties are entrusted with
generating fresh keys in authentication protocols to guarantee authentication [71, 74, 81]. In some
payment protocols [84], they are entrusted with implementing transaction processing [66] to achieve
fairness. This notion of trust is a refinement of the definition of trust adopted by the US Department
of Defense in the context of secure systems, which states that “a trusted component is one which, if
it breaks, can compromise system security” [1]. It is a refinement because it distinguishes “breaks”
that matter and those that do not. For a concrete example, see Example 1.1 below.

A trusted party can be one of the main parties involved in a protocol (for instance, banks in
ecash protocols are usually trusted) or someone called in solely to mediate a transaction (like 7" in
Example 1.1).

Trusted parties are entrusted with correctly and reliably carrying out critical steps of a proto-
col. In the context of protocol design and analysis, entrustment simply translates into assumptions.
These assumptions — about how trusted parties behave — are commonly called trust assumptions.
When reasoning about a protocol, one effectively assumes that ordinary parties can deviate arbi-
trarily from the protocol, while trusted parties can deviate so long as they do not violate trust
assumptions.

To be concrete, consider the following hypothetical fair exchange protocol,

Example 1.1 A mediated exchange protocol:

A—-T:
B—>T:
T—B:
T— A:

- W =
ST o R

through which A and B trade items @ and b, under fair mediation of trusted party T'. A is prescribed
to release @ and wait to receive b. Since he is an ordinary party, we make no assumption about how
he will behave in an actual run of the protocol. For example, he may release a, and decide to quit
his execution before receiving b. Or he may withhold a, and hope to receive b for free. The same
is true of B. T is prescribed first to receive a and b, and then to forward them to their respective
destinations. Since T is a trusted party, it is subject to two trust assumptions:

A1l: T will not forward the items before it has received them both; and
A2: I T forwards any item, it forwards both.

This set of trust assumptions says that 7" will not halt its local execution between steps 3 and
4 (this would violate A2), but could do so between steps 2 and 3. Note that 1”’s stopping between
steps 3 and 4 makes an exchange unfair, while its stopping between steps 2 and 3 does not. Finally,
this protocol implements fair exchange, as long as communication channels are reliable and 7T is a
trusted party that satisfies trust assumptions A7 and A2. Without these assumptions, fairness is
not guaranteed.

Trust assumptions differ from other system assumptions. System assumptions deal with general
characteristics of a system (e.g., networks can go down or processors can halt), whereas trust
assumptions specify what trusted parties are trusted to do in the context of a protocol execution.
Thus, while system assumptions are protocol-independent, trust assumptions are protocol-specific.

The knowledge of a protocol’s trust assumptions is important to those analyzing the design
of the protocol. Using these assumptions, analysts can build models that better reflect what the

designers had in mind, making the analysis more meaningful. The knowledge of trust assumptions
is also important to implementers and deployers, who need to realize these assumptions in the real
system. Knowing these assumptions enables them to determine whether a protocol, as conceived
by its designers, is realizable; estimate the cost of realizing it; and compare different protocols of a
class with respect to their reliance on trusted parties (typically, the less trust a protocol requires,
the less vulnerable is the protocol). Finally, the knowledge of trust assumptions is important to
prospective users of a protocol. Knowing the trust assumptions allows them to decide whether a
prospective participant of a protocol is fit to be a trusted party, and to evaluate the risks of relying
on this prospective trusted party.

Even though knowledge of trust assumptions is important in so many contexts, they have
mostly remained in the back of the designers’ minds, and have rarely been made explicit. In
this dissertation, we propose changing this state of practice: we introduce a framework where
trust assumptions are made explicit as part of a protocol specification. Explicit trust assumptions
are then used in modeling and analyzing protocols. We explain how we specify and use trust
assumptions in Section 1.4.2.

1.4 Thesis Overview

Thesis Statement: FElectronic commerce protocols form a distinct class of crypto-
graphic protocols in terms of what it means for a protocol to be correct. Formal methods
can help not only in formalization of correctness conditions, but also in protocol analysis.

To support this thesis, we identify a novel property called protection of individuals’ interests that
all electronic commerce protocols should satisfy. We then propose a formal definition of protection
of individuals’ interests and a framework in which protocols can be analyzed with respect to this
property. Our definition is abstract and general, and can be instantiated to concrete protocols
from different classes of electronic commerce protocols. In our framework, we model electronic
commerce systems as state machines, make trust assumptions part of protocol specifications, and
distinguish executions by deviation modes.

Using this framework, we specify and analyze three protocols [42, 28, 14]. Our analysis uses
standard mathematical techniques.

In the rest of this section, we sketch the various components of our framework and our definition
of protection of individuals’ interests.

1.4.1 Modeling Electronic Commerce Systems

We see electronic commerce systems abstractly as sets of interconnected agents where each agent
runs a process. Agents have private local stores where they hold their data. They also have
the capability of generating new data, communicating with each other by message passing, and
deriving new data from existing ones using cryptography. Communication channels are end-to-end,
and there is a channel connecting any pair of agents in a system. Both the communication and
process executions are asynchronous.

We consider both process failures and channel failures. Since channel failures manifest them-
selves in the processes, however, we cast them all in terms of process failures. In this dissertation,
processes can fail in two ways: they can failstop or they can deceive. A process failstops if it
terminates abnormally, in a way not prescribed by the algorithm it is running. A process deceives

if it follows the algorithm only apparently: at each step, the process executes the type of action
prescribed by the algorithm, but possibly with bogus messages.

Both failstopping and deception are simple types of failures. Yet they model realistic attacks
to electronic commerce systems. Power outages, computer crashes, and user-initiated interruptions
can all cause premature termination of a process; connection failures are common with today’s
Internet; and deceptions can be easily carried out by malicious users.

We assume secure communication in our model: if a message is received, then it is received
by the intended recipient, authenticated, confidential, and intact. Effectively, we assume that
processes use the service provided by an underlying layer of cryptographic protocols.

The characterization of electronic commerce systems depicted above differs from the ones tradi-
tionally used in investigations of security protocols. In traditional characterizations, participants of
a protocol always behave correctly, and there is invariably an intruder that can eavesdrop and cor-
rupt communications among the participants. In our characterization, participants of a protocol,
including trusted parties, may fail or misbehave, but communications among them are assumed
to be secure. Doing so allows us to abstract away possible spoofings, sniffings, and tamperings
of messages by third party intruders, which makes modeling them unnecessary. The goal is to
focus on answering the core question: What can participants of a transaction, with the “help” of
unreliable communication channels, do to violate other participants’ individual interests?

We formalize this abstract model in state machines. Our formalization is standard.

1.4.2 Specifying and Using Trust Assumptions

Traditionally, protocol specifications specify protocol principals, initial conditions, and protocol
rules. In our framework, they also specify trust assumptions.

Trust assumptions are specified in linear-time temporal logic [67]. Each trusted party has
associated with it a set of logic expressions specifying its trusted behaviors. For example, the
specification of the protocol in Example 1.1 (Section 1.3) would include two formulas specifying
Al and A2.

Given that trusted parties are assumed to behave as trusted, executions of trusted parties that
violate their corresponding trust assumptions should not appear in the model of the overall system.
In our framework, trust assumptions are used to filter out trust-violating executions from the set
of all possible executions of a protocol. We explain the filtering mechanism in the next subsection.

1.4.3 Defining Protection of Individuals’ Interests

Ideally, protocols should protect the interests of each of its participants. In this subsection, we define
the conditions under which they should provide such protection. To do so, we first characterize
different types of executions performed by parties in a protocol.

Definition 1.2 A compliant execution is one in which the party behaves as prescribed by the
protocol. A compliant execution runs to completion, or terminates prematurely because of remotely
originated communication disruptions.

Definition 1.3 A deviant execution is one in which the party does not behave as prescribed by
the protocol. We consider two types of deviant executions. An abortive execution is one which
terminates prematurely because of local factors, and a deceptive execution is one which includes
deceptive steps (Section 1.4.1).

Definition 1.4 A trustworthy execution is one in which trust assumptions made about the party
are satisfied.

Note that the types of executions defined above do not conform to the traditional classification
of executions, based on failure modes. The traditional classification is inadequate here for two
reasons. First, it does not distinguish between failures that one causes to one’s own execution and
those caused by other parties of the protocol. Second, it does not distinguish between behaviors
that obey trust assumptions and those that violate them.

We now give the primary definition of this subsection:

Definition 1.5 Given a protocol and one of its parties p, the protocol protects p’s interests (or,
for short, is p-protective) if p’s interests are preserved in all executions where p executes compli-
antly (p’s execution is compliant), and all trusted parties execute as trusted (their executions are
trustworthy).

Note that Def. 1.5 implicitly asserts three important policies. First, a party is entitled to
protection only if it behaves compliantly. Second, all trusted parties are relied upon to behave
as trusted. Third, a party is entitled to protection even when other parties execute deviantly.
Depending upon assumptions about how the parties of a protocol can deviate, an analysis can
focus on one type of deviation or another.

Def. 1.5 is general and abstract in that p’s prolection property, which describes the conditions
under which p’s interests are preserved in an execution, is not specified. Protection properties
cannot be specified without reference to a protocol, because they vary from protocol to protocol.
Individuals’ interests in an auction protocol are certainly different from those in a payment protocol.
There are variations even within a single class of protocols. For example, receiving payment may
mean receiving cash in one protocol and receiving a check in another, and this difference leads to
different protection properties.

1.4.4 Case Studies

Using the framework sketched above, we specify and analyze three electronic commerce protocols:
Franklin and Reiter’s fair exchange protocol with a semi-trusted third party [42]; NetBill (a protocol
for purchasing information goods on the Web, proposed by Cox, Sirbu, and Tygar) [28]; and
Brands’s off-line cash with observers protocol [14]. Each case study includes 1) a description of
an abstraction of the protocol, 2) a formalization of the abstract protocol, 3) a specification of
protection properties, and 4) protocol analysis.

During the formalization, we identify and specify trust assumptions pertaining to the trusted
parties. Because trust assumptions are not given explicitly in the original published versions of
these protocols, we had to infer them in some cases, and identify them afresh in others.

Different protocols require different amounts of effort in specification of their protection prop-
erties. For Franklin and Reiter’s protocol, we simply transcribe the corresponding fair exchange
properties. For NetBill, we have to take into account not only what happens on-line, but also
dispute resolutions that happen off-line. For Brands’s protocol, protection properties had to be
formulated from scratch.

In the analysis, we consider protection properties of different parties in turn. Given a party
p, we analyze p-protection under three modes: compliance, abortion, and deception. Within each
mode, we consider two types of scenarios: one with reliable communication channels and the other

-~

with unreliable ones. In each case, we show whether the protocol is p-protective and what would
happen if trust assumptions are violated. We also suggest fixes whenever appropriate.

Note that the protocols we analyze were not necessarily designed to function under all the
scenarios we consider. (Their designers may have made stronger or weaker assumptions.) We
submit them to analysis under all our scenarios, nonetheless, to see how they would do under
different conditions.

1.5 Contributions

This dissertation makes several contributions to the fields of electronic commerce, computer secu-
rity, and formal methods. The main contributions are listed below.

e We include trust assumptions as an explicit part of protocol specifications. We then use
them to formalize executions of trusted parties. This formalization allows us to model semi-
trustworthiness.

Explicit trust assumptions also enable comparisons and evaluations of protocols with respect
to their trust requirements. They are also an invaluable guide to implementers and deployers.

e We identify protection of individuals’ interests as a requirement for electronic commerce
protocols, and formalize the conditions under which protocols should provide such protection.
The formalization uses several novel types of executions: compliant, abortive, deceptive, and
trustworthy.

Our formalization is abstract and general, and provides a unifying framework for analyzing
different classes of protocols.

e We analyze three protocols using our model. The analyses established whether the protocols
protect the interests of their participants under different scenarios.

We found protocol weaknesses that have not been found before, and suggest possible fixes for
the weaknesses we found.

1.6 Related Work

Formalization and analysis of cryptographic and security protocols have been topics of research for
over twenty years. Authentication and key exchange protocols have by far been the most stud-
ied, with secrecy, authentication, and integrity being the properties receiving the most attention.
Because we focus on protection of individuals’ interests, and assume secrecy, authentication, and in-
tegrity as provided by underlying services, this body of research is not as closely related to our work
as it might appear. We thus omit it here, and point interested readers elsewhere for surveys [79]
and summaries of the history and the state-of-art of formal cryptographic protocol analysis [69].

In what follows, we discuss three different categories of related work, pointing out major differ-
ences that distinguish them from our work.

1.6.1 Atomicity, Fairness, and Related Properties

Protection of individuals’ interests is a generalization of fairness, and fairness is closely related to
atomicity. An introduction to fairness appears in Section 1.2; we do not repeat it here. As for

atomicity [84], there are three levels of atomicity. Money-atomic protocols transfer funds from one
party to another without creating or destroying money. Goods-atomic protocols are money-atomic,
and guarantee that goods are delivered if and only if money is transferred. Finally, certified delivery
protocols are goods-atomic, and allow both merchants and customers to prove, to a third party,
which goods were delivered.

Atomicity and fairness were both introduced by protocol designers. In [84, 3,42, 89], an informal
definition of atomicity (respectively fairness) is presented, a protocol or a class of related protocols
are proposed, and the protocols are shown to satisfy the property. These definitions and analyses
are informal and tailored to the specifics of the protocol. Thus, even though they provide good
insights and intuitions about a specific protocol, they are ad hoc, not definitive, and cannot be
applied straightforwardly to other protocols.

In addition to analyses conducted by the designers themselves, there exist case studies focused
on atomicity and fairness, conducted independently by formal methods researchers [51, 80, 78].
Heintze et al [51] specified simplified versions of NetBill [28] and Digicash [22] in CSP [52], and ana-
lyzed them with respect to money-atomicity and goods-atomicity using the FDR model checker [64].
Shmatikov and Mitchell [80] specified a contract signing protocol by Asokan et al [4], and analyzed
it with respect to fairness using Mur¢ [34]. Schneider [78] specified Zhou and Gollman’s non-
repudiation protocol [89], and analyzed it using CSP; the proofs are carried out by hand.

The first two case studies share a number of characteristics. Both use a model where trusted
parties always behave according to the protocol, while ordinary parties can misbehave. Both
specify atomicity (respectively, fairness) as a global property. Neither has a well-defined failure
model. Neither is able to explain satisfactorily idiosyncrasies that arise from specifying atomicity
and fairness as global properties. In particular, neither formalizes the distinction between inter-
esting and uninteresting violations of the properties. (Uninteresting violations are those where the
misbehaving parties are the victims themselves.)

The third case study, in contrast, does not have such weaknesses. Fairness is specified as an
agent-centric property, just as our protection of individuals’ interests is agent-centric. Its system
model closely follows ours, except for its treatment of trusted parties: they always behave according
to the protocol [78]. Schneider focuses on a single non-repudiation protocol, and does not propose
a general and abstract framework that is applicable for a wider class of protocols.

Other case studies focus on credit card based electronic payment protocols [13, 70]. Bolig-
nano [13] analyzed C-SET [33] using Coq [35]; Meadows and Syverson [70] discussed and formally
specified requirements for SET [68] in a version of the NRL Protocol Analyzer Temporal Require-
ments Language [82]. These case studies differ from the ones discussed above in that, instead
of focusing on some specific properties, they address all requirements that seem desirable in the
context of their protocols. The requirements are not named, but are loosely separated into groups.
There are, for example, customer requirements, merchant requirements, and gateway requirements.
Some requirements within these three groups clearly resemble what we call protection properties.

Also in these studies, different hypotheses about how different parties behave are made. For
each hypothesis, the properties that should hold are specified. The protocols are then analyzed
under different hypotheses with respect to their corresponding properties. Some example scenarios
are: everyone behaves according to the protocol; everyone except the customer behaves; no one
but the merchant behaves; and so forth. The intent is to verify what conclusions different parties
can draw under different circumstances.

Despite their comprehensiveness, these case studies have two major weaknesses. First, because

the properties are not named, and the issues they involve are not deeply discussed, it is not
straightforward to identify the essence of these properties, which makes applying their approach
to other protocols difficult. Second, because the protocols are analyzed with respect to different
properties (sometimes weaker or stronger versions of a property) under different scenarios, it is not
immediately clear what core properties the protocols satisfy.

1.6.2 Other Properties

Other aspects of electronic commerce protocols have also been studied. Kailar proposed a BAN-like
logic [19] for reasoning about accountability, and used it to analyze several protocols [54]. Kessler
and Neumann [55] extended AUTOLOG [56] with predicates and rules to model accountability, and
proved that the new calculus is correct with respect to the formal semantics given in [86]. They then
used this calculus to analyze SET [68] and Payword [77]. Kindred [59] generated automatic checkers
for both Kailar’s logic and AUTOLOG using Revere. He then applied the resulting checkers to a
variety of protocols. Finally, Clarke et al [26] proposed a logic of knowledge for specifying security
properties of electronic commerce protocols. They then used this logic to specify a few properties,
such as privacy and anonymity, for the 1KP protocol [6].

1.6.3 Trust

Also related to this dissertation are research efforts that try to understand and formalize the notion
of trust. Trust has long been studied in the context of multi-domain authentication protocols [9,
44, 61, 81]. In this context, trust is typically distributed among a number of key or name servers,
and structured in some pre-defined, hierarchical way. To accept an authentication, a user needs to
trust only part of the hierarchy.

The notion of trust for distributed authentication has also been studied independently of any
protocol or name scheme. For Yahalom et al [87], trust is a relationship between two parties, and
one party can trust another in any respect. Starting from these two points, they identified and
classified different types of trust that may be required in an authentication procedure. Trust with
respect to keeping secrets, providing recommendations, and performing correctly algorithmic steps
are some examples. They then proposed a language for expressing trust relations and an algorithm
for deriving trust relations from recommendations. Finally, they analyzed several authentication
protocols with respect to their trust requirements. But because the trust specification language
is not embedded in an analysis formalism, all their analyses are informal. This trust specification
language was later extended to include valued trust relationships [8]. Using the extended language,
one can express to what degree one party trusts another in some specific respect.

Logic based protocol analysis methods [76, 19, 46] have incorporated some notion of trust. For
example, BAN [19] has a language construct for formalizing the notion of who can be trusted
on what (for example, a key server can be trusted on key generation), and an inference rule
for incorporating a trusted party’s belief into other parties’ belief set. In all these logics, trust
specifications are part of the initial assumptions of a system, and used as axioms to draw conclusions
about security properties of a protocol.

In commerce transactions, trusted intermediaries can be used to enable exchanges between two
mutually distrustful parties. When three or more such parties attempt to exchange multiple items
among themselves, and there is no single intermediary that is trusted by them all, relevant questions
to ask are: Can such an exchange be feasibly carried out, in the sense that no participant ever risks

10

losing money or goods without receiving everything promised in exchange? And if so, what are
the steps [58]7 To answer these questions, Ketchpel and Garcia-Molina introduces 1) a graphical
notation in which one can represent parties (both exchanging parties and intermediaries) involved
in a transaction and the interactions between them; and 2) a method for finding a sequence of
pairwise mediated exchanges that will lead to a feasible global exchange, if one exists. Note that
this work does not attempt to dissect the notion of trust. Rather, it models trust at a higher level
of abstraction, simply as a factor that guarantees successful two-way exchanges.

Finally, Branstad et al investigated the role of trust in TMail, a privacy-enhanced electronic
mail system [18]. This work is the closest in spirit to our effort in making trust assumptions
explicit. They identify functions (both cryptographic and non-cryptographic) that need to execute
correctly so that electronic mail remains protected. They then argue that these functions need to
be hosted in a trusted computing base so that their correct execution can be assured. They also
discuss possible attacks to the mail system if these critical functions are running in an untrusted
computing base. The discussion is all informal, and there is no attempt to formalize these ideas in
the paper.

1.7 Roadmap

The rest of this dissertation consists logically of three parts. In the first part (Chapter 2), we
present our specification, modeling, and analysis framework. We start with a characterization of
electronic commerce systems as they are modeled in this dissertation. We then present a standard
state machine formalization of such systems and a formalism for protocol specification. Finally, we
define different types of executions of a protocol, which we then use to give a formal definition of
p-protective protocols.

In the second part (Chapters 3 - 5), we apply the framework from Chapter 2 to specify and
analyze three protocols: we specify and analyze Franklin and Reiter’s fair exchange protocol using
semi-trusted third parties [42] in Chapter 3; NetBill [28] in Chapter 4; and Brands’s off-line elec-
tronic cash with observers protocol [14] in Chapter 5. These chapters follow the same structure.
First we introduce the protocol and justify why it makes an interesting case study. We then present
an abstract formulation of mathematical (cryptographic) building blocks used by the protocol. A
specification of the protocol and its various protection properties appears next, and is followed by
a high-level analysis of the protocol, the main results, and detailed proofs. The chapters conclude
with a summary of the findings of our analysis and a discussion of insights gained through the
exercise.

The last part (Chapter 6) presents our conclusions, summarizes the dissertation, reflects on our
contributions, and proposes directions for future work.

11

12

Chapter 2

The Model

In this chapter, we present the model we use to analyze electronic commerce protocols with respect
to protection of individuals’ interests. In Section 2.1, we characterize electronic commerce systems
as they are formalized in this work. This characterization departs from traditional characterizations
of security and electronic commerce systems in two ways: in the failure model of the participants
of a protocol and in the security of communications. In traditional characterizations, participants
of a protocol always behave correctly, and there is invariably an intruder that can eavesdrop and
corrupt communications among the participants. In our characterization, participants of a protocol,
including trusted parties, may fail or misbehave, but communications among them are assumed to
be secure.

In Section 2.2, we present a standard state machine formalization of electronic commerce sys-
tems. The formalization models what electronic commerce systems can do in general, independently
of any protocol they might be running.

In Section 2.3, we present the formalism we use to specify protocols. Our formalism is state-
based in that it uses a set of protocol rules to specify state conditions and protocol steps they
enable. In addition to the standard initial condition and protocol rules, our formalism incorporates
the trust assumptions of a protocol as a component of protocol specifications.

To analyze a protocol in a model-theoretic setting, one examines the set of all of its executions.
In Section 2.4, we define different sets of executions of a protocol, which are then used to give a
formal definition of p-protective protocols.

2.1 System Characterization and Assumptions

Electronic commerce systems consist of sets of interconnected agents: banks, shops, individual
customers, etc. At any time, these agents may be running multiple processes simultaneously, each
process carrying out a different transaction® with a different agent. In our model, we assume that
each agent runs one process at a time, and identify agents with the processes they run.

In our model, processes have private local stores: the data they hold are not publicly accessible.
Processes can generate new data — e.g., keys and nonces — and communicate with each other by
message passing. They also have timing capabilities and can témeout while waiting for events to
occur. Finally, they have cryptographic capabilities such as encryption and decryption, which allow

!Unless otherwise stated, transaction is used in an informal, non-technical sense in this dissertation.

13

them to derive new data from existing ones.

The interprocess communication subsystem logically consists of end-to-end, pairwise commu-
nication channels. Each channel models all the hardware and software that connect the two end-
processes. Communication is connection-oriented (FIFO, at-most-once message delivery), and we
assume connections are established at the beginning of transactions.

In our model, both the communication and process executions are asynchronous: communica-
tion delays are unbounded, and processes can take steps at arbitrary speeds.

In this dissertation, we consider both process failures and channel failures. We cast them all
in terms of process failures, however, because in our model communication is connection-oriented
and channel failures manifest themselves in the processes. For the purposes of this work, processes
can fail in two ways: they can failstop or they can deceive.

If a process failstops, it terminates abnormally, i.e., in a way not prescribed by the algorithm
it is running. Abnormal terminations can be caused by local or remote factors. Power outages,
computer crashes, and user-initiated interruptions are all examples of local factors. Connection
failures due to problems at remote processes or with communication channels are examples of
remote factors.

If a process deceives, it follows the algorithm only “apparently”. Roughly speaking, even
though the types of events that occur at each step are those prescribed by the algorithm, the
messages they carry may not be. For example, sending a message that is not the one prescribed
by the algorithm according to the process’s present state is a deception. Deceptions only occur by
Byzantine processes. We do not call processes that deceive “Byzantine processes,” however, because
they do not fail in all the ways that Byzantine processes can, as defined in the literature [36].

We consider these types of failures because they model simple, yet realistic attacks to electronic
commerce systems. Power outages, computer crashes, and user-initiated interruptions can all
cause premature termination of a process; connection failures are common with today’s Internet;
and deceptions can be easily carried out by malicious users.

Finally, we assume communication is secure: if a message is received, then it is received by the
intended recipient, authenticated, confidential, and intact (untampered). Effectively, we assume
that processes use the service of an underlying layer of security protocols. This assumption allows us
to abstract away possible spoofings, sniffings, and tamperings of messages by third party intruders
and makes modeling of intruders unnecessary.

Discussion

Our model of electronic commerce systems makes simplifying assumptions that have impact
on protection properties of a transaction. For example, concurrent execution of two transactions
is known to cause problems in traditional distributed systems; it also leads to subtle problems in
cryptographic protocols [63]. Message tampering can prevent original messages from reaching their
intended destinations, which can also compromise protection of different parties.

In a first step towards formalizing and understanding protection of individuals’ interests, how-
ever, we purposely abstract away as much detail as possible, and focus on what participants of
a transaction with the “help” of unreliable communication channels can do to compromise other
participants’ interests. This allows us to address core questions, such as “How can we characterize
precisely the notion of protection?”, “How can we formalize trust assumptions?”, and “How do we
use trust assumptions in the analyses of protocols?”, independently of issues like concurrency and

14

communication security. After addressing these questions, we can then relax our assumptions and
investigate how protection interacts with these issues.
For a more complete list of assumptions we make and their implications, see Section 2.5.

2.2 Modeling Electronic Commerce Systems as Transition Sys-
tems

In this section, we present a state machine model for electronic commerce systems. We model
single processes as simple transition systems and electronic commerce systems as asynchronous
compositions of these simple systems. Most of the formalization is standard, and we include it here
for self-containment. The few non-standard features will be explained in detail.

We start formalizing some message-related concepts.

2.2.1 Messages

In our model, messages can be basic messages or composite messages. Basic messages are those
simplest units of data, such as keys, product ids, and prices, that cannot be further decomposed.
Basic messages can be concatenated or used as arguments of cryptographic functions; the result is
composite messages.

Cryptographic functions are functions such as encryption, decryption, and signing functions. In
our model, they are abstract functions satisfying certain ideal properties. We reserve further discus-
sion and formalization of cryptographic functions for later chapters, when they will be introduced
in the context of particular protocols.

In what follows, we formalize message-related concepts. The notion of type is used informally
here: a type is simply a domain from which a particular class of messages can be drawn.

Def. 2.1 says that messages are built inductively from basic messages by applying concatenation
and cryptographic functions.

Definition 2.1 Messages are inductively defined as:
1. Basic messages m of lype t, m : L, are messages;

2. If my : ty and my : ty are messages, then the concatenation mymg : t1 X to of my and mqy is
a message;

3 If [ty X...Xt, = L is a cryplographic funclion and m; : t; are messages, then the function
application of f to my,...,my,, f(my,...,my) : ¢, is a message.

Definition 2.2 defines when two messages are equal. It assumes that each type of basic messages
comes with a definition of identity between messages of that type.

oy ! py _ ANPY ,
Definition 2.2 Let m and m' be two messages. m equals m' (m =,,5, m') if and only if
1. m and m' are identical basic messages;
2. m=mymy; m' = mimhy; and m; =,,5, m’, for i =1, 2; or

3. m= f(my,...,my); m' = f(my,...,m]); and m; =5 m, fori=1,... n.

15

In the rest of this dissertation, we represent =,,,, by =. It should be clear from the context whether
a equality sign denotes equality between messages as defined in Def. 2.2 or is being used informally
to denote a mathematical equality.

Once we have defined message equality, we can define associativity. Concatenation of messages
is associative. That is, (mymz)ms = my(mgms). For simplicity, we sometimes represent them by
mimeomms.

Message equality will be later extended with conversions between cryptographic terms. A
familiar example of conversion says that the result of encrypting and then decrypting a message
(with the same symmetric key) is the message itself. That is

dec(enc(m, k), k) = m,

where = denotes conversion. The conversion relation creates an equivalence class of equal messages.
That is,

If my = mo, then mqy = mao.

From Def. 2.1, we can derive the submessage relation between two messages. Any message
is a submessage of itself, and any submessage of messages m; in points 2 and 3 of Def. 2.1 is a
submessage of m. We use C to denote the submessage relation: m’ C m denotes m' is a submessage
of m. The notion of submessages of a message will be used later to formalize the notion of freshness
of messages generated at random.

Given a set of messages M, we can use concatenation, decomposition, and function application
to derive new messages:

Definition 2.3 Let m be a message and M be a set of messages. m is constructible from M,

m €* M, if and only if
1. me M, or
2. m=mymg, my € M and my € M, or
3. m=my, fori=1o0ri=2, and mymg €* M, or
4. m= f(my,...,my,), and Ve € {1,...,n}, m; €* M.

Definition 2.3 says that m is constructible from M if 1) m is a member of M; 2) m is a
concatenation of two messages m; and mg, both of which are constructible from M; 3) m is a
component of a concatenated message constructible from from M; or 4) m is the result of applying
a cryptographic function to inputs mq, ..., m,, all of which are constructible from M.

2.2.2 Modeling processes

We model processes as automata that take steps to go from one state to another. Formally, they
are represented by transition systems.

Definition 2.4 Let P be a process. Then P is represented by a tuple < 3, E,7,% > where:

e Y is a (possibly infinite) set of states;

16

e F is a sel of events;

There are different types of events:

— exit: normal process termination;

— failLocal: abnormal process termination, caused by local conditions such as system crashes
or deliberate user interruptions;

— failRemole: abnormal process terminalion caused by communication failures;
— send(p, m): message m is sent to process p;
— receive(p, m): message m is received from process p;
— timeout: handles event delays;
— random(b): Random generation of a basic message b. Messages generated at random are
globally fresh and cannot be guessed or otherwise computed by anyone.
e 7T is a transilion relation of type 3 X E X Y;

7 can be a partial relation, i.e., for some pairs of stales s and s', there may not exist an event
e such that (s,e,s’) is a valid state transition. There exist system-level constraints that make
a tuple (s, e,s') an invalid transition. We formalize these constraints later in this subsection.

e Yo C X is a set of initial states.

Valid State Transitions

In Def. 2.4, states were introduced as abstract entities without any internal structure. To model
processes as entities that can accumulate, send, and receive messages, however, we need to keep
track of messages available to the processes at each state. We use a state variable MS (For Message
Set) to model this set of messages. Intuitively, a process starts with a certain set of messages and,
as it transitions from one state to another, this set changes according to well-defined rules shown
in Def. 2.5. These rules characterize valid state transitions.

In what follows, we use s(v) to denote the value of variable v at state s.

Definition 2.5 Valid stale transitions

Let (s,e,s") € T be a state transition. Then:
1. If e = send(p,m), then m €* s(MS);
If e = receive(p, m) or e = random(m), then s'(MS) = s(MS) U {m};

If e = random(b), then Am € s(MS) such that b T m;

B e

If e = exit or e = failLocal or e = timeout or e = failRemote or e = send(p, m), then
s'(MS) = s(MS).

According to Definition 2.5, processes can send only messages constructible from messages
available at s; messages received or randomly generated by a process are available to the process
at s'; if a basic message b is randomly generated, then b cannot be a submessage of a message
available at s, i.e., b is fresh; and ezit, failLocal, timeout, failRemole, and send preserve the set of
available messages. We call condition 3 the random generation condition.

17

Local Computations

The specification of a transition system S determines the set of S’s computations. Def. 2.6 is
standard.

Definition 2.6 Local Computations
Let 0 : sq €1 s1 ... be an alternating sequence of states and events and § =< X, K, 1,9 > be
a simple transilion system. o is a computation of S if and only if o is such that

1. sg € Xg;

2. For all subsequences s; €;41 Siy1 ino,1=0,1,..., 8;,8i41 €Y, €;41 € E, and (s;, €,41, 5i+1) €
T;

3. If o is finile, then the last element of o is a slale;

Given a subsequence s; €;11 S;1+1 in o0, if e;41 € {exil, failLocal, failRemote}, then o is finite
and S;41 is the last state of o.

BN

2.2.3 Modeling Electronic Commerce Systems

As systems formed by concurrent, asynchronous distributed processes, electronic commerce systems
can be modeled by compositions where component state machines — modeling individual processes
— take turns in making state transitions. We compose our systems using the standard asynchronous
composition [2]. In what follows, we assume the existence of a global synchronized clock. In its
absence, we can always resort to Lamport clocks [60], which takes into account causal dependencies
among the events in a system.

We now present the composition and computations they determine, starting with some auxiliary
definitions.

Auxiliary Definitions

Definition 2.7 Disjoint union
Given sels S1,...,5,, we can define S = Sy W ...W.5,, the disjoint union of Sy,...,S,, as
follows:
a€S; ¢ d €S

Intuitively, the elements of a disjoint union are elements from the component sets tagged with
superscripts indicating the set to which they originally belong.

In Def. 2.8, we use the notion of equality of events, whose definition is as expected. Given two
events e and €', e = €' if and only if they are the same type of event and their parameters (send,
receive, and random have parameters) are equal.

Definition 2.8 Instances of an event
Let o : 59 €1 51 ... be an alternating sequence of states and events. e; and €; are instances of
the same event, if 1 # j and ¢; = e;.

18

Composition

Definition 2.9 Let Sy,...S, be simple transition systems modeling individual processes py, ..., py.
If §; =< X, By, 14, %0 >,Vi € {1,...,n}, then the system formed by py,...,p, can be modeled by
a composile transition system S =< X, E,7,%g >, defined as follows:

1. X =231 X ... X Xy,
2. FE=F W.. . WE,;
3. 71X X FE XX is defined as follows:

3 ¢ such that
5= (81, s 8- -y S)) AT = (S1,..., 8.
(si, €'y sh) €1 A

' = random(b) — Am € Jj—, sx(MS) such that b C m.

= _ 1
(5,6,5) €T if and only if 5 8n) NE= €A

4. 202201X...X20n.

Def. 2.9 (3) says that only one process takes a step in each global state transition, and not all local
state transitions can derive global state transitions. If a local state transition (s, e, s’) is such that
e = random(b), it cannot derive a global state transition unless it satisfies the random generation
condition, which requires b to be globally fresh.

System Computations

As with simple transition systems, specification of a composite transition system § also determines
S’s computations.

Definition 2.10 System Computations
Let 0 :sg €1 s1 ... be an alternating sequence of stales and events, and S =< X, E, 17,%y > be
a composile transition system. o is a computation of S, if and only if o is such that

1. sg € Xg;

2. For all subsequences s; €;41 Siy1 ino,1=0,1,..., 8;,8i41 €Y, e;41 € E, and (s;, €,41, 5i+1) €
T;

3. If o is finile, then the last element of o is a slale;

Given a subsequence s; €41 siy1 in o, if e;41 € {exit?, failLocal | failRemote’}, then there
does not exist e;,7 >t + 1, such that e; = €;

BN

5. If o is infinite, then it satisfies weak (process) fairness, as defined in [67];
6. If e; = receivel(p,m) € o, then Je; € 0,7 < i such that e; = send’(q, m);

7. For each instance of send”(q, m) € o, there exists at most one corresponding receive?(p, m).
And for all corresponding sends and receives, e; = send’(q, m) and e; = receivel(p, m), 1 < j.

19

8. Ife; = receivel(p, my), e; = receivel(p, ms), and ¢ < j, then there exist evenls e; = send’(q, my),
ey = send?(q, m3), and i' < j'.

Conditions 1 — 3 are exactly those required of computations of simple transition systems. Con-
dition 4 corresponds to condition 4 in Def. 2.6 and says that a component transition system cannot
make further progress once it experiences exil, failLocal or failRemote events. Condition 5 requires
that computations of composite transition system be fair interleavings of computations of the com-
ponent transition systems. Conditions 6 — 8 model interprocess communicalion: a message needs
to be sent before it can be received; messages are received at most once; and in a FIFO manner.
Messages are received at most once because communication is unreliable in our model; there can
be transmission delays and channel failures. (A message cannot be received multiple times because
the communication is connection-oriented.)

In the rest of this dissertation, we call condition 6 the communication assumption.

Definition 2.11 Projections

Let o : s €1 81 ... be a computation of a system S, whose components are S; =< Uy, 3, E;, 74, q; >,
i=1,...,n. 0| p, projection of o along component S,, is the sequence oblained by deleting each
pair e, s, for which e, is nol an event of S,, and replacing each remaining s, by st, automaton
Sy ’s component of the state s,.

Projections are computations. Intuitively, o | p captures the computation that takes place at
node p, while o takes place at the system as a whole.
Intuitively, if o is a system computation, then o | p captures the node p’s local computation.

2.3 Protocol Specification

Before a protocol can be formally analyzed, it needs to be formally specified. In this dissertation,
a formal protocol specification consists of:

e A finite set P = {py,...,pn} of principals;

e An initial condition I;

e A principal-indexed collection R = {R,,,..., Rp,} of local protocols; and
e A principal-indexed collection 7' = {T},,...,T},} of trust assumptions.

All, except trust assumptions, are standard components in protocol specifications.
In what follows, state variables are in typewriter font and state formulas are first-order for-
mulas defined in a standard way [67].

2.3.1 Specification of Initial Conditions

Initial conditions determine what needs to hold in the beginning of protocol executions. They
determine whether a message is public, private, or shareable among a subset of principals, and how
the message relates to other messages in the system. For example, they specify that if a principal
A holds a key k, thought of as principal B’s public key, and k! is B’s private key, then k is the
public counterpart of k1.

20

Initial conditions are specified by state formulas. State formulas specifying initial conditions
may include a non-standard predicate shareable to specify which principals may share a message
at the initial state.

Formally, given a state s and an initial condition [/ (or more generally a state formula F'), the
definition of s satisfies I (s satisfies F'), s|=1 (s = F), is standard [67], with the interpretation of
shareable defined as follows:

Definition 2.3.1 Let s be a state, P' C P be a set of principals, and m be a message.
s |= shareable(m, P'), if Vp € P— P',m&" s,(MS).

Def. 2.3.1 says that m is shareable among principals p; € P’ if m may be found only in the local
stores of principals p € P’. Note that m is not required to be in each p;’s local store; instead, it is
required to not be in the local stores of processes p; € (P — FP').

In Example 2.3.2, I specifies that k71 is C’s private key:

Example 2.3.2 Let k. and k' be messages and A, B, C be principals.
I = keyPair(k., k. ') A shareable(k ', {C}) A shareable(k., {A, B,C})

specifies that k. is a public key whose corresponding private key is k71; k71 is private to C; and k.
s shareable by A, B, and C'.

2.3.2 Specification of Local Protocols

A local protocol R, consists of a set of rules r of the form:
ren={E,...,E.},

where 7 is a state formula and FE;’s are event-templates — events whose parameters contain variables
— of types exil, timeout, send, receive, and random. Faillocal and failRemote do not appear in
protocol rules because they model abnormal terminations.

Intuitively, (enabling condition) determines the state condition under which r is applicable,
and Fy, ..., B, (protocol steps) prescribe alternative events a process should go through from states
satisfying 5. The non-deterministic choice of which event is taken is made by the environment.

A local protocol needs to specify its valid sequences of steps, as well as messages sent/received
at each step. A specification for the protocol in Fig. 1.1, for example, needs to specify that T" can
send a message to A only after T" has received messages from both A and B. Furthermore, it needs
to specify that the message T sends to A is the one it received from B.

To be able to specify message flows that a protocol prescribes, one should have ways of talking
about the sequence of events a process has experienced up to any given state. One way of making
this possible is to add another state variable to the processes. This variable should keep track of the
sequence of events a process has experienced so far. In our model, this variable is H (for History).

Given a state s, s(H) is a sequence ey, ..., e, of events, e,, being the one most recently experi-
enced by the process. Given a computation o : sg €1 s; ... of a process, s(H) satisfies the following

{ so(H) = ¢, and (2.1)

si+1(H) = append(s;(H), €;41)
We add these conditions to those in Def. 2.6 of computations.

conditions:

Using variable H, local protocol rules typically appear as follows:

21

Example 2.12 An example of a protocol rule:
Jdz : t_Coin | last(H) = receive(M, z) = {send(N, z), receive(M, y : {_Receipt), limeout}

It says that if the last event experienced by a principal is receiving a message of type t_Coin from
principal M, then any of the following three types of events may occur next. The principal may
send the message it received from M lo N, it may receive a message of type t_Receipt from M, or il
may timeout while waiting for the receive event to occur.

2.3.3 Specification of Trust Assumptions

Given a principal p, its trust assumptions 7T), consists of a set {7y, ..., 74} of formulas in linear time
temporal logic [67] over a sequence of states. Effectively, we only make trust assumptions about
trusted parties. If p is not a trusted party, T, = true.

Example 2.13 The following is an example of a trust assumption:
Va, O(send(M,z) € H— recetve(C,z) € H).
It says that the principal is trusted to send M only messages il receives from C'.

As discussed in Section 1.3, trust assumptions are protocol-specific assumptions about how
trusted parties ought to behave. For protocols that we have investigated, they can all be formalized
in linear time temporal logic. Not all linear time temporal logic formulas are formalizations of trust
assumptions, however. To be a trust assumption, a formula needs to express a condition that can
be satisfied by compliant? trusted parties and that, if violated, can compromise the individual
interests of a second principal who relies on that trusted behavior. What makes a temporal logic
formula a trust assumption therefore is its semantics rather than its syntax.

2.4 Formalizing p-Protective Protocols in Our Model

In Section 1.4.3, we introduced an informal characterization of p-protective protocols. In this sec-
tion, we formalize that characterization in the context of our model. We first give some preliminary
definitions (Section 2.4.1). Then we define a number of different types of executions used to char-
acterize p-protective protocols (Section 2.4.2). Finally, we formalize the concept of p-protective
protocols itself (Section 2.4.3).

2.4.1 Preliminaries

In this subsection, we give three definitions used in defining different types of executions in Sec-
tion 2.4.2. Def. 2.14 defines when a state transition (s e s’) complies with a protocol rule r.
Def. 2.16 defines when (s e s') deceptively-complies with r. And Def. 2.11 defines a projection of a
computation along one of its component automata.

In what follows, the definition of instantiation of an event-template £ is standard. An event e
is an instantiation of F if there is a substitution [zy/my,...,z,/m,] for free variables zq,...,z,
in E such that e = F[zy/my,...,z,/m,].

?Compliance is being used informally here. See its formal definition in Section 2.4.2.

22

Definition 2.14 Let (s e s') be a state transition and r : 1 = {F4,..., E,} be a protocol rule.
(s e s") complies with r,

(ses) e,
if and only if:

1. s|=mn; and

2. (a) AE; € {F4,..., E,} such that e is an instantiation of E;0, where 8 is a substitution of
bound variables in F; determined by s; or

(b) AE; € {E, ..., E,} such that E; specifies a send or a receive event, and e = failRemote.

Intuitively, (s e s’) complies with r, if 7 is satisfied in s, and (a) e is an instantiation of an event-
template F; whose bound variables are substituted according to the protocol, or (b) e could not
be a send or receive event, as specified by r, because of a communication channel failure.

Note that since (s e s') is a valid state transition, the value of s’ cannot be arbitrary (Defini-
tion 2.5 and conditions 2.1, page 21). This justifies why we do not have explicit conditions on s’
in Definition 2.14.

Example 2.15 Let (s e s') be a state transition and
r:dx it | receive(Y, z) € H= {receive(Z,z : { X t),send(Z, z)} be a protocol rule.

(ses)Er
if and only if there exists a message m : t such that
1. receive(Y, m) € s(H), and
2. (a) e = receive(Z,m'), for some message m' :t x t; or
(b) e = send(Z, m); or
(¢) e = failRemote.

Note that, in Example 2.15, the message sent to Z must be received from Y, since the variable z
in send(Z,) is bound.

Definition 2.16 Let (s e s') be a state transition and r be a protocol rule. (s e s') deceptively-
complies with r

(ses)ar
if and only if:

1. sl=mn; and

2. 3F; € {Ey, ..., E,} such that e is an instantiation of E;, but e is not an instantiation of E;0,
where 0 is a substitution of bound variables in r determined by s.

23

Intuitively, (s e s’) deceptively-complies with r if 7 is satisfied in s and e is an instantiation of
an event-template F;, whose bound variables are not substituted according to the protocol. This
is a deceptive compliance because e only appears as an event prescribed by r; it is not an event
prescribed by r because its message parameters are not instantiated according to r (the bogus
message needs to have the right type, however).

Note that in Definition 2.16 the enabling condition 5 of r is satisfied in s. This means that the
state transition does not violate the conditions for the firing of r, which typically specifies (explicit
or implicitly) not only protocol steps that should have happened, but also specific conditions that
these previous steps must satisfy.

Deceptive compliance is a form of non-compliance. A second form of non-compliance is intro-
duced in Section 2.4.2.

Example 2.17 Let (s € ') be a state transition, and
r:dz it | receive(Y, z) € H= {receive(Z,z : t X t),send(Z, z)} be a protocol rule.

(ses)far

if and only if there exists a message m : t such that
1. receive(Y, m) € s(H), and

2. e = send(Z, m'), where m' # m.

Note that, in Example 2.17, the message sent in event e is not the one prescribed by r: a differ-
ent message was sent instead. Deceptive compliance will be used later to characterize deceptive
executions, where a process apparently follows the protocol (the order and the format of message
exchanges are as prescribed by the protocol), but cheats by using arbitrary messages.

2.4.2 Protocol Executions

In this subsection, we define different types of protocol executions used to define p-protective
protocols. We obtain these protocol executions by filtering the set of all computations by protocol
specifications. Our classification (Fig. 2.1) is based on the notion of compliance and takes both the
type and the source of failures into account. We also define trustworthy executions, which is based
on the trust assumptions of a protocol.

Compliant, Abortive, and Deceptive Executions

Traditionally, protocol executions have been classified according to failure modes. Classifications
based on failure modes distinguish executions in terms of whether or not they fail and how they fail.
For the purpose of defining p-protective protocols, however, we would like to distinguish executions
in terms of whether or not their corresponding processes comply with the protocol, and how they
deviate from it. Failure and deviation differ in that all deviations are failures, but not all failures
are deviations. The key factor that makes a failure a deviation is the origin of the failure. If the
failure is attributed to local causes, then it is a deviation; if the cause is remote, then it is not.
Guided by the notions of compliance and deviation, we propose the classification shown in
Fig. 2.1. It is based on our classifying failRemote as an event caused by remote failures, and failLocal
and deceptive steps as results of local problems. Intuitively, this classification captures the notion

24

compliant: failure-free + abnormal termination with failRemote

execution abortive: deviates with a failLocal
deviant
deceptive: deviates with deceptive steps

Figure 2.1: Classification of local protocol executions.

of compliance and the ways in which one can deviate from compliance. An execution is compliant if
and only if it follows the local protocol, deviating from it only if it terminates prematurely because
of communication problems. An execution is deviant if and only if it terminates prematurely
because of local factors or it deceives.

We formalize the various executions below.

Definition 2.18 Compliant executions of a local protocol
Lel o : 59 €1 s1... be a computalion of a single process and R, be a local protocol. o is a
compliant execulion of R, if and only if

V(s; €i41 Si+1) € 0,3r € R, such that (s; ej41 Siv1) E T

Def. 2.18 says that o is a compliant execution of R, if all its state transitions comply with rules
r € R,. Note that compliant executions can terminate abnormally with a failRemote event, or can
be failure-free — if it does not terminate with a failRemote.

Definition 2.19 Compliant executions of a protocol
Given a computation o : sg €1 S1 ... for a system of processes and a protocol < P, I, R, T >, ¢
is a compliant execution of the protocol if and only if:

1. so = I; and

2. Vpe P,o|p isa complianl execulion of R,.

Def. 2.19 says that a computation is a compliant execution of a protocol if and only if its initial
state satisfies the initial condition of the protocol, and its projections (along each of the principals)
are compliant execution of its principals’ local protocols.

Definition 2.20 Abortive executions of a local protocol
Let o : sg €1 s1...5, be a compulation of a single process and R, be a local protocol. o is an
abortive execution of R, if and only if

S0 €1 51...5,—1 45 a compliant execulion of R, and e, = failLocal.

Definition 2.21 Deceptive executions of a local protocol
Lel o : 59 €1 s1... be a computalion of a single process and R, be a local protocol. o is a
deceptive execution of R, if and only if

25

o is not a compliant execulion of R, only because there are (s; ;41 Si+1) € o such thal
(si €41 Six1) FEa 1 for a rule r € R,,.

Def. 2.21 says that ¢ is a deceptive execution of a local protocol if and only if ¢ deviates from a
compliant execution in that it takes deceptive steps.

Definition 2.22 Abortive (deceptive) execution of a protocol

Let 0 : sp €1 s1... be a computation of a system and < P,I, R, T > be a protocol. o is an
abortive (deceptive) execution of the protocol if and only if:
1. So): I,‘

2. There exists at least one p € P such that o | p is an abortive (deceptive) execulion of R,;
and

3. For the remaining principals p', o | p’ is a compliant execution of R.

Def. 2.22 says that a computation is an abortive (deceptive) execution of a protocol if its initial
state satisfies the protocol’s initial condition, and at least one of its projections — along each of the
principals — is an abortive (deceptive) execution, while all others are compliant executions.

According to our definitions, neither the abortion nor the deception mode subsumes the other.
Given a process, its set of compliant, abortive, and deceptive executions are mutually disjoint. This
is not necessarily so. We could define executions where one process aborts, while another deceives,
and yet another complies with the protocol, for example. For now, we will work with the current
set of definitions, for simplicity.

Definition 2.23 Maximal execution of a protocol
Let 0 be a (compliant/abortive/deceptive) execution of a protocol I1. o is a mazimal
(compliant/abortive /deceptive) execution of 11 if and only if:

there does not exist a (compliant/abortive/deceptive) execution o' of I, such that o is
a proper prefiz of o'.

Def. 2.23 says that ¢ is a maximal execution if and only if it cannot be further extended.

Trustworthy Executions

In what follows, =" denotes the standard satisfaction relation defined for linear time temporal logic
formulas [67].

Definition 2.24 Trustworthy executions of a protocol
Let 0 be a (compliant/abortive/deceptive) execution of a protocol < P/ I, R,T >, where T =
{T1,..., T}, and 0 \ s be the sequence of states projected from o. o is trustworthy if and only if:

o\sE" /\ /\ T, or equivalently, o\ s =" T.

1€{1,...k} T€T;

Def. 2.24 says that trustworthy executions are those whose sequence of states satisfy all the trust
assumptions of a protocol.

26

2.4.3 p-Protective Protocols

In this subsection, we formally define p-protective protocols. Our formalization captures the follow-
ing insights. First, in commerce transactions, different parties have different interests to preserve.
Second, electronic commerce protocols should be designed to protect their user’s interests against
communication failures and both intentional and unintentional misbehaviors of other users. Lastly,
trust assumptions should be taken into account when defining p-protective protocols: often they
are what protocols rely on to achieve p-protection.

In what follows, we consider three deviation modes: C (compliance), A (abortion), and D (de-
ception); and use E(I1)®, E(I1)4, and E(I)” to denote respectively the set of maximal compliant,
abortive and deceptive executions of a protocol II. Also, let z range over {C, A, D} and p over the
set of principals of II, then we use E(II)7 to denote the set of maximal z-executions of Il where p’s
projection is a compliant execution of R,.

Our definitions below apply only to protocols whose maximal compliant executions are trust-
worthy. This is an expected restriction: if trust assumptions specify behaviors that trusted parties
should exhibit even under deviation modes, then these same behaviors should be exhibited under
the compliance mode in the first place.

Definition 2.25 Let Il =< P, I, R,T > be a protocol, p € P be a principal, P, be p’s protection
property, and x be the deviation mode we consider. 11 protects p’s interests, under x deviation mode,

if and only if
1. Yo € E(IN)°, 0 * P,; and
2. Vo e E(I)}, if o =" T then o =" P,.

Definition 2.26 p-protective protocols

Let 11 =< P,I,R,T > be a protocol, p € P be a principal, P, be p’s protection property, and
z be the deviation mode we consider. 11 is p-protective under x mode if and only if II protects p’s
interests under x mode.

Defs. 2.25 and 2.26 can be used to derive the definition of p-protective protocols under different
deviation modes. Under C' mode, F(I1)¢ is the set of executions one needs to examine, since
E(IN)° U E(I)§ = E(I)C and all executions in E(IT) are trustworthy®. Under A and D modes,
E(I1) plus trustworthy executions in E(I1)“UE(I1)Z and E(I1)“UE(I1)} are respectively the sets
of executions that need to be examined. Intuitively, a protocol is p-protective under compliance
mode if and only if for all compliant executions o, o satisfies P,; Il is p-protective under abortion
(deception) mode if and only if for all compliant executions and trustworthy abortive (deceptive)
executions o where p behaves compliantly, o satisfies P,.

Example: We say that a sale protocol is customer-protective under abortion mode if customer’s

interests are protected in all F(IT)“ and trustworthy executions in F(IT)2, .

It is often desirable, though not necessary, that a protocol protects the interests of all its
participants (or, more precisely, of those that have interests to preserve). We call protocols that
do so all-protective protocols.

#Section 2.3.3 has a brief justification of why all executions in E(H)c are trustworthy.

27

Definition 2.27 All-protective protocols

LetTl =< P,I, R, T > be a protocol; P' = {py, ..., pr} be the sel of principals that have inlerests
to preserve; Py, it =1,...,k, be respectively p;’s protection properties; and x be the deviation mode
we consider. 11 is all-protective under x mode if and only if

II is p;-protective, under x mode, for all p; € P'.

Example: We say that a sale protocol II is all-protective under deception mode, if II is both
customer-protective and merchant-protective under deception mode.

Definitions 2.25, 2.26, and 2.27 give a general and abstract framework in which the notion
of protection is formalized. The abstract definitions can be refined by instantiating P,’s with
more concrete properties. For instance, if II is a sale protocol, then there are two P,’s of interest,
namely, Po (customer’s protection property) and Pys (merchant’s protection property), which have
respectively the following general forms:

Fo: If the merchant receives the payment, then the customer must have recetved or must
eventually receive the goods.

Py If the customer receives the goods, then the merchant must have received or must
eventually receive the payment.

If IT is a withdrawal protocol, then there are also two P,’s of interest, namely, P (bank’s protection
property) and Py (user’s protection property).

For the protocols we analyzed, P,’s were formalizable in linear time temporal logic, which
justifies our using o =* P, to formalize preservation of protection property P, by execution o.

The informal characterizations above are still general and abstract. When investigating a
specific protocol, they need to be further refined. For example, receiving payment may mean
receiving cash in one protocol, and receiving a check in another. In other words, the formalization
of protection properties requires protocol-specific information and cannot be made concrete until
after a protocol is given.

We can refine the informal characterizations above in a second dimension. In closed characteri-
zations of p-protection, we require protection properties to be satisfied at the end of protocol runs.
For example, “receiving an item” is “actually receiving an item during a protocol run”. In open
characterizations, we allow protection properties to be — temporarily — violated, as long as they can
be restored later. In this case, “receiving an item” can be translated into “actually receiving an
item during a protocol run” or “receiving non-repudiable evidence of entitlement during a protocol
run”, so that one can use it later in court to reclaim the item.

2.5 Assumptions and Their Implications

We make a number of assumptions in our model. In this section, we discuss their implica-
tions/limitations.

In our model, we assume that each agent runs one process at a time. This assumption simplifies
our model, but prevents us from uncovering problems (for example [63]) that can arise only when
multiple processes run concurrently.

28

We assume communication security: if a message is received, then it is received by the intended
recipient, authenticated, confidential, and untampered. Effectively, we assume that the processes
we consider use the service of an underlying layer of security protocols. Layering of protocols may
lead to unexpected interactions, and unless we can assure ourselves that no undesirable interactions
exist, our conclusion about whether a protocol is all-protective is not definitive. Our approach
divides the task of analyzing layered protocols into two subtasks: we first analyze individual layers,
and then the interactions between the layers. In this dissertation, we focused on the first subtask.

Perfect encryption is another assumption we make. It says, in its most basic form, that the
only way to obtain any information from an encrypted message is to have the right decryption
key. In our work, this assumption extends to other cryptographic primitives (e.g., blinding and
unblinding) as well. In general, however, cryptographic primitives may be amenable to different
types of analysis (e.g., timing and probabilistic), and these analysis may have implications at the
protocol level. Like communication security assumption, this assumption allows us to decompose
the task of analyzing protocols into subtasks: in this case, analysis of protocols themselves, assuming
ideal cryptography; and analysis of interactions between the protocols and lower-level properties
of cryptographic primitives.

In our specification of protocol rules, we assume that, at reception, recipients of messages only
check for typing of messages they receive. Rule Ry, (page 70) in NetBill, for example, prescribes M
to receive only messages of type t_sepo. We made this assumption because it offers us a reasonable
level of abstraction. We can do more or less checks at reception, however, and the change does
not bring critical consequences. For example, under deception mode, principals currently receive
messages first, and then learn that they are bogus. If more checks are conducted at reception, one
can reject receiving bogus messages altogether. This difference is inconsequential because checks
are effectively needed only right before certain critical steps, and it does not matter when checks
take place, as long as they occur before these steps.

Finally, we assume that protocol executions are finite. In fact, our definition of p-protective
protocols takes into account only maximal executions, and our analysis of protocols relies on the
fact that all compliant/abortive/deceptive executions of a protocol are finite. Not all protocols
have finite executions, however. For example, there can be servers that can respond to requests
infinitely often. Our framework is not applicable to this class of protocols.

29

30

Chapter 3

Franklin and Reiter’s Protocol

In this chapter, we present our first case study, a fair exchange protocol [42] proposed by Franklin
and Reiter. We specify the protocol — henceforth referred to as FR’s protocol — in our proto-
col specification formalism (Section 2.3) and analyze it with respect to protection of individuals’
interests using our framework (Section 2.4). Since we are interested in protection of all parties
equally, we analyze it with respect to all-protection. FR’s protocol differs from previous work!
([57, 58, 5, 28, 89, 31]) on fair exchange in that it uses semi-trusted third parties instead of fully-
lrusted ones.

FR’s protocol is the simplest among the three we analyze, in terms of both the protocol’s
functionality and its protection properties. Our analysis does not reveal any surprises: the protocol
is all-protective under all three deviation modes, as long as communication links are reliable.

Our main contribution in this case study is a formalization of semi-trusted third parties.
Franklin and Reiter introduce the notion of semi-trustworthiness in electronic commerce proto-
cols [42], but they do not fully develop it. In particular, they do not take it into account in
their (informal) analysis of the protocol. In our framework, we can formalize the notions of semi-
trustworthiness and conspiracy behaviors using trust assumptions, and provide a clear-cut analysis
of the protocol.

The rest of this chapter is structured as follows. In Section 3.1, we introduce the protocol
and assumptions made by its designers, and justify why it was chosen for our first case study. In
Section 3.2, we present an abstract formulation of the mathematical building blocks used in it.
In Section 3.3, we formalize both the protocol and the protection properties. In Section 3.4, we
show the main results and their analyses. Detailed proofs are reserved for Section 3.5. Finally,
in Section 3.6, we summarize the findings of our analysis and discuss our contributions towards
formalizing semi-trustworthiness.

3.1 Introduction

3.1.1 Preliminaries

FR’s protocol [42] enables two parties X and Y to exchange documents with the mediation of
a third party Z. It was designed to guarantee “fair exchange”, i.e., no party should be able to

'"We have not included here earlier work on “contract signing” [10, 11, 88, 65, 85, 27], because they are inefficient
not practical) and not applicable to electronic commerce protocols.
t tical d not licable to electroni tocol

31

gain any advantage by quitting prematurely or otherwise misbehaving. Franklin and Reiter take
fair exchange in a strict sense: a party engaged in an exchange should not be able to trick the
other into accepting a document different from the one that is expected. This view differs from
that of NetBill [84], for example. In NetBill, it is possible for a vendor to provide an arbitrary
document during an online exchange. The protocol only enables such cheating to be detected after
the exchange occurs, using mediation outside the scope of the protocol.

FR’s protocol differs from previous solutions to fair exchange in that it assumes semi-trusted —
instead of fully-trusted — third-parties. In Franklin and Reiter’s definition, a third party is fully-
trusted if it does not misbehave at all, and is semi-trusted if it misbehaves on its own, but does
not conspire with either of the main parties.

Franklin and Reiter assume a model in which documents are encrypted under a key and en-
crypted documents are publicly accessible. To get a document, one only needs to get the decryption
key from the owner of the document. To guarantee that the owner of a document does not fool
interested parties with wrong decryption keys, the authors assume that parties in the system have
a one-way hash f(K) of the keys K they desire. During an exchange, they provide these hash
values to the intermediary, who uses them to verify whether the keys supplied by document owners
are the expected ones. Through this mechanism, exchanges succeed only with desired keys.

The assumption that parties know one-way hashes of keys they desire holds in some existing
protocols (e.g., [49, 77, 39, 48]). Franklin and Reiter assume the existence of a public database
of tuples, each consisting of a description of the contents of a data file (e.g., the title of a movie);
an encryption of the data file (e.g., the movie) under a secret key K ; a one-way hash f(K) of
the secret key; and an authority’s signature on the preceding information, which serves as the
authority’s appraisal that the decryption of the encrypted data file using K will indeed produce
the described item.

For these hash values to be useful, however, there cannot be a key K’ # K such that f(K') =
f(K); otherwise, the document owner can simply run the protocol with K’. To ensure that this
does not happen, f is required to be a collision-free function. Collision-freeness is, in truth, stronger
than what is strictly necessary [42]. We adopt it here for simplicity.

Some mathematical details are important to the functioning of FR’s protocol. f must be a
function from G to G (f : G — @), where G is a algebraic group. Moreover, f must have the
property that there exists a computable function F' : G x G — G such that F(z, f(y)) = f(zy).
Franklin and Reiter give a few concrete one-way hash functions with these properties [42].

3.1.2 The Protocol

Fig. 3.1 shows the protocol as it was given [42]. It assumes that X holds a decryption key K, Y
holds a decryption key K, and X and Y are interested in exchanging K, and K. It also assumes
that both X and Y know a one-way function f : G — G on the key space. For the remainder
of this chapter, K, and K, will be treated abstractly; that is, merely seen as secrets, instead of
decryption keys.

To give K, to Y, X first splits K, into two shares. One of the shares is z, a member of
G generated at random by X. The other is K 27!, the product of K, with the inverse of x
(We use product to mean the group operation in G). X then sends z to Y (step 1). Y takes
an analogous step (step 2). Once X has received y from Y, X sends to Z (step 3) the other
share K,z~! of its secret, the hash value f(y) of y, and the hash value f(K,) of the secret K,
it desires. f(K) is also provided for redundancy. Y takes an analogous step (step 4). Once Z

32

1. X—=Y: =z

2. Y 5 X: y

3. X = 7Z: f(K.) f(K,) Kea™ f(y)
4. Y 57 f(K,) f(K,) Ky f(z)
5. Z—X: Kyy!

6. Z—Y: K. !

The various symbols denote:

xz, y: Randomly generated members of a algebraic group G;
K., K,: X’sand Y'’s secrets, respectively;
[aone-way function from G to G.

Figure 3.1: FR’s protocol.

has received messages from both X and Y, Z can verify the correctness of K,’s splitting using the
equality Va € G,b € G, F(a, f(b)) = f(ab). In this case, F(K,z™!, f(z)) should be equal to f(K).
The correctness of K,’s splitting can be verified analogously. If both secrets are split correctly,
7 forwards K,y~! to X (step 5) and K z7! to Y (step 6). X can then use y and K,y ! to
reconstitute Ky; and analogously with Y. If either secret is split incorrectly, no forwarding takes
place.

Franklin and Reiter assume reliable and secure communication networks.

FR’s protocol has a number of extensions [42]. In this dissertation we focus on the basic
protocol.

3.1.3 Discussion

FR’s protocol is an ideal candidate for our first case study because it explores the notion of semi-
trusted third parties. A semi-trusted third party, according to Franklin and Reiter, is a trusted
party that may misbehave on its own, but does not “conspire” with either of the main parties.
They do not precisely distinguish “misbehaviors of one’s own” from “conspiracy misbehaviors”.
Informally, however, they intend “misbehaviors of one’s own” to mean misbehaviors that do not
bring advantages to one of the main parties, and “conspiracy misbehaviors” to mean those that
would. Their interpretation of conspiracy is non-standard in that a misbehaving party can conspire
with an honest party without the honest party’s consent. They call this type of conspiracy “passive
conspiracy” .

After the initial discussion, the notion of semi-trustworthiness is not further taken into account
however. For example, for their characterization of fair exchange protocols, Franklin and Reiter
define two types of parties: honest parties are those that follow the protocol, and misbehaving
parties are those that do not. A protocol satisfies fair exchange property if the following hold at
the end of an execution:

1. If all three parties are honest, then X learns K, and Y learns K.

33

2. If X and Z are honest, then Y learns nothing useful about K, unless X learns K,.
3. If Y and Z are honest, then X learns nothing useful about K, unless Y learns K.

4. If X and Y are honest, then Z learns nothing useful about K, or K,.

Franklin and Reiter’s characterization of fair exchange protocols has a number of weaknesses.
First, it assumes 1-resilience, i.e., at most one of X, Y, and Z misbehaves. In an open network where
one is likely to interact with strangers, this assumption seems too limiting. It is particularly limiting
in their protocol because they advocate using random members of the network as intermediaries.

Second, it does not model semi-trustworthiness. In the characterization of fair exchange pro-
tocols above, Z either follows the protocol or can misbehave arbitrarily. Note that the notion of
a semi-trusted Z that can misbehave on its own, but not conspire with either of the main par-
ties is not captured in this characterization. Arbitrarily-misbehaving Zs pose special challenges to
characterizations of fairness. For example, if Z disrupts the exchange in a way that X learns K,
without Y learning K, then fairness is certainly compromised. Franklin and Reiter do realize this
problem; according to them “It is debatable whether protection against passive conspiracies should
be included in our model” [42].

We argue that these weaknesses can be eliminated if semi-trustworthiness is explicitly modeled,
and Z is assumed not to display conspiracy behaviors.

Our framework enables explicit modeling of conspiracy behaviors and semi-trustworthiness.
Conspiracy behaviors can be modeled as behaviors that violate trust assumptions and semi-trusted
parties can be modeled as parties that do not exhibit conspiracy behaviors. In fact, in our char-
acterization of p-protective protocols, we prescribe analyzing protocols under the assumption that
trusted parties can misbehave, but cannot violate their trust assumptions. By restricting the type
of misbehaviors trusted parties can exhibit, we can eliminate the assumption that only one party
misbehaves in each execution, and answer Franklin and Reiter’s of question of whether conspiracy
behaviors should be considered in the model.

3.2 Abstract Formulation of the Building Blocks

In this section, we present an abstract formulation of the mathematical building blocks used in
FR’s protocol.
To “split” a key K into Kz~! and z, we first generate z at random, then mask K using . We
represent Kz ~! abstractly by
mask(K,),

where mask corresponds to inverting z, then forming the product of K with the inverse of . To
retrieve K from Kz~! we apply another product operation: (Kz~!)z, which converts to K. This
retrieval is abstractly represented by

unmask(mask(K, z),z) = K,

where unmask corresponds to the product operation and = denotes a conversion. Henceforth, we
call z a masking key, and mask(K, z) a masked secret.

We represent the one-way hash function f abstractly by hash, and the auxiliary function F by
auz_hash. Thus, F(z, f(y)) = f(zy) can be mapped into

auz _hash(z, hash(y)) = hash(unmask(z,y)).

34

The various symbols denote:

z, Y

K, K,:

1
2
3
4.
5
6

X—=Y:
Y - X:
X—=7Z:
Y - Z:
Z — X
Z —=Y:

x

Y

hash(K;) hash(K,) mask(K,,z) hash(y)
hash(K,) hash(K;) mask(K,,y) hash(z)
mask(Ky, y)

mask (K, z)

Randomly generated masking keys;
X'’s and Y'’s secrets, respectively.

Figure 3.2: An abstract formulation of FR’s protocol.

Finally we use an abstract type (¢ to represent groups G.
In what follows, we list the functions and their conversion rules.

Definition 3.1 Abstract building blocks

1. Secrets have type t, i.e., if K is a secrel, then K :1;

2. Masking keys have type t, i.e., if x is a masking key, then x : t;

3. Functions:

e mask: t Xt —1;

e unmask: t Xt —1;

hash: t — t;

e aux_hash: t Xt — {;

4. Conversion rules:

o VK :t,z:t,y:t, unmask(mask(K,z), y) = K, if and only if x = y;
o Va:t,y:t, auz_hash(z, hash(y)) = hash(unmask(z,y)).

Note that we make the Perfect Encryption Assumption [45, 12] in our framework. In its most basic
form, this assumptions says that the only way to obtain any information from an encrypted message
is to have the right decryption key. The conversion rule regarding mask and unmask specifies that

a masked secret cannot be retrieved unless it is unmasked by the masking key.
The protocol in Fig. 3.1 can now be represented as in Fig. 3.2.

3.3 Formalizing the Protocol and the Protection Properties

In this section, we specifly FR’s protocol and protection properties different principals want to have

guaranteed.

35

3.3.1 Specification of the Protocol
Principals of the Protocol

P={X,Y, 7}

Initial Conditions

Let k. and &, be respectively X’s and Y’s secrets, the initial condition

T : hash(kg) = pz A hash(ky) = py A {kz, py} C Ms* A {Kky, pz} C MsY
says that p, and p, are respectively s.’s and ,’s hashes; principal X has both s, and p, in its
local store; and principal Y has x, and p; in its local store.

Local Protocols

In the specification below, we introduce timeouts in some select places. Intuitively, they are intro-
duced in points where a send or a receive event in an already initiated communication is expected.
In these points, timeouts handle communication delays and disruptions. If a send or a receive is
critical, however, then no timeout is introduced and the send or the receive is allowed to take place
eventually.

In what follows, w, =, y and z are variables.

X’s local protocol Ry consists of the following rules:
Rx,: Az :t|random(z) € H = {random(y:¢)}

Rx,: 3 :t|random(z) e HA (Ay:t|send(Y, y) € H) A last(H) # timeout —
{send(Y, z), timeout}

Rx,: (Ax :t | receive(Y, z) € H) A last(H) # timeout = {receive(Y, y : ¢)}

Rx,: (Ay:t|receive(Y,y) e H) Adz:t|send(Y, z) € HA last(H) # timeout =
{receive(Y, z : t), timeout}

Rx,: Jy:t|receive(Y,y) e HAJz:¢t|send(Y, z) € HA
(Az:txtxtxt]|send(Z, z) € H) A last(H) # timeout =
{send(Z, hash(k;) py mask(k;, z) hash(y)), timeout}

Rx,: 3ot xtxtxt|send(Z,z) e HA (By:t|receive(Z, y) € H) A last(H) # timeout —>
{receive(Z, z : t)}

Rx.: last(H) = timeout V 3 z : ¢ | last(H) = receive(Z,) = {exit}

Y'’s local protocol Ry is identical to Ry, and consists of the following rules:
Ry,: Az :t|random(z) € H = {random(y: 1)}
Ry,: Jy:t|random(y) € HA (A z:t|send(X, z) € H) A last(H) # timeout =
{send (X, y), timeout}

36

Ry,: (Az : | receive(X, z) € H) A last(H) # timeout = {receive(X, y : ¢)}

Ry,: (Az:t|receive(X, z) € H) AJy:t|send(X, y) € HA last(H) # timeout =
{receive(X, z : t), timeout}

Ry,: Jx:t|receive(X,z) e HAJy:t|send(X,y) € HA
(Az:txtxtxt]|send(Z, z) € H) A last(H) # timeout =
{send(Z, hash(k,) p; mask(ky, y) hash(z)), timeout}

Ry,: 3ot xtxtxt]|send(Z,z) e HA (Ay:t | receive(Z, y) € H) A last(H) # timeout —>
{receive(Z, z : t)}

Ry, : last(H) = timeout V 3 z : ¢ | last(H) = receive(Z,) = {exit}

Finally Z’s local protocol Rz consists of the following rules:

Rz,: (Ay:txtxtxt]receive(Y, y) € H) A last(H) # timeout —
{receive(Y, z: t X t x t x t), timeout}

Rz,: (Az:txtxtxt]|receive(X, z) € H) A last(H) # timeout —
{receive(X, w: t x t X t x t), timeout}

Ryz,: oy g a3 w41t Xt XE XL | receive(X, 21 z2 3 x4) € HA
Ty y2 ys ya:t xtxt xt | receive(Y, y1 y2 ys ya)) € HA
x1 = yy = aux_hash(zs,va) A y1 = z2 = aux_hash(ys, z4) A
(Ay:t|send(X,y) e H) A (Bz:t]|send(Y, z) € H) A last(H) # timeout —
{send(X, y3), send(Y, z3), timeout}

Ryz.: Jay ag a3 041t Xt XE XL | receive(X, 21 z2 3 x4) € HA
Jyr ya ys ya:t Xt XL XL | receive(Y, y1 y2 y3 ya) € HA
= (21 = yp = aux_hash(zs, y4) A y1 = z2 = aux_hash(ys, z4)) = {exit}

Ryg: oy wg a3 w418 XX E X | receive(X, 21 z3 @3 x4) € HA
Jyr ya ys ya 1t Xt Xt Xt | receive(Y, y1 y2 y3 ya) € HA
Jy:t|send(X,y) e HA Az :t|send(Y,z) € H= {send(Y,z3)}

Rz: 3yi yaysysa it xtxtxt|receive(Y, y1 y2 y3 ya) € HA
g xg w3 xa:t X EXEXT | receive(X, x1 23 z3 4) € HA
da:t|send(Y,z) e HA Ay:t|send(X,y) € H= {send(X,ys)}

Ryz,: last(H) = timeout = {exit}
Rz,: dy:t|send(X,y) e HAJz:t|send(Y, z) € H= {exit}

Trust Assumptions

X and Y are not trusted parties. Thus, Tx = true and 7y = true. Z is a trusted party. It is
trusted:

e T'z: To send X'’s masked secret to Y only if Y's secret is correctly shared by X and Z;

37

e 1'7,: To send Y’s masked secret to X only if X’s secret is correctly shared by Y and Z; and

e T'z.: To forward both X’s masked secret to Y and Y’s masked secret to X, or neither.

These trust assumptions can be formalized as follows.

Ty: O(Fay zp w3 x4:1XEXTEXL|receive(X, z1 z2 3 x4) € HA send(Y, 23) € H —
(Fyryzys yat Xt Xt Xt]| receive(Y, y1 y2 y3 ya) € HA y1 = z3 = aux_hash(ys, z4)))

Ty, O(Fyry2 ysya:txtxtxt|receive(Y, y1 y2 ys ya) € H A send(X, z3) € H —
(Fay xg w3 x4t Xt XX | receive(X, z1 x9 z3 x4) € HA y1 = 2 = aux_hash(ys, z4)))

Ty,: O(Fay zg w3 xa:txXtxtxt]| (receive(X, z1 z2 3 z4) € HAsend(Y, z3) € H) —
C((Fyryzysya:t xtxtxt] (receive(Y, y1 y2 y3 ya) € HA send(X, y3) € H)) V
(failRemote € HA Ay : ¢ | send(X,y) € H))) A
O3y y2ys ya:t Xt xtxt]| (receive(Y, y1 y2 y3 ya) € H A send(X, y3) € H) —
C((Fag zgzz gt XXt x| (receive(X, zy 23 z3 24) € HA send(Y, z3) € H)) V
(failRemote € HA Az :t | send(Y, z) € H)))

Tz, says that, at any state of an execution, if Z sends X’s masked secret — 3 — to Y, then Y’s
secret is correctly shared by X and Z — expressed in our formalization by the equality y; = z9 =
aux_hash(ys, z4). Tz, is symmetric to Tz,. Tz, says that if X’s masked secret — z3 — is sent to
Y, then eventually Y’s masked secret — y3 — would have been sent to X, unless a communication
failure prevents Z from sending the second message; and symmetrically. Note that y3 could have
been sent before or after x3 has been sent.

3.3.2 Specification of Protection Properties

In the context of FR’s protocol, X’s protection property says that
“If' Y gets X'’s secret, then X gets Y's secret”,
while Y’s says that
“If X gets Y'’s secret, then Y gets X'’s secret”.
These properties can be respectively formalized as Py and Py below:
Px :0 (¢1 — < ¢2)
Py 10 (g2 = < 1),
where
¢1 =3z 1,2 : 1 | receive(X, z) € HY A receive(Z, z) € HY A unmask(z, z) = £y,

¢2 =Ty : 1,2 : t | receive(Y,y) € HX A receive(Z, z) € HX A unmask(z, y) = &,.

38

3.4 Analysis of the Protocol

In this section, we analyze FR’s protocol under all three deviation modes defined in Section 2.4.3.
Subsections 3.4.2, 3.4.3, and 3.4.4 have respectively analyses of the protocol under compliance,
abortion and deception modes. Subsection 3.4.1 has some preliminary theorems and lemmas.

In this section, we present only the main results with their high-level analysis. For completeness,
detailed proofs appear in Section 3.5.

In what follows, we use she, he, and it to refer to X, Y, and Z respectively.

3.4.1 Preliminaries

In this subsection, we present two results needed in the rest of the analysis. Lemma 3.2 says
that each protocol step gets instantiated at most once in executions we consider. Its proof is
straightforward, and depends on the fact that the enabling condition of all the protocol rules check
for prior occurrences of the types of events they prescribe.

Lemma 3.2 Let Il be FR’s protocol, o be an execution in E(I1)°UE(I)AUE(ID)P, e; be an event
in o, and F be an event-template prescribing a protocol step in Il. If e; is an instance of F, then
there does not exist ej in o, 1 # j, such that e; is also an instance of L.

The following three lemmas are needed in Theorem 3.6.

Lemma 3.3 Let Il be FR’s protocol and Tz = {1'z,,Tz,,Tz,} be the trust assumptions we make
of Z (as given in Section 3.3.1). Then

Vo € E(INY, o =% Ty,.

Lemma 3.4 Let Il and Tz ={1z,,17,,17,} be as specified in Lemma. 3.3. Then
Vo € E(IN°, o =" Tgy,.

Lemma 3.5 Let Il and Tz ={1z,,17,,17,} be as specified in Lemma. 3.3. Then

VUEE() , 0 =" Tz,.

Theorem 3.6 says that all maximal compliant executions of FR’s protocol are trustworthy.

Theorem 3.6 Let Il be Franklin and Reiter’ protocol and T be its trust assumptions. Then

Vo € (I, o " T.

Proof: Given that Z is the only trusted party, 7 = Tz = {1'2,,1%,,12, }, and this theorem follows
from Lemmas 3.3, 3.4, and 3.5.

39

3.4.2 Protection Under Compliance Mode

In this subsection, we analyze the protocol under the assumption that all principals behave as
prescribed by the protocol, deviating from it only if communication channels fail.

To verify whether the protocol is all-protective, we need to verify whether it is both X-protective
and Y-protective. We start with X-protection.

Proposition 3.7 Let Il be FR’s protocol, o be an execution in E(H)C, and Px be X ’s protection
property as specified in Section 3.3.2. Then

o " Px.
Analysis:

1. Let s; be a state such that Y has received a message my from X and a message my from 7,
and my and mgy are such that unmask(msg, m1) = k.

Then, at s;, X must have received a message m} from Y; and eventually, either Z will have
sent a message mj to X, or Z will have failed to do so because of a communication channel
failure.

2. We have two scenarios to consider:

(a) If the communication channel between X and Z does not fail, then, at the end of the
execution, Z will have sent m} to X and X will have received it. Since m/, was received
from Y and Y behaves compliantly, unmask(m}, m}) = &,, and X will have been able
to reconstitute k.

(b) If the communication channel between X and Z fails, then Z will not have been able
to send m, to X, or m), will have been sent but not have been received by X. In either
case, X does not receive the second share of «,.

a

The analysis of Proposition 3.7 shows that protection of X’s interest relies critically on 1) X'’s
receiving a message from 7, and 2) the message X receives from Y and the message she receives
from Z form a correct splitting of Y’s secret x,. If the communication channel between X and Z
does not fail, then X receives the message Z forwards — which will allow her to reconstitute x,,
and her interest is protected. Otherwise, either Z is prevented from sending the message or X does
not receive it. In either case, her interest is violated.

From Prop. 3.7 we can derive the following

Corollary 3.8 FR’s protocol is X -protective under compliance mode if the communication channel
between X and Z does not fail.

Proposition 3.9 addresses Y-protection.

Proposition 3.9 Let Il be FR’s protocol, ¢ be an execution in E(I1)%, and Py be Y ’s protection
property as specified in Section 3.3.2. Then

oE* Py.

40

Analysis: analogous to that of Proposition 3.7, given that Y’s local protocol and protection
property are analogous to X'’s.

Corollary 3.10 follows from Prop. 3.9.

Corollary 3.10 FR’s protocol is Y -protective under compliance mode if the communication chan-
nel between Y and Z does not fail.

Theorem 3.11 summarizes the results in this subsection:

Theorem 3.11 Under the assumption that all principals behave compliantly, Franklin and Reiter’s
protocol is all-protective if communication channels between X and Z, andY and Z do not fail.

Proof: From Corollaries 3.8, and 3.10.

Discussion

In FR’s protocol, secrets are not released as a whole. Take X’s secret K, for example. It is “split”
into two shares by X. One of the shares is given to Y and the other given to Z. Y would be able
to reconstitute k, later, if Z forwards its share to Y.

If Y is able to reconstitute K, from messages m; and msy he receives respectively from X and
Z, then Z must have received messages from both X and Y, and must have been able to verify
the correctness of both secret splittings. Since a compliant Z sends a message to Y if and only if
it sends a message to X, it will try to forward its share of Y’s secret K, to X, which can then be
used by X to reconstitute K.

The problem arises if the communication channel between X and Z is unreliable: Z may be
prevented from sending the message to X, or the message it sends may never be received by X. In
either case, X will not be able to reconstitute K.

This is a weakness of the protocol, particularly because Franklin and Reiter advocate Z to be a
“stranger” — a random party from the network. Strangers on the net can come and go, and nothing
in the protocol guarantees that Z can be contacted later, if X does not receive a message from it
in a timely manner. X can try to contact Y to get the missing share. But Y may not be reachable
himself. Even if he is, Y may not bother to cooperate and re-send the share X wants. After all,
this protocol is used because X and Y do not trust each other.

3.4.3 Protection Under Abortion Mode

In this subsection, we analyze the protocol under abortion mode. Like with compliance mode, we
verify whether the protocol is both X-protective and Y -protective. We start with X-protection.

According to Defs. 2.25 and 2.26 in Section 2.4.3, to verify whether Il protects X'’s interest
under abortion mode, we need to examine all executions in E(I1)® and trustworthy executions in
E(H)%. Here we focus on abortive executions only, since we have analyzed compliant executions
in Section 3.4.2.

41

Proposition 3.12 Let 11 be FR’s protocol, o be an execution in E(H)ﬁ, T be the trust assumptions
IT makes, and Px be X ’s protection property as specified in Seclion 3.3.2. Then

o ="T implies o =" Px.
Analysis: This analysis is identical to the one for Prop. 3.7, except for what is in italics below.
1. Let s; be a state such that Y has received a message my from X and a message my from Z,

and my and mgy are such that unmask(msg, m1) = k.

Then, at s;, X must have received a message m} from Y; and eventually, either Z will have
sent a message m) to X, or Z will have failed to do so because of a communication channel
failure.

Note that since o is a trustworthy execution, Z could not have failed to send m/, to X because
of local problems — that would have violated the trust assumption 1'z,.

2. We have two scenarios to consider:

(a) If the communication channel between X and Z does not fail, then, at the end of the
execution, Z will have sent m}, to X and X will have received it. Since neither Z nor Y
deceives, unmask(mf, m}) = Ky, and X will be able to reconstitute x,,.

(b) If the communication channel between X and Z fails, then Z will not be able to send
mb to X, or m), was sent but not received by X. In either case, X does not receive the
second share of k.

a

Jointly, Props 3.7 and 3.12 address X-protection under abortion mode. They show that this
protocol offers the same level of protection to X’s interests in both compliance and abortion modes.
Possible failures in the channel linking X and Z are still what can compromise X'’s interest.

From Prop. 3.7 and 3.12 we can derive the following

Corollary 3.13 FR’s protocol is X -protective under abortion mode if the communication channel
between X and Z does not fail.

Proposition 3.14 addresses protection of Y’s interests in abortive executions.

Proposition 3.14 Let 11 be FR’s protocol, o be an execulion in E(H){}, T be the trust assumplions
IT makes, and Py be Y ’s protection property as specified in Section 3.3.2. Then

o =" T implies o =" Py.

Analysis: analogous to that of Proposition 3.12, given that Y’s local protocol and protection
property are analogous to X'’s, and 7'z, is equally applicable here.

a

Jointly, Props 3.9 and 3.14 address Y-protection under abortion mode (Corollary 3.15). Here
too, possible failures in the channel linking Y and Z are still what can compromise Y’s interest.

42

recete(X, f(K;) f(Ky) K.z7' f(y)) recete(Y, f(K,) f(K;) Kyy_l f(z))
recetve(Y, f(K,) f(Kg) Kyy_l f(z)) or recewe(X, f(K;) f(Ky) K271 f(y))
failLocal failLocal

Figure 3.3: Examples of trustworthy abortive executions of Z.

receive(X, f(K;) f(Ky) Kzz™t f(y)) receive(Y, f(K,) f(K:) Kyt f(z))
recetve(Y, f(K,) f(Kg) Kyy_l f(z)) recetve(X, f(Kz) f(Ky) K271 f(y))
send(Y, K z71) or send(X, Kyy™!)

failLocal failLocal

Figure 3.4: Examples of untrustworthy abortive executions of Z.

Corollary 3.15 FR’s protocol is Y -protective under abortion mode if the communicalion channel
between Y and Z does not fail.

Theorem 3.16 summarizes the results in this subsection:

Theorem 3.16 Under aborlion mode, Franklin and Reiler’s protocol is all-protective if communi-
cation channels between X and Z, and Y and Z do not fail.

Proof: From Corollaries 3.13, and 3.15.

Discussion

According to our analysis, the ability of the protocol to guarantee all-protection is not affected
under abortion mode; the problem still lies on possible channel failures between Z and the other
two principals. This seems counter-intuitive, since depending on when Z terminates its execution,
all-protection can actually be compromised. For instance, if Z terminates its execution right after
receiving messages from both X and Y, that is, Z’s local execution is as shown in Fig. 3.3, neither
X-protection nor Y-protection is compromised, since neither of them received the second share of
the secret they desire. However, if Z terminates its execution after sending its share of X's secret
(Kzz™') to Y, but before sending its share of Y’s secret (K,y™!) to X, that is, if Z’s local execution
is as shown in Fig. 3.4, then X-protection could? be violated, since X would never receive the other
share of Y’s secret from Z.

This argument overlooked one key point: the executions in Fig. 3.4 do not belong to the set of
executions we consider in this analysis, because they violate the trust assumption 7'z, .

This discussion shows how trust assumptions limit the set of executions we consider when
analyzing a protocol and how critical they are in our conclusion of whether or not a protocol is
all-protective.

2We use could, instead of would, because the message Z sent to Y might never get to Y as well. This could happen
due to Y’s terminating prematurely for example.

43

Y’s deviations do not affect X-protection; the readers should be able to convince themselves
straightforwardly.

3.4.4 Protection Under Deception Mode

In this subsection, we analyze the protocol under deception mode.
We first analyze the protocol with respect to X-protection, then with respect to Y-protection.
According to Def. 2.25 in Section 2.4, to analyze the protocol with respect to X-protection, we
need to analyze all executions in F(I1)“ and trustworthy executions in E(I1)¥. Here we focus on
deceptive executions only, since we have analyzed compliant executions in Section 3.4.2.

Proposition 3.17 Let Il be FR’s protocol, o be an execution in E(H))’%, T be the trust assumptions
IT makes, and Px be X ’s protection property as specified in Seclion 3.3.2. Then

o =" T implies o " Px.
Analysis: This analysis is very similar to that for Prop. 3.7, except for some minor details.

1. Let s; be a state such that Y has received a message my from X and a message my from Z,
and my and mgy are such that unmask(msg, m1) = k.

Then, at the same state s;, X must have received a message m} from Y; and eventually,
either Z will send a message m/, to X, or Z will fail to do so because of a communication
channel failure.

2. We have two scenarios to consider:

(a) If the communication channel between X and Z does not fail, then, at the end of the
execution, Z will have sent m/ to X and X will have received it. Since Z behaves as
trusted, m/ is the message X expects, that is unmask(m}, m}) = Ky, and X will have
been able to reconstitute &,.

(b) If the communication channel between X and Z fails, then Z will not have been able
to send m), to X, or m), will have been sent but not have been received by X. In either
case, X does not receive the second share of «,.

a

Analogous to the analysis of Proposition 3.7 (regarding compliance mode), the analysis of
Proposition 3.17 shows that protection of X’s interests relies critically on 1) X receiving a message
from Z, and 2) the message X receives from Y and the message it receives from Z forming a correct
splitting of Y’s secret. Analogous to the compliance mode scenario, if the communication channel
between X and Z does not fail, then X receives the message Z sends. Under deception mode,
however, this message may not be the one that would allow X to reconstitute Y’s secret, unless Z
behaves as trusted. If Z behaves as trusted, then Z will make sure that the message it forwards
to X is the expected one. If the communication channel between X and Z fails, and either Z is
prevented from sending the message or X does not receive the message sent by Z, then X'’s interest
is inevitably compromised.

Jointly Props 3.7 and 3.17 address X-protection under deception mode (Corollary 3.18). They
show that, like in the other two modes, this protocol is X-protective only if the communication
channel between X and Z does not fail.

44

Corollary 3.18 FR’s protocol is X -prolective under deceplion mode if the communication channel
between X and Z does not fail.

Proposition 3.19 addresses protection of Y’s interest in deceptive executions.

Proposition 3.19 Let Il be FR’s protocol, o be an execution in E(H)e, T be the trust assumptions
IT makes, and Py be Y ’s protection property as specified in Section 3.3.2. Then

o =" T implies o =" Py.

Analysis: analogous to that of Proposition 3.17, since Y ’s local protocol and protection property
are analogous to X'’s, and assumption 7'z, is equally applicable here.

a

Jointly, Props 3.9 and 3.19 address Y-protection under deception mode (Corollary 3.20). Pos-
sible failures in the channel linking Y and Z are still what prevents the protocol from being
Y -protective.

Corollary 3.20 FR’s protocol is Y -protective under deception mode if the communication channel
between Y and Z does not fail.

Theorem 3.21 summarizes the results in this subsection.

Theorem 3.21 Under deception mode, Franklin and Reiler’s protocol is all-protective if commu-
nication channels between X and Z, and Y and Z do not fail.

Proof: From Corollaries 3.18, and 3.20.

Discussion

In this subsection, we focus on what happens under deception mode. Like in sections 3.4.2 and 3.4.3,
we focus on X-protection.

According to our proofs, the fact that Y and Z may send out arbitrary messages does not
affect the ability of the protocol to guarantee X-protection (all we discussed in section 3.4.2 is
still applicable here); the problem still lies on possible channel failures between X and Z. It is
straightforward to see that Y’s sending arbitrary messages alone cannot compromise X-protection,
since in a compliant execution of Z, Z does not forward K,z~! to Y, unless Z has made sure that
jointly X and Z have a correct splitting of K.

But what if Z also misbehaves? For example, assume that Z has just received messages from
both X and Y, i.e., Z has just experienced the following events:

receive(X, f(K,) f(Ky) Kzz7b f(y))
receive(Y, f(K,) f(K:) Ky~ f(2)).

Then Ry, is applicable, which means that Z can send K,z ! to Y, Kyy~! to X, or timeout next.
In a scenario where Z can deceive, Z can send something other than K,y™! to X. Fig. 3.5 shows

45

receive(X, f(K;) f(Ky,) K:z™b f(y))
receive(Y, f(K,) f(K:) Kyt f(2))
send(X, K,z71)

send(Y, Kz~ 1)

exit

Figure 3.5: An untrustworthy deceptive local execution of Z.

receive(X, f(K;) f(K,) Kzz7t f(y))
receive(Y, f(K,) f(Ky) Kyt f(2))
send(X, K z71)

send(Y, K,y)

exit

Figure 3.6: A trustworthy deceptive local execution of Z.

an example. Under this scenario, X-protection is clearly violated, since what X receives from Z
cannot be used to re-constitute K.

Here is where trust assumptions come to the rescue: the execution in Fig. 3.5 violates T'z,, and
should not be considered when analyzing X-protection.

Note that Z can deceive without violating the trust assumptions we make of it. The execution
in Fig. 3.6 is an example.

These examples illustrate that X-protection is not compromised whenever Z deceives; but it
could be if Z violates the trust assumptions. We use could instead of would because even when Z
violates the trust assumptions, X-protection might not be violated. In Fig. 3.5, for example, it is
violated if the communication channel between Y and Z is reliable and Y receives K,z 1. It is not
violated, however, if the communication channel between Y and Z fails, and Y does not receive
Ky~ 1.

3.5 Formal Analysis of the Protocol

This section contains detailed proofs of the results presented in Section 3.4. These proofs use
standard proof methods and are presented here for completeness.

3.5.1 Preliminaries

Lemma 3.4 Let Il be FR’s protocol and Tz = {1'z,,1z,,Tz,} be the trust assumptions we make
of Z (as given in Section 3.3.1). Then

Yo € E(IN)Y, o =" Tz,.

Proof:

46

1. Let s; be a state in o and a1 a3 az aq: t X1 Xt X t be a message such that
s; | receive(X, a1 az a3 ayq) € HZ A send(Y, a3) € HZ.
Then there exists a state sg, k < ¢, such that
sy, |= receive(X, a1 ay a3 ag) € H: Alast(H?) = send (Y, a3).

We know that such a state exists because, according to Z’s local protocol, Z receives from
both X and Y first, before it sends messages to X or Y.

At sy, the last rule applied by Z must have been Rz, or Ryz,.
2. If Sf resulted from an application of Rz,, then we know that 35 < k, and by by b3 ba: t Xt Xt X1
such that
s; = receive(Y, by by bs by) € HE A by=ay = aux_hash(bs, a4).
3. 1If sf resulted from an application of Ry, then 35 < k, b} : ¢ such that
s; |= last(H) = send (X, b}),

which could have resulted only from an application of Rz,. To be applicable, Rz, requires
that by = ag = aux_hash(bs, a4).

O
Lemma 3.5 Let Il and Tz ={1z,,1z,,17,} be as specified in Lemma. 3.4. Then
Yo € E(I)Y, o |=* T,
Proof: Analogous to the proof of Lemma 3.4.
O

Lemma 3.6 Let Il and Tz ={1z,,1z,,17,} be as specified in Lemma. 3.4. Then

Yo € E(I)Y, o |=* Tz,.

Proof:

47

. Let s be a state in ¢ and a; ag a3 aq: t Xt Xt X t be a message such that
s; | receive(X, a1 az a3 ayq) € HE A send(Y, a3) € HZ.
Then there exists a state s;, ¢ < k, such that
s; |= receive(X, a1 ay az a4) € H2 Alast(H?) = send (Y, az).
From Lemma 3.4, we know that 3 by by b3 by: t X £ X t X t such that
s; |= receive(Y, by by b3 by) € uZ.
Thus, we only need to prove that

s; E* O(send(X, b3) € H2 v (failRemote € HZA Ay : t | send(X,y) € H2)).

CIf
s; = last(H2) = send(Y, as),
zZ

then s must have resulted from an application of rules Rz, or Rz, .

L If SZ-Z resulted from applying Rz,, then Rz is the only rule applicable from s?, and in Z’s

local execution, ‘send(Y, as)’ can be followed only by ‘send(Y), b3)’ or ‘failRemote’. This means
that we have

s; E* O(send(X, b3) € H2 v (failRemote € HZA Ay : t | send(X,y) € HZ)).

In this case, Z sends messages first to Y, then to X; or terminates its execution after sending
the message to Y.

. If 57 resulted from applying Rz, then
si = yh ot | send (X, yh) € HE.
This means that 35 < 7, and a message b}, such that
s; |= last(H) = send (X, b).

‘send (X, b%)” could have resulted only from applying Ryz,, which prescribes Z to send bs to
X. Thus, b} = bs.

In this case, Z sends messages first to X, then to Y.

. From 3 and 4, we have:

s; B O((Byr i tyyz i t,ys s tyyg i t| (receive(Y, y1 v y3 ya) € H2 A (send (X, y3) € HZ)))V
(failRemote € HZA Ay : ¢ | send (X, y) € HZ)).

. The other conjunct of Tz, can be proven analogously.

48

3.5.2 Protection Under Compliance Mode

Proposition 3.7 Let Il be FR’s protocol, o be an execution in E(H)C, and Px be X ’s protection
property as specified in Section 3.3.2. Then

o " Px.

Analysis:
1. Let s; be a state such that
sif= 3w it 2, 0 L] receive(X, z) € HY A receive(Z, z,) € HY A unmask(z,, z) = .
Then, from Lemma 3.22, we deduce that 35 > ¢ |

sj = (3ag i t,zq s t | send(X, z3) € HE A receive(Y, z4) € HY) V failRemote € HZ.

2. If the first conjunct is true, then there exist messages as : t and a4 : ¢ such that
s; = send(X, az) € H: A receive(Y, aq) € HX.

According to Lemma 3.23, unmask(as, ag) = £y.

Two scenarios can be derived {from here.

(a) If the communication channel between X and Z does not fail, then X will receive the
message sent by Z, i.e., Ik, k > j |

sk = receive(Z, as) € HX A receive(Y, aq) € HE.

And from 2) we know that unmask(as, a4) = K.

(b) If the communication channel between X and Z fails before X receives az from Z, then
vi,l > 7,
51 |= receive(Y, ag) € HEA By @ 1| receive(Z, xq) € HE,

3. If the first conjunct is false, then
s; k= failRemote € HAA Ay : ¢ | send(X, y) € HE.

This is the scenario where Z is prevented from sending messages to X because of a failure in
the communication channel. Like 2b), we can conclude that

VI,1 > j, s = receive(Y, aq) € HEA Ay : t | receive(Z, z4) € HE.

4. From 2) and 3), we conclude that this proposition holds if the communication channel between
X and Z does not fail. Otherwise, it does not.

49

The next two lemmas are used in the analysis of Proposition 3.7. Lemma 3.22 says that if Y
has received a message from Z, then Z will have sent a message to X, and X will have received a
message from Y; or Z will have failed to send a message to X because of a communication channel
failure.

Lemma 3.22 Lel Il be FR’s prolocol and o be an execulion in E(I1)°.

o E=* O (Jzy:t|receive(Z,z;) € HY —
O ((Fzy:t,ag it | send(X, zq) € HE A receive(Y,z3) € HY) Vv failRemote € HZ)).

Proof:

1. Let s; be a state in ¢ and a; : ¢t be a message such that
s; |= receive(Z,ay) € HY.
By communication assumption (Definition 2.10, condition 6),
s; =send (Y, ay) € HZ.
2. send?(Y, a;) could have been prescribed by rules Rz, or Ry, .
3. If send? (Y, a;) resulted from an application of Rz,, then 35 < i |
s; =send (Y, a;) € HEA Pay :t | send (X, z4) € H,

and
sj41 = last(H?) = send(Y, ay)A Azg : t | send(X, z4) € HE.

4. Rz, is the only rule applicable from SJZ_H, which implies that
s;41 =* O (g it | send (X, z4) € HZ V failRemote € H%),
and consequently

si =" O (Jay it | send(X, z4) € H? V failRemote € HZ).

5. If sendZ(Y, ay) resulted from an application of Rz, then Z sent a message to X before it
sent messages to Y. That is

s; E* Jug it | send (X, zy) € HZ,

and consequently

i =" O (Fay it] send(X, z4) € HE).

50

6. Next, let us prove that

s; =" O (Jag : t | receive(Y, z3) € HY).
By straightforward backchaining,
s; = send(Y, ay) € HZ

implies that 3k < 7 |
s = 3wt xtxtxt]receive(X,z) € HZ,

which, by communication assumption, implies that

sp =Tzt xtxtxt]|send(Z,) € HE

. Since ‘send-to-Z’ events are only prescribed by Rx,, and Rx,’s enabling condition requires

a ‘receive-from-Y’ event, we can conclude that
sk |= Ja @ t | receive(Y, z) € HE,

and consequently
s; = O (Jag 1 t | receive(Y, x3) € Hx).

8. Given 4), 5) and 7), the lemma is proved.

a

Lemma 3.23 says that the message sent to X by Z and the message X receives from Y form a
correct splitting of Y’s secret.

Lemma 3.23 Let Il be FR’s protocol and o be an execution in E(H)C. ThenV xq :t, z3:t,

o E* O (send(X,z3) € HZ A receive(Y, z3) € HX — unmask(zy, 23) = k).

Proof: Let s, be a state such that there exists messages a; and a3 such that

s, = send(X, ay) € HZ A receive(Y, as) € HX,

Then, we can prove the lemma as follows:

1.

Given
s, |= send (X, ay) € HZ,

we can conclude, by straightforward backchaining, that
. : Z
Sp |EJoy xg @3 x4 it Xt X X L] receive(Y, zy xg @3 z4) € HY,
and that the third component of this concatenated message is as, i.e.,

sy = Joy it xg it g ot receive(Y, [x1, T2, az, T4]) € HZ.

51

2. By communication assumption,
Sp = dry it xg it xg i b receive(Y, [@1, 22, ag, T4]) € H?

implies that
Sp = dey tt,wg it xg it send(Z, [21, T2, a2, T4]) € H'.

And since Ry, is the only rule that prescribes a “send-to-Z” event, we can conclude that
az = mask(ky, a1),

for a message a; : ¢, and
s, |=send (X, a;) € HY.

3. Also, by communication assumption,
s, |= receive(Y, as) € H:

implies that
s, = send (X, az) € H.

Given that there can be only one send-to-Z event in HY, we conclude that a; = as.

4. We are now ready to show that unmask(ag, az) = k,. From 2), we know that a; = mask(k,, as).
Thus, unmask(az, a3) = unmask(mask(k,, as), as) = ky.

3.5.3 Protection Under Abortion Mode

Proposition 3.12 Let 11 be FR’s protocol, o be an execution in E(H)é}, T be the trust assumptions
IT makes, and Px be X ’s protection property as specified in Section 3.3.2. Then

o ="T implies o =" Px.

Analysis: The structure of this analysis is identical to the structure of the analysis of Proposi-
tion 3.7; the lemmas it uses are in one-to-one correspondence to those used by Proposition 3.7. We
repeat the analysis here for self-containment.

1. Let s; be a state such that
sif= 3w it 2, 0 1| receive(X, z) € HY A receive(Z, 2,) € HY A unmask(z,, 2) = .
Then from Lemma 3.24, we deduce that 35 > i |

s;i | (Jzz:t,zg:t|send(X,z3) € HE A receive(Y,z4) € HY)V
failRemote € HZ.

2. If the first conjunct is true, then there exist messages a3 : ¢ and a4 : ¢t such that
s; = send (X, az) € H A receive(Y, ay) € HY

According to Lemma 3.25, unmask(as, ag) = k.

Two scenarios can be derived from here.

52

(a) If the communication channel between X and Z does not fail, then X will receive the
message sent by Z, i.e., 3k, k > j |

sk = receive(Z, as) € HX A receive(Y, aq) € HE.

And from 2) we know that unmask(as, ag) = K.

(b) If the communication channel between X and Z fails before X receives az from Z, then
Vi, l> 7,
51 |= receive(Y, aq) € HEA Bzy @ 1| receive(Z, zq) € HE,

3. If the first conjunct is false, then
s; k= failRemote € HAA Ay : ¢ | send(X,y) € HE.

This is the scenario where Z is prevented from sending messages to X because of a failure in
the communication channel. Like 2b), we can conclude that

VI,1 > j, s = receive(Y, aq) € HEA Ay : t | receive(Z, z4) € HE.

4. From 2) and 3), we conclude that this proposition holds if the communication channel between
X and Z does not fail. Otherwise, it does not.

a

Note that we did not refer to trust assumptions in the analysis of Prop. 3.12. In fact, we only
need them in the proof of Lemma 3.24. This fact is reflected in the statements of the lemmas
used by Proposition 3.12 (Lemmas 3.24 and 3.25): Lemma 3.24 is the only one whose statement
mentions trust assumptions.

Lemma 3.24 Let 1 be FR’s protocol and o be an execution in E(I1)%. Then

ol=*T implies o}=*0 (Jz;:t|receive(Z,z;) € HY —
O (g it a3 : t | send(X, xq) € HE A receive(Y, z3) € HY) v
failRemote € HZ).
Proof:

1. This proof uses some of the reasoning steps used in the proof of Lemma 3.22. More specifically,
o =* 0 (Jz; 1t | receive(Z, x1) € HY — Jag : ¢ | receive(Y, z3) € HY)

can be proven using steps 1, 6, and 7 in that proof. Steps 1, 2, and 5 prove that a send? (X, z)
event could have preceded send?(Y,a;) in o.

2. But if send? (Y, a;) was not preceded by a send? (X, z;) event, and o is an arbitrary member
of E(I1)%, then an occurrence of send? (Y, a;) may be followed by an occurrence of “failLocal’.
That is, steps 3 and 4 (in the proof of Lemma 3.22) does not always hold of an execution
o € B(I)4.

53

3. However, let s; be the state in o such that
s; =send(Y,a;) € H: and sjy; = last(H%) = send (Y, a;).
(a) By straightforward backchaining,
sj41 = send(Y, a;) € H
implies that 3k < j and by by b3 by: t Xt X t X t such that
si |= receive(X, by by by by) € HZ A ay = bs.

Thus,
sj41 = receive(X, by by bz by) € HZ A last(H?) = send (Y, b).

(b) Given that o =* T, ,

o E* O3z 1t ag 1 t,ag i t,xg | (receive(X,z z2 23 ©4) € HA last(H) = send(Y, z3) —
OBy ityattysit,yast|
(receive(Y,y1 y2 Y3 ya) € HA (send (X, y3) € H)))V
(failRemote € HA Ay : ¢ | send(X,y) € H)))).
This implies that 3¢ > 57 + 1 such that
si = Jys 1t | send (X, ys) € H2 V failRemote € HZ.

a

The proof above shows that the liveness condition specified in Lemma 3.24 does not hold in
all executions o € E(I1)4. It is violated in executions where local factors cause Z to terminate its
execution after it sends its share of X'’s secret to Y, but before it sends its share of Y’s secret to
X. If we consider only trustworthy executions, however, the liveness condition is never violated
because of 1z,.

Lemma 3.25 corresponds to Lemmas 3.23. Unlike Lemma 3.24, it holds in all executions o €
E(I)4.

Lemma 3.25 Let 1l be FR’s protocol and o be an execution in E(H)é(. ThenV xy : L, xq: L, x3: ¢,
o E* O (send(X,z3) € HZ A receive(Y, z3) € HX — unmask(zy, 23) = k).

Proof: Identical to that of Lemma 3.23.

54

3.5.4 Protection Under Deception Mode

Proposition 3.17 Let Il be FR’s protocol, o be an execution in E(H)g, T be the trust assumptions
[T makes, and Px be X ’s protection property as specified in Section 3.3.2. Then

o =" T implies o " Px.

Analysis: The structure of this analysis is identical to the structure of the analysis of Proposi-
tion 3.7; the lemmas it uses are in one-to-one correspondence to those used by Proposition 3.7. We
repeat the analysis here for self-containment.

1. Let s; be a state such that
sif= 3w it 2, 1 1| receive(X, z) € HY A receive(Z, 2,) € HY A unmask(z,, z) = .
Then, from Lemma 3.26, we deduce that 35 > ¢ |

sj = (3ag i t,zq s t | send(X, z3) € HZ A receive(Y, z4) € HY) V failRemote € HZ.

2. If the first conjunct is true, then there exist messages as : t and a4 : ¢ such that
sj |=send(X, az) € HZ A receive(Y, aq) € HX.
According to Lemma 3.27, unmask(as, ag) = £y.
Two scenarios can be derived from here.

(a) If the communication channel between X and Z does not fail, then X will receive the
message sent by Z, i.e., 3k, k > j |

sk, |= receive(Z, az) € HX A receive(Y, ay) € HE.

And from 2) we know that unmask(as, a4) = K.

(b) If the communication channel between X and Z fails before X receives az from Z, then
Vi, 1> 7,
51 |= receive(Y, aq) € HEA Ay i t | receive(Z, z,) € HE.

3. If the first conjunct is false, then
s; |= failRemote € HEA Py : t | send(X, y) € HZ.

This is the scenario where Z is prevented from sending messages to X because of a failure in
the communication channel. Like 2b), we can conclude that

V1,1 > j, s |= receive(Y, ay) € BXA Azy i t | receive(Z, z,) € HE.

4. From 2) and 3), we conclude that this proposition holds if the communication channel between
X and Z does not fail. Otherwise, it does not.

55

Lemma 3.26 corresponds to Lemmas 3.22 and 3.24. It holds in all executions o € E(I1)Y.

Lemma 3.26 Let Il be FR’s protocol and o be an evecution in E(I1)Y.

o E=* O (Jzq:t|receive(Z,z;) € HY —
O ((Fag i tyag 1 L] send (X, 5) € HZ A receive(Y, z3) € HY) Vv failRemote € H?)).

Proof: Identical to that of Lemma 3.22.
O

Lemma 3.27 corresponds to Lemmas 3.23 and 3.25. It is, however, more complex. The safety
condition that appears in Lemmas 3.23 and 3.25 is now specified to hold in trustworthy executions
where Y has received the two shares of X'’s secret. This should have been expected, given that
under the deception mode, there is no guarantee whatsoever of what the principals may send to
each other. Unless Z forwards what it should to Y and behaves according to the trust assumptions,
no guarantee can be given about the message X receives from Y and the one Z sends to X.

Lemma 3.27 Let Il be FR’s protocol and o be an execution in E(H)g. Then Yy : t,zy, :t,

o E* T implies
o E* O (Jz:t, z:t]| (receive(X,z) € HY Areceive(Z, z,) € HY A unmask(z,, z) = K,) —
(receive(Y,y) € HX Asend(X, z,) € HZ) — unmask(z,,y) = k).

Proof: Let s; be a state such that
s; =32 1 t,2, L | receive(X,) € HY A receive(Z, z,) € HY A unmask(z,, z) = k.
And assume that Jz, : ¢,y : ¢ such that
s; = send(X), z,) € HZ A receive(Y,y) € HE.
If ¢z, d;, ¢y, and d, are messages such that

s; | receive(X,c;) € HY A receive(Z, d,) € HYA
send (X, d,) € HZ A receive(Y, ¢,) € HX,

then we want to prove that unmask(dy, ¢,) = &,.
1. According to Lemma 3.28,
s; |= receive(X, ¢;) € HY A receive(Z, d,) € HY A unmask(d,, ¢;) =
implies that
s; ey ...xqct Xt xt x| (receive(X,x...x4) € H: Asend(Y, z3) € HE),
which implies, according to rules Rz, and Rz, that
s;iEdyr.coys it Xt xtxt| (receive(Y,yy ...yq) € HE Ay =2y = aux_hash(ys, z4).
In what follows, let ay...a4 and by ...bs be such that
s; |= receive(X, a; . ..ay4) € H: A receive(Y, by .. .by) € HZ.
Thus, s; = by = ay = aux_hash(bs, a4).

56

2. From
s; = receive(X, ay . ..aq) € H: Asend(Y, a3) € H,

s; |=send (X, d,) € H: A receive(Y, by .. .by) € HZ,

Tz,, and the fact that there can be only one ‘receive-from-Y’ event and only one ‘send-to-X’
event at Z, we can conclude that d, = bs.

3. From
s; |= receive(X, a; .. .ay) € H

we can conclude, by communication assumption, that
s;j =send(Z,ay . ..a4) € HE,
And, according to Lemma 3.29,
sj = (ag = hash(ky,)) A (Fk :t | receive(Y, k) € HX A hash(k) = a4).
Since there can be only one ‘receive-from-Y’ event at X, and
s; |= receive(Y, ¢,) € HX,

we conclude that hash(c,) = aq4.

4. We are now ready to prove that unmask(dy, ¢,) = k.
hash(k,) = ay = aux_hash(bs,a4)
= aux_hash(bs, hash(c,))

= hash(unmask(bs, c¢;))
= hash(unmask(dy, c¢;)).

a

Lemma 3.28 is an auxiliary lemma used in the proof of Lemma 3.27. It establishes a straight-
forward result about sequencing of events and holds for all executions o € E(I1)%.

Lemma 3.28 Let Il be FR’s protocol and o be an execution in E(I1)Y. Then
o [E* shareable(k;, {X}) —
O (Jz:t, 2,0
(receive(X,z) € HY A receive(Z, z,) € HY A unmask(z,, z) = k,) —
Jzg..oxgit XEXEXT
receive(X, 7y ...24) € HZ Asend(Y, x3) € HZ).
Proof:

1. Let s, be a state and m; and my be messages such that

s, |= receive(X, my) € HY A receive(Z, my) € HY A unmask(my, m1) = k.

57

2. By communication assumption,
sp |= receive(Z, my) € HY

implies that
s, |= send (Y, my) € HZ.

3. From straightforward backchaining, we know that
SpEJer . xg it X EXEX T | receive(X,z1...24) € HZ.
In what follows, let z{...x4 be ay...a4. We want to prove that
unmask(mq, my) = K, — Mg = ag,

or equivalently,
mg # az — unmask(mg, my) # K.

4. We first find out the structure of as.

(a) By communication assumption,

sp | receive(X,ay ...aq4) € u?

implies
s, Esend(Z,a;...a4) € B,
which, according to rule Ry,, implies that 3¢ < n, ¢ : ¢ such that
s; | send(Z,ay...a4) € HX Asend(Y, g) € HY,
and
siv1 = last(HY) = send(Z, a1 .. .a4) A az = mask(k,, g).

(b) From 1) we know that s,, = receive(X,m;) € HY, which, by communication assumption,
implies that that s, k= send(Y,m,) € HX.
(c) Since only one ‘send-to-Y’ event could have happened at X, we conclude that ¢ = m;.

(d) Since as = mask(k;,¢) and ¢ = my, we can conclude that
unmask(az, m1) = K.

5. Next, we prove that mg # a3 — unmask(mgy, my) # k. If my # as, then my # mask(kz, g).
Then my could be:

a) a basic message;

(a)
(b) mg = mask(by, bz), where by # Ky or by # g;
()
(d)
)

3

2 = unmask(by, by);
= hash(b;); or
12 = aux_hash(by, ba).

d
(e

3
)

{3

3

58

All the values above are such that unmask(mgz, g) # Ks.

a

Lemma 3.29 is also an auxiliary lemma used in the proof of Lemma 3.27. It concerns the values
of the second and the fourth components of the message X sends to Z: the second component is
the hash of Y’s secret, and the fourth component is the hash of the message it receives from Y.
This lemma is true because we are considering only executions where X is compliant. It may not
be true otherwise.

Lemma 3.29 Let o € E(IY. Then

o B O (Fay...og:txtxtxt]|(send(Z,z;...24) € H —
(z9 = hash(k,) ATk :t|receive(Y, k) € HX A hash(k) = z4))).

Proof:

1. Let s; be state and a; ...a4 : ¢ X ... Xt be a message such that
s; =send(Z,ay .. .a4) € HE.
Then, d¢ < j such that s; is the state at which the event occurred, i.e.,

s; = send(Z, ay...a4) € HX and s, = send(Z, ay . ..aq) € HE.

2. Since Ry, is the only protocol rule that prescribes a ‘send-to-Z’ event, and X behaves com-
pliantly in o, we can conclude that

(a) az = py, and
(b) a4 = hash(c), where ¢ is such that s; = receive(Y,¢) € HX,

which is exactly what we want to conclude, given that p, = hash(k,) according to the initial
conditions.

3.6 Summary

In this section, we summarize the findings of our analysis and discuss our contributions towards
formalizing semi-trustworthiness.

Table 3.7 summarizes our findings. All-protection is guaranteed in entries with a /. Some
entries come with briefings of relevant facts. Note that the protocol is not all-protective if com-
munication links can fail. To be fair, Franklin and Reiter assume reliable links, even though this
assumption does not appear explicit in their paper.

As we mentioned, Franklin and Reiter’s protocol is an ideal candidate for our case study because
it uses semi-trusted intermediaries. Franklin and Reiter define semi-trusted intermediaries as those
that can misbehave on their own, but do not conspire with either of the main parties. Implicit in
this definition is the concept of intermediaries that can misbehave in certain ways (misbehavings of

59

compliance | abortion | deception
Channel Failures (1) (1) (1)
No Channel Failures Vv Vv (2) Vv (3)

(1) All-protection is violated if Z cannot execute the second forward, or if one of
the forwarded messages does not get to its destination.

(2) If X terminates her execution before sending the second share of her secret K,
to Z, she will receive nothing from Z and will not be able to obtain K. If she
terminates her execution after sending the second share of K, to Z, no harm
(except to herself) can be made. The same reasoning applies to Y. Z is trusted
not to terminate its execution between forwarding messages to X and Y.

(3) Deceptions by either X or Y are detectable by Z. And Z is trusted not to
deceive unfairly.

Figure 3.7: Summary table

their own or “plain” misbehavior), but not in others (misbehavings that are conspiracy). Franklin
and Reiter did not precisely characterize either plain misbehaviors or conspiracy misbehaviors,
however. In their failure model, only one principal can fail or misbehave in each execution, and
there is no restriction on how the intermediary can fail or misbehave.

Even though they do not define conspiracy behaviors, they classify the execution in Fig. 3.5 as
exhibiting conspiracy behavior. Instead of ignoring them in their analysis of the protocol (since
these behaviors are not exhibited by semi-trusted intermediaries), they took them into account,
and questioned whether the protocol should offer protection against conspiracies.

These intuitive notions of conspiracy and semi-trustworthiness are precisely captured in our
framework. Plain misbehaviors are deviations that do not violate trust assumptions; conspiracy
misbehaviors are those that do; and semi-trusted intermediaries are those that exhibit only plain
misbehaviors.

60

Chapter 4

The NetBill Protocol

In this chapter, we present our second case study, the NetBill Protocol [28] proposed by Cox,
Tygar and Sirbu. We specify the protocol in our protocol specification formalism, and analyze it
with respect to protection of individuals’ interests using our framework. Since we are interested in
protection of all parties equally, we analyze it with respect to all-protection.

NetBill differs from Franklin and Reiter’s protocol in the type of intermediaries they use. In
Franklin and Reiter’s protocol, the intermediary is a “stranger” that has no further responsibility
once the on-line exchange is finished. In NetBill, the intermediary is a server that has a role to
play even after transactions have occurred. NetBill supports off-line dispute resolutions, and the
NetBill server is the one to provide critical messages to enable such resolutions.

The NetBill protocol is the second in complexity (among the three we analyze), but its protec-
tion properties are the most complex. They are complex because the notion of protection required
here is open; and one needs to take into account not only goods and payments exchanged on-line,
but also other messages exchanged between the participants. It is critical to consider these mes-
sages because they prove what happened on-line; with these messages, participants can claim what
they are entitled to, but did not get on-line.

Our analysis does not reveal any surprises. NetBill is both customer-protective and merchant-
protective under all three deviation modes, even when communication links can fail. NetBill is not
affected by link failures because the NetBill server is assumed to be permanently reachable.

Our analysis does make explicit, however, interesting points about how the protocol guarantees
all-protection, and what the NetBill server is trusted to do. Under compliance and abortion modes,
all-protection is guaranteed by the server’s transaction capabilities alone; certified delivery is needed
only under deception mode. More interestingly, certified delivery achieves its goals only if the
NetBill server satisfies a small set of trust assumptions. Basically, the server is entrusted to handle
accounts and keys honestly; to provide unique and non-repudiable proofs of what happens on-line
through transaction slips; and to allow merchants to learn what really happens with a transaction
— so that keys are not given to customers without their knowledge. Even though it may seem
counter-intuitive at first, NetBill’s all-protection does not depend on the server’s releasing the keys
that merchants send it, or its retaining transaction requests.

The rest of this chapter is structured as follows. In Section 4.1, we introduce the protocol
and assumptions made by its designers. In Section 4.2, we present an abstract formulation of
the mathematical building blocks used in it. In Section 4.3, we formalize both the protocol and
the protection properties. In Section 4.4, we show the main results and their high-level analyses.

61

Formal analyses of these results are found in Section 4.5. Finally, in Section 4.6, we summarize the
findings from Sections 4.4 and 4.5, and discuss insights gained through our exercise.

4.1 Introduction

In this section, we introduce the NetBill protocol. The version presented here is in reality an
abstract version of the one given in [84]. We first give some preliminary remarks (Section 4.1.1),
then present the protocol (Section 4.1.2), and finally discuss our abstractions (Section 4.1.3).

4.1.1 Preliminaries

NetBill was designed to enable sales of information goods — goods deliverable over the network. It
aims to guarantee three levels of atomicity [84]: money atomicity, goods atomicity, and certified
delivery. According to Tygar, a protocol is money-atomic if it transfers funds from one party to
another without the possibility of creation or destruction of money; a protocol is goods-atomic if it
is money-atomic and guarantees exchange of goods for money; finally, a protocol satisfies certified
delivery if it is goods-atomic and provides means for both merchants and customers to prove what
goods were delivered.

Goods atomicity is different from Franklin and Reiter’s fair exchange property. Goods atomicity
only guarantees that money is exchanged for something — not necessarily what the customer pays
for. To guarantee that customers receive what they pay for, NetBill relies on certified delivery,
which allows customers and merchants to prove what happened on-line and settle disputes off-line.

Transactions in NetBill involve three principals: a customer €, a merchant M, and an inter-
mediary N — the NetBill server. € and M may be untrustworthy, but N is assumed to be trusted.
For the remainder of this chapter, we refer to C'; M, and N respectively as she, he and it. All
principals have public key pairs. Public keys are certified before keys are used. Private keys are
used to sign selected messages for accountability. C' and M have their keys certified by N, whereas
N has its key certified by an entity external to the system.

Both C and M must have accounts with N. Accounts are uniquely associated with account
holders’ ids and public keys. Besides holding accounts for C' and M, N mediates transactions and
transfers funds between different accounts when parties need to pay each other.

Sale transactions in NetBill consist of four logical phases: ordering, goods delivery, payment,
and dispute resolution. And each sale transaction (informal sense) corresponds to a distributed
transaction (technical sense) involving C'; M, and N. Ordering in NetBill is simple: to order, C
sends M a message specifying the goods. Goods delivery happens in two steps. First, M encrypts
the goods and delivers it directly to C'; then, after the payment, the decryption key is released —
either by M itself or through N. Payments happen at N. Upon receiving a transaction request
from M, N may commit or abort the transaction. If the transaction commits, IV releases a signed
slip attesting to the result of the transaction. The result can be successful or unsuccessful. If the
result is successful, N transfers funds from C’s account to M’s account and releases the decryption
key in the slip. If the result is unsuccessful, no funds are transferred, and the decryption key is not
released. Dispute resolution, if needed, happens off-line, with the help of an outside arbitrator.

62

1. C—> M: order
2. M —C: enc(g,k)cclenc(g,k)) t
3. C— M: epo seal(epo, k'),

where epo = ¢ cc(enc(g,k)) t,
4. M — N : tr seal(tr, k'),

where tr = m signed_epo k and

signed_epo = epo seal(epo, k1)

5. N — M : slip seal(slip, k1)

where slip = result ¢ m transferred k t,
6. M — C: slip seal(slip,k;?)

where slip = result ¢ m transferred k t.

The various symbols denote:

order : a predefined message for requesting the goods;
k-l k-1 k-t respectively O, M, and N's private keys;
¢, m: respectively C’s and M’s ids as they appear

in their public key certificates;

g : the goods;

k : arandomly generated symmetric key;

t: transaction id;

result, transferred : binary values indicating respectively whether

a transaction yielded a successful result and whether

any funds have been transferred.
Figure 4.1: The NetBill protocol.

4.1.2 The protocol

In this subsection, we present the protocol itself (Fig. 4.1). In Fig. 4.1, g is the goods for sale,
and order is a predefined, distinguished message used in goods requests. k7!, k-1, and k! are
respectively €, M, and N’s private keys; and ¢ and m are respectively C’s and M’s ids as they
appear in their public key certificates. We assume that principals have cryptographic capabilities:
they can produce cryptographic checksums, encrypt and decrypt messages, and sign and verify
signatures. We also assume that C’s account always has enough funds; thus no transaction is
prevented from committing successfully because of C’s lack of funds.

To order g, C sends order to M (step 1). Upon receiving this message, M starts the goods
delivery procedure. To deliver g, M first encrypts it with a randomly generated symmetric key k,
and then cryptographically checksums the result of the encryption. M then sends the encrypted
goods enc(g, k), its checksum cc(enc(g,k)), and a transaction id ¢ to C' (step 2). tis a globally
fresh id that identifies this transaction. Once C' receives the message sent by M, she checks

63

whether the value of the checksum is consistent with the value of the encrypted goods. If so, C'
prepares an electronic purchase order epo, consisting of her own id, the value of the checksum,
and the transaction id; signs it; and sends it to M (step 3). At any time before this signed epo is
submitted, C' may abort the transaction and be in no danger of its being completed against her
will. The submission of this signed epo marks the “point of no return” for C.

When M receives this signed epo, he verifies whether both the checksum and the transaction
id are the ones he sent in step 2. If so, M prepares a transaction request (r, consisting of his own
id, the signed epo, and the goods decryption key; signs this whole message; and submits it to N
(step 4) for final transaction processing. At any time before this request is submitted to N, M may
abort the transaction and be in no danger of its being completed against his will. The submission
of this request marks the “point of no return” for M.

When N receives a transaction request, N can commit or abort the transaction. If NV can verify
both C’s and M’s signatures on the request, N commits the transaction; otherwise, N aborts it.
A transaction commit yields two types of results, depending on whether the request’s transaction
id is fresh. If the transaction id is fresh, then N transfers funds from C’s account to M’s account,
records the request, and generates a signed slip attesting to a successful result. If it is stale, V
only records the request and generates a signed slip attesting to an unsuccessful result. A slip
consists of customer id, merchant id, transaction id, and two binary values — result and transferred
— indicating respectively whether the transaction yielded a successful result and whether any funds
has been transferred. For transactions with successful results, the decryption key is enclosed. N
then sends the slip to M (step 5).

Upon receiving the slip from N, M records it, and forwards it to C' (step 6).

Intuitively, having N coordinate transactions is critical to achieving all-protection in this pro-
tocol. If the transaction fails as a result of processor or communication failure before N commits
the transaction, then no money changes hands, and C never receives the decryption key. On the
other hand, if the transaction commits with a successful result, then funds are transferred, and a
copy of kis kept at N. Normally, a copy of k is forwarded back to C via M. But if something goes
wrong, C' can obtain k from N.

In the NetBill model, communication channels between different parties can fail. However, N
is assumed to be always reachable: it is guaranteed not to disappear, and, in the worst case, the
other parties in the system can reach it physically, off-line. (For other assumptions about N, see
page 71 - Trust Assumptions.) Because NV is always reachable, C' and M can always obtain the
slip from N, even if it is not received during the normal message exchanges of the protocol.

4.1.3 Our abstractions

In this subsection, we discuss the abstractions we make.

e NetBill can be used for selling both physical goods and information goods. In both cases,
the customer expects something in exchange for payment: a receipt (needed to claim the
actual physical goods) or the goods itself. Henceforth, we do not distinguish these two cases,
and assume that the customer just expects something — in electronic form — in exchange for
payment.

e NetBill was designed to deal with several issues secondary to the main exchange. Some
examples are price discounts based on membership in different groups, subscriptions, and

64

customer pseudonyms. In this work, we abstract away all its secondary features and focus
on the main exchange. These abstractions allow us to use simpler messages in our version of
the protocol.

In NetBill, customers can buy one or more items that merchants have for sale, and price
negotiation phase can be very elaborate, taking multiple iterations. Because we want to
focus on exchanges, we assume that merchants have only one item for sale, and everyone
in the system knows its price. This allows us to skip the price negotiation phase and start
the protocol with a goods ordering message. Our simplification does not compromise the
adequacy of our modeling or analyses because exchanges start only after prices have been
agreed on.

The original NetBill uses cryptography to implement communication security. Given that
communication channels are assumed to be secure in our model, we can abstract away a
number of cryptographic operations in our version of the protocol. Kerberos tickets, sym-
metric key encryptions, and crypto checksums, used for authenticity, confidentiality, and
integrity in the original protocol, are all abstracted away. The ones we kept in our version of
the protocol serve other purposes such as non-repudiability.

Accounts in NetBill are credit or debit accounts, and need to be balanced or replenished.
Since the NetBill transaction protocol does not deal with these issues, we simply assume that
accounts have inexhaustible funds or credits.

For efficiency, NetBill uses RSA for customer and merchant signatures, and DSA for NetBill
signatures. We abstract these details away and model both signature schemes indistinguishly
as an abstract public key crypto system that has a signing function and a signature verification
function satisfying the property given in Def. 4.1 (8).

NetBill uses timestamps to expire stale transactions. The notion of time is relevant in defining
p-protection because only timely exchanges matter in some cases. For simplicity, however,
we abstract the notion of transaction expiration away in our version of the protocol. Our
analysis results thus apply to exchanges that are not time-critical.

We assume that none of the private keys have been compromised or revocated. This assump-
tion allows us to see signatures as expressing their signers’ approval, agreement, etc.

Abstract Formulation of the Building Blocks

Cryptographic Building Blocks

The NetBill protocol, as introduced in Section 4.1.2, uses a number of cryptographic building
blocks. In this subsection, we present an abstract formulation of these building blocks. In what
follows, = denotes conversion.

Messages can be encrypted in NetBill using symmetric key encryption. If m is a message and

k is a symmetric key, then

enc(m, k)

65

denotes the encryption of m by k. enc has a corresponding decryption function dec. Given a
message m and a symmetric key k,

dec(m, k)

denotes the decryption of m by k. For all encrypted messages m’ = enc(m,k), and keys k',
dec(m!, k') = m, if k = k’. That is,

dec(enc(m, k), k) = m.
Messages can be cryptographically checksummed. Given a message m,
cc(m)

denotes m’s cryptographic checksum.
In public key crypto-systems, private and public keys come in pairs. If £~1 and & are respectively
the private key and the public key of a key pair, then they satisfy the predicate keyPair. That is,

keyPair(k™!, k) = true.
Messages can be signed using public key cryptography. Given a message m and a private key k71,
seal(m, k1)

denotes the signature of k~! on m. Signatures can be verified using public keys. Given a message
m, a signature s, and public key k, the predicate vseal models signature verification:

vseal(m, s, k) = true

if and only if s is a signature of £~ on m, and k~! is the private counterpart of k.
In Def. 4.1, we list the cryptographic building blocks as well as their abstract properties:

Definition 4.1 Cryptographic building blocks

1. Symmetric keys have type t_symk, i.e., if k is a symmelric key, then k: {_symk;
Private keys have type t_prik, i.e., if k=1 is a private key, then k~': t_prik;
Public keys have type t_pubk, i.e., if k is a public key, then k: t_pubk;

Cryptographic checksums have type t_cks, i.e., if m' = cc(m) for a message m, then m': t_cks;

o e e

Signatures have type t_seal, i.e., if m' = seal(m, k1) for a message m and a private key k=1,
then m': t_seal;

6. t is a “super-type”, i.e., for any message m, m : t; (t is called T (“top”) in the subtyping
literature.)

Effectively, we say that a message has type t if we want to look at the message merely as a
string of bits, and not as a structured message. For example, in an encryption, it is irrelevant
whether the message being encrypted is an integer, a key, or a meaningless string of bits.

7. Functions and predicates:

66

e enc: t X l_symk — I;

e dec: | X l_symk — ;

e cc: t — l_cks;

o keyPuair: t_prik X t_pubk — boolean;
o seal: t X l_prik — l_seal;

e vseal: 1 X l_seal X t_pubk — boolean;
8. Conversion rules:

o ¥V m: t, k: tsymk, k': t_symk, dec(enc(m, k), k') = m, if and only if k = K';

true, if 3 k7L tprik | s = seal(m, k™) A keyPair(k™1,k);
false, otherwise.

o wvseal(m,s, k) = {

4.2.2 Product Types and Projection Functions

The types that appear in Subsection 4.2.1 define messages required and produced by cryptographic
functions. Other types of basic messages used in NetBill are {_pid, for principal ids; and {_tid, for
transaction ids.

Some concatenated messages have special semantics in NetBill. For conciseness, we name
their corresponding product types, and define projection functions for these types. For example,
certificates consist of two components: a principal id and a public key, and have type t_pid X
t_pubk. For conciseness, we denote the product type t_pid X t_pubk by (_cert:

L_cert = l_pid X t_pubk.

For extracting the components of a certificate, we define projection functions pid and key. pid
returns the principal id, while key returns the public key:

- id(m) = mq, and
If m = mym, has type (_cert, then { key(m) = my

We list the product types and their corresponding projection functions below.

Certificates: t_cert = t_pid x t_pubk
id(m) = my, and

If m = mqymy has type t_cert, then { key (m) = my.

Epos: t_epo = t_pid X l_cks x t_lid
cid(m) = my,
If m = mymomg has type (_epo, then ¢ cks(m) = mz, and
tid(m) = ma.

Signed epos: t_sepo = t_epo X t_seal
msg(m) = my, and

If m = mymy has type {_sepo, then { sig(m) = ma.

67

Transaction requests: (_ir = {_pid X t_sepo X l_symk
mid(m) = my,
If m = mymgmg has type {_tr, then { sepo(m) = my, and
key(m) = mas.

Signed transaction requests: (_sir = {_ir X (_seal
msg(m) = my, and

If m = mymgy has type i{_str, then { sig(m) = m.

Transaction slips: t_slip = boolean x t_pid X t_pid X boolean x t_symk x t_tid
res(m) = myq,

cid(m) = my,

mid(m) = ma,

trans(m) = my,

key(m) = ms, and
tid(m) = me.

If m = mymomsmymsme has type (_slip, then

Signed transaction slips: t_sslip = t_slip X t_seal
msg(m) = my, and

If m = mymy has type ¢ sslip, then Sig('m) = my.

Note that some projection functions are overloaded. For example, msg can be applied to
messages of types (_sepo, s_str, and t_sslip; and tid can be applied to messages of types {_epo and
t_slip.

For readability, we syntactically distinguish applications of cryptographic functions and projec-
tion functions. Applications of cryptographic functions are denoted in a standard way: f(aq,...,a,),
where f is the function and a;, ¢ = 1,...,n, are the arguments. Applications of projection func-
tions, on the other hand, are denoted as a.f, where @ is the argument and f is the function. For
example, if m is a certificate, then we use cc(m) to denote m’s checksum, and m.key to denote m’s
public key component.

4.3 Formalizing the Protocol and the Protection Properties

In this section, we specify the NetBill protocol using our specification formalism (Section 2.3), and
give concrete specifications of protection properties as applied to this protocol.

4.3.1 Protocol Specification

Principals of the Protocol

P ={C,M,N}

Initial Conditions

-1
m

and k! be respectively C', M, and N’s private keys; x,, be N’s public key; ¢. and
tm, and ¢, and ¢, be respectively C’s and M’s ids and public key certificates. Also, let v be the

~1
Let 677, K

68

goods for sale, and © be the set of stale transaction ids. The initial condition

7T = shareable(s !, {C}) A shareable(x,;}, {M}) A shareable(s 1, {N}) A shareable(y, {M})A
keyPair(k; 1, d..key) A keyPair(s.!, ¢, .key) A keyPair(s 1, k,) A
le = Qcid ALy, = Gppid A
{6750} CMSC A {2 1, 0,7} CUSM A {61, b0, b, ©F C MSH

says that all principals have their own private keys; NV has both C' and M’s certificates; M has the
goods, and M and N have consistent views of which transaction ids are stale. Note that this last
condition only holds because our system has only one merchant.

Local Protocols

In what follows, w, z, y, z are variables; identifiers in SMALL CAP are constants; and those in slanted
fonts are placeholders for more complex messages. The constants that appear below are ORDER,
which denotes the predefined message used in goods requests; TRUE and FALSE; and NULL, which
indicates the absence of messages.

In the specification below, we need two types of events not listed in Section 2.2.2: new(z,y)
and commit(z,y). We use new(z,y) to model generation of elements y not found in the set z. In
the context of NetBill, new(©, #) models the generation of a fresh transaction id 6, different from
all those found in O, the set of stale transaction ids. And any message (epos, transaction requests,
transaction slips, etc) that encloses a fresh transaction id is also fresh.

Commit(z, y) is used to model transaction commits. In our model, two messages are generated
with each transaction commit: a transaction slip and a transaction request. They appear respec-
tively as arguments z and y in commit events. We assume that these messages are retained at
N, and are promptly made available to arbitrators and parties involved in the transaction upon
request.

Next we present the local protocols.

C’s local protocol R¢ consists of the following rules:

Rc,: send(M, ORDER) ¢ H = {send(M, ORDER), exit}
Rc,: last(H) = send(M, ORDER) = {receive(M, z : ¢ X t_cks X t_tid), timeout, exit}

Re,: Juy it xg i tcks, s : ttid | last(H) = receive(M, z1 x2 z3) A cc(zy) = 29 =
{send (M, epo seal(epo, k1)), exit},

where: epo = 1. z9 3.
Rc,: Jdz :t_sepo | last(H) = send (M, z) = {receive(M,y : {_sslip), timeout }

Rey: (Fzy it xg i tcks, zs : ttid | (last(H) = receive(M, z1 x5 z3) A cc(zq) # x2) V
last(H) = timeout V Jy : t_sslip | last(H) = receive(M,y) = {exit}

M'’s local protocol Ry consists of the following rules:

Rpp,: receive(C', ORDER) ¢ H = {receive(C', ORDER), timeout, exit}

Rpp,: receive(C', ORDER) € H A (Az : t_symk | random(z) € H) = {random(y : t_symk), exit}

69

R, receive(C', ORDER) € HA (Az :ttid | new(0,z) € H) = {new (0, y : t_tid), exit}

Rpr,: 3ot tid | new(©,z) € HA Jy @ t_symk | random(y) € H A
(Az :t x tcks x ttid | send(C, z) € H) A last(H) # timeout —
{send(C, eg cc(eg) z), timeout, exit},

where eg = enc(v, y)
Rap: Jo ot x tocks x ttid | last(H) = send(C,) = {receive(C,y : t_sepo), timeout, exit}

Rpgg: 3z tosepo, y1 ya ys it X t_cks X t_tid, z: {_symk |
last(H) = receive(C, z) A send(C,y1 y2 y3) € H A y2 = z.msg.cks A y3 = z.msg.tid A

random(z) € H = {send (N, tr_req seal(tr_req, x,;!)), exit}

where tr.req = ¢, x z
Rpap,: Jz :tstr | last(H) = send(N, z) = {receive(N,y : t_sslip), timeout}
Rpgy: Jz :t_sslip | last(H) = receive(N, z) = {send(C, z), timeout}

R, last(H) = timeout V 3z : t_sslip | last(H) = send(C, 2) V
dz : t_sepo,y; Yo ys 1t X t_cks x t_tid |
(last(H) = receive(C, z) A send(C, y1 y2 y3) € H A (y2 # z.msg.cks V y3 # z.msg.tid)) =

{exit}
N’s local protocol Ry consists of the following rules:

Rn,: Az :i_str | receive(M,z) € H => {receive(M,y : t_slr)}

Ry,: Ja :t_str,Jy : t_prik |
last(H) = receive(M, z) A z.msg.sepo.msg.tid € @ A
z.msg.mid = ¢,,.id A vseal(z.msg, z.sig, ¢.,.key) A
z.msg.sepo.msg.cid = ¢..id A vseal(z.msg.sepo.msg, z.msg.sepo.sig, ¢..key) A
y=r" Ay € MY = {commit(slip seal(slip, y),)},

where: slip = TRUE z.msg.sepo.msg.cid z.msg.mid TRUE z.msg.key z.msg.sepo.msg.tid

Ry,: 3o t_str,Jy : t_prik |
last(H) = receive(M, z) A z.msg.sepo.msg.tid € @ A
z.msg.mid = ¢,,.id A vseal(z.msg, z.sig, ¢.,.key) A
z.msg.sepo.msg.cid = ¢..id A vseal(z.msg.sepo.msg, z.msg.sepo.sig, ¢..key) A
y=r-' AyecMust = {commit(slip seal(slip, y), =)},

where: slip = FALSE z.msg.sepo.msg.cid z.msg.mid FALSE NULL z.msg.sepo.msg.tid
Ry,: Ja i t_sslip,y : t_str | last(H) = commit(z,y) = send(M, z)

Rpy,: Jz :t_str | (last(H) = receive(M, z) A
= (2.msg.mid = ¢,,.id A vseal(z.msg, z.sig, ¢, .key) A
z.msg.sepo.msg.cid = ¢..id A vseal(z.msg.sepo.msg, .msg.sepo.sig, ¢..key))) vV
Jy : t_sslip | last(H) = send (M, y) = {exit}

70

Note that, in our specification, N does not process a transaction request unless it can verify both
C and M’s signatures (Rpy,). If both signatures can be verified, then N commits the transaction,
generates a slip (Ry, and Ry,), and sends it to M (Rp,). A transaction can be committed with
a successful result (Rpy,) or with an unsuccessful one (Rp,). The content of the slip indicates it.

Trust Assumptions

In this subsection, we specify a set of trust assumptions for NetBill. Unlike the intermediary in
FR’s protocol, the intermediary here — the NetBill server — is assumed to be completely trusted,
i.e., is expected to behave exactly as prescribed by the protocol. However, servers can fail and
communication links can go down, and trusted servers may in fact exhibit deviant executions.
When justifying why the NetBill server keeps cryptographically signed messages, Tygar himself
says [84]

“Many electronic commerce systems depend on some ultimate, trusted authority. For
example, NetBill depends on the trustworthiness of a central server. However, even in
the case where one uses a trusted server, one can minimize the effects of the security
failures of that server. For example, in NetBill, detailed cryptographically-unforgeable
records are kept so that if the central server was ever corrupted, it would be possible
to unwind all corrupted actions and restore any lost money.”

Thus, the trust assumptions we list below were not given explicitly by the authors of the
protocol; instead, we inferred them from informal discussions [84] about how NetBill guarantees
goods atomicity and certified delivery, and how disputes are settled off-line. By giving this set of
trust assumptions, we are implicitly saying that NetBill can be all-protective even if the NetBill
server does not behave compliantly; all-protection is guaranteed as long as the following trust
assumptions are not violated.

In what follows, we first list informal statements of these trust assumptions; we then specify
them formally.

In NetBill, neither C nor M is trusted. Thus, T = true and Th; = true. N is trusted. It is
trusted:

e T'y,: To transfer funds only if the transaction commits;

e T'n,: To release the key submitted by M only if the transaction commits;
e T'y,: To sign slips made available by transaction commits.

e T'y,: Not to produce signed slips with corrupted merchant ids; and

e T'y.: To send M only slips made available by transaction commits.

We proceed with formalizations of these trust assumptions.

TN, and 1, always hold in our model, and therefore do not need additional specification. 1y,
always holds in our model because we do not model funds transfers explicitly. Their occurrences are
reflected in transaction slips generated when transactions commit. True in a slip’s ‘transferred’ field
indicates that the corresponding transaction transferred funds. Given that slips are generated only
when transactions commit, we conclude that funds transfers only occur when transactions commit.

71

This restriction is not serious because even though funds may be transferred independently of slip
generations and transaction processings in reality, such transfers are sure to be disputed and voided.

Similarly, T, always holds in our model because keys are released only through transaction
slips, which are generated when transactions commit.

Tn,: Va: tsslip, O (commit(z, —') € H — vseal(z.msg, z.sig, K,,))

In T’N,, non-corrupted customer ids, merchant ids, and transaction ids mean those originating
from transaction requests:

Tn,: Va: t_sslip,
O (commit(z, —) € H— (3z : t_str | receive(M, z) € H A z.msg.mid = z.msg.mid))

Tng: Ya: tsslip, O (send(M,z) € H — commit(z, —) € H)

In Sections 4.4 and 4.5, we show how protection of individuals’ interests can be compromised
if these trust assumptions are violated in the system.

4.3.2 Specification of Protection Properties

In this subsection, we formally specify both C’s and M’s protection properties in the context of
NetBill. Unlike in FR’s protocol, where exchanges take place entirely on-line, here exchanges may
start on-line and finish with dispute resolutions off-line. That is, participants in NetBill may not
receive what they are supposed to during a protocol execution. The certified delivery mechanisms,
however, enables them to take proofs of what really happened on-line to an off-line arbitrator, and
claim what they are entitled to. This makes the concept of “receiving an item” (goods or payment)
less clear-cut here than in FR’s protocol.

Preliminaries

Before plunging into formalizations, we characterize a number of execution outcomes relevant to
the specification of protection properties. For the specification of protection properties, relevant
outcomes are those where C' is guaranteed the goods or M is guaranteed a payment. C'is guaranteed
the goods if and only if

C'1: she actually receives the goods during the protocol execution, or

C?2: she can claim the goods in court.
M is guaranteed a payment if and only if

M1: he has proof that C' received the goods, or

M?2: he has proof that N committed the transaction a) with a successful result, and b)
and did so in response to a valid request.

Note that for M, it is irrelevant whether funds are actually transferred during the transaction
processing. What really matters is whether he is entitled to a payment (Conditions M1 and M2
make him entitled to a payment). For example, if funds are mistakenly transferred from C’s account

"We use “” to stand for messages whose actual values are irrelevant in the context.

72

to M’s account during a transaction processing, C' will certainly dispute the debit, and the transfer
will certainly be voided. On the other hand, if M is entitled to a payment, but no funds are
transferred during the transaction processing, then M can claim it later.

Before detailing each of the conditions above, we clarify the meanings of a few expressions
used below: N makes a message “publicly” available; C' (M) has access to a message; an epo
and a transaction slip correspond to each other; and a transaction request and a transaction slip
correspond to each other.

As a transaction coordinator and the trusted party of NetBill transactions, N is entrusted
to keep a number of messages, and to make them available to selected parties. For example,
transaction slips can be made available to the arbitrator and the parties involved in the transaction
— C and M, but no one else. For conciseness, we use N makes a message “publicly” available to
mean N makes a message available to the appropriate group of selected parties.

Related to the concept above is the concept of accessibility of messages. We say that C' (M) has
access to a message if C' (M) has the message in his or her local store, or N has made it “publicly”
available.

Finally, we say that an epo and a transaction slip corresponds to each other if they have the
same customer id and transaction id; and a transaction request and a transaction slip correspond
to each other if they have the same customer id, merchant id, and transaction id.

We now characterize the four conditions listed above. For conciseness, we say that a transaction
request is valid if it is signed by both C' and M, and its transaction id is fresh.

C'l: C actually receives the goods g during the protocol execution if and only if:

e (receives a message m; mg ma: t X t_cks x t_tid with encrypted goods my;
e (' has access to a transaction slip m4, whose transaction id is mg; and
e dec(mq, my.msg.key) = g.

In other words, C actually receives the goods if and only if C receives an encrypted message
and a key, and the goods can be obtained by decrypting the encrypted message with the key.

C2: C can claim g in court if and only if

e (receives a message my mg ma: t X t_cks x t_tid with encrypted goods my;

e (' has access to a fresh N-signed transaction slip my4 satisfying the following conditions:
my’s transaction id is mgs, and my4 attests to a transaction that yielded a successful
result;

e N makes a valid my-corresponding transaction request ms “publicly” available; and

e The value of m; is consistent with the checksum enclosed in ms, but decrypting it with
the key enclosed in my yields something other than g.
That is, {

cc(my) = ms.msg.sepo.msg.cks A
dec(my, my.msg.key) # g.

Intuitively, C' can claim g in court if C' can show that the transaction was successfully pro-
cessed by N in response to a valid request, but the goods cannot be retrieved from the
decryption key released in the transaction slip and the encrypted message given by M.

73

M1:

M?2:

M has proof that C received the goods g if and only if

o M received a C-signed epo m; — with a fresh transaction id — from C
e M has access to a mq-corresponding, N-signed transaction slip mgy; and

e encrypting g with the key released in my (mgy.msg.key) yields an encryption whose
checksum is consistent with the checksum enclosed in my (m;.msg.cks). That is

cc(enc(g, mq.msg.key)) = m;.msg.cks.

The three conditions above prove that C' received g because 1) the existence of m; proves
that C received an encrypted message; 2) the existence of my proves that C' can access the
key released by N; and 3) the checksum test proves that g is retrievable from the encrypted
message and the released key.

M has proof that N committed the transaction a) with a successful result, and b) and did so
in response to a valid fresh request if and only if

e M has access to a fresh N-signed transaction slip m; attesting to a transaction that
yielded a successful result; and
e N makes a valid mq-corresponding transaction request mg “publicly” available.
Note that C' may or may not have received the goods on-line under these conditions. If C

received the goods on-line, then M is clearly entitled to a payment. Otherwise, M should
still be entitled to it, because C' can claim the goods in court.

Formalization

We now use the conditions we just characterized to define protection properties for different parties
in NetBill. C’s protection property Po says that

“If M is entitled to a payment, then C' actually receives the goods, or C' can claim it
in court”;

and M'’s protection property Pps says that

and

“If C' actually receives the goods, or C' can claim it in court, then M is entitled to a
payment.”

FPr and Pys can be respectively formalized as follows:

Fo:®, — D((CI)Ml V CI)MQ) — <>(<I)01 V (I)CQ)),

Py : 9, — D(((I)Cl V @02) — <>((I)M1 V (I)MQ)),

where

O, = Vao:ttid,Qy:t|(yermustvyecush)azCy) 22€0

74

by = Jx:t_sepo,y :tsslip |
(receive(C, z) € HMA z.msg.tid € © A
z.msg.cid = ¢..id A vseal(z.msg, z.sig, ¢..key)A
(receive(N, y) € H'V commit(y, —) € HY) A vseal(y.msg, y.sig, £,,) A
y.msg.mid = ¢,,.id A z.msg.cid = y.msg.cid A z.msg.tid = y.msg.tid A
cc(enc(y, y.msg.key)) = z.msg.cks),

bppp = Ja:tosslip,y:tstr|
(receive(N, z) € H'V commit(z,y) € HY) A z.msg.mid = ¢,,.id A
vseal(z.msg, ©.sig, K,) A z.msg.res A z.msg.tid ¢ © A
z.msg.tid = y.msg.sepo.msg.tid A
z.msg.mid = y.msg.mid A z.msg.cid = y.msg.sepo.msg.cid A
y.msg.mid = ¢,,.id A y.msg.sepo.msg.cid = ¢..idA
vseal(y.msg, y.sig, ¢.,.key) A vseal(y.msg.sepo.msg, y.msg.sepo.sig, ¢..key)

oy = dzy g a3t xXtcksxttid,y :tsslip]|
receive(M, z1 9 x3) € HCA
((receive(M, y;) € H® A y;.msg.tid = z3 A dec(zy, y;.msg.key) = v)V
(commit(y;, —2) € HY A yy.msg.cid = ¢..id A y;.msg.tid = z3A
dec(z1,y1.msg.key) = 7)),

Goy = Jzy g a3t xXtcksxttid,y:tsslip,z:t_str|
receive(M, z1 9 x3) € HCA
(receive(M,y) € HOV commit(y, z) € HY) A
vseal(y.msg, y.sig, K,) A y.msg.res A y.msg.tid ¢ O A
y.msg.cid = ¢..id A y.msg.tid = xz3A
y.msg.tid = z.msg.sepo.msg.tidA
y.msg.mid = z.msg.mid A y.msg.cid = z.msg.sepo.msg.cid A
z.msg.mid = ¢,,.id A z.msg.sepo.msg.cid = ¢..idA
vseal(z.msg, z.sig, ¢n..key) A vseal(z.msg.sepo.msg, z.msg.sepo.sig, ¢..key) A
cc(zq) = z.msg.sepo.msg.cks A dec(z, y.msg.key) # 7.

A few comments about the formalization are in place here. First, we assume ®; for both P
and Pps. @, specifies that neither M nor N has fresh transaction ids at the beginning of protocol
executions. Assuming ®; allows us to focus on scenarios where no unresolved transactions are
pending.

D1, Paso, Do, and Py respectively formalize conditions M1, M2, C1, and C2.

Finally, transaction slips retained at /N are accessible only to arbitrators and principals involved
in the corresponding transactions. Thus, C' (M) can access a transaction slip my retained at N
only if m; indicates C' (M) as the customer (merchant) of the transaction. In the formalization
above, we model “m; is accessible to C” and “m; is accessible to M” by m;.msg.cid = ¢..id and
my.msg.mid = ¢,,.id respectively. These accessibility conditions do not apply if a slip is received
by C or M during a protocol execution: in our model, principals can always access messages they
receive. This difference is illustrated in @y, where we require the equality y;.msg.cid = ¢..id to
hold only if y; is the copy retained at N.

75

4.4 Analysis of the Protocol

In this section, we analyze the NetBill protocol under all three deviation modes defined in Sec-
tion 2.4.3. Subsections 4.4.2, 4.4.3, and 4.4.4 have respectively analyses of the protocol under
deception, compliance, and abortion modes. Subsection 4.4.1 has some preliminaries.

The proof strategy used here differs from the one used for Franklin and Reiter’s protocol. To
analyze Franklin and Reiter’s protocol, we resorted to protocol rules whenever possible; trust as-
sumptions were used only when principals may behave non-compliantly. Thus, we had different
proofs for compliant and deviant executions. To analyze NetBill, we mainly resort to trust assump-
tions. Under this approach, we first prove that trustworthy executions satisfy our target properties;
then we argue that maximal compliant executions also do, because they are trustworthy. This proof
strategy is interesting because it allows us to use the same proof for both compliant and deviant —
but trustworthy — executions.

In this section, we present only the main results and their high-level analysis. For completeness,
detailed proofs appear in Section 4.5.

4.4.1 Preliminaries

In this subsection, we present two results needed in the rest of the analysis. Lemma 4.2 says that,
in NetBill, each protocol step gets instantiated at most once in executions we consider. Its proof
is straightforward, and depends on the fact that the protocol rules either have enabling conditions
that prevent same types of events from occurring more than once, or can be enabled only once, by
an occurrence of an event that cannot occur more than once.

Lemma 4.2 Let IT be the NelBill protocol, o be an evecution in E(I1)° U E(INA U E(I1)?, e; be
an event in o, and F be an event-template prescribing a protocol step in 11. If €; is an instance of
E, then there does not exist e; in o, © # j, such that e; is also an instance of E.

Theorem 4.3 says that all maximal compliant executions of NetBill are trustworthy.

Theorem 4.3 Let 11 be the NetBill protocol and T be its trust assumptions. Then

Vo € B(I, o " T.

Proof: Given that N is the only trusted party, 7 = Ty = {In,,In,,Tn,}, and this theorem
follows from Lemmas 4.4, 4.5, and 4.6.

a

Lemma 4.4 Let Il be the NetBill protocol and Ty = {Tn,,Tn,, Tn,} be the trust assumptions we
make of N (as specified in Section 4.3.1). Then

Yo € E(I)°, o =* T,.

76

Lemma 4.5 Let Il be the NetBill protocol and Ty = {I'n,,Tn,, Tn,} be the trust assumptions we
make of N (as specified in Section 4.3.1). Then

Vo € E(INY, o =* T,.

Lemma 4.6 Let Il be the NetBill protocol and Ty = {I'n,,Tn,, Tn,} be the trust assumptions we
make of N (as specified in Section 4.3.1). Then

Vo € E(I)°, o =" Th,.

4.4.2 Protection under Deception Mode

In this subsection, we analyze the protocol under deception mode. We first analyze it with respect
to C-protection, then with respect to M-protection.

According to Defs. 2.25 and 2.26 in Section 2.4.3, to analyze the protocol with respect to C-
protection under deception mode, we need to analyze all executions in F(I1)¢ and trustworthy
executions in E(H)g. We do so in Prop. 4.10 and 4.7 respectively.

Proposition 4.7 Let 1 be the NetBill protocol, o be an evecution in E(I)2, T be the trust as-
sumptions 11 makes, and Pc = ®; — O((Pas1 V Parz) = O(Pe1 V @e2)) be Cs protection property
as specified in Section 4.3.2. Then

o =" T implies o =" Po.

Proof:

1. Let 0 = sp €1 s1 ... be a trustworthy execution such that sy = ®;. We need to prove that
o):* D((I)Ml V (I)MQ — <>((I)Cl V (I)Cg)).

2. According to Lemma 4.8, ¢ =* O(®pr; — OPeq); and according to Lemma 4.9,
[):* D((I)MQ — <>((I)01 vV @CQ)).

a

Bearing in mind what ®arq, ®as2, o1 and Py specify (Section 4.3.2), the proof of Prop. 4.7
shows that if M has proof that C received the goods — and is therefore entitled to a payment, then
C' actually received the goods (Lemma 4.8); and if M has proof that N committed the transaction
with a successful result, and did so in response to a valid request — and is therefore entitled to a
payment, then C' actually received the goods or C' can claim it in court (Lemma 4.9).

Lemma 4.8 Let Il be NetBill protocol, o be an execution in E(H)g, T be the trust assumptions I1
makes, and Pc = ®; — O((Par1 V Parz) = O(Per V @e2)) be C's protection property as specified
in Section 4.3.2. Then

o =" T implies o =" ®; — O(Pp; — OPcy).

77

Lemma 4.9 Let Il be NetBill protocol, o be an erecution in E(H)g, T be the trust assumptions 11
makes, and Pc = ®; — O((Par1 V Parz) = O (Per V @) be C's protection property as specified
in Section 4.3.2. Then

o =*T implies o E" ®; —» O(Ppra = O(Por1 V Pea)).

Prop. 4.10 concerns maximal compliant executions. These executions are trustworthy and have
compliant local executions of C'. Given that our proof for Prop. 4.7 relies on the fact that o is
trustworthy and has a compliant local execution of C it can be used as is to prove Prop. 4.10.

Proposition 4.10 Let 11 be the NetBill protocol, o be an execution in E(H)C, and P be C's
protection property as specified in Section 4.3.2. Then

o " Pe.
From Prop. 4.7 and 4.10, we can derive the following

Corollary 4.11 NetBill is C-protective under deception mode.

Next we address M-protection. Like in the analysis of C-protection, we analyze deceptive and
compliant executions in turn.

Proposition 4.12 Let I be the NetBill protocol, o be an execulion in E(INY, T be the trust
assumplions 11 makes, and Py = ®; — O((Pc1 V Pea) = O(Parn V Parz)) be Ms protection
property as specified in Section 4.3.2. Then

o ="T implies o =" Py.

Proof:

1. Let 0 = sp €1 s1 ... be a trustworthy execution such that sy = ®;. We need to prove that
[):* D((I)Cl vV (I)CQ — <>(q)M1 vV (I)MQ))

2. According to Lemma 4.13, ¢ =* O(®¢; — OPasq); and according to Lemma 4.14,
o):* D((I)Cg — <>q)M2)

a

Bearing in mind what ®ps1, a2, o1 and Py specify (Section 4.3.2), the proof of Proposi-
tion 4.12 shows that if C' actually received the goods, then M has proof that C received the goods
— and is therefore entitled to a payment (Lemma 4.13); and if C' can claim the goods in court, then
M has proof that N committed the transaction with a successful result, and did so in response to
a valid request — and is therefore entitled to a payment (Lemma 4.14).

Lemma 4.13 Let Il be the NetBill protocol, o be an execution in E(I1);, T be the trust assump-
tions Il makes, and Py = ®; — O((Pc1 V Poz) = O(Ppas1 V Parz2)) be M s protection property as
specified in Section 4.3.2. Then

o =T implies o " &, — O(Pc1 — ODpyy).

78

Lemma 4.14 Let Il be the NetBill protocol, o be an execution in E(H)]\D4, T be the trust assump-
tions I1 makes, and Py = ®; — O((Pc1 V Peoz) = O(Pasr V Par2)) be M s protection property as
specified in Section 4.3.2. Then

o =T implies o E" &, — O(Pcy = ODpya).

Prop. 4.15 concerns maximal compliant executions and can be proven using the proof for
Prop. 4.12. The justification is analogous to that for Prop. 4.10.

Proposition 4.15 Let I be NetBill protocol, o be an execution in E(H)C, and Py; be M ’s pro-
tection property as specified in Section 4.3.2. Then

o =" Py

From Prop. 4.12 and 4.15, we can derive the following
Corollary 4.16 NetBill is M -protective under deception mode.

Theorem 4.17 summarizes the results in this subsection:
Theorem 4.17 NetBill is all-protective under deception mode.

Proof: From Cor. 4.11 and 4.16.

Discussion

According to our proofs, C’s interests are protected under deception mode. Intuitively, M’s mis-
behavior alone cannot compromise C’s interests. This can be explained as follows. M is entitled
to a payment if and only if

1. M can prove that C received the goods, or

2. M can prove that N committed the transaction with a successful result, and did so in response
to a valid request.

We examine each scenario in turn.

1. To prove that C' received the goods, M needs 1) a C-signed epo as a proof that C received
an encrypted message; 2) a N-signed transaction slip where the decryption key is released;
and 3) a proof that the goods is retrievable from the encrypted message and the decryption
key. C' must have received an encrypted message, otherwise she would not have signed the
epo. C' also has access to the decryption key — we are certain of this access because the key
is enclosed in the transaction slip produced by N, and this slip is accessible to both C and
M. With the encrypted message and the decryption key, C' can retrieve the goods.

79

2. To prove that N committed the transaction with a successful result, and did so in response
to a valid request, M needs to show a transaction request and a corresponding slip attesting
to such a result. Both these messages are provided by N, and are accessible to C'. If the
decryption key enclosed in the slip can decrypt the encrypted message C' received, then C
received the goods. Otherwise, either M or N misbehaved and an invalid key was released.
C does not receive the goods during the protocol execution in this case, and needs to claim it
in court. To do so, she needs to show that decrypting the message received from M with the
key released by N does not yield the expected goods. This can be easily accomplished by C
because the checksum of the encrypted message — which attests to what message C' actually
received — can be found in the transaction request, and the key released by N can be found
in the transaction slip.

Note that even though C' does not receive the goods on-line in this case, her interests are still
protected. NetBill’s certified delivery mechanism allows C' to prove that she was not given the
goods on-line, and claim the goods — or a refund — off-line. Note also that a problem with the
key does not always result from M’s misbehavior; N can be the one to blame. For example,
M may enclose the right key in the transaction request, but N may release something else
other than this key in the slip.

Our proof also shows that protection of C’s interests depends on N’s satisfying the trust as-
sumption 7,, which says that N can release at most one transaction slip per transaction. The
discussion following the proof of Lemma 4.8 in Section 4.5 gives the intuition behind how the
violation of this trust assumption can compromise C-protection.

We focus on M-protection next. According to our proofs, M’s interests are protected under
deception mode. Intuitively C”s misbehavior alone cannot compromise M’s interests. In what
follows, we briefly explain why this is the case.

There are two ways C' can receive the goods:

1. she can receive it on-line, or

2. she can claim it in court.
We show that M will be entitled to a payment in either case. We analyze each scenario in turn.

1. If C received the goods on-line, then she must have received an encrypted message and must
have had access to a decryption key released in a transaction slip. M has access to the slip C
has access to, and would not have enabled its generation — by sending a transaction request
to N — unless he had received a C-signed epo attesting that C' had received an encrypted
message. Using the slip and the C-signed epo, M can prove that C received the goods, and
therefore be entitled to a payment.

Note that in this case C' could not have misbehaved.
2. To claim the goods in court, C' needs, among other messages, an N-signed transaction slip —

attesting to a fresh and successful transaction — and a corresponding valid transaction request.
The existence of these two messages, in their turn, entitles M to a payment.

Note that C' could not have misbehaved in this case either.

Our proof also shows that M’s interests are protected only if T, and Tx, are assumed. The
discussion following the proof of Lemma 4.13 in Section 4.5 gives an intuition of how the violation
of these trust assumptions can compromise M-protection.

80

4.4.3 Protection under Compliance Mode

In this subsection, we analyze the protocol under compliance mode. To verify whether the protocol
is all-protective under compliance mode, we need to verify whether both C’s and M’s interests
are protected in maximal compliant executions. But these results have already been verified in
Subsection 4.4.2. By Prop 4.10 and 4.15,

Theorem 4.18 NetBill is all-protective under compliance mode.

Discussion

A sale transaction in NetBill is a transaction (in the database sense [47]) where N secures the
decryption key for C' and a funds transfer for M. When all principals behave compliantly, the
key secured by N is one that will enable C' to retrieve the goods, and a funds transfer to which
M is entitled actually occurs. Given that the key retained at N is accessible by C', a transaction
commit effectively implements an atomic swap of goods and money between C' and M. This atomic
swapping protects both C”s and M’s interests.

Note that, under compliance mode, no dispute will arise, and the certified delivery mechanism
is not really needed.

4.4.4 Protection under Abortion Mode

In this subsection, we analyze the protocol under abortion mode. Asin the two previous subsections,
we need to verify whether the protocol is both C-protective and M-protective. We start with C-
protection.

According to Defs. 2.25 and 2.26 in Section 2.4.3, to verify whether Il protects C’s interests
under abortion mode, we need to examine all executions in £(I1)® and trustworthy executions in
E(H)é. Here we focus on abortive executions only, since we have analyzed compliant executions
(Prop. 4.10) in Section 4.4.2.

Proposition 4.19 Let I be the NetBill protocol, o be an execution in E(I1)A, T be the trust
assumplions 11 makes, and Po be X ’s protection property as specified in Section 4.3.2. Then

o =" T implies o =" Po.

Prop. 4.19 can be proven using the proof for Prop. 4.7. That proof is applicable here because
it relies only on the fact that executions it considers are trustworthy and have compliant local
executions of C', both of which are satisfied by executions we consider under Prop. 4.19. A critical
condition satisfied by the proof is that it does not depend on M or N taking further steps, a
requirement that could be violated by abortive executions.

Jointly, Prop. 4.10 (Section 4.4.2) and 4.19 address C-protection under abortion mode, and
derive the following

Corollary 4.20 NelBill is C-protective under abortion mode.
Prop. 4.21 addresses protection of M’s interests in abortive executions and can be proven

using the proof for Prop. 4.12 (Subsection 4.4.2). The reason why that proof is applicable here is
analogous to the one given for Prop. 4.19.

81

Proposition 4.21 Let II be the NetBill protocol, o be an execulion in E(H)ﬁ, T be the trust
assumplions 11 makes, and Py be M ’s protlection property as specified in Section 4.3.2. Then

o E*T implies o E" Py.

Jointly, Prop. 4.15 (Section 4.4.2) and 4.21 address M-protection under abortion mode. They
derive the following

Corollary 4.22 NelBill is M -protective under abortion mode.

Theorem 4.23 summarizes the results in this subsection.
Theorem 4.23 NetBill is all-protective under abortion mode.

Proof: From Cor. 4.20 and 4.22.

Discussion

Our proofs show that NetBill is all-protective even if its principals terminate their local executions
prematurely. This is not surprising because the exchange of the decryption key and payment
happens atomically in NetBill. If a party stops prematurely its own local execution and prevents
N from committing the transaction, then neither the decryption key is released nor are funds
transferred.

Since the only possible deviations here are premature terminations, the decryption key released
by N is the one that will decrypt the encrypted message and produce the goods. Here too, reliability
of communication channels is irrelevant. If C' does not receive the decryption key at the end of a
protocol execution, she can get it from N off-line.

M is entitled to the funds credited into his account because he can prove that C' received the
goods.

Under abortion mode, no dispute will arise, and the certified delivery mechanism is not really
needed.

4.5 Formal Analysis of the Protocol

4.5.1 Preliminaries

Lemma 4.4 Letl Il be the NetBill protocol and Ty = {I'n,,Tn,, Tn,} be the trust assumptions we
make of Z (as specified in Section 4.3.1). Then

Vo € E(IN°, o =* Ty,.

Proof:

82

1. Let s; be a state in o such that s; E commit(m,, —) € HN, for some signed slip my. Then
ds;,7 <14, such that

s; | last(HY) = commit(my, —) and s;_; = commit(my, —) ¢ HY.
Examining /N’s local protocol, we can conclude that, either Ry, or Ry, was applied at s;_;.
2. Independently of which rule was applied, m; = b seal(b, k'), for a slip b.
3. Given that keyPair(x;', x,) holds, we can conclude that vseal(b, seal(b, k'), k,,) = TRUE.

O

Lemma 4.5 Let Il be the NetBill protocol and Ty = {I'n,,Tn,, Tn,} be the trust assumptions we
make of Z (as specified in Section 4.3.1). Then

Vo € E(IN)°, o =" Th,.
Proof: Commit events are prescribed by rules Ry, and Ry, only, both of which prescribe using the

customer id, the merchant id, and the transaction id from the transaction request in the transaction
slip.

a

Lemma 4.6 Let Il be the NetBill protocol and Ty = {Tn,,Tn,, Tn,} be the trust assumptions we
make of Z (as specified in Section 4.3.1). Then

Vo € E(IN°, o =* T,.

Proof: The only rule that prescribes a send(M, z) event is Ry,, which requires z to result from a
commit event.

4.5.2 Protection Under Deception Mode

Lemma 4.8 Let Il be NetBill protocol, o be an execution in E(H)g, T be the trust assumptions 11
makes, and Pc = ®; — O((Par1 V Parz) = O(Per V $ez)) be C's protection property as specified
in Section 4.3.2. Then

o =T implies o =" ®; — O(Ppr; — OPcy).

Proof: Let 0 = sg €1 1 ... be such that o =* T and o =* ®;. And let s; be a state in o such
that s; = ®asq. The following shows that s; = ®¢y.
1. If s; = ®prq, then there exists a signed epo my : t_sepo such that
s; |= receive(C, my) € HY,

which implies that

83

s; = send(M, m,) € HC.

2. Given that “send(M,m;)” could have resulted only from applying Rc,, we know that there
is a message mg mgz my 1t X t_cks X t_tid such that

s; |= receive(M, my m3 my) € HC.
3. Next, let ms : t_sslip be the signed slip such that

s; |= commit(ms, —) € HY,

”

(Lemma 4.24 allows us to ignore the occurrence of “receive(N, ms)” at M, which may or may

not have taken place.)

We now need to prove that ms.msg.cid = ¢..id (step 4), ms.msg.tid = my (step 5) and
dec(mg, ms.msg.key) = v (step 6).

4. From &1, we know that ms.msg.cid = m;.msg.cid. Given that

(a) “send®(M,m;)” could have resulted only from applying Rc., and

(b) mj.msg.cid = ¢,

we can conclude that ms.msg.cid = m;.msg.cid = .. But . = ¢..id, according to the initial
condition Z. Thus, ms.msg.cid = ¢..id.

5. Again, from ®psq, we know that ms.msg.tid = m.msg.tid. And according to Lemma 4.26,
my.msg.tid = my. Thus, by transitivity, ms.msg.tid = my4.

6. (a) From s; = send (M, m;) € H® and Lemma 4.25, we know that cc(mz) = ms.

(b) According to Lemma 4.26, m3 = m;.msg.cks. And using the result from step (a) and
transitivity, we know that cc(mg) = mq.msg.cks.

(c) Now, according to ®arq, cc(enc(y, ms.msg.key)) = m;.msg.cks. By transitivity (using
the result from step (b)), cc(mz) = cc(enc(y, ms.msg.key)); which allows us to conclude
that my = enc(y, ms.msg.key), and consequently dec(my, ms.msg.key) = ~.

a

To prove that C' received the goods, M needs, among other things, to have received a fresh
C-signed epo attesting that C' has received an encrypted message with the enclosed checksum. Our
proof of Lemma 4.8 shows that C' signs this epo only if she actually receives the encrypted message.
As for the decryption key, our proof shows that C' does not depend on M’s forwarding back the
transaction slip to obtain it; she can retrieve it directly from N. Given that IV controls access to its
data through authentication, C' can retrieve the transaction slip from N as long as she can prove
that she is in fact C'.

Our proof also shows that the trust assumption 7, is critically important here. In fact, if Ty,
does not hold, then it is possible for M to prove that C received the goods without C' actually
receiving it. We show how this is possible below.

If T, does not hold, then it is possible for N to send M a slip m different from the one, m’,
generated when the transaction committed. Let us now assume that m and m’ only differ in the

84

value of the decryption key they enclose: let the key enclosed in m be the right key, and the one
enclosed in m’ be a wrong key. Let us further assume that C' does not receive m from M because
of a communication link failure. Then, at the end of the execution, ®5sq will hold if M has also
received the signed epo from C. Since C' does not receive the transaction slip from M, she will get
it from N, who will provide the copy m’. But according to our assumptions m’.msg.key cannot
decrypt the encrypted message C received. Effectively, C' does not receive the goods at the end of
the transaction, and ®&y does not hold.

Note that, in this case, C' will not even be able to claim the goods in court, unless N has kept
a copy of the transaction request and makes it available to the arbitrator.

Lemma 4.9 Let II be NetBill protocol, o be an execution in E(H)g, T be the trust assumptions I1
makes, and Pc = ®; — O((Par1 V Parz) = O(Per V @) be C's protection property as specified
in Section 4.3.2. Then

g IZ* T—o Iz* P, — D((I)MQ — <>((I)Cl \Y (I)CQ)).
Proof: Let 0 = sy €1 1 ... be such that o =* T and o =* ®;. And let s; be a state in o such
that s; = ®as0. The following shows that s; = ®cy V $cs.
1. If s; = ®pr9, then there exists a signed slip my and signed transaction request mg such that
s; = commit(my, mg) € HY.

Note that Lemma 4.24 allows us to ignore the occurrence of “receive(N,m;)” at M, which
may or may not have occurred.

2. To be useful to C', m; must be accessible by C' (both ®¢; and ¢y specify this condition).
That is,

s; = my.msg.cid = ¢..id.
But we know, from ®,45 that

s; = my.msg.cid = mg.msg.sepo.msg.cid A mg.msg.sepo.msg.cid = ¢..id,
which implies that

s; = my.msg.cid = ¢..id.

3. Also, according to ®ps2, mq.msg.tid € ©. Applying contrapositive to the implication regarding
transaction ids in ®;, we conclude that m;.msg.tid is not a submessage of messages retrievable
from SO(MSN); hence, it must have received it from M. That is, there must be a transaction
request mq : t_str such that

s; = receive(M, mg) € H' A my.msg.tid T my.
4. Examining the structure of my, we conclude that
my.msg.tid = my.msg.sepo.msg.tid.

5. Still according to ®pr9, ms.msg.sepo.msg.tid = my.msg.tid.

85

6. Also according to @9,
s; |= vseal(mg.msg.sepo.msg, mg.msg.sepo.sig, ¢..key), (4.1)
which implies that there exists a private key k : t_prik such that
si |E ms.msg.sepo.sig = seal(msg.msg.sepo.msg, k) A keyPair(k, ¢..key).

7. Now, according to the initial condition Z, k7! is such that keyPair(k; !, ¢..key); and x71 is
kept private to C' throughout the execution. Thus, N could not have produced mg.msg.sepo.sig
locally, and must have received it as a submessage of my from M.

8. Applying the reasoning steps we just used to conclude that mg.msg.sepo.sig could not have
been built locally by N, we also conclude that mg.msg.sepo.sig could not have been built
locally by M, and therefore there must exist a signed epo my : {_sepo such that

{ si E receive(q, my) € HIA (4.2)
mg.msg.sepo.sig T my.
Now, given that messages must be sent before they are received, we have
s; |= send (M, my) € H. (4.3)
By Lemma 4.25, we conclude that there exists ms mg m7 : ¢t X t_cks X t_tid such that
s; |= receive(M, ms meg mz) € H, (4.4)

(which is one of the conjuncts in both ®¢q and ®¢s).

9. Also, unless my has the transaction id C' is focused on in this transaction (mr), it may be
ignored by C' as useless data. This justifies why we require that

my.msg.tid = mr,
as is specified in both ®¢; and ®¢5. We prove this last equality below:

(a) From expression 4.2 (step 8) and the structure of my4, we know that
Mmg.Msg.Sepo.sig = My .Sig.
(b) Using straightforward steps omitted here, we can prove that

s; = vseal(my.msg, my.sig, ¢..key),

which, in conjunction with expression 4.1 (step 6), allows us to prove that
Mg.MSE.SePO = My. (4.5)
(c) Applying Lemma 4.26 to expressions 4.3 and 4.4 (step 8), we know that

my.msg.tid = my. (4.6)

86

(d) From ®pz2, we know that
my.msg.tid = mg.msg.sepo.msg.tid. (4.7)

Now, applying transitivity to expressions 4.7, 4.5, and 4.6, we conclude that

my.msg.tid = mr.
10. If dec(ms, my.msg.key) = v, then s; = ®¢q. Otherwise, we need to prove that
cc(ms) = mg.msg.sepo.msg.cks,
which is what we do in the remainder of this proof.
11. Proving that cc(ms) = ms.msg.sepo.msg.cks:

(a) According to Lemma 4.25, cc(ms) = me.
(b) According to Lemma 4.26, mg = my4.msg.cks. And, by transitivity, cc(ms) = m4.msg.cks.
(c) We know, from step 8, that
mg.msg.sepo.sig C my.
Examining the structure of my, we can conclude that mg.msg.sepo.sig = my.sig.
(d) And, by straightforward steps omitted here, we can prove that
vseal(my.msg, my.sig, ¢..key).
(e) But we also know (from step 6) that
vseal(msg.msg.sepo.msg, mg.msg.sepo.sig, ¢..key).
(f) Using (c)-(e), we can then conclude that
M4.MSE = Mg.INSE.SEPO.MSE,.
(g) Finally, combining (b) and (f), we obtain

cc(ms) = mg.msg.sepo.msg.cks.

12. All the other conjuncts in ®¢o can be obtained as they are from ®ps5.
O

Recall from Subsection 4.3.2 that M needs two messages to prove that N committed a new
transaction with a successful result, and did so in response to a valid request: a fresh N-signed
slip and a corresponding transaction request. In her turn, C' needs an encrypted message and a
decryption key enclosed in a transaction slip to obtain the goods. Our proof of Lemma 4.9 shows
that: 1) both the slip and the transaction request that service M also service C'; and 2) C' must
have received an encrypted message if a fresh slip was generated by N. That is, if M can claim
his entitlement to a payment by showing that a transaction — that C' and himself agreed on — was
carried through, then C' will obtain the goods.

We focus in turn on smaller steps below.

The slip and the transaction request that service M also service C' because N makes them
available to both parties involved in the transaction.

87

C' must have received an encrypted message because 1) N only generates a signed slip attesting
to a successful result if N receives a fresh transaction request correctly signed by C' and M 2) fresh
transaction requests could not be generated unless C' signs an epo in the current execution; and 3)
C' only signs an epo if she receives an incorrupt encrypted message. Note that the assumption (®;)
that there is no pending transactions at the beginning of the protocol execution is important here.

With the encrypted message and the decryption key enclosed in the transaction slip, C' may
or may not be able to retrieve the goods. If the encrypted message can be decrypted by the
decryption key, then C' obtains the goods at the end of the protocol execution, and no dispute
is needed. Otherwise, C' will need to claim the goods in court. C' can do so by showing to the
arbitrator that the encrypted message she received is consistent with the checksum sanctioned by
both C' and M, but cannot be decrypted using the decryption key provided by N. Our proof shows
that the checksum enclosed in the transaction request is in fact the checksum against which C
checked the integrity of the encrypted message. (The checksum is signed by C', and because the
signed message includes a fresh transaction id, the signature cannot be a replay.)

Note that even though we use Lemma 4.24, and ultimately 7l,, in this proof, they are not
strictly necessary here. That is, Lemma 4.9 can be proven even if 7%, does not hold in o. Its
assumption, however, makes the proof simpler. Intuitively, T, is not needed here because we are
under scenarios where transaction requests are kept by N and made available to the arbitrator.
The availability of transaction requests makes the role of transaction slips, and their uniqueness,
less critical. Effectively, no matter what key N encloses in the slip, we can always resort to the
transaction request, and either get the key directly from there, if the key enclosed in the request is
the right decryption key, or demand it from M otherwise.

The following three lemmas appear in our proof of Lemma 4.9. Lemma 4.24 says that the
slip M receives from N is the one generated with the transaction commit and retained at V. Its
proof consists of straightforward backchaining steps and relies on the fact that 1) N sends the slip
only after it commits the transaction, and 2) N is trusted to send M the slip generated with the
transaction commit (7).

Lemma 4.24 Let Il be NetBill protocol, o be an execution in E(H)g, T be the trust assumptions
IT makes. Then

o =" T implies o ="V : t_sslip, O(receive(N, z) € H! — commit(z, —) € HY).

Proof: Let o be a trustworthy execution, s; be a state in o, and my : t_sslip be a signed slip such
that

s; = receive(N, m;) € H'.

Given that messages must be sent before they are received, we know that

s; = send(M, m;) € HY.

By T,, we can conclude that s; = commit(my, —) € HY.
O

Lemma 4.25 says that if C' sends a signed epo to M, then C received an encrypted message,
and the message is consistent with the accompanying checksum. Our proof relies on the fact that
C' behaves compliantly.

88

Lemma 4.25 Let Il be NetBill protocol and o be an execution in E(I1)2. Then
o =* O3z :tsepo|send(M,z;) € H® —
dxg x3 x4 1t X t_cks x t_tid | (receive(M, zy x5 x4) € HC A cc(zg) = x3)).

Proof: Let s; be a state in ¢ and my: {_sepo be a message such that

s; = send(M, m;) € HC.
“send(M, m;)” could have resulted only from an application of R¢,. Thus, 3s;, j < 7, such that

s; | last(H®) = send (M, m;)
and

s;i_1 = send(M,m;) ¢ H°A
Jzy x5 x4 1t X t_cks x t_tid | last(H®) = receive(M, zy x5 24) A cc(zy) = 3.

a

Lemma 4.26 says that the checksum and the transaction id enclosed in the signed epo C' sends
to M are the ones C' received from M. Its proof also relies on the fact that C' behaves compliantly.

Lemma 4.26 Let I1 be NetBill protocol and o be an execution in E(I1)2. Then

o E* Vay xy a3t Xtcks Xt tid,xy:t_sepo,
O(receive(M, z1 z9 z3) € H® Asend (M, z4) € HC —
T9 = z4.msg.cks A 3 = x4.msg.tid).
Proof:
1. Let s; be a state in ¢ and myq, ..., m4 be messages such that
s; | receive(M,m; my m3) € H® Asend (M, my) € HC.

2. Examining C’s local protocol, we conclude that “send(M, my4)” could have resulted only from

an application of R¢,. This implies that, if s;, 7 < 7, is the state at which R¢, is applied, i.e.,
s;j | send(M,my) € B A sjy1 | send (M, my) € HC,
then

s; |= receive(my, my, m3) € H®, and
my.msg.cks = mgy A my.msg.tid = mag.

a

Lemma 4.13 Let I1 be the NetBill protocol, o be an execution in E(I1)Y;, T be the trust assump-
tions Il makes, and Py = ®; — O((Pc1 V Poz) = O(Pasr V Par2)) be M s protection property as
specified in Section 4.3.2. Then

o =T implies o E" &, — O(Pc1 — ODpyy).

89

Proof: Let 0 = sy €1 sy ... besuch that o =* T and o |=* ®;, and let s; be a state in o such that
s; = ®¢1. The following shows that s; = ®ary.

1. If s; = ®¢q, then there exists messages my mg mg : ¢ X t_cks x t_tid and my : t_sslip such
that

s; | receive(M,m; my m3) € HCA
commit(mg, —) € HIA
dec(my, my.msg.key) = 7.

For simplicity of the proof, we have applied Lemma 4.27 here.

To prove that s; = ®prq, we first need to show that M received a signed epo from C' (steps 2, 3,
and 4):

2. Given that
s; |= commit(mg, —) € HY (from step 1)

we can conclude that either Ry, or Ry, has been applied. In either case, 35,7 < ¢, and a
message ms: {_str such that

s; = last(HY) = receive(M, ms).
3. Since messages must be sent before they are received, we have
s; = send(N, ms) € HM

4. “send(N,ms5)” could have only resulted from an application of Rjpz, which implies that
Jk, k < j, and a signed epo mg: (_sepo, such that

sg = last(H") = send (N, ms), and
sp—1 = last(H") = receive(C, mg).

Next we show that mg is C-signed (steps 5, 6, and 7):

5. Going back to step 2, an application of Ry, or Ry, actually allows us to draw more con-
clusions. For instance, the signed epo included in the transaction request must be signed by

C:
s; |= ms.msg.sepo.msg.cid = ¢..id A vseal(ms.msg.sepo.msg, ms.msg.sepo.sig, ¢..key)

6. In step 4, an application of Ry, also leads to more conclusions. For example, the signed epo
enclosed in the transaction request ms is the one received from C:

Ms5.MSE.SEPO = M.
7. From steps 5 and 6, we can conclude that
vseal(mg.msg, me.sig, ¢..key)

holds, that is, mg is C-signed.

90

We also need to prove that mg’s transaction id is fresh, i.e., mg.msg.tid ¢ © (steps 8 and 9):

8. Going back again to step 4, we list other conditions that sp_; satisfies. For example, there
are messages m} : t,m) : t_cks and m} : t tid, such that

sp_1 = send(C, m} ml mh) € B" A mh = mg.msg.cks A mfy = mg.msg.tid.

9. “send(C, m} m% m%)” could have resulted only from an application of Rjps,, which implies

that mf was generated by a “new(©,m%)” event. Thus, m} ¢ ©.

Given that m% = mg.msg.tid (step 8), we can conclude that mg.msg.tid ¢ ©.

Next, we show that the signed slip generated during the transaction processing is signed by N (step
x) and has the required values for its customer id, merchant id and transaction id (steps 11, 12,
and 13), i.e.,

my.msg.mid = ¢,,.id A m4.msg.cid = mg.msg.cid A my.msg.tid = mg.msg.tid
10. To show that the slip is N-signed is to show that
vseal(my.msg, ma.sig, K,).

But from step 1, we know that s; = commit(mg, —) € H¥. And according to Th,,
vseal(my.msg, my.sig, Ky,).

11. Going back to step 2, an application of Ry, or Ry, allows us to conclude that the transaction
request ms is signed by M:

s; = ms.msg.mid = ¢,,.id A vseal(ms.msg, ms.sig, ¢, .key).

And T, says that the transaction slip generated during the transaction processing uses the
value of mid from ms in its mid field. That is:

my.msg.mid = ms.msg.mid.
By transitivity, we conclude that m4.msg.mid = ¢,,.id.

12. From @1, we know that m4.msg.cid = ¢..id; from step 5, we know that ms.msg.sepo.msg.cid = ¢..id;
and from step 6 we know that ms.msg.sepo = mg. By transitivity, m4.msg.cid = mg.msg.cid.

13. From ®¢4, we know that my.msg.tid = m3. From step 8, m% = mg.msg.tid. Given that
“send(C', m} m!, m%)” takes place only once in M’s execution, we can conclude that m; =
m}, my = mi, m; = m|. By transitivity, m4.msg.tid = mg.msg.tid.

Finally (step 13), we prove that cc(enc(y, m4.msg.key)) = mg.msg.cks.

13. From ®¢q, we know that dec(my, my4.msg.key) = v, which implies that m; = enc(y, m4.msg.key).

Applying cryptographic checksum on both sides of the equality, we get
cc(my) = cc(enc(y, mqy.msg.key)).

Going back to step 9, the fact that “send(C, m{ m/ m%)” could have resulted only from an
application of Ry, also implies that

91

ce(mh) = mj,.
Given that m; = m{, we can conclude by transitivity that m/ = cc(enc(y, m4.msg.key)). But
from step 8, we know that m}, = mg.msg.cks, which allows us to finally conclude that

cc(enc(vy, my.msg.key)) = mg.msg.cks.

a

Our proof of Lemma 4.13 shows that if C' can obtain the goods from the encrypted message she
received from M and the key released in the transaction slip she has access to, then M can prove
that C received an encrypted message and a key that would allow her to retrieve the goods.

We focus in turn on smaller steps below.

If C has access to a transaction slip, then N must have committed a transaction, which must
have been requested by M. M must have received a signed epo from C', otherwise he would not
have submitted the transaction request.

This epo must be fresh and must have been signed by C. It must be fresh because M would
not have proceeded with the protocol otherwise. And it must have been signed by C, because N
would not have committed the transaction otherwise. With this fresh, C-signed epo, M can prove
that C received an encrypted message during the protocol execution.

Next, we show that the slip from which C' extracts the key is accessible to M. This is so because
the transaction request submitted by M identifies him as the merchant (remember that M behaves
compliantly here), and N faithfully transcribes this information to the only slip it generates per
transaction. Note that, to be useful in court, this slip needs to be N-signed.

Finally, through the value of the checksum enclosed in the C-signed epo, M can show that C'
can retrieve the goods from the encrypted message C received and the key released in the slip. He
does so by showing that the encrypted message and the result of encrypting the goods with the
key have the same checksum.

Our proof relies on three trust assumptions: T,, T'n, and Ty,. T, is critical because it makes
N’s intermediation actions non-repudiable. In the context of this proof, non-repudiation allows
M to use the slip N released to prove that the decryption key was in fact released by N and is
accessible to C'. If Tl, did not hold, then N might release a slip that is not signed, which would
not help M in court.

Ty, is critical because it guarantees that the values of customer id and merchant id enclosed
in the transaction slip are exactly those from the transaction request. These values are important
here because they determine whether the slip C' has access to is also accessible to M. Remember
that M needs a /N-signed slip and a corresponding C-signed epo to make his case. If T, does not
hold, then N could generate a slip that is accessible to C', but not to M. If this slip also encloses
the decryption key, C' would effectively get the goods, without M’s being able to prove it. At a
higher level of abstraction, this depicts a scenario where N cheats by giving the decryption key to
C' behind M'’s back.

T, is not critical for Lemma 4.13 to hold. It only simplifies the proof. If Ty, does not hold,
then N might send M a copy of the slip that is different from the one retained at N. In the worst
case, the copy sent to M will not enclose the key, while the one retained at N will. Under this
scenario, C' can get the goods, and M may not even know about it. But M can always uncover
these cases by checking whether the slip he received is a copy of the one retained at V.

92

Lemma 4.27 was used in our proof of Lemma 4.13. It says that in trustworthy executions where
M behaves compliantly, the slip received by C'is the one retained at N. Its proof relies on 1) the
fact that M behaves compliantly — and thus forwards the message he receives from N to C', and
2) the assumption (T’n,) that N is trusted to send M only the slip produced with the transaction
commit and retained at N.

Lemma 4.27 Let 11 be the NetBill protocol, ¢ be an execution in E(H)]\D4, and T be the trust
assumptions 11 makes. Then

o =" T implies o ="V : t_sslip, O(receive(M,) € H® — commit(z, —) € HY).

Proof:

1. Let o be a trustworthy execution, s; be a state in o, and my : t_sslip be a signed slip such
that

s; = receive(M, m;) € HC.
Since messages must be sent before they are received, we know that
s; = send(C, m;) € HY.
2. An occurrence of “send(C,m;)” could have resulted only from an application of Rpz,; thus
s; |= receive(N, m;) € HY,
3. From s; |= receive(N,m;) € B we conclude that s; = send(M,m;) € HY. And according to
Tn,, s; = commit(m,, —) € HY.
O

The proof of Lemma 4.14 is straightforward. It relies on the fact that both the transaction
request and the transaction slip needed by M to claim a payment are needed by C' to claim the
goods in court. Note that even though we assume trustworthy executions, the proof does not need
this assumption.

Lemma 4.14 Let I1 be the NelBill protocol, o be an execution in E(I1)Y;, T be the trust assump-
tions Il makes, and Py = ®; — O((Pc1 V Peoz) = O(Par1 V Parz)) be M s protection property as
specified in Section 4.3.2. Then

o =T implies o E" &, — O(Pey = ODpya).

Proof: Let 0 = sy €1 s; ... besuch that o =* T and o =* ®;, and let s; be a state in o such that
s; = ®¢y. The following shows that s; = ®ars.

If s; = ®¢q, then there exists a message my : t_sslip and my : t_str such that

si | commit(my, my) € HY A my.msg.mid = ¢,,.id A
vseal(my.msg, my.sig, K,) A my.msg.res A my.msg.tid ¢ © A
mq.msg.tid = my.msg.sepo.msg.tid A
my.msg.mid = mq.msg.mid A my.msg.cid = my.msg.sepo.msg.cid A
mg.msg.mid = ¢,,,.id A my.msg.sepo.msg.cid = ¢..id A
vseal(mg.msg, mo.sig, ¢.,.key) A vseal(my.msg.sepo.msg, my.msg.sepo.sig, ¢..key)

(4.8)

But this is exactly what ®ps9 specifies.

93

4.6 Summary and Conclusion

In this section, we summarize the findings of our analysis and conclude with some insights.

4.6.1 Summary

We start with the summary in Table 4.1. All-protection is guaranteed in entries with a /; certified
delivery is needed in entries with a *. The table shows that NetBill is all-protective under all
deviation modes, and the protection does not rely on reliable communication channels. It also
shows that the certified delivery mechanism is needed only under deception mode.

compliance | abortion | deception
Channel Failures Vv V NE.
No Channel Failures Vv V NE

Table 4.1: Summary table.

In what follows, we focus on each of the entries in the table.

First, it is not surprising that all-protection can be guaranteed in NetBill without reliable
communication channels. This is so because neither payment nor decryption key delivery, which
concludes goods delivery, requires reliable communication among the parties. Payments are not
communication-dependent in NetBill because they are funds transfers that occur at the NetBill
server. Key deliveries are not communication dependent because, once released, keys are retained
at N, which makes them always accessible, even when communication channels are down.

NetBill is all-protective under compliance mode because payments and releases of decryption
keys happen atomically when transactions commit. Since everyone behaves compliantly, funds
are actually transferred during the transaction processing, and the key is in fact the right one for
retrieving the goods. Under compliance mode, no dispute will arise.

For the same reasons, NetBill is all-protective under abortion mode. This is not surprising.
Premature terminations of local executions can happen either before a transaction commits, and
prevent it from committing; or after it has committed. In the first case, no money changes hands
and no key is released; in the second case, the exchange has taken place. All-protection holds in
either case. Here too, no dispute will arise.

Under deception mode, all-protection can no longer be guaranteed by transaction processing
alone. Certified delivery and a few trust assumptions are needed. For example, if M deceives, and
encloses a bogus key in the transaction request, then the mere atomic swapping of the key with the
money does not protect C’s interests. In such cases, goods cannot be retrieved using the released
key, and C' will need to claim them in court. Unless C' can non-repudiably show that she was not
delivered the goods, the payment will not bring her anything in return. NetBill’s certified delivery
mechanism plays a critical role in protecting C"s interests here because it enables C' to prove what
exactly she was delivered. Similarly, N can deceive. For example, it can release the key enclosed
in the transaction request without transferring funds from C to M. In such cases, M will need to
complain, and claim the payment off-line. Here again, NetBill’s certified delivery mechanism can

94

protect M’s interests. It enables M to prove that he actually delivered the goods, and is therefore
entitled to payment. Unless M can non-repudiably prove that he actually delivered the goods, he
may risk releasing the goods for nothing.

These examples show that much can happen after a protocol execution has finished, and off-line
arbitrations can remedy anomalies that happen on-line.

Not all deceptions can be remedied by certified delivery however; some cannot be easily resolved
and can compromise C-protection or M-protection. They are deceptions that violate the trust
assumptions.

During our modeling and analysis exercise, we identified a number of trust assumptions for N,
the NetBill server. These assumptions specify what N must not do in order to guarantee NetBill’s
all-protection.

First, it must not generate unsigned transaction slips (T,). Unsigned slips are repudiable, and
therefore not useful as proofs in court. When releasing unsigned slips, NV is effectively providing
C' with means of retrieving the goods, if the right decryption key is enclosed, without assuring M
means for proving this in court.

Second, N must not generate slips with corrupted merchant ids (7%,). Transaction slips are
vehicles through which decryption keys are released. And slips with corrupted merchant ids are typ-
ically unavailable to M. Thus, by releasing slips with corrupted merchant ids, N can be effectively
giving keys to C' behind M’s back.

Finally, N must not generate more than one slip per transaction (Ty,). A transaction slip
provides part of the record of what happens with a transaction. When a transaction has conflicting
records, disputes are hard to resolve. In practice, the existence of conflicting records may favor
those that do not need much else to make their cases. For example, giving M a slip with the correct
decryption key can entitle him to a payment, while giving C' a slip with a wrong decryption key
alone will not be enough for her to claim the goods in court.

Our analysis shows that NetBill is C-protective only if N satisfies T, and Th,; and is M-
protective only if N satisfies T, .

4.6.2 Conclusion and Insights

As a protocol that supports dispute resolution, NetBill brings extra challenge to the specification
of its protection properties. Since the protocol offers its participants ways of correcting unfair
outcomes of an execution after the fact (this is the notion of open protection), the specifications
need to take into account not only on-line exchanges of money and goods between the customer
and the merchant, but also how disputes are resolved. In the context of a protocol where non-
repudiable messages collected by the intermediary are used to resolve disputes, it does not suflice
to know what messages each of the main parties has access to; we also need to know what the
intermediary retained and is willing to make available. This explains the complexity of both C’s
and M’s protection properties.

Even though NetBill is all-protective, it only guarantees that C' receives what M set out to
release, which may not be what C expects to receive. Unlike Franklin and Reiter’s protocol,
NetBill does not provide means for C' to check whether what M is willing to release is indeed what
she is after. Thus, false advertisements would need to be dealt with outside the protocol.

NetBill treats customers and merchants differently. It is, in some sense, stricter with C' than
with M. For a transaction to commit, C' could not have misbehaved (assuming that N does not
violate the trust assumptions and M behaves compliantly). M however can misbehave: he may

95

not forward the slip back to C or he may release a bogus key. His misbehaviors are dealt with after
the fact.

Lastly, the set of trust assumptions we identified seems to have captured the essence of being
an intermediary in NetBill, even though it is unexpectedly small. Basically, the intermediary is
entrusted to handle accounts and keys honestly (1, and T,); to provide unique (7%,) and non-
repudiable (T,) proofs of what happens on-line; and to allow M to learn what really happens
with the transaction (I,) so that keys are not given to C' without his knowledge.

Even though it may seem counter-intuitive at first, NetBill’s all-protection does not depend on
N’s releasing keys that M sends it, or N’s retaining transaction requests.

96

Chapter 5

Brands’s Off-line Cash with

Observers Protocol

Our last case study is Brands’s untraceable, off-line cash with observers protocol [14], henceforth
referred to as Brands’s protocol. This case study is the most interesting for three reasons. First, we
have to derive an abstract version of the protocol from its purely mathematical formulation [14].
This exercise is challenging because the protocol is very complex (not only compared to the other
two protocols, but in absolute terms), and it is not immediately clear how abstract we should model
the protocol.

Second, there has not been, to our knowledge, analysis of electronic cash protocols with respect
to protection of individuals’ interests. This means that there are no standard protection properties
for these protocols, and we have to propose them afresh.

Finally, our analysis reveals a number of weaknesses in the protocol. Some of the weaknesses are
well-known and far from subtle; for example, that ecoins can get lost during transmission. Others,
however, are quite subtle, and have not been found before. For example, a payee can either abort or
deceive, and effectively make the payer’s money disappear, even if communication links are reliable.
Also, withdrawers can deceive, and withdraw perfectly valid coins that they can spend, but will be
neither accepted for deposit nor usable for tracing the identity of the withdrawer. Note that our
analysis results only apply to the protocol as it appears in [14]. In fact, none of the weaknesses
we point out in this chapter can be found in Brands’ later designs [15, 16]. (Readers interested in
Brands’s reaction to our analysis and his later versions of the protocol should go to Section 5.10.)

In this chapter, we specify the protocol in our specification formalism (Section 2.3), and analyze
it with respect to protection of individuals’ interests using our framework. Since we are interested
in protection of all parties equally, we analyze it with respect to all-protection.

The rest of this chapter is structured as follows. In Section 5.1, we introduce basic concepts
associated with electronic cash systems. In Section 5.2, we introduce the protocol and assumptions
made by Brands. In Section 5.3, we present an abstract formulation of the mathematical building
blocks used in it. In Section 5.4, we formalize the protocol and its protection properties. In
Section 5.5, we prove some preliminary results needed in the analysis of the protocol. In Sections 5.6
- 5.8, we analyze the withdrawal, the payment, and the deposit subprotocols respectively. In
Section 5.9, we conclude and discuss insights gained through our exercise. Finally, in Section 5.10,
we include Brands’s comments on our analysis.

97

5.1 Electronic Cash Systems — Preliminaries

Electronic cash [25, 22, 23, 50, 62, 21, 24, 29, 14, 41, 40, 73, 72, 37], henceforth called ecash, was first
proposed by D. Chaum [21] as an alternative to conventional, account-based electronic payment
schemes. Unlike in account-based schemes, where money exists solely as account balances, in ecash
systems money can exist in the form of digital tokens as well. This feature is a plus from the point
of view of privacy: while payments are traceable in account-based schemes, they are untraceable
in ecash systems. Payments are traceable in account-based schemes because they are direct fund
transfers, and account managers know the origin (payer) and the destination (payee) of a transfer.
Payments in ecash systems are untraceable because they are token transfers from one party to
another, and the payer’s identity cannot be inferred from the token used in the payment.

In what follows, we use ‘ecash’ to refer to untraceable, token-based payment schemes and the
notion of ‘electronic money’ in general. We reserve ‘ecoin’ (electronic coin) to refer to the token
itsell. When there is no ambiguity, we also use ‘coin’ instead of ‘ecoin’.

Ecash is not a perfect counterpart of physical cash. Due to intrinsic properties of the electronic
medium, ecash has characteristics of its own, and needs to rely on auxiliary concepts and mecha-
nisms to achieve a comparable level of security. For example, copying ecoins is trivial, and unless
additional measures are taken, one can double-spend a coin, by keeping a copy of a coin one has
already spent and spending it again later.

Double-spending is a problem because only one of all copies of a coin (the one accepted by the
bank) can be converted back to physical cash. Thus, effectively, among all payees of a double-spent
coin, only one will get paid, even though all of them received the coin. Moreover, since ecoins are
untraceable, the remaining payees may be left without any recourse.

To counteract double-spending, some ecash systems [25] take an on-line approach, in which
the bank keeps the status (spent or not-yet-spent) of each of the coins in the system, and the
payees consult the bank on-line before accepting a coin. Double-spendings are impossible in on-
line systems [30].

Brands’s protocol is off-line. Here the bank is not consulted before coins are accepted. To
deal with double-spending, Brands uses a two-step approach. The first step relies on observers
and tries to restrain double-spending. Observers are tamper-resistant smartcards attached to the
payers’ systems, and are entrusted with authorizing coin spendings. They restrain double-spendings
because they are made to give only one spending authorization per coin. Since smartcards are not
tamper-proof, they can be compromised, and authorize multiple spendings, effectively allowing a
coin to be double-spent.

The second step works remedially: once the preventive restraining step fails and a double-
spending occurs, the protocol tries to identify the double-spender. The intent is that the identifi-
cation will enable those that could not deposit the coin to go after the double-spender, and claim
a real payment. (Note, however, that malfunctioning observers do not always authorize multiple
spendings; they may not authorize any spending at all, and effectively lead to losses of coins.)

Ecoins themselves are untraceable; thus the identification mechanism must rely on something
else. In Brands’s protocol, it relies on rights certificates, which we introduce in Section 5.1.2.

In the rest of this section, we introduce other concepts used in Brands’s protocol.

98

5.1.1 Ecoins and Blind Signature Protocols

Typically implemented as digitally-signed messages, ecoins can be abstractly represented as pairs
(u, s) of substrate u and signature s. Substrates are arbitrary messages; they differ from one coin
to another. Signatures are digital signatures of coin issuer on the substrates.

To achieve untraceability, substrates are typically signed using blind signature schemes. In
blind signature schemes, a signature s signed on a message u can be used to derive a signature
s’ for a different message u', derived from w. Using blind signature schemes, one can effectively
obtain signatures for messages that the signer did not directly sign.

Fig. 5.1 depicts an abstract blind signature protocol, where a requester R obtains from a signer
S a blind signature for message m. In the protocol, blind is a function whose inverse is unblind;

1. R—S: bm= blind(m,b)
2. S— R: s= seal(bm, k™)

The various symbols denote:

m : the message to be signed;
b: a randomly generated blinding factor;
-1

k S’s signing key.

Figure 5.1: An abstract blind signature protocol.

b is a randomly generated blinding factor; seal is a signature function; k=1 is S’s signing key; and
the functions are such that unblind(s,b) equals seal(m, k~!). The protocol shows that, to obtain a
blind signature for m, R needs to send S a blinded message (bm) derived from m. The signature
for m can then be obtained by unblinding the signature returned by S. Effectively, m gets signed,
even though S does not concretely sign it.

Blind signatures guarantee untraceability because S cannot link the signature seal(m, k') with
R even if it keeps a record of all signatures it issued with their respective requesters.

5.1.2 Ecoins and Rights Certificates

Ecash systems that rely solely on ecoins have a number of problems. For example, they allow
double-spending and theft (through message hijacking or eavesdropping).

One possible solution for these problems is to make ecoins themselves worthless unless accom-
panied by rights certificates. Rights certificates are coin-specific and payee-specific, and are used
by a payer to give the rights of a coin to a payee. If the withdrawer of a coin (a.k.a. payer) were
the only one able to provide rights certificates for it, then no one other than the withdrawer would
be able to spend the coin, and potential hijackers that seize the coin, while it is in transit between
the bank and the withdrawer, would have no way of profiting from the hijacking. If, in addition,
the withdrawer were able to provide at most one rights certificate per coin, then double-spending
would not be possible. Finally, if the bank deposits a coin only when it is accompanied by a rights
certificate indicating the depositor (a.k.a. payee) as a lawful holder of the coin, then coin hijackings
between a payer and a payee, or between a depositor and the bank would also be non-profitable.

99

Brands takes exactly this approach; his implementation of rights certificates appears in Sec-
tion 5.2.3.

In addition to transferring rights, counteracting theft, and restraining double-spendings, rights
certificates play a pivotal role in tracing the identity of double-spenders in Brands’s protocol.
In Brands’s protocol, the number of rights certificates a withdrawer is able to issue per coin is
controlled by the observer. If the observer is compromised, double-spending becomes a problem.
Rights certificates, however, embed identification information about the withdrawer of a coin.
They are designed in such a way that a single certificate would not yield any information about the
identity of the withdrawer, but two different certificates of a coin would allow the bank to reveal
this information. When a coin is double-spent, each of the payees receives a different certificate.
When more than one of them submits the coin for deposit, the bank can reveal the identity of the
double-spender using the accompanying certificates.

5.2 Brands’s Protocol — An Introduction

Brands’s protocol requires four principals: a payer P, a payee F, a bank B, and an observer
O. In the rest of this chapter, P will be referred to as she, E as he, and B and O as it. B
keeps accounts for both P and F, can issue coins, and can receive them back in deposits. In this
protocol, B issues coins of only one denomination. P can withdraw coins from her account and
use them in payments. F can receive coins from P and deposit them into his account. O, in its
turn, participates in the generation of substrates and rights certificates, and plays a pivotal role in
restraining P from double-spending.

In this section, we introduce Brands’s protocol, which consists of three subprotocols: with-
drawal, payment, and deposit. The version presented here is an abstraction of the one given
in [14], and will be used in our analysis. Our presentation here is informal. See Section 5.4 for a
formal specification of the protocol, and Section 5.3 for an abstract, but precise, definition of the
cryptographic functions and predicates we use. We do not transcribe the concrete protocol here;
interested readers should refer to [14] directly. In what follows, we first present the setup of the
system, then describe each of the subprotocols.

Notation

In Brands’s protocol, principals hold secrets and show knowledge of their secrets throughout the
protocol. Since secrets are not to be revealed, Brands has secret holders show their knowledge of
a secret by showing the value of the application of a one-way function to the secret. The protocol
thus uses a number of different publicly known and agreed upon one-way functions whose sole
purpose is to mask secrets.

We use lowercase Greek letters to denote secrets, and = (overlining) to denote their one-way
functions. Note that we do not distinguish different one-way functions; we represent them all by
. Secrets have subscripts indicating to whom they belong. Sometimes, integer subscripts are used
to number them. For example, 3, denotes a secret belonged to the observer, while @ denotes a
one-way function of a secret belonged to the payer.

Some one-way functions have standard, distinguished names. ‘blind’ (without the quote marks)
is an example.

100

5.2.1 The Setup of the System

B has two databases: an account database for information about account holders; and a deposit
database for deposit transcripts. B also has a public key pair, 7! (private key) and &k (public key),
which it uses for signature generation and verification. Both P and FE also have k. Finally B has
a collection of smartcards.

To open an account, P generates a random number 6, and its corresponding one-way function
@. 0, is kept private at P, while @ is sent to B. B checks @ for uniqueness before accepting it as
P’s account number.

Once B accepts @ as P’s account number, it chooses a smartcard O, and initializes it by writing
a randomly generated number 6, to its ROM. B then creates an entry (i, 8,, 6,), where 7, is P’s
id, in the account database; computes 8, ; and gives both O and 8, to P. O is from now on P’s
observer. Fig. 5.2 shows what each of the principals has once the system is set up. Note that
E’s entry in B’s account database has less information than P’s entry has. This difference reflects
the fact that the system can accommodate two types of accounts: those from which coins can be
withdrawn (P’s account) and those that cannot (£’s account).

e an account database including the two entries below:
* iev

B: * iy, 0p, O0;

e a deposit database;

e a public key pair (K71, k).

e B’s public key k;
® 0,
°0,;

[] ’Lp.

° ..

Iy { e B’s public key k;
O: { e 4,

The various symbols denote:

ip, te : P’sid and E’s id, respectively;
0, : P’s account secret;
#,: O’s secret.

Figure 5.2: What the principals have once the system is set up.

Brands makes a few assumptions for the setup of the system. He assumes that smartcards’
ROMs cannot be read directly, except by O, and can be written only by B. He also assumes that
initial exchanges described above can be securely and correctly carried out between P and B.

101

In the protocol, 8, is P’s account secret. It appears in all the coins withdrawn from P’s
account, and is the information revealed by B if P double-spends. 6, is the observer secret. Like
0, it appears in all the coins withdrawn from P’s account. Note that 6, is known only to B and
O. P cannot learn the value of 8, because she cannot read O’s ROM and cannot retrieve 8, from

6, .

5.2.2 The Withdrawal Protocol

Brands’s withdrawal protocol (Fig. 5.3) is in its core (steps 3 and 4) a blind signature protocol
(Fig. 5.1.1) where B blindly signs the substrate (uy, ug) of the coin being withdrawn. Since (uq, ug)
is being blindly signed, it is blinded by a randomly generated blinding factor 3, before it is sent
for signature (step 3), and the signature itself can be obtained by unblinding the value sl returned
by B (step 4). At the end of the protocol, ((u1,uz), unblind(sl, 8,)) is the coin withdrawn by P.

1. P— O: secrel-request
2. O—>P: 1,
3. P— B: bu=blind((u1,us), ;)

Uy = SUbSQ (V1p7 Vap, 007 V_O)v

where { U1 = SUbsl (@7 levg)v and

4. B — P: sl =seal(bu,8,,0,,k™1)

The various symbols denote:

secret-request : a pre-defined message for requesting a secret from O;
Vo, Vip, V2p ¢ randomly generated secrets;
0,,0,: P’s account secret and O’s secret, respectively;
Bp: arandomly generated blinding factor;
-1

k B’s private key.

Figure 5.3: The withdrawal protocol.

Besides this core structure, two other features deserve attention in this protocol. First, the
substrate (uy, ug), where

{ uy = subsy(6,,v1,,0,), and

Uy = SUbSQ (V1p7 Vop, 007 V_O)v

is a pair whose elements are functions (subs; and subsy) of two sets of values. The first set is
account specific and consists of 8, and 6,, which are available to P once the system is set up. They
encode information about respectively which account the coin is withdrawn from and who is the
observer. The second set is coin-specific and consists of vy,, vy, and 7,, which are all randomly
generated during the withdrawal protocol. While vy, and vy, are locally generated by P, 75 is
provided by O under P’s request (steps 1 and 2). O’s participation towards building the substrate
enables it to control the spending of the coin later in the payment protocol. We explain the control

102

mechanism in Section 5.2.3. subs; and subsy are two one-way functions named to suggest that they
produce respectively the first and the second components of a substrate.

Second, the signature function (seal) used by B differs from the basic version shown in Fig. 5.1:
slis a function not only of blinded message bu and B’s private key k~!, but also of two other values
@ and 6,, that B retrieves from P’s entry in the account database. This signature function is such
that a signature is valid only if it embeds the right private key, and 6, and 6, are exactly those
embedded in bu. Thus, unless P embeds the correct account and observer information into the
substrate, the signature returned by B will not be valid, and P will not have obtained a coin. This
effectively protects the system from P’s misbehaving. 6, and 6,, now embedded in the substrate,
will later appear in the coin’s rights certificates, and be used to trace a double-spent coin back to
P. By ensuring that only correct “origin” information is embedded in valid coins, Brands seeks to
ensure that double-spenders will always be unmistakenly identified.

Finally, B debits P’s account before sending sl to P. This is not shown in Fig 5.3 because we
omit internal actions in this informal presentation.

5.2.3 The Payment Protocol

Brands’s payment protocol (Fig. 5.4) consists of two nested protocols. In the outer one (steps 1, 2
and 5), P gives E the coin ¢ (whose substrate is as specified in Section 5.2.2) and an accompanying
rights certificate rc,; in the inner one (steps 3 and 4), P obtains the help she needs from O to
generate the certificate.

P—E: c¢=((u1,ug),us)

E — P: ch=chal(ic,t)
P—-0: ch

O — P: rc, = peert(ch,8,,v,)

Tt = W N =

P — E: rc,=rcert(rey, 0y, v1p, Vap)

The various symbols denote:

c: a coin whose substrate (uy,uz) is as specified in Section 5.2.2;
te 1 E’sid;
t: a challenge seed;

ch : a challenge;

Vo, Vip, Vop ¢ secrets found in (uq, ug);
0,,0,: P’s account secret and O’s secret, respectively;
rc, : a protocertificate;
rcp + a rights certificate.

Figure 5.4: The payment protocol.

As shown in Fig. 5.4, rc, is a response to the challenges ch presented by E. It embeds not
only the challenge itself, but also the secrets embedded in the coin’s substrate (note that rc, is a
function of 8,, vy,, vap, and rc,, which, in its turn, is a function of ch, 6, and v,). rc, is payee-

103

specific because it is a function of ch, which is a function of the payee’s id .. rc, is coin-specific
because it embeds coin-specific secrets — v,, v1,, and vy, — found in the coins’ substrate.

Note that P is unable to provide the certificate herself: the substrate embeds two secrets — 6,
and v, — whose values are known only to O. The inner protocol now comes into play: it allows P to
request and receive O’s help with these values. P never learns the values of these secrets, however,
because O embeds them in rc, — henceforth called a protocertificate — rather than providing them
in clear. Control of these secrets gives O control of generation of certificates, and ultimately of
coin spending. Because O is designed to erase v, once it has been used towards generating a
protocertificate, P will not be able to provide a second rights certificate for the coin. The coin
therefore cannot be double-spent. If O, however, is tampered with and does not erase v,, it will
successfully provide P with another protocertificate the next time it is presented a challenge. This
would enable P to provide a second rights certificate for the coin and double-spend it. Finally, no
one other than P and O (jointly) can provide a certificate: P is the only one that knows the value
of the remaining secrets (6,, v1,, and vy,).

In Fig. 5.4, function chal’s second argument ¢ is a locally unique value that differs from one
transaction to another. This transaction-specificity serves two purposes. First, it prevents replays
of both re, and rc,. Second, it enables traceability of double-spenders: the deposit protocol (Sec-
tion 5.2.4) hinges on having different rights certificates for different spendings of a coin to reveal
the identity of a double-spender. Note that we use ¢, instead of a lowercase Greek letter (reserved
for values that are to be kept secret), to denote this value. This indicates that ¢ does not need to
be randomly generated or kept secret. In fact, the date and the time of a payment are a perfect
candidate for ¢. Since these t’s are used to generate challenges, we call them challenge seeds.

Before accepting the payment, F carries out two verifications. First, he verifies whether the
coin is valid, i.e., whether it has a valid signature from B. Then he verifies whether the rights
certificate is valid, i.e., whether rc, embeds the challenge he sent and the secrets embedded in the
coin’s substrate (uq, uz). Note that F can verify the consistency between the secrets embedded in
(w1, ug) with those embedded in re, only indirectly, because subsy, subsg, and cert, are all one-way
functions, and E learns neither the actual secrets embedded in (ug, u2) nor those embedded in rc,,.

The same observation applies to P’s verification of r¢,’s validity, where P checks the value of
rc, against those of 8, and 7.

Indirect verifications are customary in cryptography. Public key signature verification is an
example where the verifier can check the validity of a signature indirectly, without learning the
value of the signing private key.

5.2.4 The Deposit Protocol

To deposit a coin ¢ (Fig. 5.5), £ sends B the coin itself, an accompanying rights certificate rc,,
and the challenge seed ¢ he used to generate the challenge embedded in rc,.

Before accepting ¢ for deposit, B carries out three verifications. First, it verifies whether ¢ has
B’s signature on it. Second, it verifies whether rc, is a valid rights certificate giving F the rights to
c. To do this verification, B first generates, using E’s id and ¢, the challenge that was supposedly
used by F in the payment protocol. Using this challenge and ¢’s substrate, B can now verify the
validity of rc,. Like ' in the payment protocol, B can do this verification only indirectly, because it
knows neither the secrets embedded in the substrate nor those embedded in rc,. Lastly, B verifies
whether ¢ has been deposited before. For this verification, B searches its deposit database. If ¢
has been deposited before, the first component u; of its substrate will be found in the database.

104

1. F—=B: ¢, rc

The various symbols denote:
c: a coin;
rc, : ¢’s accompanying rights certificate;
t : challenge seed that appear in rc,.

Figure 5.5: The deposit protocol.

If either of the first two verifications fail (cis not a valid coin or re, is not a valid rights certificate
giving £ the rights to ¢), B simply ignores this deposit attempt.

If the first two verifications succeed, but the third one fails (¢ is a valid coin, has not been
deposited before, and F has the rights to it), B accepts the coin for deposit. In a deposit, B credits
E’s account and creates a new entry in the deposit database. The new entry consists of uy, the
challenge chal(ic,t), and rc,. Note that the second component u; of the substrate is left out of the
database for efficiency reasons. The assumption here is that two substrates that share their first
components also share their second.

If all three verifications succeed (£ was given the rights to a valid coin that has been deposited
before), then there is an entry in B’s deposit database for ¢, and a fraud is flagged. Either P
or F/ can be the fraudulent party. If the challenge in the database entry equals the one from the
current deposit attempt, F is trying to double-deposit the coin; otherwise, P has responded to
two different challenges, and has double-spent the coin. In the first case, B does not take further
action, because F’s attempted fraud has been detected and no one was hurt. In the second case,
FE is left with a coin that cannot be deposited; effectively he was not paid.

Here is where traceability of double-spenders comes to the rescue. Using the rights certificate
found in the database entry submitted when ¢ was first deposited and the one submitted with the
current deposit attempt, B can retrieve 6, derive @, and obtain P’s identity ¢,. These two rights
certificates are necessarily different because challenges they embed are different.

5.2.5 Assumptions

Brands’s paper is specific in how it addresses various assumptions needed by the protocol. While
it includes a good amount of discussion about cryptographic assumptions that the protocol relies
on, it fails to provide a satisfactory account of system-related assumptions. In fact, there is no
mention as to whether communication links can fail, or how exactly different participants can fail
or misbehave.

One can infer that he implicitly assumes reliable communication links; however, there does not
seem to be a consistent model of the protocol participants themselves. For example, P’s attacks
to the protocol seem restricted to double-spending and analyzing messages from B and O in order
to forge coins. FE’s attacks seem restricted to double-depositing. Conversely, being able to spend
a coin she withdraws and assuring her privacy (that her payments will not be traceable unless she
double-spends) seem to be P’s main concerns. Whether or not she could lose a coin while trying
to spend it seems irrelevant. Except for double-spending and double-depositing, all the attacks he

105

considers are cryptographic in nature.

We attribute this inconsistency to the nature of the work. Brands is focused on using novel
cryptographic primitives to formulate a novel protocol. It is understandable that he is primarily
concerned with cryptography. However, his neglect of system- and protocol-level issues has impact
on the protocol’s overall security, as it will become apparent from our analysis.

5.3 Abstract Formulation of the Building Blocks

5.3.1 Cryptographic Building Blocks

Brands’s protocol [14] uses a number of cryptographic building blocks. They are abstractly repre-
sented in our introduction to the protocol in Section 5.2. In this subsection, we present an abstract
formulation of these building blocks. We start with an informal introduction; the formalization
appears in Def. 5.1. In what follows, = denotes conversion.

All arithmetic in Brands’s protocol is performed in groups of prime order for which polynomial-
time algorithms are known for multiplication, inversion, equality test, membership test, and random
selection of elements. We use type {_num to represent such groups in our abstraction, and refer to
their elements simply as numbers.

One-way functions are widely used in Brands’s protocol to generate secret-embedding messages.
Some of these messages have special meanings, while others do not. One-way functions that
generate the former appear below; those that generate the latter are represented simply as -.

The first two functions, subs; and subsg, are used to generate respectively the first and the
second components of coin substrates. subs; takes three arguments, while subsy takes four. The
arguments need to satisfy the following relation: Let nq,...,n7 be seven numbers,

(subsi(ny,...,n3),subsy(ny,...,n7)) is a substrate if and only if { Zz - Zz, and
The other numbers do not need to relate to each other in any specific way. Some of them need to
be drawn from specific sources (Section 5.2.2), however.

To generate a coin, substrates are blindly signed using public key cryptography. In public key
crypto-systems, private and public keys come in pairs. If £=! and %k are respectively the private
key and the public key of a key pair, then they satisfy the predicate keyPair. That is

keyPair(k™!, k) = true.

“_”

Given a substrate w = (subsy(ny, —, ng), subsa(—, —, n2, —)), where stands for arguments

whose actual values are irrelevant in the context, and a private key k71,
seal(u, ny, ng, k1)

denotes the signature of k~! on u. Note that seal is an non-standard signing function here; the
signature is a function not only of the substrate and the private key, but also of two numbers
embedded in the substrate. Signatures can be verified using public keys; predicate vseal models
signature verification. Given a substrate u, a signature s, and public key £,

vseal(u, s, k) = true

106

if and only if s is a signature of £~ on u, and k! is the private counterpart of k.
Messages can be blinded. Given a message m and a number b,

blind (m, b)
denotes the result of blinding m with b. The corresponding unblinding function,
unblind (m, b)
denotes the result of unblinding m with b. For all blinded messages m’ = blind (m, b) and numbers
b, unblind(blind(m, b), ') = m, if b = b'. That is,
unblind (blind (m, b), b) = m.
Unblinding commutes with signing. Given a message seal(u, ny, ng, k~!) and a number b,

unblind (seal(u, ny, ng, k=), b) = seal(unblind (u, b), n1, ny, k™).

Note that both blind and unblind are polymorphic functions.

To generate challenges for rights certificates, we need a type that can provide different values
for different transactions. Let {_cs denote such a type. Then, given a principal id id and an element
¢ from t_cs,

chal(id, c)

denotes a challenge.
To generate a rights certificate, one needs a protocertificate. Given a challenge ch and two
numbers nq and ng,
peert(ch, ny, ng)

is a protocertificate. One can indirectly check the values embedded in a protocertificate; predicate
veert, models this check. Given a protocertificate p, a challenge ch, and two numbers n; and ng,

vpeert(p, ch,ny,ng) = true

if and only if p is consistent with ch, ny, and ny. The consistency condition is given in Def. 5.1.
Given a protocertificate p and numbers ny, ng, and ng,

rcert(p, ny, ng, n3)

denotes a rights certificate. Rights certificates can be checked against a challenge and a substrate.
Predicate vcert, models this check: given a rights certificate rc, a challenge ch, and a substrate u,

vreert(re, ch, u) = true

if and only if the values embedded in rc are consistent with ch and those embedded in u.

Finally, two different rights certificates of a coin can be used to reveal the account secret
embedded in the coin. We use reveal_sec to denote the secret revelation function. Let rc and rc’
be two different rights certificates of a coin ¢, and n be a number,

reveal sec(rc, rc’, n)

corresponds to the account secret embedded in ¢, if n is the observer secret embedded in c.
In Def. 5.1, we list the cryptographic building blocks as well as their abstract properties:

107

Definition 5.1 Cryptographic building blocks

1.

2.

10.
11.

12.

13.

Numbers have type t_num, i.e., if m is a number, then m: t_num;

Component one of substrates have type {_subsy, i.e., if m is a value of function subsy, then

m: t_subsy;

Component two of substrates have lype {_subsy, i.e., if m is a value of function subsy, then

m: t_subsy;

. Private keys have type t_prik, i.e., if m is a private key, then m: t_prik;

Public keys have type t_pubk, i.e., if m is a public key, then m: t_pubk;

Signatures have type t_seal, i.e., if m is a value of function seal, then m: {_seal;
Principal ids have type t_id; i.e., if m is a principal id, then m: t_id,

Challenge seeds have lype t_cs, i.e., if m is a challenge seed, then m: t_cs;

Challenges have type t_chal, i.e., if m is a value of function chal, then m: {_chal;
Protocertificates have type t_pcert, i.e., if m is a value of function pcert, then m: t_pcert;
Righls cerlificates have type l_rcerl, i.e., if m is a value of function rcert, then m: t_rcert;
Functions and predicates:

e - l_num — (_num,

e subsi: t_num X t_num X {_num — l_subs;

e subsy: t_num X t_num X t_num X t_num — {_subsy;

o keyPuair: t_prik X t_pubk — boolean;

o seal: ({_subs; X l_subsy) X l_num X l_num x {_prik — {_seal;
o wseal: (l_subsy x l_subsy) x l_seal X t_pubk — boolean;
e blind: z X l_num — =z, where x is a lype variable;

e unblind: z X l_num — =z, where x is a lype variable;

e chal: t_id X t_cs — i_chal;

e pcerl: t_chal X t_num X t_num — {_pcert;

o rcerl: {_pcert X l_num X {_num X {_num — l_rcerl;

e wvpcertl: {_pcert X l_chal X t_num X l_num — boolean;

o wrcerl: l_rcert X {_chal x ({_subs; X {_subsy) — boolean;

o reveal_sec: {_rcert X t_rcert X l_num — l_num;

Conversion rules:

o unblind(blind(m, b), b') = m, if and only if b =V';

108

5.3.2

unblind(seal(u, ny, na, k71), b) = seal(unblind(u, b), ny, ny, k71);

true, if Any, ny : t_num and k~': t_prik such that

U = (SUbSI(nlv) n?)v SUbSQ(_v — N2, _)) N
s = seal(u,ny, ng, k™) A keyPair(k=' k);

false, otherwise.

vseal(u, s, k) =

vseal(u, s, k) is true if and only if numbers ny and ny embedded in the signature are
also embedded in the substrate, and the signing key is the private counterpart of the
verification key.

true, if Anl, nly : t_num such thal
vpeert(p, ch,ny,ny) = n=mny A nh=mny A p= peert(ch,n},n});
false, otherwise.
vpcert(p, ch, ny, ny) is true if and only if p embeds ch and the secrets embedded in ny
and ng.
true, if Any, ..., n5 : t_num such that

r = rcert(pcert(ch, ny,na), ns, ng, ns) A

Urcert(r7 Ch7 U) - U = (SUbsl (n_37 N4, n_1)7 SUbSQ(n47 N5, n_lv TL_Q))7

false, otherwise.
vrcert(r, ch, u) is true if and only if r embeds ch and all the secrets embedded in u.

Let
r = rcert(pcert(ch, n1, na), n3, ng, ns) and r' = rcert(pcert(ch’, ny, ny), n3, ny, ns)
be two rights certificates.
reveal_sec(r,r’',ny) = ns, if and only if ch # ch’.
One can reveal the coin’s account secret (n3) if and only if one has two different rights

certificates of a coin (note that both r and v refer to the same substrate, but are responses
to different challenges) and the coin’s observer secret (ny).

Product Types and Projection Functions

Some composite messages have special semantics in Brands’s protocol. For example, substrates
are ordered pairs, and each entry in the bank’s deposit database consists of three components:
component one of a substrate, a challenge, and a rights certificate. For conciseness, we define
product types for these composites and projection functions for these types.

Substrates: {_subs = t_subs; X t_subsy

If m = (my, my) has type {_subs, then

compy (m) = my, and
comp,(m) = ma.

Account database entries: {_acc = {_id X {_num X t_num

id(m) = mq,

If m = (my, ma, m3) has type t_acc, then { accn(m) = my, and

osecret(m) = ms.

109

Deposit database entries: (_deposil = l_subs; X t_cs X t_rcert
subsComp(m) = my,
If m = (my, ma, m3) has type t_deposit, then ¢ cs(m) = mg, and
rc(m) = ms.

For readability, we syntactically distinguish applications of cryptographic functions and projec-
tion functions. Applications of cryptographic functions are denoted in a standard way: f(aq,...,a,),
where f is the function and a;, ¢ = 1,...,n, are the arguments. Applications of projection func-
tions, on the other hand, are denoted as a.f, where @ is the argument and f is the function. For
example, if m is a substrate, then we use blind(m, b) to denote the result of blinding m with b, and
m.subs; to denote m’s first component.

5.4 Formalizing the Protocol and the Protection Properties

In this section, we specify Brands’s protocol using our specification formalism (Section 2.3), and
give concrete specifications of protection properties as applied to this protocol.

Different participants have different interests to preserve in different ecash transactions. As a
result, the notion of protection should be applied to withdrawal, payment, and deposit transactions
separately. This enables us to tackle each subprotocol in turn. In each of the following subsections,
we first specify the subprotocol, then the protection properties for that subprotocol.

In our framework, part of specifying a protocol is making its trust assumptions explicit. For
Brands’s protocol to work, both B and O need to be trusted in different ways. Brands does not
address this issue uniformly. In [14], he explicitly assumes that O generates and erases secrets
as prescribed; however, he does not make trust assumptions about B explicit. Thus, the trust
assumptions that appear in our specification of the protocol are results of our inference, rather
than transcriptions of what appear in [14].

To specify the protection properties, we first formulate them abstractly; we then make them
concrete for Brands’s protocol; finally, we formalize the concrete refinements. Identifying protection
properties for each of ecash subprotocols has turned out to be challenging. While there have been
a number of studies [3, 42, 89] on fairness (and protection properties indirectly) for exchange
protocols, no similar studies have been done with ecash protocols.

In what follows, w, z,y, z are variables; identifiers in SMALL CAP are constants; and those in
slanted fonts are placeholders for more complex messages.

5.4.1 The Withdrawal Protocol
Principals of the Protocol

P ={B,P,0}

110

Initial Conditions

Let kb_l and k; be respectively a private and a public key; ¢, be a principal id; 8, and 6, be two
numbers; and ac, be an account database entry. The initial condition

¥ = {k;' ac,} CMSB A {i,, 0,0, k} CMSP A {6,} CMSD A
shareable(k; ', {B}) A keyPair(k; ', k) A
shareable(ac,, {B}) A acp.id = i, A acp.acen = 6, A ac,.osecret = 6, A

shareable(6,, {P}) A shareable(d,, {B,0})

says that 1) kb_l and kp are respectively B’s private and public keys, 6, is P’s account secret,
6, is O’s observer secret, ¢, is P’s id, and ac, is P’s account; 2) these messages are held by the
appropriate principals; and 3) O is P’s observer.

Local Protocols

In what follows, SECRET-REQUEST denotes a predefined message used by P to request O’s contri-
bution to a substrate.

B’s local protocol RWpg consists of the following rules:

RWg,: Az :i_subs | receive(P,z) € H = {receive(P, y: {_subs)}
RWpg,: Ja: t_subs | last(H) = receive(P,z) = {send(P, seal(z, ac,.accn, ac,.osecret, k; ')}

RWpg,: Jx : t_seal | last(H) = send (P, z) = {exit}
P’s local protocol RWp consists of the following rules:

RWp,: send(O, SECRET-REQUEST) ¢ H = {send (O, SECRET-REQUEST)}

RWp,: Axy,xz,z3: tnum | 1 #x2 A o1 # 23 N T2 # 23 A
random(z;) € H A random(zz) € H A random(zz) € H = {random(y: {_num)}

RWp,: send(O, SECRET-REQUEST) € H A Az : l_num | receive(O, z) € H =
{receive(O, y: t_num)}

RWRgt 3y, y2, ya, @ 2 tnum | yo Z y2 Ayr # ya Aya 7 ys A
random(y;) € H A random(yz) € H A random(ys) € H A receive(O, z) € H A
Az: t_subs | send(B, z) € H = {send(B, blind(compl comp2, y3))},

where compl = subs; (0, y1, 0,) and comp2 = subsy(y1, ya, b5, 7)
RWp,: da: l_subs | last(H) = send (B, z) = {receive(B, y: l_seal)}

RWp,: Ja: t_seal | last(H) = receive(B,z) = {exit}
O’s local protocol RWy consists of the following rules:
RWo,: receive(P, SECRET-REQUEST) ¢ H = {receive(P, SECRET-REQUEST)}

111

RWo,: last(H) = receive(P, SECRET-REQUEST) = {random(y: {_num)}
RWo,: Jz: t_num | last(H) = random(z) = {send(P, T)}

RWo,: Ja: t_num | last(H) = send (P, z) = {exit}

Trust Assumptions

P is not a trusted party; thus, Tp, = true. B and O are both trusted. B is trusted:
1B, : To generate only valid signatures;

and O is trusted:

To, : To provide P, as its contribution towards building a substrate, with a number for which it
can produce protocertificates.

These trust assumptions can be formalized as follows:

Tg,: Yo : t_seal,O(send(P,z) € H® —
Jy : t_subs | receive(P,y) € H® A z = seal(y, ac,.acen, ac,.osecret, k71)).

To,: Yo :t_num,O(send(P,z) € H® — Jy : t_num |y €* MSP A7 = z).

Tg,, says that, at any state of an execution, if B sends P a signature, then the signature is
correctly generated. The correctness condition, expressed by o = seal(y, ac,.accn, ac,.osecret, k1)
in our formalization, says that a signature is correctly generated if it embeds the right substrate,
the right private key, and the right information from the withdrawing account. Tp, says that, at
any state of an execution, if O sends P a number z, then it must be a one-way function of a number
y retrievable from O’s local state. Intuitively, unless this condition is satisfied, O will not be able to
provide protocertificates for the coin being withdrawn, because to do so, O needs a number whose
one-way function equals the number it gave to P during the withdrawal protocol.

Protection Properties

Abstractly, withdrawal transactions are transactions where account holders withdraw cash from
their accounts. A withdrawal transaction is correct if and only if the amount of cash the account
holder receives equals the amount deducted from his or her account. Two protection properties
derive from this correctness condition. For the account holder, his or her total amount of money
should not decrease; that is, the amount deducted from the account should never be bigger than
the amount of cash he or she receives. For the bank, the account holder should not be able to get
cash from nowhere; that is, the amount of cash the account holder receives should never be bigger
than the amount deducted from the account.

In the abstract properties above, the word cash implies something that is spendable and that
will be accepted for deposit in the bank. In Brands’s protocol, spendability of a coin is a principal-
dependent notion: a principal can spend a coin if and only if he or she can provide rights certificates
for it. For deposit, coins are accepted only once: a coin is accepted for deposit only if it has not been
deposited before. To ensure that all rightfully withdrawn coins can be deposited, Brands’s protocol
generates only coins that do not exist anywhere in the system before. We call them newly-created
coins.

112

Taking into account the mechanisms just described, and the facts that only one coin is issued
per transaction and that there are coins of only one denomination (one unit) in Brands’s withdrawal
protocol, P’s and B’s protection properties, P35 and Py, can be respectively refined into

“If B deducts one unit from P’s account, then P will acquire a newly-created coin for
which she can provide rights certificates,”

and

“If P acquires a newly-created coin for which she can provide rights certificates, then
B deducted one unit from P’s account.”

We do not model account deduction explicitly in Brands’s protocol, but assume that B has
capabilities for transaction processing, and will deduct one unit from P’s account if and only if it
issues P a coin. With this assumption, 5 and Py can now be formalized as

PY 0V — O(®Y — OBY),

and
Py 0¥ — O(% — CE),
where
®Y = Va:isubs, (Jy: t_seal | vseal(z,y, k) A (y €*MSP vy e* MSB vy e MSE)) & 2 €* Q,
Y = Jz:tseal|send(P,z) € HB,
Op = dxy:l_subsy;xg i losubsyy st Loseal; yy, Y2, ys, 2t Lonum | 1 A da A @3,
and
¢ = {xy,xg, 23} C*MST A vseal(zizg, 23, k),

¢2 = I1Z2 Q* Qv
¢3 = @ =subsi(0,,41,0,) A @3 =subsy(yr,y2,0,,2) A 2=z A
{0p7007y17y2727} C* MSP A {007y3} C* MSP U MSD'

@} defines (2 as the set of substrates for which B’s signatures exist. We use {2 to distinguish
preexistent coins from newly-created ones: if a coin’s substrate is in €2, then the coin is preexistent;
otherwise, it is newly-created. ®% formalizes “B issued P a coin”. And ¢y, ¢2, and ¢3 respectively
formalize “P owns a coin”, “the coin is newly-created”, and “P jointly with O can provide rights
certificates for it”.

5.4.2 The Payment Protocol
Principals of the Protocol

P ={P,0,E}

113

Initial Conditions

Let 0,, 0,, v1,, v2p, and v, be numbers; u be a substrate; g be a signature; kb_l and kj be respectively
a private and a public key; ¢, be E’s id; I' be the set of challenge seeds E has used before; B be
the bank; and A be B’s deposit database. The initial condition

7P = {u,g,0p vip,vap, 00,75 C*MSP A {60,,v,} C*MSY A {ky,i., [} C*MSE A A €*MSB A
shareable(k; ', {B}) A keyPair(k; ', k) A
u = (subsy (8, v1p, 0,),subsy(v1p, v2p, 05, 75)) A vseal(u, g, k) A
shareable(6,,{P}) A shareable(vy,,{P}) A shareable(vy,, {P}) A
shareable(6,,{B,0}) A shareable(v,, {O}) A
Va :t_cs,chal(ic,z) € A=z el

says that kb_l and kj are respectively B’s private and public keys; P has a valid coin ug only she
jointly with O can spend; and I' actually contains all stale challenge seeds. Note that B appears in
Z,, even though it does not actively participate in the payment protocol. B is needed in Z, because
the validity of a coin’s signature is defined in terms of B’s private key.

Local Protocols

In the specification below, we need two types of events not listed in Def. 2.4 (Section 2.2.2):
new(z,y) and delete(z). We use new(z,y) to model the generation of elements y not found in the
set z. In the context of Brands’s payment protocol, new(I',) models the generation of a challenge
seed a, different from all those that F has used before. delete(z) is used to model the deletion
of element z from a principal’s message set MS. This type of event is needed to specify O’s local
protocol, where O erases coin-specific secrets v, after they have been used towards generating a
protocertificate.

P’s local protocol RPp consists of the following rules:

RPp: Az :t_subs,y: t_seal | send(FE,zy) € H— {send(F, ug)}

RPp,: 3z : t_subs,y : t_seal | last(H) = send (F, zy) = {receive(F, z : t_chal)}
RPp,: Jz : t_chal | last(H) = receive(F, z) = {send(O, z)}

RPp,: dz : t_chal | last(H) = send (O, z) = {receive(O,y : t_pcert)}

RPp,: Jz : t_pcert,y : t_chal | last(H) = receive(O, z) A receive(E,y) € H A
vpeert(z, y, 0, 7,) = {send (FE, rcert(z, ,, v1,,v2p))}

RPp,: dz : t_pcert,y : t_chal, z : l_rcert | last(H) = send (F, z) V
(last(H) = receive(O,z) A receive(F,y) € H A —vpcert(z,y, 0, 7;)) = {exit}

O’s local protocol RPo consists of the following rules:

RPo,: Az :i_chal | receive(P,z) € H=> {receive(P,y : t_chal)}

RPp,: 3z : t_chal | last(H) = receive(P, z) A v, €* MS® = {send(P, pcert(z, 8,,v,))}

114

RPo,: Jxy : t_pcert, xy : t_num | last(H) = send (P, z1) A z; = peert(—, —, z3) = {delete(zy)}

RPo,: (Fz : t_num | last(H) = delete(z)) V
(Jy : t_chal | last(H) = receive(P,y) A v, ¢ MS°) = {exit}

E’s local protocol RPg consists of the following rules:
RPg,: Az :t_subs X t_seal | receive(P, z) € H=> {receive(P,y : t_subs x {_seal)}
RPp,: Jx : t_subs X t_seal | last(H) = receive(P,z) = {new(l',y : t_cs)}
RPg,: Yo :tid, (x = i. AJy : t_es | last(H) = new(T', y)) = {send (P, chal(z,y))}
RPg,: Jz :t_chal | last(H) = send (P, z) = {receive(P,y : t_rcert)}

RPg.: Jx: t_rcert | last(H) = receive(P, z) = {exit}

Trust Assumptions

Neither P nor F is trusted. Thus, Tp = true and T = true. O is trusted. It is trusted:

e Tp,: To delete v, only after it has provided P with a protocertificate.

To, can be formalized as follows:

To,: O(delete(v,) € H® — (Jzy : t_chal, x5 : t_pcert |
receive(P, z1) € HO A send (P, z3) € HO A 23 = peert(z1,0,,v,))).

The formalization says that, at any state of an execution, if O deletes v,, then it must have sent P
a correctly generated protocertificate embedding v,.

Protection Properties

Payment transactions are transactions where money is given from one party to another. Abstractly,
a payer’s interests are protected if his or her money does not disappear, that is, if what he or she
gives up is actually received by the payee. A payee’s interests are protected, on the other hand, if
what he or she receives is or will eventually be worth money.

In Brands’s protocol, payments are made with coins. However, when P pays F, she does not
give up a coin; she can always keep a copy of the coin around. Instead, she gives up her rights to
the coin. Concretely, P makes payments by providing rights certificates for the coins being paid;
and the generation of a rights certificate for a coin makes her lose her ability to generate other
rights certificates for the same coin.

A coin and its accompanying rights certificate is or will eventually be worth money if the coin
can be deposited in the bank or if the identity of the payer can be revealed — thus enabling F to
go after P and claim the amount due off-line. A coin can be deposited if it has not been before,
and the rights certificate gives rights to the depositor. The identity of the payer can be revealed if
the coin has been deposited, but the rights certificate recorded in the deposit database (presented
when the coin was accepted for deposit) differs from the one being presented.

Tailored to Brands’s protocol, P’s and E’s protection properties, P§ and P}, can now be
informally stated as

115

and

“If P loses her ability to provide rights certificates for a coin, £ will receive the rights
to this coin”,

“If ' receives a coin and an accompanying rights certificate provided in response to his
challenge, then E can deposit the coin or can have P’s identity revealed.”

P}, and P}, can now be formalized as:

Pp Vg tosubsy; @yt tosubsy; z : toseal; yy, . . ., ys, Wy, wo : tnum,
(®F = O(®p — Odyy))

and
Pl :Vay :tosubs; gt tseal;xs : trcert; xy 2 tchal, O(®hL, — ®F),
where
O = {yi,...,ys,2} C*MSF A {wy,wy} C*MSPUMS? A Wy =yy A Tr=ys A
zy = subsy (U1, y2,y4) A @2 = subsy(y2,ys, Y, ys) A vseal(zi29, 2, k),
o = wy ¢*MsPUMsY,
QL = Iz :itorcert,zp i tcs | receive(P, x1x32) € HE A receive(P, z;) € HE A
29 €* MSE A vreert(zy, chal(i,, z2), z122),
o, = receive(P,z zy) € HE A vseal(zy,x9,ky) A send(P,z4) € HE A
receive(P, v3) € HE A vrcert(zs, 24, 71),
oY = a4=chal(i,,—) A (z1.comp; €* A V a3 ¢ A).

the

an accompanying rights certificate provided in response to his challenge; finally, ®% formalizes “F
given the rights to the coin” and “not both the coin and the rights certificate can be found in

was
the

Wh

previous protection properties, it is about preservation of a value in Pp, and validity of what one

®? formalizes “P jointly with O can spend a coin”; ®%, formalizes “P loses the ability to spend
coin”; @4, formalizes “E receives the rights to the coin”; ®%,, formalizes E receives a coin and

deposit database”.

Note that P} and P}, differ from all protection properties we have seen so far in this dissertation.
ile protection is about getting a fair return for what one gives up or is taken away from in all

receives in Pp.

5.4
Pri

.3 The Deposit Protocol
ncipals of the Protocol

P = {E, B}

116

Initial Conditions

Let u, g, and r be respectively a substrate, a signature, and a rights certificate; ¢, be E’sid; ¢ be a
challenge seed; kb_l and kj be respectively a private and a public key; ac. and ac, be two entries
in B’s account database; A be B’s deposit database; 8, and 6, be numbers; and P be the payer.
The initial condition

I = {u,g,r it} C*MSE A {kb_l,kb, ace, acy, A} C* MSB A
shareable(k; ', {B}) A keyPair(k; ', k) A
shareable(6,, {P}) A acp.acen = 6, N acp.osecret = 0, A

u = (subsy (0, —,0,),subsy(—, —, 0, —)) A
vseal(u, g,ky) A acc.id =i A vreert(r, chal(ic,t), u)

says that kb_l and ky are respectively B’s private and public keys, ac. and ac, are respectively £
and P’s accounts; P’s account secret is known to no one other than P; and F has a valid coin (ug)
withdrawn from P’s account and a rights certificate (r) giving him rights to the coin. Note that P
appears in Z¢, even though she does not actively participate in the deposit protocol. P is needed
in Z% to specify the value of the account secret f, embedded in the coin.

Local Protocols
In the specification below, we need one type of event not listed in Def. 2.4 (Section 2.2.2): credit(x).

Credit(z) models B’s crediting account z.

E’s local protocol RDg consists of the following rules:
RDpg, s Awxq :t_subs,xzy: t_seal,x3: t_cs,xq: t_rcert | send (B, z1x22324) € H=> {send(B, ugtr)}

RDg,: 3y : t_subs,xy : t_seal,x3: t_cs,xq : t_rcert | last(H) = send(B, z1222324) = {exit}

B’s local protocol RDp consists of the following rules:

RDp,: Awxy :t_subs,zxy:l_seal,x3:t cs,xq: L_rcert | receive(E, z1292324) € H =
{receive(F, z{zhatal)},
h /. b /. l !. d !.
where x7: t_subs, x5: t_seal , r3: 1_cs, and x,: t_rcert

RDp,: Yz : t_acc,z =i, A
(Jaq = t_subs, xq 1 t_seal, x3 : L_cs, x4 : t_rcert | last(H) = receive(E, z1x32324) A
vseal(z1, x2, kp) A vreert(zy, chal(ic, z3),21) A
Axs @ t_deposit € A | x5.subsComp = z;.comp,) = {credit(z)}

RDp,: Jxy : t_subs,zq: t_seal, x5 : t_cs,xq: t_rcert | (last(H) = receive(F, z1222324) A
(—vseal(zq, z2, ky) V —wreert(zy, chal(ac,.id, z3),z1) V
Jdzs @ t_deposit € A | z5.subsComp = z;7.comp,)) V
last(H) = credit(ac.) = {exit}

117

Trust Assumptions

F is not trusted. Thus, T = true. B is trusted. It is trusted:

e Tg,: To deposit not-yet-deposited valid coins into the accounts of depositors who have rights
to them.

Tp, can be formalized as follows:

Tp,: Vay :t_subs,zy: t_seal,x3: t_cs, x4 : L_rcert,
O (last(HB) = receive(E,z;...24) A vseal(zy,xq,ky) A vrcert(zy, chal(ac..id, z3),z1) A
Axs @ t_deposit € A | x5.subsComp = z;.comp; — < credit(ac.)).

The formalization says that, at any state of an execution, if B receives a not-yet-deposited
valid coin and a rights certificate giving the depositor the rights to the coin, then B will credit the
depositor’s account.

Protection Properties

Deposit transactions are transactions where cash is put in a banking account. Physical world
deposit transactions are correct if and only if the amount of cash given up by the depositor equals
the increase in the depositor’s account balance.

To emulate physical deposit transactions in the electronic realm, Brands’s protocol uses aux-
iliary measures. For example, to avoid accepting a coin for deposit a second time, banks keep a
record of coins that have been deposited. To prevent thieves from depositing stolen coins, rights
certificates are required in deposit transactions.

Taking into account these auxiliary measures, B’s and E’s protection properties, P]% and P]%,
can be informally stated as:

“If B accepts a coin for deposit, then the coin is valid and has not been deposited

before,”

and
“When E submits for deposit a valid coin ¢ and a rights certificate giving him the rights
to ¢ — for the first time, either ¢ will be deposited into E’s account or P’s identity will
be revealed,”

respectively.

Pg and P]% can now be formalized as:
Pg Yy @ t_subs,zy : t_seal, O(D%, — &L,),

Pi V) :t_subs,zy : t_seal, x5 : t_cs, x4 : Lrcert, O(®%, — OPL),

where
@4, = receive(E,zj29 — —) € HB A credit(—) € HB,
@%2 = vseal(xy, 2, kp) A x1.comp; €* A,

118

ok, = receive(F, z1z37374) € HP A vseal(zy, za, k) A
vreert(zy, chal(ac..id, z3), z1) A x4 &€* A,

&4, = credit(ac.) € HB v 8, €* MsE.

@%1 formalizes “B accepts the coin ziz9 for deposit”; @%2 formalizes “zq24 is a valid coin that
has not been deposited”; @dB3 formalizes “B receives a valid coin and a not-yet-submitted rights
certificate giving F the rights to the coin”; finally, CD% formalizes “E’s account is credited or P’s
identity is revealed”.

Note that our formalization captures the fact that all B cares about is depositing valid coins
that have not been deposited before. Depositing stolen coins does not really hurt B’s interests; it
hurts E’s interests instead. Also if B does not accept the coin for deposit, then P’s identity should
be revealed, so that F can go after P and claim the amount due off-line.

5.5 Analysis of the Protocol: Preliminaries

In the rest of this chapter, we analyze Brands’s protocol with respect to protection of individuals’
interests. As our specification (Section 5.4) of transaction-specific protection properties may have
forecasted, we do not analyze the protocol as a whole. Instead, we see it as consisting of three
subprotocols, and analyze each of them separately. Each subprotocol is analyzed under all three
deviation modes defined in Chapter 2. In Section 5.6, Subsections 5.6.1, 5.6.2, and 5.6.3 have
analyses of the withdrawal protocol under deception, compliance, and abortion modes, respectively;
Subsection 5.6.4 has summary and conclusions. Sections 5.7 and 5.8, with parallel structures to
Section 5.6, concern the payment protocol and the deposit protocol respectively.

To analyze Brands’s protocol, we repeat the proof strategy we used for NetBill. That is, we
first prove that trustworthy executions satisfy our target properties; and then argue that maximal
compliant executions also do, because they are trustworthy.

In what follows, we present results needed in the following three sections. Lemmas 3.2 says
that, in Brands’s protocol, each protocol step gets instantiated at most a finite number of times
in executions we consider. Its proof is straightforward, and depends on the fact that the protocol
rules either have enabling conditions that prevent the same types of events from occurring more
than n (n finite) times, or can be enabled only once, by an occurrence of an event that cannot
occur more than once.

Lemma 5.2 Let I be withdrawal (payment, or deposit) protocol, o be an execution in E(I1)¢ U
E(INA U E(INP, €; be an event in o, and E be an event-template prescribing a protocol step in
Il. If e; is an instance of I, then there exist only finite number of different e;, ,e;,,...,¢€;
t# jr, k=1,...,n such that e;, is also an instance of E.

n o,

n

Theorems 5.3, 5.4, and 5.5 say respectively that all maximal compliant executions of Brands’s
withdrawal, payment and deposit protocols are trustworthy.

Theorem 5.3 Let Il be Brands’s withdrawal protocol and T = 1Tg, ANTo,, be its trust assumplions.
Then
Vo € E()°, o " T

119

Proof: Straightforwardly, from rules RWpg, and RWo,.

Theorem 5.4 Let Il be Brands’s payment protocol and T = Tp, be its trust assumptions. Then

Vo € B(I)C, o " T.

Proof:

1. Let s; be a state in o such that s; = delete(r,) € HC.

delete(r,) must have resulted from an application of rule RPp,. Therefore, there must be a
state s;, j < i, and a protocertificate m such that s; |= last(H?) = send (m).

2. Send(m) must have resulted from an application of RFp,. Therefore, there must be a state s,
k < j, and a challenge m' such that s; = last(H%) = receive(P, m') and m = pcert(m’,6,,v,).

a

Theorem 5.5 Let Il be Brands’s deposit protocol and T = Tg, be its trust assumptions. Then
Vo € E(I)°, o T

Proof: Straightforwardly, from rule RDp,.

a

In the rest of this analysis, we assume that the communication channels between P and O are
reliable, even though communication channels are generally unreliable in our model. We make this
assumption because O is likely to stay physically close to P, and the link between them is not as
likely to go down.

5.6 Analysis of the Withdrawal Protocol

5.6.1 Protection under Deception Mode

In this subsection, we analyze the protocol under deception mode. We first analyze it with respect
to P-protection, then with respect to B-protection.

According to Defs. 2.25 and 2.26 in Section 2.4.3, if 11 is Brands’s withdrawal protocol, then to
analyze it with respect to P-protection under deception mode, we need to analyze all executions
in £(I11)¢ and trustworthy executions in F(I1)E. We do so in Prop. 5.7 and 5.6 respectively.

Proposition 5.6 Let 11 be Brands’s withdrawal protocol, o be an execution in E(H)IQ, T be the
trust assumptions Il makes, and Pp = &' — O(®E — OPp) be P’s protection property as specified
in Section 5.4.1 (p. 112). Then

o =T implies o " Pp.

120

Analysis: Let 0 = 59 €1 s1... be a trustworthy execution, so be such that sy = ®}”, and s; be a

state in o such that s; = ®%. The following shows that there exists j, j > 7, such that s; = ®3, if
we assume that communication channels are reliable in the system.

1. If s; = ®%, then there exists a signature m such that
s; = send(P, m) € HE. (5.1)

From expression 5.1, we can reach two conclusions. First, assuming reliability of communi-
cation channels, we conclude that there exists 7, 7 > ¢, such that

s; = receive(B,m) € HF. (5.2)
Second, according to the trust assumption T, there exists a substrate m’ such that

s; |= receive(P,m') € HB A m = seal(m/, acp.accn, acp.osecret, kb_l) (5.3)

2. A message needs to be sent before it can be received. Thus, from expression 5.3 (step 1), we
can conclude that
s; = send(B,m') € HF,

where send” (B, m’) must have resulted from an application of RWp,.

3. Next, let s;7, i' < 4, be the state at which RWp, was applied. Then there exist three different
numbers nq, ny, and n such that

sy |= random(ny) € HY A random(ny) € H® A random(n) € HY,
and a fourth number, n’, such that
sy [= receive(O,n') € H, (5.4)

and m' is such that
m' = blind (mymg, n),

where my = subsy(f,,n1,0,) and my = subsy(ny, n2,6,, n').
4. From expression 5.4 (step 3), we can conclude that
sy = send(P,n') € HO.
And by trust assumption Tp,, we know that there must be a number ng such that

sy |=ng €7 MSY A n/ = 7.

5. We can now prove that
s; = ¢1[my/x1, my /2, unblind (m, n)/zs3].
(a) From expression 5.2 (step 1), and the fact that sy = {6,,8,} C* MS®, we know that

s; = {m1, my, unblind (m, n)} c* MSF.

121

(b) And vseal(mymg, unblind(m, n), k) can be proven straightforwardly using the conver-
sion rules in Def. 5.1 (Section 5.3).

6. We can also prove that
sj | ¢a[mi/wy, my/as],

since my and mg have submessages generated at random.

7. Finally, we can prove that

S5): 953047
where oo = [my /a1, ma/x2, unblind (m, n)/xs, n1/y1, n2/yz, n3/ys, n'/z].

(a) From the initial condition Z and step 3, we have
sj |E {0,,0,,n1,n9,0'} C* mMsP:
(b) Also from the initial condition Z and step 4, we have
s; = {6,,n3} c* us’.

Note, however, that communication channels are not reliable in our model. Thus, ¢; may never
be satisfied because P may never receive the signature from B.

a

Bearing in mind what ®}’, &%, and ®% specify (Section 5.4.1), the analysis of Prop. 5.6 shows
that if B issues P a signature, consequently deducting one unit from P’s account, and the com-
munication channel between B and P does not fail, then P will acquire a newly-created coin for
which she can provide rights certificates.

For P to acquire such a coin, both B and O need to be trustworthy. If B does not behave as
specified by the trust assumption T, , and generates a signature that embeds numbers other than
those specified, the signature it returns to P will not be valid, and P will not have received a coin.
If O does not behave as specified by Tp, and returns a number from which it cannot generate
an appropriate protocertificate later in the payment protocol, then P will not be able to generate
rights certificates for the coin. Any number that is not one-way function of a second number O
possesses will lead to such an outcome.

Finally, reliability of the communication channel between B and P is critical because P will
have a coin only if she receives the signature from B. If the link between B and P goes down and
the signature gets lost in the transmission, P will have her account deducted without receiving a
coin in return.

Prop. 5.7 concerns maximal compliant executions. These executions are trustworthy and have
compliant local executions of P. Given that our analysis of Prop. 5.6 relies on the fact that o is
trustworthy and has a compliant local execution of P, it can be used as is to analyze Prop. 5.7.

Proposition 5.7 Let I be Brands’s withdrawal protocol, ¢ be an execution in E(H)C, and Pg be
P’s protection property as specified in Section 5.4.1 (p. 112). Then

o =" Pp.

122

From Prop. 5.6 and 5.7, we can derive the following

Corollary 5.8 Brands’s withdrawal protocol is P-protective under deception mode, if the commu-
nication channel belween B and P is reliable.

Next we address B-protection. Like in the analysis of P-protection, we analyze deceptive and
compliant executions in turn.

Proposition 5.9 Let Il be Brands’s withdrawal protocol, o be an execution in E(H)g, and
Py =0 — O(®p — CPF) be B's protection property as specified in Section 5.4.1 (p. 112). Then

o " Pg.

Proof: Let sy be such that sy = @, and s; be a state in o such that s; = ®}. The following
shows that there exists j, j > 7, such that s; = ®%.

1. If s; = @, then there exists a substrate m;mz and a signature mg such that

s; = mimg € QA {mymgy, m3} C* MSY A vseal(mimsy, ma3, ks) (5.5)

2. From the first conjunct in expression 5.5 (step 1), we know that
so EAx i t_seal | x €F MsP A vseal(myma, ©, k),

which means that ms must have been generated or received by P during the current protocol
execution.

3. From the last conjunct in expression 5.5 (step 1), we know that
mg = seal(mymg, —, —, kb_l)

Since kb_l is kept private to B at all times, we can conclude that mg could not have been
generated by P, but must have been received from B. And according to P’s protocol, this
message is a signature. Thus, we conclude that there is a signature m, such that

s; |= receive(B, m) € HE. (5.6)

4. Finally, from expression 5.6 (step 3), we can conclude that

s; = send (P, m) € HB,
a

Bearing in mind what @}, ®%, and ®% specify (Section 5.4.1), the proof of Prop. 5.9 shows
that if P acquires a newly-created coin, B must have issued it. This is so because, to acquire a
newly-created coin, P needs a newly-generated signature, which can be provided only by B. Note
that B-protection depends on neither trust assumptions nor reliability of communication channels.

Prop. 5.10 concerns maximal compliant executions. Our proof of Prop. 5.9 is readily applicable
here because it only relies on the fact that ¢ has compliant local executions of B, a condition
satisfied by maximal compliant executions.

123

Proposition 5.10 Let Il be Brands’s withdrawal protocol, o be an execution in E(11)°, and P¥
be B’s protection property as specified in Section 5.4.1 (p. 112). Then

o =" Pg.

From Prop. 5.9 and 5.10, we can derive the following

Corollary 5.11 Brands’s withdrawal protocol is B-protective under deception mode.

Theorem 5.12 summarizes the results in this subsection:

Theorem 5.12 Brands’s withdrawal protocol is all-protective under deception mode, if the com-
munication channel between B and P is reliable.

Proof: From Cor. 5.8 and 5.11.

Discussion

According to our analysis, P’s interests are protected under deception mode only if the commu-
nication channel between B and P is reliable. Clearly, if the channel is unreliable, and the link
goes down after B sends P the signature, but before P gets it, then B will have deducted from P’s
account, but P will not have received a coin.

The dependency on reliable communication channels to guarantee P-protection is a weakness
of this protocol. There are ways of bypassing this weakness however. For example, if B keeps
a database of blinded substrates for which it has issued a signature, then P can re-submit a
substrate if she does not receive the signature from B. B issues signatures for all requests, but
only debiting the requester’s account when the substrate cannot be found in the database. Note
that B does not need to keep these substrates forever. P can send B an acknowledgment when she
gets the signature, and B can delete the corresponding entry in the database upon receiving the
acknowledgment.

Protection of P’s interests also depends on B and O satisfying T, and Tp,. The discussion
following the analysis of Prop. 5.6 gives an intuition of how the violation of these trust assumptions
can compromise P-protection.

It is reasonable to assume that B will behave as trusted; after all, it is B’s interest to preserve
long term relationships with its clients. There is an alternative, however, if B cannot be trusted
for some reason: The alternative consists of making receipt of messages non-repudiable [89]. With
non-repudiation and P’s ability to verify a signature’s validity, P can show to a third party that B
did not issue a valid signature for the substrate she had sent and can therefore demand a refund.

To,, is a more critical assumption, and relies on correct implementations of smartcards. Unlike
with B, it is impossible for P to tell whether O has behaved as trusted during a withdrawal
transaction. O’s misbehaving can be detected only later, when P tries to spend the coin, and finds
out that O is unable to provide appropriate protocertificates. One possible safeguard against O’s
misbehavior is to have B keep a record of the signatures it issued with their respective requesters.
When P finds out that she is unable to spend a coin because of O, she can then go to B to revoke
the corresponding coin and get a refund.

124

Next, we focus on B-protection. According to our analysis, B’s interests are protected under
deception mode, independent of link reliability and trust assumptions. This is not surprising
because the signature of a newly-created coin can be generated only in the current run of the
protocol, and B is the only one able to generate it. Thus, if P acquires a newly-created coin, B
must have provided the signature, and consequently deducted from P’s account.

Note that both P and O can deceive. But their deceptions do not violate B’s interests. P’s
deceptions can compromise P’s own interests however. For example, if P embeds something other
than the number returned by O in the substrate, P compromises O’s ability to provide appropriate
protocertificates later in payment transactions, and makes the coin non-spendable. Most surpris-
ingly, however, P’s deceptions can compromise F’s interests in deposit transactions. We will show
how later in Section 5.8.

All in all, P is much more vulnerable than B in withdrawal transactions. While P needs to
rely on B and O’s trusted behaviors and reliability of communication channels, B needs to rely on
only the cryptographic strength of the signature scheme.

5.6.2 Protection under Compliance Mode

In this subsection, we analyze the protocol under compliance mode. To verify whether the protocol
is all-protective under compliance mode, we need to verify whether both P’s and B’s interests
are protected in maximal compliant executions. But these results have already been verified in
Subsection 5.6.1. According to Prop 5.7 and 5.10,

Theorem 5.13 Brands’s withdrawal protocol is all-protective under compliance mode, if the com-
munication channels between P and B are reliable.

Discussion

Brands’s withdrawal protocol is not all-protective under compliance mode. Like under deception
mode, it is B-protective, but not P-protective. It is B-protective because B depends on nothing
other than the strength of the signature scheme to protect its interests. It is not P-protective
because P still risks not receiving the signature from B due to unreliable communication channels.

5.6.3 Protection under Abortion Mode

In this subsection, we analyze the protocol under abortion mode. Like in the two previous subsec-
tions, we need to verify whether the protocol is both P-protective and B-protective. We start with
P-protection.

According to Defs. 2.25 and 2.26 in Section 2.4.3, to verify whether Il protects P’s interests
under abortion mode, we need to examine all executions in E(I1)¢ and trustworthy executions in
E(H)f;. Here we focus on abortive executions only, since we have analyzed compliant executions
(Prop. 5.7) in Section 5.6.1.

Proposition 5.14 Let Il be Brands’s withdrawal protocol, o be an execution in E(H)]é, T be the
trust assumptions 11 makes, and PE be P’s protection property as specified in Section 5.4.1 (p. 112).
Then

o =" T implies o =" Pp.

125

Prop. 5.14 can be analyzed using the proof for Prop. 5.6. That proof is applicable here because
it relies only on the fact that executions it considers are trustworthy and have compliant local
executions of P, both of which are satisfied by executions we consider under Prop. 5.14. A critical
condition satisfied by the proof is that it does not depend on B or O taking further steps, a
requirement that could be violated by abortive executions.

From Prop. 5.7 (Section 5.6.1) and 5.14, which jointly address P-protection under abortion
mode, we derive the following

Corollary 5.15 Brands’s withdrawal protocol is P-protective under abortion mode, if the commu-
nication channels between P and B are reliable.

Prop. 5.16 addresses protection of B’s interests in abortive executions and can be proven using
the proof for Prop. 5.9 (Subsection 5.6.1). That proof is applicable here for a reason analogous to
the one given for Prop. 5.14.

Proposition 5.16 Let Il be Brands’s withdrawal protocol, o be an execution in E(H)é, and Py
be B’s protection property as specified in Section 5.4.1 (p. 112). Then

o " Pg.

From Prop. 5.10 (Section 5.6.1) and 5.16, which jointly address B-protection under abortion
mode, we derive the following

Corollary 5.17 Brands’s withdrawal protocol is B-protective under abortion mode.

Theorem 5.18 summarizes the results in this subsection.

Theorem 5.18 Brands’s withdrawal protocol is all-protective under abortion mode, if the commu-
nication channels between P and B are reliable.

Proof: From Cor. 5.15 and 5.17.

Discussion

Brands’s withdrawal protocol is not all-protective under abortion mode. The violation of protection
still results from unreliable communication channels, and not premature terminations of local
executions.

Surely, if O terminates its local execution before sending P a message, P will not generate
a substrate and will not even contact B. If B terminates its local execution before sending P
the signature, P will not acquire a new coin, but neither will B deduct from P’s account. If P
terminates its local execution before sending the substrate, B again does not get contacted. In all
these cases, no one’s interest is hurt.

If P terminates its local execution after sending the substrate, but before receiving the signature,
B may deduct from P’s account without P receiving a signature. We say “may” instead of “will”
because the substrate may get lost in transmission and never trigger a local withdrawal processing
at B. In any case, B’s interests are not hurt.

126

5.6.4 Summary

We summarize our findings in Table 5.1. All-protection is guaranteed in entries with a y/. Some
entries come with briefings of relevant facts. The table shows that Brands’s withdrawal protocol
relies critically on reliable communication channels.

compliance | abortion | deception
Channel Failures (1) (1) (1)
No Channel Failures vV Vv (2) Vv (3)

1. P-protection is violated if the signature sent by B does not get to P.
2. B executes signature sending and account deduction atomically. Its premature termi-
nations are inconsequential.

If O terminates prematurely, P will not proceed with the protocol, and no substrate
will be sent to B.

If P terminates her execution before sending B the substrate, no signature is issued,
and no account is deducted. If P terminates her execution after sending the substrate,
but before receiving the signature, no harm (except to herself) can be made.

3. According to T, and Tp,, neither B nor O deceives. P’s deceptions do not hurt B’s
interests; they hurt her own interests in withdrawal transactions and E’s interests in
deposit transactions.

Table 5.1: Summary table for the withdrawal protocol

5.7 Analysis of The Payment Protocol

5.7.1 Protection under Deception Mode

In this subsection, we analyze Brands’s payment protocol under deception mode. We first analyze
it with respect to P-protection, then with respect to E-protection.

According to Defs. 2.25 and 2.26 in Section 2.4.3, if Il is Brands’s payment protocol, then to
analyze it with respect to P-protection under deception mode, we need to analyze all executions
in E(I1)¢ and trustworthy executions in E(II)E. We do so in Prop. 5.22 and 5.19 respectively.

Proposition 5.19 Let Il be Brands’s payment protocol, o be an execution in E(H)]Q, T be the trust
assumptions 11 makes, and P}, be P’s protection property as specified in Section 5.4.2 (p. 115). Then

o E* T implies o =" Pp.

Analysis: In what follows, ®7, ®%,, and ®%,, are subformulas of P}, as specified in Section 5.4.2,
and 0 = sg €1 S1...1s a trustworthy execution. Because o is an execution of I, sg satisfies II’s
initial condition ZP. Examining Z?, we see that

a = [Op/yh le/y27 V2p/y37g/y471/_o/y579/27 Oo/wh Vo/w2, U-Comp1/9017 U-COIHP2/~7C2]

127

is a substitution such that sy E ®%a.
Next, let s; be a state in o such that s; | @%a. That is, s; | v, €* MSP U MSO. We would like
to show that there exist a state s;,j > 4, such that

s; E @,
if the communication channels are reliable in the system.

1. From sy = 7P, we know that
S0 IZ V, E* MSU.

Thus, if s; |= v, ¢* MST UMSP, it must be the case that v, was deleted from MSY. That is,

s; = delete(v,) € HC. (5.7)

From expression 5.7 and trust assumption Tp,, we can conclude that there exist messages
my: t_chal and mgy : t_pcert, such that

s; |= receive(P,my) € HY A send(P,my) € HY A my = peert(my, 6, v,). (5.8)

2. From Lemma 5.20, the fact that s; = receive(P, m;) € H® (expression 5.8, step 1), and the
fact that P behaves compliantly in ¢, we can conclude that

s; [= receive(P, ug) € HE, (5.9)

3. From expression 5.8 (step 1) and Lemma 5.21, we conclude that there exists a state sy, 7" > ¢,
and a rights certificate mg, such that

sy |= receive(P,m3) € HE, (5.10)

and
mg = rcert(peert(mq, 0,,v,), 0p, Vip, Vop).

And it is straightforward to see that
vreert(ms, my, u). (5.11)

Since P behaves compliantly in o, we know that m; is the challenge P received from F.
Thus, we know that
sy = send (P, m;) € HE.

4. Examining E’s local protocol, we see that send” (P, m;) must have resulted from an appli-
cation of RPp,, which prescribes sending a challenge derived from £’s id 7. and a challenge
seed newly generated.

(a) If E behaves compliantly, we would have
sy =3z i tes | my = chal(ic,) Az €* MSE. (5.12)
And from expressions 5.9, 5.10, and 5.12, we would obtain
sy = O«

as we would like.

128

(b) But o is a deceptive execution, and £ may not have derived m; from its own id. Thus,
it is possible that
sy = A ttoes | my = chal(ic, z). (5.13)

From expressions 5.11 and 5.13, we can now conclude that
Az 1 t_cs | vreerty(mg, chal(ic,), u).
O

Bearing in mind what ®7, ®%,, and ®%,, specify (Section 5.4.2), the analysis of Prop. 5.19 shows
that P’s losing the ability to provide rights certificates for a coin during a payment transaction
does not always entail E’s acquiring the rights to the coin, even if communication channels are
reliable in the system. Effectively, this means that the value P relinquishes is not transferred to
FE, but vanishes instead.

Clearly, if the communication channel between P and E can go down, the rights certificate P
sends to F (presumably transferring the rights to the coin from P to E') can get lost in transmission.
But even if the communication channels are reliable and E receives the rights certificate, F/ may
still not acquire the rights to the coin. This is so because E may deceive and use something other
than its own id to generate the challenge. Rights certificates generated in response to challenges
that do not embed E’sid do not give E the rights to the coin. Note that these problems exist even
if O behaves as trusted. If O does not behave as specified in Tp,, and consumes v, to produce a
protocertificate different from that prescribed, P has a different problem: the protocertificate she
receives will not pass the validity check, and no rights certificate will be generated.

The following two lemmas appear in our analysis of Prop. 5.19. Lemma 5.20 says that, in com-
pliant executions and deceptive executions where P behaves compliantly, if O receives a challenge
from P, then E must have received a coin from P.

Lemma 5.20 Let Il be Brands’s payment protocol, o be an evecution in E(I1)B U E(I1)¢, and s;
be a state in o such that
s; |= 3 : t_chal | receive(P, z) € HO.

Then,
si = 3a : L_subs x t_seal | receive(P,z) € HE.
Proof: By straightforward backchaining, using the protocol rules and the fact that messages need

to be sent before they can be received.

a

Lemma 5.21 says that, in compliant executions and deceptive executions where P behaves
compliantly, if the communication channels are reliable, then once O sends P the expected proto-
certificate, F/ will receive a rights certificate.

Lemma 5.21 Let Il be Brands’s payment protocol, o be an execution in E(INB U E(INY, 6, and
v, be numbers as specified in IP, and s; be a state in o such that

s; = 3Jxy @ tchal, x4 : t_pcert | receive(P, z1) € g9 A send (P, z3) € H A 2y = peert(zy,0,,v,).

129

Then, there exisls a stale s;,7 > 1, such that
s; = 3z : Lrcert | receive(P,) € HE,

if the communication channels are reliable.

Proof:

1. Let mq: t_chal, my : t_pcert be messages such that

s; |= receive(P,my) € H® A send(P,my) € HY A my = peert(my, 0,,v,). (5.14)

2. From s; = receive(P, m;) € H? (expression 5.14), we conclude, by straightforward backchain-
ing, that
s; |= receive(E,m) € HE. (5.15)

3. If communication channels are reliable, we can conclude, from s; = send(P,my) € HO (ex-
pression 5.14), that there exists a state s;, i’ > ¢, such that

si |= receive(O,my) € H. (5.16)

4. From expressions 5.15 and 5.16, and the fact that my = pcert(mq,8,,v,), we can conclude
that there exists a state sy, 1" > ¢, such that

sin |= send (E, rcert(my, 8,, vip, va,)) € HE . (5.17)

5. If communication channels are reliable, we can conclude, from expression 5.17, that there
exists a state s;m, 1" > i", such that

sy = receive (P, reert(ma, 8, v1p, va,)) € HE.
O

Prop. 5.22 concerns maximal compliant executions. These executions are trustworthy and have
compliant local executions of P and FE. Its analysis is identical to that of Prop. 5.19, except for
the last step.

Proposition 5.22 Let 1 be Brands’s payment protocol, o be an execution in E(I1)%, and P}, be
P’s protection property as specified in Section 5.4.2 (p. 115). Then

oE"Pp.
Analysis: The first part (steps 1 - 3) of this analysis is identical to that of Prop 5.19. Under
compliance mode, we reach a different conclusion:

4. Since F behaves compliantly, we conclude that m; = chal(i., mg), where mg is a challenge
seed newly generated by F. Finally, we have

sy |=me € MSE A vrcert(my, chal(ic, mg), u).

130

a

The analysis above shows that the only problem P faces in maximal compliant executions is

unreliable communication channels, which can prevent F from receiving the rights certificate sent
by P.

From Prop. 5.19 and 5.22, we can derive the following

Corollary 5.23 Brands’s payment protocol is not P-protective under deception mode, even if the
communication channels are reliable.

Next we address F-protection. Like in the analysis of P-protection, we analyze deceptive and
compliant executions in turn.

Proposition 5.24 Let Il be Brands’s payment protocol, o be an execution in E(I)Y, and P} be
E’s protection property as specified in Section 5.4.2 (p. 115). Then

oE" Pp.

Proof: In what follows, ®%,, and ®Y are subformulas of P}, as specified in Section 5.4.2.

1. Let s; be a state in o, and my : {_subs, mg: l_seal, m3 : t_rcert, and my: {_chal be messages
such that

si | ®hy[my/xy, ..., mafay).

Then,
s; = send (P, my) € HE A receive(P, ms3) € HE A vrcert(ms, my, m1). (5.18)

2. Send” (P, my4) (expression 5.18) could have resulted only from an application of RPg,. And
since F/ behaves compliantly in o, we know that

my = chal(i., ms),
where ms is a newly generated challenge seed.
3. From vrcert(ms, ma4, my), we know that
mg = rcert(pcert(mag, —, =), —, —, —).
And since ms € I', we know that m4 ¢* A, which implies that ms ¢* A.

a

Bearing in mind what ®%,, and ®% specify (Section 5.4.2), the proof of Prop. 5.24 shows that
if E accepts a coin and an accompanying rights certificate, then £ must have been given the rights
to the coin, and the rights certificate will not be found in B’s deposit database. F is given the
rights to the coin because the rights certificate he accepts can be checked against his challenge (the
one he presented to P), and this challenge embeds E’s id. The rights certificate will not be found
in B’s deposit database because it embeds the challenge seed embedded in F’s challenge, and this

131

challenge seed is different from all those I has used before. Note that Prop. 5.24 holds independent
of trust assumptions or reliability of communication channels.

Of course, P may deceive in executions in E(H)g, and send F invalid coins and rights cer-
tificates. E will not be fooled however, because he checks their validity before accepting them.
Validity conditions checked by E (expressed by predicates vseal and vrcert) are included in ®7%,.

Prop. 5.25 concerns maximal compliant executions. Our proof of Prop. 5.24 is readily applicable
here because it only relies on the fact that ¢ has compliant local executions of £, a condition satisfied
by maximal compliant executions.

Proposition 5.25 Let Il be Brands’s payment protocol, o be an evecution in E(I1)¢, and P}, be
E’s protection property as specified in Section 5.4.2 (p. 115). Then

o E" Py

From Prop. 5.24 and 5.25, we can derive the following
Corollary 5.26 Brands’s payment protocol is E-protective under deception mode.

Theorem 5.27 summarizes the results in this subsection:

Theorem 5.27 Brands’s payment protocol is not all-protective under deception mode, even if the
communication channels are reliable.

Proof: From Cor. 5.23 and 5.26.

Discussion

According to our analysis, P’s interests are not protected under deception mode even if commu-
nication channels in the system are reliable. In fact, E/ can deceive and send P a challenge that
embeds a bogus principal id. This will cause P to generate a bogus rights certificate, which will
consume P’s one-time capability of generating rights certificates for a coin, but will not give F, or
any other principal, the rights to the coin. Effectively, the corresponding coin is rendered worthless
because P can no longer spend it, and no one acquired the rights to deposit it.

There are countermeasures against this threat, however. For example, if P can generate chal-
lenges herself, then she will not risk generating rights certificates for bogus challenges. To implement
this approach, F can send P only a challenge seed (¢), and allow P to look up E’sid in some trusted
public directory. Using ¢ and E’s id, P can then generate a challenge herself, and be sure that it
embeds a valid F id. This approach does not affect E-protection, since E can always reconstitute
challenges himself to check the validity of corresponding rights certificates.

Alternatively, if message receipts are non-repudiable, P can show to a third party the challenge
she received from F, and prove that F is responsible for the loss and therefore should be the only
one held accountable for it. Under this second approach, E’s deception is no longer an act of
sabotage inconsequential to F. Instead, it will be an assault to E’s own interests.

Aside from E’s deceptions, unreliable communication channels and O’s violation of trust as-
sumptions can also compromise P-protection. There are countermeasures for these threats too. To

132

safeguard against loss of rights certificates due to unreliable communication channels, P can keep
a copy of the rights certificate and send it later to F/, assuming that F is willing to receive it. To
safeguard against P’s inability to generate an appropriate rights certificate due to O’s violation of
To,, we can use the same measure suggested to counteract O’s violation of Tp,, in the withdrawal
protocol. It consists of having B keep a record of the signatures it issued with their respective
requesters during the withdrawal protocol. When P finds out that she is unable to spend a coin
because of O, she can then go to B to revoke the corresponding coin and get a refund.

Next, we address E-protection. According to our analysis, it is independent of link reliability
or trust assumptions, and solely relies on F’s behaving compliantly. In Brands’s ecash system, F
is, thus, much less vulnerable than P.

5.7.2 Protection under Compliance Mode

In this subsection, we analyze the protocol under compliance mode. To verify whether the protocol
is all-protective under compliance mode, we need to verify whether both P’s and E’s interests are
protected in maximal compliant executions. These results have already been verified in Subsec-
tion 5.7.1, however. According to Prop 5.22 and 5.25,

Theorem 5.28 Brands’s payment protocol is all-protective under compliance mode, if the commu-
nication channel belween P and F is reliable.

Discussion

Brands’s payment is not all-protective under compliance mode. Like under deception mode, it is
E-protective, but not P-protective. It is F-protective because E depends on nothing other than
his own compliance to the protocol to protect his interests. It is not P-protective because P still
risks losing the only rights certificate she can generate due to unreliable communication channels.

5.7.3 Protection under Abortion Mode

In this subsection, we analyze the protocol under abortion mode. Like in the two previous subsec-
tions, we need to verify whether the protocol is both P-protective and E-protective. We start with
P-protection.

According to Defs. 2.25 and 2.26 in Section 2.4.3, to verify whether Il protects P’s interests
under abortion mode, we need to examine all executions in E(I1)¢ and trustworthy executions in
E(H)ﬁ. Here we focus on abortive executions only, since we have analyzed compliant executions
(Prop. 5.22) in Section 5.7.1.

Proposition 5.29 Letll be Brands’s payment protocol, o be an execution in E(H)é, T be the trust
assumptions 11 makes, and P}, be P’s protection property as specified in Section 5.4.2 (p. 115). Then

o E*T implies o =" PL.

Analysis: A quick glance over the property Pp allows us to conclude that this proposition does not
hold: F can terminate his execution right before receiving the rights certificate from P, preventing
7., from ever becoming true.

133

From Prop. 5.22 (Section 5.7.1) and 5.29, which jointly address P-protection under abortion
mode, we derive the following

Corollary 5.30 Brands’s payment protocol is not P-protective under abortion mode, even if the
communication channel between P and E is reliable.

Prop. 5.31 addresses protection of E’s interests in abortive executions and can be proven using
the proof for Prop. 5.24 (Subsection 5.7.1). That proof is applicable here for a reason analogous to
the one given for Prop. 5.25.

Proposition 5.31 Let Il be Brands’s payment protocol, o be an execution in E(H)é, and P}, be
E’s protection property as specified in Section 5.4.2 (p. 115). Then

o " Pp.

From Prop. 5.25 (Section 5.7.1) and 5.31, which jointly address F-protection under abortion
mode, we derive the following

Corollary 5.32 Brands’s payment protocol is E-protective under abortion mode.

Theorem 5.33 summarizes the results in this subsection.

Theorem 5.33 Brands’s payment protocol is not all-protective under abortion mode, even if the
communication channel between P and E is reliable.

Proof: From Cor. 5.30 and 5.32.

Discussion

Brands’s payment protocol is not all-protective under abortion mode. Like in compliance and
deception modes, it is F-protective, but not P-protective. It is E-protective because F’s protection
property is only concerned with the validity of what F receives, which is not affected by P’s or O’s
premature terminations.

Brands’s payment protocol is not P-protective, however; P’s interests can be compromised not
only by unreliable communication channels, but also by FE’s premature termination. Premature
termination models, among other things, E’s refusal in receiving a rights certificate for reason-
able (e.g., transaction timeout) or unreasonable reasons. To safeguard her interests against E’s
premature termination, P should get a commitment from F with respect to accepting the rights
certificate before she asks O to provide the protocertificate. A proof of this commitment will force
E to receive the rights certificate eventually, or hold him accountable for P’s coin loss.

Note that the problem only arises if O deletes v,, but E does not receive the rights certificate
sent by P. O may not delete v,, however, if O is compromised. Not having v, deleted means that
P is able to provide another rights certificate for the coin, which makes the loss of the current one
inconsequential. This interesting relationship between v,’s deletion and protection of P’s interests
is captured in our specification of Pp (Section 5.4.2). In an execution where v, is not deleted, Py,
is vacuously true because ®%, is never true.

134

5.7.4 Summary

We summarize our findings in Table 5.2. All-protection is guaranteed in entries with a y/. Some
entries come with briefings of relevant facts.

compliance | abortion | deception
Channel Failures (1) (1) (1)
No Channel Failures V (2) (3)

1. Rights certificates sent by P may get lost in transmission and not reach F.

2. F may terminate his execution prematurely, and fail to receive the rights certificate
sent by P. P-protection is violated only in executions where O deletes v,, however.

3. P will generate a bogus rights certificate if E’s challenge is bogus. According to Top,,
O does not deceive.

Table 5.2: Summary table for the payment protocol.

As is shown in Table 5.2, Brands’s payment protocol is quite vulnerable: it is all-protective
only if all parties behave compliantly and the communication channels are reliable. P and F are
not equally vulnerable, however. In fact, only P-protection is susceptible to attacks; the protocol
is F-protective in all the cases.

P’s vulnerability results from her ability to generate only one rights certificate per coin. Unless
this one-time capability is used to generate a valid certificate that is eventually received by E, the
value borne by the corresponding coin would not be preserved and passed to FE. The problem is
that neither the generation nor the delivery of this certificate is entirely under P’s control. E can
make P generate a bogus certificate by sending her a bogus challenge (deception mode); or E can
make P generate a certificate, and disappear before receiving it (abortion mode); finally, a valid
certificate may simply not reach a willing E because of unreliable communication links.

Note that P would be less vulnerable if she could generate multiple rights certificates per coin.
Unsuccessful spendings of a coin — due to bogus or missing certificates — would not matter in this
case since she can try again. Of course, this also means that a dishonest P could spend a coin a
second time even if the first attempt were successful.

While making P less vulnerable, P’s ability to generate multiple rights certificates per coin does
not (arguably) bring unrecoverable losses to E. If E receives a coin that has been double-spent,
the double-spender’s identity can presumably be revealed, allowing F to collect the due amount
off-line. Of course P may simply disappear and make these off-line collections impossible; or these
collections may be an overhead that F is unable or unwilling to incur.

Thus, whether or not to allow multiple generations of rights certificates may be best determined
by the characteristics of a system (type of participants, reliability of system components, etc). For
example, if the payees of a system are well-established merchants who will not misbehave, then
the one-time restriction is not as harmful. On the other hand, if the communication channels are
unreliable in a system, but all participants are honest, then allowing multiple generations of rights
certificates seems more reasonable.

135

5.8 Analysis of The Deposit Protocol

5.8.1 Protection under Deception Mode

In this subsection, we analyze Brands’s deposit protocol under deception mode. We first analyze
it with respect to B-protection, then with respect to E-protection.

According to Defs. 2.25 and 2.26 in Section 2.4.3, if II is Brands’s deposit protocol, then to
analyze it with respect to B-protection under deception mode, we need to analyze all executions
in £(11)¢ and trustworthy executions in F(I1)5. We do so in Prop. 5.35 and 5.34 respectively.

Proposition 5.34 Let I1 be Brands’s deposil protocol, o be an execution in E(H)g, and Pg be
B’s protection property as specified in Section 5.4.3 (p. 118). Then

o = P2

Proof: In what follows, @%1 and @%2 are subformulas of P]% as specified in Section 5.4.3; s; is a
state in o; and my: {_subs and my: t_seal are messages such that

si = ®%,[my/x1, my/xq). (5.19)
We would like to prove that
s; = vseal(my, mg, ky) A my.comp; € A.
1. From expression 5.19, we have
s; |= receive(E, mymg — ——) € H® A credit(—) € HB,
where credit(-) must have resulted from an application of RDp,.

2. If RDp, was applied, then its antecedent must be true at a state s;, j < 4. And given that
there can be only one event of type receive(E, z), z : t_subs X t_seal X t_cs X t_rcert, in o
(Lemma 5.2), it must be the case that

s; | vseal(my, ma, ky) A Axs @ t_deposit € A | z5.subsComp = my.comp;. (5.20)

3. Since each entry in the deposit database only records one message of type t_subsy, and this
message is recorded in the field “subsComp”, we can conclude from expression 5.20 that

s; = vseal(my, ma, ky) A my.comp; ¢ A.
O

Bearing in mind what CI)%l and CI)%2 specify, the proof of Prop. 5.34 shows that if B accepts a coin
for deposit, then the coin is valid and has not been deposited before. This result is not surprising
because, even though E may try to deposit invalid coins or coins that have been deposited before,
B can check for these conditions, and reject the deposit if something is wrong.

Note that we analyzed all executions in E(H)g7 and did not restrict ourselves to just trustworthy
executions. In reality, all executions in E(H)g are trustworthy in this case, because T'g, is the only
trust assumption here, and all executions in E(H)g satisfy it.

Prop. 5.35 concerns maximal compliant executions. Our proof of Prop. 5.34 is readily applicable
here because it only requeries that ¢ has compliant local executions of B, a condition satisfied by
maximal compliant executions.

136

Proposition 5.35 Let Il be Brands’s deposit protocol, o be an execution in E(11)°, and PE be B’s
protection property as specified in Section 5.4.3 (p. 118). Then

o = P2
From Prop. 5.34 and 5.35, we can derive the following

Corollary 5.36 Brands’s deposit protocol is B-protective under deception mode.

Next we address F-protection. As with the analysis of B-protection, we need to analyze both
deceptive and compliant executions. We start with deceptive ones.

Proposition 5.37 Let I be Brands’s deposit protocol, o be an execulion in E(H)g, T be trust
assumptions 11 make, and Pg be E’s protection property as specified in Section 5.4.3 (p. 118).
Then

o =* T implies o =" Py,

Analysis: Let o be a trustworthy execution in E(H)g, and s; be a state in ¢ where there exist
messages my : l_subs, my : l_seal, ms: {_cs and my : L_rcert, such that

si = ®%a[my/x, ..., ma/zq]. (5.21)
We would like to prove that there exists a state s; in 0,7 > 7, such that
s; |= credit(ac.) € BB v 6, €* MSB,
1. Expression 5.21 says that

s; | receive(E,my...my) € H® A vseal(my,mg, ky) A
vreert(my, chal(ac..id, ms3), my) A maq &€° A.

Now, let s;/,4" <7, be a state in o such that
sir |= last(HP) = receive(E, my . ..my).
There are two possibilities:

(a) Azs :t_deposit € A | z5.subsComp = my.compy, or
(b) Jzs : t_deposit € A | x5.subsComp = my.comp;.

We examine each in turn.

2. If (1la) is true, then the event credit(ac.) will eventually take place, according to trust as-
sumption T,. That is, there exists a state s;» in o,4"” > ¢/, such that

sin = credit(ac,) € HE.

3. If (1b) is true, then B terminates its local execution without the event credit(ac.). We show
below that this scenario does not guarantee that 8, be revealed.

137

4. Let e: t_deposit be the entry in the deposit database such that
sy = e.subsComp = my.comp;. (5.22)
Given that my4 ¢* A, it must be the case that
e.rc # my.

Apparently B can apply the function reveal_sec to messages e.rc, my, and 8, to reveal P’s
account secret §,. But the equality reveal_sec(e.rc, my4, 8,) = 6, holds only if e.rc and m4 are
rights certificates concerning the same coin, which is not guaranteed by the equality 5.22 if
P can deceive.

We conclude that this proposition does not hold.
O

Prop. 5.37 does not hold. Bearing in mind what @%3 and (I>dE specify (Section 5.4.3), its analysis
shows that, when B receives a valid coin and a not-yet-submitted rights certificate from a rightful
FE, it is not necessary that E’s account will be credited or P’s identity will be revealed. Intuitively,
this means that a coin that passes all verifications recommended in the payment protocol can still
be worthless.

This result is unexpected, because it contradicts what is claimed in [14]. According to [14], there
are three possible outcomes when I tries to deposit a coin that he has rights to (Section 5.2.4). If
the coin is not found in the deposit database, B simply deposits it, and E’s account is credited.
If the coin is found in the deposit database, but its accompanying rights certificate from the
database differs from the one being submitted, then B uses the two rights certificates to reveal
the account secret embedded in them, thus retrieving P’s identity. Finally, if both the coin and
the rights certificate being submitted are found in the deposit database, B simply ignores this
deposit attempt. Since Prop. 5.37 assumes that the rights certificate being submitted had not been
submitted before, we should have been able to conclude that the deposit attempt yields the first
or the second outcomes. That is, either E’s account is credited or P’s identity is revealed.

This contradiction results from an inconsistency between what can actually happen in the
system under deception mode and what Brands assumes. To follow the rest of this discussion, the
reader should be familiar with the material presented in Sections 5.2.2, 5.2.3, and 5.2.4.

Concretely, Brands assumes that two valid coins are identical if the first components of their
substrates are identical. That is, if (uy, ug) and (u}, u}) are respectively the substrates of two valid
coins ¢ and ¢, then

w =u) — c=c.

Or simply,
up = uy — (ug,uz) = (ul,ub). (5.23)

This is true if substrates are always generated as prescribed. According to the withdrawal
protocol (Section 5.2.2), all coin-specific secrets (vq,, va,, and v,) embedded in substrates should
be randomly generated for each new substrate. Since no two randomly generated numbers are
equal, it is impossible to have two different substrates sharing a same vy,, and therefore a same
first component. That is,

(uy,ug) # (uy,up) — wy # uj,

138

which is equivalent to expression 5.23. We know that Brands makes the assumption above because
B’s deposit database only keeps the first component of a coin’s substrate when the coin is deposited.

Withdrawers can deceive, and not generate substrates exactly as prescribed, however. For
example, they may embed in a new substrate both secrets generated at random and ones already
used in other substrates. Thus, it is possible for P to generate a substrate (u}, u5) where

1 / o
uy = subsy(viy, v,, 05, 1)),

{ uy = subsy (0,,v1,,0,), and

with randomly generated vy, and v/, and a “recycled” vy, from a pre-existing substrate (ui, ua),

{ uy = subsy(6,,v1,,0,), and

uy = subsy (V1p, Vap, 05, 75).

In this case, we have
(u1,uz) # (uy, uy) A uy = uj.
Prop. 5.37 does not hold exactly because of the deception depicted above. More specifically,
B would not credit E’s account or be able to reveal P’s identity if the coin being submitted for

deposit has not been deposited before, but shares the first component of its substrate with an
already deposited coin. Fig. 5.6 shows two such coins and their accompanying rights certificates.

c: Substrate : (u, ug), { uy = subsy (6, v1,,0,), and

Uy = SlleQ (V1p7 Vap, 007 V_O)v
Accompanying rights certificate : re = rcert(pcert(ch, 8,,v,), 0, v1p, V2p)
u} = subsy (6,,v1,,0,), and

¢’ : Substrate : (u}, u}), { 22—

! _ / !/
uy = subsy (vip, vy, 0,),

Accompanying rights certificate : r¢’ = rcert(pcert(ch’, 0,,v;), 0,, v1p, v3,)

Figure 5.6: Examples of two different coins sharing the first component of their substrates.

If ¢ has been deposited, then B will not accept ¢’ for deposit and credit E’s account because
uy = u}. But B cannot apply the function reveal_sec (Def. 5.1) to rc and rc’ to reveal 6, either,
because unless re and re’ differ only in the challenge they embed, reveal sec(re, r¢,6,) does not
yield 6,. In Fig. 5.6, rc and rc’ embed not only different challenges (ch # ch'), but also some
different coin-specific secrets (v, # v} and vy, # v4,).

Because Prop. 5.37 does not hold, we can skip analyzing compliant executions, and conclude
that

Corollary 5.38 Brands’s deposit protocol is not E-protective under deception mode.

Theorem 5.39 summarizes the results in this subsection:

139

Theorem 5.39 Brands’s deposil protocol is not all-prolective under deception mode.

Proof: From Cor. 5.36 and 5.38.

Discussion

According to our analysis, Brands’s deposit protocol is B-protective under deception mode. This
is not surprising, because B has complete control over the depositing procedure, and cannot be
tricked into depositing invalid coins or coins that have been deposited before.

What is surprising are that the deposit protocol is not E-protective and why it is not. According
to our analysis, E-protection is not compromised by unreliable communication channels or B’s
deceptions. It is not affected by unreliable communication channels because E can keep a copy
of what he submits to B, and re-submit it later if his submission gets lost in transmission. It is
not affected by B’s deceptions because B is trusted not to commit the only deception that could
compromise F-protection.

Instead, E-protection is compromised by P’s deception earlier in the withdrawal protocol, when
the coin was withdrawn! More specifically, P can deceive and withdraw a perfectly valid coin that
B may not accept for deposit, and whose accompanying rights certificate may not be useful to reveal
P’s identity when F tries to deposit the coin. The discussion following the analysis of Prop. 5.37
shows an example of such a coin. We say may instead of will because what actually happens
depends on the result of a race condition involving coins ¢ and ¢ in Fig. 5.6. If ¢ is submitted for
deposit first, ¢’ is useless. However, if ¢’ is submitted first, it will be deposited, and ¢ will be the
useless one.

Note that this coin is interesting because it is a perfectly valid new coin at its generation, even
though P has deceived in its generation. P herself does not benefit from the deception, because
she “pays for” the coin when she withdraws it (her account is deducted), and she is able to spend
it. E is the only one hurt in this case because the coin he received is completely useless. Thus, this
deception is effective only for sabotage, but not for bringing P monetary gains.

Finally, even though E-protection is compromised by P’s deception in the withdrawal protocol,
the real problem lies in the design of the deposit protocol, and can be fixed simply by using both
components of a coin’s substrate to tell whether or not a coin has been deposited. B would need
to record whole substrates in the deposit database in the fixed protocol.

5.8.2 Protection under Compliance Mode

In this subsection, we analyze the protocol under compliance mode. To verify whether the protocol
is all-protective under compliance mode, we need to verify whether both B’s and E’s interests are
protected in maximal compliant executions. Prop. 5.35 (Section 5.8.1) shows that Brands’s deposit
protocol is B-protective in maximal compliant executions; Prop. 5.40 shows that it is E-protective.

Proposition 5.40 Let Il be Brands’s deposit protocol, o be an execution in E(I1)°, and P]% be E’s
protection property as specified in Section 5.4.3 (p. 118). Then

o =" PL.

140

Proof: The first part (steps 1 - 3) of this analysis is identical to that of Prop 5.37. Under
compliance mode, we reach a different conclusion:

4. Let e: t_deposit be the entry in the deposit database such that
sy = e.subsComp = mq.comp;. (5.24)
Given that my4 ¢* A, it must be the case that
e.rc # my.

B can now apply the function reveal sec to messages e.rc, my, and 6, to reveal P’s account se-
cret 8,. We know that reveal_sec(e.rc, my, 0,) = 0, because e.rc and my are rights certificates
concerning the same coin. We know this last fact because of the equality in expression 5.24,
which under compliance mode means that mq and the coin associated with entry e are iden-
tical.

From Prop 5.35 and 5.40, we can now conclude

Theorem 5.41 Brands’s deposit protocol is all-protective under compliance mode.

Discussion

Brands’s deposit protocol is all-protective under compliance mode. Unlike under deception mode,
the protocol is F-protective here. It is F-protective because, when P behaves compliantly, two coins
that share the first components of their substrates are always identical. This identity prevents the
problem-causing scenario that was possible under deception mode from occurring here, and allows
us to reach the following conclusion. When a coin is submitted for deposit, the first component of
its substrate can or cannot be found in the deposit database. In the first case, the coin is accepted
for deposit and F’s account is credited. In the second case, the coin has actually been deposited
before, and the two available rights certificates for this coin can be used to reveal 6,,.

5.8.3 Protection under Abortion Mode

In this subsection, we analyze the protocol under abortion mode. Like in the two previous subsec-
tions, we need to verify whether the protocol is both B-protective and E-protective. We start with
B-protection.

According to Defs. 2.25 and 2.26 in Section 2.4.3, to verify whether Il protects B’s interests
under abortion mode, we need to examine all executions in E(I1)® and trustworthy executions in
E(H)ﬁ. Here we focus on abortive executions only, since we have analyzed compliant executions
(Prop. 5.35) in Section 5.8.1.

Prop. 5.42 can be proven using our proof for Prop. 5.34, since that proof only depended on the
fact that B behaves compliantly.

Proposition 5.42 Let [1 be Brands’s deposit protocol, o be an execution in E(H)g, and Pg be
B’s protection properly as specified in Section 5.4.3 (p. 118). Then

o =" PL.

141

From Prop. 5.35 (Section 5.8.1) and 5.42, which jointly address B-protection under abortion
mode, we derive the following

Corollary 5.43 Brands’s deposit protocol is B-protective under abortion mode.

We address F-protection next. According to Defs. 2.25 and 2.26 in Section 2.4.3, to verify
whether II protects E’s interests under abortion mode, we need to examine all executions in £/(I1)*
and trustworthy executions in E(I1)#. Here we focus on abortive executions only, since we have
analyzed compliant executions (Prop. 5.40) in Section 5.8.2.

Prop. 5.44 can be proven using our proof for Prop. 5.40, since that proof only depended on B’s

behaving as trusted.

Proposition 5.44 Let Il be Brands’s deposit protocol, o be an execution in E(H)fE‘, and P]% be E'’s
protection property as specified in Section 5.4.3 (p. 118). Then

o =" PL.

FE’s protection property is satisfied by all executions in E(H)]fj1 because, according to T, the
only termination that could violate Pf (B’s terminating its local execution right before it should
credit E’s account) does not happen.

From Prop. 5.40 (Section 5.8.2) and 5.44, which jointly address F-protection under abortion
mode, we derive the following

Corollary 5.45 Brands’s deposit protocol is E-protective under abortion mode.

Theorem 5.46 summarizes the results in this subsection.
Theorem 5.46 Brands’s deposit protocol is all-protective under abortion mode.

Proof: From Cor. 5.43 and 5.45.

Discussion

Brands’s deposit protocol is all-protective under abortion mode. B-protection depends only on B’s
compliance to the protocol, while F-protection relies on B’s behaving as trusted. If B behaves as
trusted, then it will not terminate its execution in the middle of processing deposit requests, and
will always credit E’s account if the coin being submitted has not been deposited before.

5.8.4 Summary

We summarize our findings in Table 5.3. All-protection is guaranteed in entries with a /; E-
protection relies on T'g, in entries with a *. The table shows that all-protection does not depend
on reliable communication channels, and trust assumptions are needed only under abortion mode.
Note that Brands’s deposit protocol is not all-protective only under deception mode, where E’s
protection property can be violated.

142

compliance | abortion | deception
Channel Failures Vv NE: (1)
No Channel Failures vV NE: (1)

1. B-protection is guaranteed. F-protection is violated by P’s deceptions earlier in the
withdrawal protocol, when the coin was withdrawn.

Table 5.3: Summary table for the deposit protocol.

In all entries, the protocol is B-protective simply because B has complete control over the
deposit procedure, and can detect all of E’s deviations before accepting the deposit request. The
protocol is F-protective under both compliance and abortion modes. Under deception mode,
however, the protocol is not E-protective even if B behaves as trusted. In fact, E-protection is
not compromised by B’s deviations in this case. It is compromised by P’s deceptions earlier in the
withdrawal protocol, when the coin was withdrawn.

5.9 Conclusion

Of our three case studies, Brands’s protocol is the most challenging. It is challenging because
there has been no previous studies of ecash protocols with respect to fairness or protection of
individuals’ interests, and we had to devise our own approach to tackle this problem. For example,
since protection of individuals’ interests is a transaction-related concept, and Brands’s protocol
implements different types of transactions, we do not analyze the protocol as a monolithic unit.
Instead, we focus on each of the different types of transactions, and analyze each of the subprotocols
separately. Also, we had to propose protection properties for these subprotocols afresh.

Dividing up the protocol for analysis does not make the subsequent analysis effort and its
results trivial or insignificant: the results we obtained and the insights we gained prove it. Besides
standing on their own as protection results, the outcomes of these analyses provide insights as
to whether or not the protocol satisfies certain other properties. For example, violation of P’s
interests in the payment protocol allows us to conclude immediately that Brands’s protocol is
not money-atomic [84]. We suspect that treating ecash subprotocols separately may be a feasible
divide-and-conquer approach to master the complexity of defining protocol-wide properties, e.g.,
money atomicity, and analyzing protocols with respect to these properties.

As for the protection properties we proposed for the three subprotocols, we do not claim that
they are absolute, but we believe that they capture the essence of what different parties see as
their interests, and when these interests are protected. More than trying to establish a set of
absolute protection properties for ecash protocols, we aimed to show that the notion of protection
is applicable to more than just exchange protocols.

Of all the problems detected by our analysis, no one is more subtle than the violation of E’s
protection property in the deposit protocol. It is so subtle that our analysis is the first to reveal it
since Brands’s protocol [14] was first published. We attribute our success in revealing it to the use
of our analysis framework.

The two trust assumptions we identified for B are not surprises. In withdrawal transactions, B
is expected to generate signatures (I’g,) correctly, while in deposit transactions B is expected to
deposit coins that are worth money (1’g,).

143

The trust assumptions we identified for O are somewhat unexpected. Used to restrain double-
spending, it would seem more intuitive if the trust placed on O was about not enabling multiple
spendings. However, since the protocol has a safety net to handle potential failures of the restraining
mechanism, no trusted behavior is required of O in this respect. In contrast, P depends critically
on O to generate a spendable coin and then to spend it. Thus, the trust assumed of O concerns O’s
generating its contribution to the substrates (7o,) properly, and O’s providing the protocertificates
(To,) properly. Violation of either Tp, or Tp, will make a coin non-spendable, and P would lose
money.

Finally, note that all-protection is not complete security. Even if all subprotocols of an ecash
protocol were all-protective, the entire protocol may still be insecure. For example, none of our
protection properties addresses whether payers are eventually able to spend spendable coins they
own; a protocol is clearly insecure if it fails to guarantee that one can eventually spend a spendable
coin that one withdraws.

5.10 Feedback from Stefan Brands

In this section, we report on Brands’s comments on our analysis [17].

First, there seems to be different notions of what lies within the scope of a cryptographic
protocol design. For Brands [17], fault-tolerance and the like are not core issues that should be
addressed within the design of a cryptographic protocol. Because of this view, he argues that
some of the weaknesses we point out are not weaknesses of the cryptographic protocol; instead,
they relate to fault-tolerance. Violations of P-protection in both the withdrawal protocol and the
payment protocol due to channel failures (entries (1) in Table 5.1 (p. 127) and Table 5.2 (p. 135))
fall into this category. Fault-tolerance measures needed to address these violations are discussed
by Brands himself elsewhere [15].

Other violations of P-protection in the payment protocol (entries (2) and (3) in Table 5.2
(p. 135)) are due to E’s abortion and deception. A return protocol [16] that allows P to return the
affected coin is needed in these cases.

Finally, protection of E’s interests in the deposit protocol (entries (1) in Table 5.3 (p. 143)) can
be guaranteed if B always deposits valid coins that are accompanied by fresh rights certificates [15].
Under this mode of operation, problem coins that were rejected for deposit are now accepted, and
E-protection is restored.

144

Chapter 6

Conclusions and Future Work

The general goal of this research is to answer questions such as: What do electronic commerce
protocols try to achieve? What must they achieve? And how do they achieve it? My thesis in
this dissertation is that 1) in electronic commerce transactions where participants have different
interests to preserve, protection of individuals’ interests is a concern of the participants, and should
be guaranteed by the protocols; and 2) a protocol should protect a participant’s interests whenever
the participant behaves according to the protocol and trusted parties behave as trusted.

To make this thesis precise, we formulated a model for electronic commerce systems and gave
a definition of protection of individuals’ interests in this model. To demonstrate the applicability
of our model and to investigate how well electronic commerce protocols do with respect to this
requirement, we analyzed three protocols using our framework.

In the rest of this chapter, we first summarize and reflect on the results (Section 6.1). We then
discuss future work (Section 6.2). Finally, we provide a few remarks on formal methods research
as applied to electronic commerce protocols (Section 6.3).

6.1 Summary and Reflections of Results

We discuss our framework and the case studies in turn.

6.1.1 The Framework

Our framework for analyzing protocols with respect to protection of individuals’ interests is model-
theoretic. It consists of a protocol specification formalism, a model of electronic commerce systems,
and a definition of p-protective protocols (where p is a protocol participant). Our protocol specifi-
cation formalism is a standard rule-based formalism in which one can specify trust assumptions of
a protocol in linear-time temporal logic. Our model consists of standard state machines with which
we can distinguish some particular types of protocol executions: compliant, abortive, deceptive,
and trustworthy. Finally, our definition of p-protective protocols establishes the set of executions
one should consider in order to conclude whether a protocol protects the interests of a participant p.

Using our framework, one can examine a protocol under three deviation modes: 1) compliance
mode, where the participants execute according to the protocol; 2) abortion mode, where they can
terminate their executions prematurely; and 3) deception mode, where they can send bogus mes-
sages. Trusted parties can deviate as well, but they do not violate a protocol’s trust assumptions.

145

That is, their executions are always trustworthy. Under each deviation mode, one can consider
both reliable and unreliable communication links. These deviation modes do not cover all possible
deviations, but they model attacks that do not require many resources or much sophistication,
which constitute most of the attacks on electronic commerce protocols [1].

This framework is useful because it builds on well-known and simple models and formalisms
and enables investigation of an assortment of electronic commerce protocols with respect to a novel
and critical property.

Also, since protection of individual interests is a very general notion and we do not specify
what exactly can be protection properties, our framework is potentially widely applicable. For
example, it seems to be readily applicable to formalize and analyze protocols with respect to
abuse-freeness [43], a property recently introduced for contract signing protocols. A contract signing
protocol is abuse-free if no party can ever prove to a third party that he or she is capable of choosing
whether to validate or invalidate a contract. Abuse-freeness is clearly an instance of protection of
individuals’ interests, and to analyze a protocol with respect to this property, one simply needs to
specify the corresponding protection properties in temporal logic. Abstractly, protection properties
corresponding to abuse-freeness have the following general pattern:

Let p and ¢ be parties signing a contract. If p signs the contract at a state s, then there
cannot be a state in the future in which ¢ can prove that she can either validate the
contract or invalidate it.

6.1.2 The Case Studies

We analyzed three protocols using our framework.

Franklin and Reiter’s Protocol

This protocol is the simplest among the three we analyzed, in terms of both its functionality and
its protection properties. Our analysis did not reveal any surprises: the protocol is all-protective
under all three deviation modes, as long as communication links are reliable.

Our main contributions in this case study is a formalization of semi-trusted third parties.
Franklin and Reiter introduced the notion of semi-trustworthiness in electronic commerce proto-
cols [42], but they did not fully develop it. In particular, they did not take it into account in
their (informal) analysis of the protocol. Using our framework, we could formalize the notions of
semi-trustworthiness and conspiracy behaviors, and provide a clear-cut analysis of the protocol.

NetBill

This protocol is the second in complexity (among the three we analyzed), but its protection prop-
erties are the most complex. The complexity stems from the fact that NetBill is a protocol that
supports dispute resolution, and its protection properties need to take into account not only on-line
exchanges of money and goods, but also how disputes are resolved.

In terms of protection of individuals’ interests, our analysis did not reveal any surprises. NetBill
is both customer-protective and merchant-protective under all three deviation modes, even when
communication links can fail. NetBill is not affected by link failures because the NetBill server is
assumed to be permanently reachable.

146

Our analysis, however, did make explicit interesting points about how the protocol guarantees
all-protection, and what the NetBill server is trusted to do. Under compliance and abortion modes,
all-protection is guaranteed by the server’s transaction capabilities alone; certified delivery is needed
only under deception mode. More interestingly, certified delivery achieves its goals only if the
NetBill server satisfies a small set of trust assumptions. Basically, the server is entrusted to handle
accounts and keys honestly; to provide unique and non-repudiable proofs of what happens on-line
through transaction slips; and to allow merchants to learn what really happens with a transaction
— so that keys are not given to customers without their knowledge. Even though it may seem
counter-intuitive at first, NetBill’s all-protection does not depend on the server’s releasing the keys
sent to it by merchants, or its retaining transaction requests.

Brands’s Protocol

This case study is the most interesting for three reasons. First, we had to derive an abstract version
of the protocol from its purely mathematical formulation [14]. This exercise is challenging because
the protocol is very complex (not only compared to the other two protocols, but in absolute terms),
and it is not immediately clear how abstract we should model the protocol.

Second, to our knowledge, there has not been analysis of ecash protocols with respect to pro-
tection of individuals’ interests. This means that there is no standard protection properties for
these protocols, and we had to propose them afresh. The properties we proposed might not be
definitive, but we believe that they capture the essence of what different parties see as their inter-
ests. More than trying to establish a set of absolute protection properties for ecash protocols, we
aimed to show that parties in such protocols do have different interests to preserve, and the notion
of protection of individuals’ interests is, in fact, applicable to more than just exchange protocols.

Finally, our analysis revealed a number of weaknesses in the protocol. Some of the weaknesses
are well-known and far from subtle; for example, that ecoins can get lost during transmission.
Others, however, are quite subtle, and have not been found before. For example, a payee can either
abort or deceive, and effectively make the payer’s money disappear, even if communication links
are reliable. Also, withdrawers can deceive, and withdraw perfectly valid coins that they can spend,
but will be neither accepted for deposit, nor usable for tracing the identity of the withdrawer.

Brands does not make clear his assumptions about how different parties can misbehave, and
arguably did not design the protocol to counteract the attacks we found. In any case, these attacks
are realistic, pose real threats to the users, and should be taken into account.

We were able to unveil these weaknesses because we have a well-defined deviation model in which
protocols can be systematically analyzed. This testifies to the importance of systematization and
formalization that go into formulating frameworks such as ours.

Our analysis gave us other interesting insights. For example, it showed how vulnerable payers
become when observers are corrupted. While there is a whole mechanism for tracing double-
spenders should an observer fail to prevent double-spending, there is no recourse for the payer to
recover her money, if the observer fails to authorize a rightful spending of a valid coin.

The discussion above is based on our analysis of Brands’s protocol as it was presented in his
Crypto '93 paper [14]. According to our recent personal communication with Brands [17], that
paper presents only the core cryptographic protocol; it does not include fault tolerance/recovery
measures discussed in Section 5.10, which Brands considers outside the scope of protocol designs.

Even though the protocol we analyzed is incomplete and the weaknesses we found are not present
in the complete protocol, our analysis is still valuable. It shows that protection of individuals’

147

interests indeed captures a notion of security that should be guaranteed by electronic cash protocols.
It also shows that our framework can be effectively used to find problems related to this type of
security in protocols.

6.2 Future Work

There are several directions along which we can further develop this research. The main ones are
discussed below.

Analysis Automation

The most pressing future work is automation. We analyzed all three protocols by hand, and the
process is tedious and slow. An automatic (or semi-automatic) analyzer would greatly improve
the efficiency of the analysis process, in addition to minimizing proof errors that are common in
manual analyses.

It is possible to model our framework in existing general-purpose tools. Schneider’s analysis [78]
of Zhou and Gollman’s non-repudiation protocol [89] using CSP [52] is an indication that our
analyses can be carried out, in principle, in FDR [64]. However, since FDR is a trace-based model
checker, mapping what we have developed to FDR is not straightforward. A state-based model
checker that uses temporal logic as specification language would require less effort.

Model checkers give us a greater degree of automation, but theorem provers allow /force us to
be more explicit and precise in our models and specifications. Since our framework emphasizes
explicitly making assumptions that usually remain implicit, automation based on theorem proving
is preferable for our purposes.

Alternatively, we can build a special-purpose tool, custom-built for investigating protection of
individuals’ interests. A good argument for building such a tool is that it will incorporate our
model and definition, and, in the case of model checkers, automatically generate different sets of
executions that need to be considered.

Further Exploration Using Our Framework

A different direction for future work is to use the framework that we now have in place to explore
further the issue of protection of individuals’ interests in electronic commerce protocols. One
possibility is to investigate classes of protocols that we have not looked at. Voting and auction
protocols are types of protocols we would investigate next.

Another possibility is to deepen the analyses we have done, possibly by strengthening or adding
to current protection properties. For example, does the server in NetBill have interests to preserve
in a transaction? If yes, what are these interests? We suspect that, as a service provider, the
NetBill server may or may not have monetary or material interests in transactions; however, it
certainly has its reputation to preserve. In the case of ecash protocols, are there other interests
that payers may want to preserve in addition to preserving the value of their coins? Protection of
privacy, which we did not address in this dissertation, is something that payers certainly care about.
But is privacy a different type of property altogether? Or is it simply a subtype of individuals’
interest? These questions are worth investigating.

148

Enriching the Framework

The framework itself can be further extended. One obvious extension is to add other deviation
modes. For example, we can add a more permissive type of deception.

The type of deception we defined in this dissertation (Definition 2.16) is stringent in that a
deceptive step does not violate the conditions for the firing of the protocol rule. These conditions
typically include two components: 1) a specification of protocol steps that should or should not
have taken place, and 2) a specification of conditions that these previous steps must satisfy. In rule
Rz, in Franklin and Reiter’s protocol (page 37), for example, everything except line 3 falls into the
first component, while line 3 itself falls into the second.

A more permissive type of deception would allow the initial state of a state transition to violate
the second component, for instance. This new type of deception models the cases where a principal
takes steps in the order prescribed by the protocol, without checking whether he or she should
actually take the steps. A concrete example is when Z in Franklin and Reiter’s protocol fires the
rule Rz, and forwards a message to X even if the secret sharings between X and Z, and Y and Z
(as specified in line 3 in Ryz,) cannot be verified.

The notion of trust assumptions itself requires better understanding. For example, given a
protocol and a protection property, is there a unique set of trust assumptions that would allow
the protocol to guarantee the property? If not, how can we compare two different sets of trust
assumptions? Ideally, the weaker the trust assumptions of a protocol, the less vulnerable it is, and
possibly the cheaper it is to build.

Also, the types of trust assumptions required by a protocol depend on under which deviation
modes the protocol is supposed to function. The set of trust assumptions we devised in our case
studies addressed abortive and deceptive deviations. As we add other deviation modes to our
model, we will also need to add additional trust assumptions. Will these additional assumptions
be formalizable in temporal logic? Or will we need a different formalism?

Currently, our model handles only finite executions. Not all protocols have finite executions,
however. For example, there can be servers that can respond to requests infinitely often. We can
extend our model to handle these cases. For example, we can consider both maximal executions and
infinite executions, and require that infinite executions have finite prefixes that satisfy appropriate
protection properties. (The requirements on maximal executions remains the same.)

Relationship to Other Properties

Identifying a new property is important. Just as important is establishing the relationship between
a new property and the existing ones. In this dissertation, we have established the relationship
between fairness and protection of individuals’ interests. There are others to be explored. For
example, what is the relationship between protection of individuals’ interests in ecash protocols
and money-atomicity [84]7 In Brands’s protocol, violation of payer’s interests allows us to conclude
immediately that the protocol is not money-atomic. But can money-atomicity be defined in terms
of protection of individuals’ interests and other more “primitive” properties? If so, then we will be
taking a step towards understanding these more complex, protocol-wide properties.

Finally, we can try to identify other classes of properties that are relevant to electronic commerce
protocols.

149

6.3 Closing Remarks

In this dissertation, we identified protection of individuals’ interests as a critical requirement for
electronic commerce protocols where participants have different interests to preserve. We then
formulated a model-theoretic framework in which protocols can be analyzed with respect to this
requirement.

Two related factors make this work a significant step forward towards understanding electronic
commerce protocols. First, it has extracted the essence of a property that is expected in a diverse
range of electronic commerce protocols. Second, because the framework captures only what is
essential, it is in turn applicable to a wide range of electronic commerce protocols. This generality
is highly desirable because it will save us from rediscovering what others have discovered in similar
contexts. For instance, a number of challenges faced by Shmatikov and Mitchell [80] in analyzing
a contract signing protocol were faced by Heintze et al [51] in analyzing a payment protocol and
an ecash protocol. These same challenges were also encountered by Schneider [78] in analyzing a
non-repudiation protocol. Now, they can all be handled in our framework.

Our framework is appealing because it uses well-known and simple models and formalisms.
Thus, it can be readily applied as is, or be mapped into one’s favorite formalism.

Despite its simplicity, our framework can handle complex protocols, as is demonstrated by our
analysis results. The framework provides not only the low-level apparatus for formalization and
analysis, but also a high-level frame of reference for protocol design.

Finally, protection of individuals’ interests is just one of the properties of interest in electronic
commerce protocols. Many others still await our investigation.

150

Bibliography

[1] Ross Anderson. Liability and computer security: Nine principles. In Proceedings of the
Third Furopean Symposium on Research in Computer Securily - ESORICS 94, pages 231-
245, Brighton, United Kingdom, November 1994.

[2] Andre Arnold. Finite Transition Systems. Prentice-Hall, 1994.

[3] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange. Technical
Report RZ 2858, IBM Zurich, 1996.

[4] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair exchange.
In IEEE Symposium on Research in Securily and Privacy, pages 86-99, 1998.

[5] A. Bahreman and J. D. Tygar. Certified electronic mail. In Proceedings of the 1994 Internet
Sociely Symposium on Nelwork and Distributed System Securily, February 1994.

[6] Mihir Bellare, Juan A. Garay, Ralf Hauser, Amir Herzberg, Hugo Krawczyk, Michael Steiner,
Gene Tsudik, and Michael Waidner. :KP — a family of secure electronic payment protocols.
In Proceedings of the First USENIX Workshop in FElectronic Commerce, pages 89-106, July
1995.

[7] M. Ben-Or, O. Goldreich, S. Micali, and R.L. Rivest. A fair protocol for signing contracts.
IEEE Transactions on Information Theory, 36(1):40-46, January 1990.

[8] Thomas Beth, Malte Borcherding, and Birgit Klein. Valuation of trust in open networks. In
Proceedings of the Third Furopean Symposium on Research in Computer Security - ESORICS
94, pages 3-18, Brighton, United Kingdom, November 1994.

[9] Andrew Birrell, Butler Lampson, Roger Needham, and Michael Schroeder. A global authenti-
cation service without global trust. In IFEF Symposium on Research in Securily and Privacy,
pages 223-230, 1986.

[10] M. Blum. Three applications of the oblivious transfer: Part I: Coin flipping by telephone; Part
1I: How to exchange secrets; Part III: How to send certified electronic mail. Department of
EECS, University of California, Berkeley, CA, 1981.

[11] M. Blum. How to exchange (secret) keys. ACM Transactions on Computer Systems, 1(175-
193), 83.

151

[12] M. Blum and S. Goldwasser. An efficient probabilistic public key encryption scheme which
hides all partial information. In Advances in Cryptology - CRYPTO ’84. Springer Verlag, 1984.
LNCS no. 196.

[13] Dominique Bolignano. Towards the formal verification of electronic commerce protocol. In
Proceedings of the 11th IEFE Computer Security Foundations Workshop, pages 133-146, June
1997.

[14] Stefan Brands. Untraceable off-line cash in wallet with observers. In Advances in Cryptology
- CRYPTO 93, pages 302-318, 1993.

[15] Stefan Brands. Electronic cash. In Michael Atallah, editor, Handbook on Algorithms and
Theory of Computation, chapter 44. CRC Press, November 1998.

[16] Stefan Brands. Rethinking public key infrastructures and digital certificates — building in
privacy. PhD thesis, CWI - The Netherlands, 1999.

[17] Stefan Brands, 2000. Private communication.

[18] Martha Branstad, W. Curtis Barker, and Pamela Cochrane. The role of trust in protected
mail. In IFEFE Symposium on Research in Security and Privacy, pages 210-215, 1990.

[19] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication. In Proceedings
of the Twelfth ACM Symposium on Operalion Systems Principles, 1989.

[20] Jean Camp, Michael Harkavy, J.D. Tygar, and Bennet Yee. Anonymous atomic transactions.
In Proceedings of the Second USENIX Workshop in FEleclronic Commerce, pages 123-133,
November 1996.

[21] D. Chaum. Achieving electronic privacy. Scientific American, 267(2):96-101, Aug 1992.

[22] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Advances in Cryptology —
CRYPTO 88 Proceedings, pages 200-212. Springer-Verlag, 1990.

[23] D. Chaum and T. Pederson. Transferred cash grows in size. In Advances in Cryptology -
EUROCRYPT 92 Proceedings, pages 391-407. Springer-Verlag, 1993.

[24] D. Chaum and T. Pederson. Wallet databases with observers. In Advances in Cryptology -
CRYPTO 92 Proceedings, pages 89-105. Springer-Verlag, 1993.

[25] David Chaum. Security without identification: Transaction systems to make big brother
obsolete. Communications of the ACM, 28(10):1030-1044, October 1985.

[26] Edmund Clarke, Somesh Jha, and Will Marrero. A machine checkable logic of knowledge
for specifying security properties of electronic commerce protocols. In Workshop on Formal
Methods and Security Protocols, 1998.

[27] R. Cleve. Controlled gradual disclosure schemes for random bits and their applications. In
Advances in Cryptology — CRYPTO ’89 Proceedings (Lecture Notes in Computer Science 435),
pages 573-588, 1990.

152

[28] B. Cox, J. D. Tygar, and M. Sirbu. Netbill security and transaction protocol. In Proceedings
Jo the 1st USENIX Workshop on Flectronic Commerce, July 1995.

[29] R. Cramer and T. Pederson. Improved privacy in wallets with observers. In Advances in
Cryptology - FUROCRYPT ’93 Proceedings, pages 329-343. Springer-Verlag, 1994.

[30] I.B. Damgard. Payment systems and credential mechanisms with provable security against
abuse by individuals. In Advances in Cryptology - CRYPTO 88, pages 328-335, 1988.

[31] R. H. Deng, L. Gong, A. A. Lazar, and W. Wang. Practical protocols for certified electronic
mail. In Journal of Network and Systems Management 4(3), 1996.

[32] D.E. Denning and G.M. Sacco. Timestamps in key distribution protocols. Communications

of the ACM, 24(8):533-536, August 1981.
[33] Groupement des Cartes Bancaires. C-SET architecture de securite, June 1996.

[34] David L. Dill. The mur¢ verification system. In Proceedings of the 8th International Conference
on Computer Aided Verificalion, pages 390-393, 1996.

[35] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-Mohring, and
B. Werner. The coq proof assistant user guide. Technical Report Rapport INRIA 154, INRIA,
1993.

[36] Sape Mullender (editor). Distributed Systems. Addision-Wesley, 1993.

[37] T. Eng and T. Okamoto. Single-term divisible electronic coins. In Advances in Cryptology —
EUROCRYPTO 94 Proceedings. Springer-Verlag, 1995.

[38] S. Even, O. Goldreich, and A. Lempel. Randomizing protocols for signing contracts. Commu-
nications of the ACM, 28(6):637-647, 1985.

[39] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures. In Journal of Cryp-
tology, pages 9(1):35-67, 1996.

[40] N.T. Ferguson. Extensions of single-term coins. In Advances in Cryptology — CRYPTO 93
Proceedings, pages 292-301. Springer-Verlag, 1994.

[41] N.T. Ferguson. Single-term off-line coins. In Advances in Cryptology — CRYPTO 93 Pro-
ceedings, pages 318-328. Springer-Verlag, 1994.

[42] Matthew Franklin and Michael Reiter. Fair exchange with a semi-trusted third party. In
Proceedings of the 4th ACM Conference on Computer and Communicalion Security, April
1997.

[43] Juan A. Garay, Markus Jakobsson, and Philip MacKenzie. Abuse-free optimistic contract
signing. In Advances in Cryptology - CRYPTO ’99 Proceedings, pages 449-466. Springer-
Verlag, 1999.

[44] V.D. Gligor, S.-W. Luan, and J.N. Pato. On inter-realm authentication in large distributed
systems. In IFEFE Conference on Securily and Privacy, pages 2-17, 1992.

153

[45]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In Proceedings of the Fourteenth Annual ACM Sympo-
sium on Theory of Compuling, 1982.

L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols.
In Proceedings of the 1991 IEFE Computer Sociely Symposium on Research in Securily and
Privacy, pages 234-248, 1991.

James N. Gray. The transaction concept: virtues and limitations. In Proceedings of the Very
Large Dalabase Conference, pages 144—154, September 1981.

S. Haber and W.S. Stornetta. How to time-stamp a digital document. In Journal of Cryptology,
pages 3(2):99-111, 1991.

N. M. Haller. The S/KEYT™ one-time password system. In Proceedings of the Internet Sociely
Symposium on Network and Dislributed Systems, 1994.

B. Hayes. Anonymous one-time signatures and flexible untraceable electronic cash. In Advances
in Cryptology — AUSCRYPT ’90 Proceedings, pages 294-305. Springer-Verlag, 1990.

N. Heintze, J.D. Tygar, J. Wing, and H. Chi Wong. Model checking electronic commerce pro-
tocols. In Proceedings of the Second USENIX Workshop on FElectronic Commerce, November
1996.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, New
Jersey, 1985.

M. Jakobsson. Ripping coins for a fair exchange. In Advances in Cryptology - FUROCRYPT
95 Proceedings, pages 220-230. Springer-Verlag, 1995.

Rajashekar Kailar. Accountability in electronic commerce protocols. IEEF Transactions on
Software Engineering, 22(5):313-328, May 96.

Volker Kessler and Heike Neumann. A sound logic for analyzing electronic commerce protocols.
In Proceedings of the Fifth European Symposium on Research in Computer Securily - ESORICS
98, pages 345-360, Louvain-la-Neuve, Belgium, September 1998.

Volker Kessler and Gabriele Wedel. Autolog - an advanced logic of authentication. In Pro-
ceedings of the VII Compuler Securily Foundations Workshop, pages 90-99, June 1994.

S. Ketchpel. Transaction protection for information buyers and sellers. In Proceedings of the
Darmouth Institute for Advanced Graduate Studies 95, 1995.

S. Ketchpel and H. Garcia-Molina. Making trust explicit in distributed commerce transactions.
In Stanford Digital Library Project Working Paper SIDL-WP-1995-0018, October 1995.

Darrell Kindred. Theory generation for security protocols. Technical Report CMU-CS-99-
130, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 1999. Ph.D.
thesis.

154

[60] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558-565, July 1978.

[61] B. Lampson, M. Abadi, and E. Wobber M. Burrows. Authentication in distributed systems:
Theory and practice. In Proceedings of the 13th ACM Symposium on Operaling Systems
Principles, October 1991.

[62] C.H. Lim and P.J. Lee. A practical electronic cash system for smart cards. In Proceedings
of the 1993 Korea-Japan Workshop on Information Securily and Cryplography, pages 34-47,
1993.

[63] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.
In Tools and Algorithms for the Construction and Analysis of Systems: Second International
Workshop, TACAS 96, pages 147-166, March 1996.

[64] Formal Systems (Europe) Ltd. Failures Divergence Refinement—User Manual and Tutorial,
1993. Version 1.3.

[65] M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit by flipping
a symmetrically-biased coin. In Proceedings of the 25th IEEFE Symposium on Foundations of
Computer Science, pages 11-21, 1984.

[66] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic Transactions. Morgan
Kaufmann, San Mateo, CA, 1994.

[67] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer-Verlag, 1992.

[68] MasterCard and VISA Corporations. Secure Electronic Transaction (SET), June 1996.

[69] Catherine Meadows. Open issues in formal methods for cryptographic protocol analysis. In
Proceedings of DISCEX 2000, pages 237-250. IEEE Computer Security Press, January 2000.

[70] Catherine Meadows and Paul Syverson. A formal specification of requirements for payment
transactions in the set protocol. In Preproceedings of Financial Cryptography 98, 1998.

[71] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993-999, December 1978. Also
Xerox Research Report, CSL-78-4, Xerox Research Center, Palo Alto, CA.

[72] T. Okamoto and K. Ohta. Disposable zero-knowledge authentication and their applications
to untraceable electronic cash. In Advances in Cryptology — CRYPTQO 89 Proceedings, pages
134-149. Springer-Verlag, 1990.

[73] T. Okamoto and K. Ohta. Universal electronic cash. In Advances in Cryptology — CRYPTO
’91 Proceedings, pages 324-337. Springer-Verlag, 1992.

[74] D. Otway and O Rees. Efficient and timely mutual authentication. Operating Systems Review,
21(1):8-10, 87.

155

[75] Michael O Rabin. How to exchange secrets by oblivious transfer. Technical report, Harvard
Center for Research in Computer Technology, 1981.

[76] P. Venkat Rangan. An axiomatic basis of trust in distributed systems. In IEEE Symposium
on Research in Security and Privacy, pages 204-211, 1988.

[77] R. Rivest and A. Shamir. Payword and micromint: Two simple micropayment protocols. In
Proc. Security Protocols, pages 69-88. Springer, 1996. LNCS 1189.

[78] Steve Schneider. Formal analysis of a non-repudiation protocol. In Proceedings of the 11th
IEEE Computer Security Foundalions Workshop, pages 54—65, June 1998.

[79] Bruce Schneier. Applied Cryptography - Protocols, Algorithms, and Source Code in C. John
Wiley and Sons, 1996.

[80] V. Shmatikov and J.C. Mitchell. Analysis of a fair exchange protocol. In Proceedings of the
Seventh Annual Symposium on Network and Distributed System Security (NDSS 2000), 2000.
To appear.

[81] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An authentication service for open
network systems. In USENIX Conference Proceedings, pages 191-200, Winter 1988.

[82] Paul Syverson and Catherine Meadows. A formal language for cryptographic protocol require-
ments. Design, Codes, and Cryptography, 7(1 and 2):27-59, 96.

[83] T. Tedrick. Fair exchange of secrets. In Advances in Cryptology - CRYPTO 8/, pages 434-438,
1985.

[84] J. D. Tygar. Atomicity in electronic commerce. In Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Distributed Computing, pages 8-26, May 1996.

[85] U. Vazirani and V. Vazirani. Trapdoor pseudo-random number generators, with applications
to protocol design. In Proceedings of the 24th IEEE Symposium on Foundations of Computer
Science, pages 23-30, 1983.

[86] Gabriele Wedel and Volker Kessler. Formal semantics for authentication logics. In Proceedings
of the Fourth Furopean Symposium on Research in Computer Security - ESORICS 96, pages
219-241, Rome, Italy, 1996.

[87] R. Yahalom, B. Klein, and T. Beth. Trust relationships in secure systems. In Proceedings of
the 1993 Symposium on Securily and Privacy, pages 150-164, 1993.

[88] A. Yao. How to generate and exchange secrets. In Proceedings of the 27th IEEE Symposium
on Foundations of Computer Science, pages 162-167, 1986.

[89] J. Zhou and D. Gollman. A fair non-repudiation protocol. In Proceedings of the 1996 IFEFE
Symposium on Securily and Privacy, pages 5561, May 1996.

[90] J. Zhou and D. Gollman. An efficient non-repudiation protocol. In Proceedings of the 1997
IEEFE Computer Security Foundalions Workshop, pages 126-132, June 1997.

156

