
Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

Toward a Semantic Web e-commerce

Massimo Paolucci, Katia Sycara, Takuya Nishimura, Naveen Srinivasan
Carnegie Mellon University

Pittsburgh, PA, USA
{paolucci, katia,nishi,naveen}@cs.cmu.edu

Abstract
The Web is moving from being a collection of pages

toward a collection of services that interoperate through
the Internet. In this paper we show how ontological
information improves on the growing Web services
infrastructure by adding capability matching and a high
degree of autonomy to web services so that they can
automatically adapt to changing situations.

1. Introduction

Web services provide a new model for the Web in
which sites exchange dynamic information on demand.
This change is especially important for the e-business
community, because it provides an opportunity to conduct
business faster and more efficiently. Specifically, the
Web services infrastructure provides a high degree of
interoperability across platforms and operating systems
that allows different parties to communicate and interact
seamlessly. As a result, Web services provide a unique
tool to monitor and manage directly the supply chain to
predict and possibly prevent problems that may affect the
business development. Ideally, Web services can take up
a more active role in the management of the supply chain,
indeed they can monitor potential providers and
eventually suggest how to modify the supply chain to take
advantage of new market conditions such as cheaper
providers.

In order to deliver on this promise, Web services are
asked to act autonomously with minimal human
intervention. This requirement challenges the Web
services community to develop an infrastructure that first
provides registries that allow the automatic location of
Web services on the bases of the capabilities that they
provide; second, it should go beyond the message
exchange between Web services by allowing them to also
understand the messages that they adding a level of
semantic interoperability.

In the recent years, Web interoperability hinged on the
promises of XML to provide a standard for a common
language that is shared across the Web. Unfortunately,
XML defines only the syntax of such a language,

allowing only syntactic interoperation, but failing to
provide semantic interoperation. The result is that
identical XML descriptions may mean very different
things depending on when and who uses them. The lack
of XML semantics proves to be an obstacle for the
development of Web services that can autonomously act
on the electronic market. The limitations of XML
encoded information allow Web services to parse each
other message and verify whether it adheres to the
expected formats, and eventually locate each piece of
information within the message. Unfortunately, the two
Web Services do not have any means to decode the
meaning of the messages exchanged to extract the
information contained. The two Web Services are in the
awkward position of understanding the structure of each
other message, but not understanding the content of such
messages.

The limitations of representation entailed in XML are
reflected by the growing infrastructure for Web services
based standards such as SOAP [Soap 2001], WSDL
[Christensen 2002], UDDI [UDDI 2000] and BPEL4WS
[Curbera 2002]. These proposed standards require
programmers to hardcode Web Services with information
about their interaction partners, the messages to exchange
and the interpretation of the messages that they receive.
The result is a set of rigid Web Services that cannot
reconfigure dynamically to adapt to changes without
direct human intervention. Such Web Services are
hardcoded to work with a definite set of providers and
cannot modify their pattern of interaction when a new
provider comes on line that is better or cheaper.
Similarly, they cannot react to problems of their
providers: when a Web Service goes off line, the whole
supply chain is affected because the Web Services that
constitute the nodes of the chain cannot look for
alternative providers.

The limitations of the Web services infrastructure can
be overcame by providing a semantic markup to the
descriptions of Web services to take advantage of the
information available on the Semantic Web [Berners-Lee
2001]. The contribution of the Semantic Web is twofold,
first, it provides ontologies that act like shared knowledge
bases across the Web; second, it provides a logic to infer
how such terms combine to form complex concepts and

2 BUSINESS INFORMATION SYSTEMS – BIS 2003

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

how do they interact with the knowledge already
accumulated by the agents. From the point of view of
Web services, ontologies function as universal
dictionaries so that all Web services share the same
interpretation of the terms contained in the messages that
they exchange, and by derivation of the whole messages.
Furthermore, ontologies provide the bases for the
description of capabilities of Web services that cannot be
expressed using plain XML nor by any of the Web
services standards.

DAML-S [DAML-S 2002] assumes the task of
bridging the gap between the Web services infrastructure
based on WSDL and the Semantic Web. Specifically,
DAML-S defines a DAML+OIL [DAML+OIL 2001]
ontology for the description of Web Services which
provides the definition of three different aspects of Web
services. The first aspect is the description of the
capabilities of the Web service to specify what service is
provided. The second aspect is the specification of how
the Web service accomplishes its task to specify in details
how the service achieve its goals, and what are the
requirements on potential requesters that want to interact
with it. The last aspect of DAML-S includes a
specification of how the information exchanged by the
Web service and it requesters maps into actual the
messages exchanged by the different parties.

DAML-S provides only the specification of Semantic
Web services, still this specification needs to be matched
by the implementation of tools for the construction of
actual Web services that adhere to the DAML-S
specifications. In this paper, we discuss the
implementation of such tools. Specifically, we discuss
the implementation of the DAML-S Matchmaker, a Web
services registry that enhances the UDDI registry with
matching of capabilities of Web services to allow the
location of Web services on the bases of what they
provide rather than their name, ports or other contingent
information. Furthermore, we discuss the implementation
of a DAML-S Virtual Machine that allows the
autonomous interaction and invocation of Web services
based only on the DAML-S specification with no need of
the prior hardcoding that would be needed by Web
services specifications such as WSDL or BPEL4WS.

The rest of the paper is organized as follows: first we
will discuss the problem of capability matching, our
solution and the application to UDDI. The result of the
matching process is a set of potential providers that solve
problems for a requesting agent. The task of the
requesting agent is to contact these providers and interact
with them. The second part of the paper discussed the
interaction process between the requester and the
providers, and how such as process can be automatically
controlled using DAML-S. Finally, we will conclude
with an example that shows how all this machinery works
together.

2. A Capability-based Registry

Web services are intrinsically social software artifacts,
they do not exist in isolation, rather their work depends on
the interaction with other Web services. Figure 1
describes a typical protocol of interaction between Web
services. It involves three parties: a provider of the
service, a requester of the service and a registry such as
UDDI that mediates between the provider and the
requester.

Figure 1 Web Services Interaction Protocol

The interaction between the three parties can be

roughly divided into four different phases.
1. Upon coming on line Web services advertise their

capabilities (the services that they provide) with the
registry. The registry in turn stores the registration for
future use.

TOWARD A SEMANTIC WEB E-COMMERCE 3

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

2. When a requester Web service decides to
subcontract the solution of one of its problems to other
Web services, it compiles a request for the registry
describing the type of service it requires. Crucially, the
requesting Web service has no knowledge of the services
available on line, therefore the only information that can
be used to compile the request is the problem itself.

3. The registry compares the request with the
advertisements it received to locate those Web services on
line whose capabilities match the capabilities expected by
the requester.

4. Finally, the requester selects the provider that best
fits its needs and begin the interaction with it.

The interaction described above follows the same

interaction pattern that that is usually accepted for Web
services. Indeed, we could use UDDI in place of the
registry. What is often overlooked is the crucial
importance of describing capabilities, rather than
contingent information about Web services such as their
name or port in advertisements and requests. From the
point of view of the requester, capabilities descriptions
allow the specification of what it expects from the
provider; while from the point of view of the provider,
capability descriptions allow specification of what kind of
problems it solves.

2.1 Specification of capabilities in DAML-S

As mentioned above, DAML-S is characterized by
three modules: a Service Profile that describes the Web
service and its capabilities, a Process Model that describes
in details what the Web service does and how to interact
with it, and a Service Grounding that maps the
information exchanges described in the Process Model
into actual messages between Web services.

DAML-S Service Profiles (hereafter just Profiles)
describe Web services from different points of view.
Firstly DAML-S describes the provider of the service in
terms of who is responsible for the services and who to
contact in case the services produced an unexpected
behavior. In addition, the Profile provides a host of non-
functional parameters that describe general properties of
the Web service such as quality guarantees that it can
provide, or speed of deliver. The last and most important
part of Profiles is to describe capabilities of Web services.

DAML-S assumes a functional view of Web services:
a Web service requires some input to perform its task, and
generates some outputs as a result. Furthermore, a Web
service will function correctly only when some conditions
(the service preconditions) are satisfied in the World, and
as a result of the Web service execution some effects
emerge. Consider for example a book buying service. It

requires as precondition that the buyer has a credit card,
and as input the credit card number and information about
the book the buyer wants. The effect of the Web service
is that the buyer owns the book and the output is a receipt
that attests the ownership change.

In addition to describing Web services advertisements,
Profiles also describe Web services requests for service,
i.e. the expectations of the requester. The description is
equivalent to the description of the advertisement with the
only difference that requests describe a hypothetical Web
service with whom the requester would like to interact,
rather than a real one.

2.2 Algorithm for capability matching

An advertisement and a request match when the Web
service advertised provides a service “sufficiently similar”
to the service needed by the requester. In its strongest
interpretation, an advertisement and a request are
``sufficiently similar'' when they describe exactly the
same service. Unfortunately, this case is very unlikely;
since advertisements and requests are authored by
different parties with very different objectives, and
without any a priory agreement, it is natural to expect
some degree of mismatch.

Since exact matches are unlikely, the first requirement
on the matching algorithm is to accommodate flexible
matches, i.e. matches that recognize the degree of
similarity between advertisements and requests, on the
basis of the ontologies available to the Web services and
the matching engine. Despite its flexibility the matching
engine should maintain validity and recognize when an
advertisement and a request describe functions that are so
different that the matching process fails.

A capability matching algorithm for DAML-S profiles
has been proposed in [12]. The basic idea underlying the
matching algorithm is to verify whether the function
described by the advertisement can be used in place of the
function described by the request. More precisely, a
match is recognized when the outputs of the request are
subsumed by the outputs of the advertisement, so that the
advertised function achieves all the results of the
requester, furthermore, the inputs of the advertisement are
subsumed by the inputs of the request, so that the
requester has all the information that is needed to invoke
the selected service. Degrees of matching are measured
by the violations of the subsumption constraints, for
example a match with a lower degree is recognized when
the output of the advertisement is subsumed by the output
of the request. Matching flexibility is constrained by
existing DAML ontologies, no matching is recognized

4 BUSINESS INFORMATION SYSTEMS – BIS 2003

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

when no subsumption relation between advertisement
and request is recognized.

The matching algorithm has been implemented to
control the DAML-S Matchmaker whose architecture is
displayed in figure 2. Advertisements are stored in the
AdvertisementDB component and indexed using
ontologies downloaded from the Web and stored in the
OntologyDB.

Upon receiving a request, the Matching Engine
component selects advertisements that are relevant for the
current request; then it uses the DAML+OIL Reasoner
and the ontologies downloaded to select the
advertisements that really match the request and compute
the degree of such match.

3. Enabling capability matching in UDDI

The Universal Description Discovery and Integration
(or UDDI) [15] is an Internet wide registry of
Web services; because of its strong industry
backing, UDDI is expected to become the
standard registry for Web services. UDDI
allows businesses to register their contact
points, and a host of useful information about
Web Services such as binding information to
allow Web services to interact.

The architecture of the DAML-S/UDDI
Matchmaker \label{DAMLS_UDDI}

In addition, UDDI supports the association
of an unbounded set of properties to the
description of Web Services via a construct
called TModel. TModels can be used to tag
the type of service advertised and to provide
abstract keys to be associated with a service
specific value. For example, a service may

specify its category using the North American Industry
Classification System (hereafter NAICS) [16] published
by the US Census. While TModels support the
association of any type of data with the advertisement,
their meaning is not codified, therefore two different
TModels may have the same meaning. Ultimately, their
ability of describing a Web service is conditioned on a
shared understanding of their meaning.

UDDI supports only a keyword based search of
businesses, services and TModels in its repository. In
addition services can be searched by their type
specification through TModels. For instance, it is
possible to search for all the services that adhere to the
WSDL representation or that have a specific value
associated with a TModel. Since search in UDDI is
restricted to keyword matching, no form of inference or
flexible match between keywords can be performed.

The limitation of UDDI is its lacking of an explicit
representation of the capabilities of the Web Service. The

Figure 2: The architecture of the DAML-S Matching Engine

Figure 3 The architecture of the DAML-S/UDDI Matchmaker
\label{DAMLS UDDI}

TOWARD A SEMANTIC WEB E-COMMERCE 5

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

result is that UDDI supports the location of essential
information about the Web service, once it is known that
the Web service exists, but it is impossible to locate a
Web service only on the bases of what problems it solves.
To solve this problem, a translation function from
DAML-S Profiles to UDDI record has been proposed
[13]. At its core of this function defines a set of TModels
that correspond to properties of DAML-S Profiles
therefore allowing any DAML-S profile to be recorded as
UDDI record1.

The DAML-S/UDDI Matchmaker2 uses the DAML-S
translation function described above to map DAML-S
advertisements into UDDI records, and then it uses the
UDDI registry to store and retrieve them. Furthermore,
leveraging on DAML-S capability representation, the
DAML-S/UDDI Matchmaker adds a semantic layer that
performs a based capability matching between
advertisements and requests using the matching engine
described above and DAML ontologies published on the
Web. The result of this work is empowering UDDI with
DAML-S capability representation and with the
corresponding matching mechanism to select Web
services on the bases of their capabilities.

The architecture of the combined DAML-S/UDDI
Matchmaker is described in figure 3. The Matchmaker
receives advertisements and requests from outside
through the {\it Communication Module}; upon
recognizing that a message is an advertisement, the
Communication Module sends it to the {\it DAML-
S/UDDI Translator} that constructs a UDDI service
description using information about the service provider,
and the service name. The result of the registration with
UDDI is a reference ID of the service. This ID combined
with the capability description of the advertisement are
sent to the DAML-S Matching Engine that stores the
advertisement for capability matching. Requests follow
the opposite direction: the Communicator Module sends
them to the DAML-S Matchmaker that performs the
capability matching. The result of the matching is the
advertisement of the providers selected and a reference to
the UDDI service record. The combination of UDDI
records and advertisements is then send to the requester.

This system show the limits of UDDI and the value
added by DAML-S and its support for functional
descriptions and matching upon functional descriptions of
services. Current work on this project attempts to reach a
closer integration between UDDI and DAML-S by
modifying the UDDI API to allow direct queries for

1 Note that mapping from UDDI to DAML-S Profiles is

meaningless, since some of the information stored in UDDI
is not represented in the Profile, but in other modules such as
the DAML-S Grounding.

2 The DAML-S Matchmaker is available at
www.damlsmm.ri.cmu.edu.

capabilities and a complete integration of the DAML-S
Matching engine with UDDI.

4. Managing Web services Interaction

The location of providers is an essential step toward a
business interaction, but the conclusion of the business
requires the direct negotiation between the buyer and the
seller. E-commerce transactions are more complicated
than traditional client/server transactions in which the
client just asks questions to the server, rather e-commerce
transactions proceed through a refinement process in
which the buyer and the seller respond to each other until
they agree on the product and the price. For example, a
transaction with an on-line travel agent typically requires
the user to specify the date of travel, departing and arrival
locations, but then the Web site proposes different
itineraries and asks the buyer to make a selection. Still, e-
commerce transaction are very structured so that both
parties always know whose turn is next, and what kind of
information to expect. This is in contrast with
unrestricted conversations that can be generated by
software agents which are governed only by the
specification of speech acts that can be combined in any
arbitrary way [9].

The DAML-S Process Model assumes that Web
services will interact in a way that will be more similar to
the interaction with Web sites than inter-agent
communication. This view is consistent with growing
infrastructure for Web services and proposed interaction
specifications such as BPEL4WS [4]. The Process Model
fulfills two tasks, the first one is to specify the interaction
protocol in the sense that it allows the requester to know
what information to send to the provider and what
information will be sent by the provider at a given time
during the transaction. In addition, to the extent that the
provider makes public its own processes, it allows the
client to know what the provider does with the
information.

Operationally, a Process Model is defined as an
ordered collection of processes organized on the basis of a
workflow which specifies the sequence of processes
performed by the provider during the transaction. Each
process is defined as a transformation between an initial
state and a final state, where the initial state is specified
by the inputs of the process and the preconditions for the
process to run successfully. The final state is described as
a set of outputs, or information that results from the
execution of the process, and a set of effects that represent
physical changes that result from the execution of the
process. DAML-S distinguishes between external and
internal input and outputs: external input and outputs
correspond to incoming and outgoing messages between
the provider and the requester; internal input and outputs
feed into each other within the workflow of the provider

6 BUSINESS INFORMATION SYSTEMS – BIS 2003

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

and are used to specify what the provider does with the
information received from the requester.

During the interaction with the provider, the requester
analyzes the process model to infer the messages that they
will exchange, specifically, the requester attempts to infer
the inputs the provider needs and the outputs that result
from the execution of the process. Ultimately, by
following the process model of the provider and
interpreting the information received, the requester can
infer what information the provider expects at that time,
or what information that provider will send next.

Implicitly, the process model of the provider specifies the
interaction protocol between the provider and the
requester providing details of what information the
provider needs and in what order. The message format
and the binding information is instead specified by the
DAML-S Grounding.

The DAML-S Grounding transforms the abstract
description of the information exchanges between the
provider and the requester into messages that can be
exchanged on the net, or through procedure call.
Specifically, the DAML-S Grounding is defined as a one
to one mapping from atomic processes to WSDL

specifications of messages. From WSDL it inherits the
definition of abstract message and binding, while the
information that is used to compose the messages is
extracted by the execution of the process model.

5. A Web Service Architecture

DAML-S Process Model and Grounding provide the
specifications of the interaction between the provider and
the requester, but they leave open the problem of making
use of the information that they provide in real

implemented Web Services. In this paper, we propose a
Web Service architecture that uses the information
available in DAML-S descriptions, and specifically the
Process Model and the Grounding, to interact with other
Web services

The architecture we propose is described in the diagram
in figure 4. The diagram can be divided in three areas: on
the right is the Application which represents the main
body of the Web service. Applications may range from
financial consulting to travel booking to news reporting.
Crucially, DAML-S does not make any assumption on the

Application

SOAP

DAML-S
Service

Description

WSDL

DAML-S
Process
Model

DAML-S
Ground

ing

DAML Parser

Jena

Jena-To-Jess Converter

Jess

DAML Processor

Process Model
Processor

Grounding
Processor

DAML-S Processor

Axis’s Web Service
Invocation Framework

DAMLS
WebServiceInvoker

Webservice Invocation

Web Services

Figure 4 Description of DAML-S Web Service architecture

TOWARD A SEMANTIC WEB E-COMMERCE 7

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

application, nor on its internal structure therefore, from
our point of view the application is just a black box.

The application communicates with other Web
services through the DAML-S port that is defined in the
middle layer. The DAML-S port is composed of three
modules that are activated in sequence. The first module
is a DAML parser that transforms DAML-S specifications
for the Process Model and the Grounding into a set of
predicates that provide a representation equivalent to the
DAML-S descriptions, but in a format that can be
interpreted by the JESS theorem prover [10]. The
predicates are then passed to the DAML-S Processor that
uses the Process Model and Grounding specifications to
extract the interaction protocol with the provider and
compose the abstract messages to exchange with the
provider. Furthermore, the DAML-S Processor interacts
with the Application to extract the information that forms
the content of outgoing messages or to provide the
information received through incoming messages. Such a
mapping is used by the Web service Invocation module to
contact other Web services. Messages received by Web

services follow the opposite path, they are first parsed by
the Web service Invocation module that extracts the
content of the messages, then they are parsed and

transformed into a Jess predicates and finally analyzed by
the DAML-S Processor.

The diagram also shows the information used by the
DAML-S port and the modules that access it.
Specifically, the Process Model and Grounding are passed
to the Parser, while the WSDL module is passed directly
to the Invocation module that

The DAML-S processor is the core of our architecture,
it is responsible for transforming the DAML-S
specifications into abstract messages to be send to other
Web services. Furthermore, the DAML-S Processor is
responsible for the interaction with the rest of the
application. The DAML-S processor is constructed as a
stack of processors. At the bottom of the stack lies Jess
[10], a Java implementation of CLIPS [3]. Jess performs
a forward and backward inferences to derive the
consequences of the knowledge it receives. A DAML
Processor is built on top of Jess, using the DAML Jess
KB framework [6], to provides an implementation of the
DAML language within Jess. The result of the
combination of DAML Jess KB and Jess is a DAML
inference engine that we use to derive inferences from the
ontologies loaded as well as the Process Model and the
Grounding. The Process Model Processor and
Grounding Processor contain rules that describe the
semantics of DAML-S Process Model and Grounding.
Specifically, they contain rules on the location of the next
process to execute, its inputs and outputs as well as their
transformations in abstract messages.

 In the previous sections we noted that DAML-S is
mute with about to the Web service application and
concentrates on the specifications of the interaction
between Web services. Nevertheless, the application
level is responsible for many of the decisions that have to
be made while using DAML-S. For instance, the
application level is responsible for the use of the
information extracted from the messages received from
other Web Services or to decide what information to send
to other Web Services. In order to take advantage of the
flexibility supported by DAML-S, the application level
should support a decision system that makes non-
deterministic choices while maintaining efficiency and
control on the behavior of the Web Service. As a
consequence, the neat picture shown in figure 4 results
only partially true in real applications where the DAML
reasoning cannot be restricted to the management of the
port, but should be extended to the whole Application. In
ultimate analysis, DAML-S requires applications that
look more like intelligent software agents than traditional
e-commerce applications.

6. Test Application

To test our approach to DAML-S we implemented a
B2C application in the travel domain in which Web

Figure 5. The Application Architecture

The scenario of the demonstration is the following,
the user upon learning of the PI Meeting, loads the
schedule of the conference annotated as a DAML
ontology from the conference Web site using the Retsina
Calendar Agent (RCal) [14], and asks RCal to plan a trip
to the conference. RCal infers the schedule of the
conference from the DAML annotated schedule and then
uses that information to contact the DAML_S
Matchmaker described above to book locate Web
Services for flight reservation and the Car Rental.

Upon locating and selecting the Web services, the
RCal agent interact with them using the DAML-S port
described above, which results in a booking of the flight
to the conference and the car rental.

Finally the RCal records the schedule of the trip in the
MS Outlook calendar of the user.

8 BUSINESS INFORMATION SYSTEMS – BIS 2003

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

services coordinate with other applications like MS
Outlook to organize a trip to a conference: the DAML PI
Meeting. The architecture of the application is shown in
figure 5.

In the implementation of the application, care was
taken to reduce the hardcoding of communication
information in the Calendar Agent, rather communication
details have been inferred by the DAML-S Port described
above using only Process Model and Grounding
specifications. In addition we had to employ the HiTAP
planner [11] to plan the trip to the conference. HiTAP is
based on HTN planning [Erol94], but it also allows for
interleaving of planning and execution which is
fundamental to control the interaction between Web
services since at planning time the Web service does not
know which services are available, whether they will
provide the information desired or what information will
they need.

7. Conclusions and Further Work

In this paper we described how to use DAML-S to
control the interaction between Semantic Web services.
Specifically, we used DAML-S to describe capabilities of
Web services so that they can find each other on the basis
of the information that they provide, rather than incidental
properties such as their name, port, or a free text
description of what they do. Furthermore, we showed
how DAML-S can also be used to control the autonomous
interaction between Web services without any need of
pre-programming hardcoding neither the sequence of
messages to exchange nor the information to be
transmitted.

The work presented here shows the importance of the
Semantic Web and the need for widespread ontologies, to
the point that without ontologies, this work would not be
possible. In the Web service discovery phase, ontologies
provide the basic information needed to describe input
and outputs of Web services, as well as preconditions and
effects. For one, inputs, outputs, preconditions and effects
need to refer to objects or concepts in the World for
which all the parties in the transaction need to have a
shared knowledge and understanding. Furthermore,
ontologies provide an inference framework that allows
Web services to resolve discrepancies and mismatches
between the knowledge that they are using. This is
particularly relevant in the DAML-S/UDDI matchmaker
that has to abstract from the superficial differences
between the advertisement and the request to recognize
whether they describe the same function. Finally,
ontologies play an essential role during Web services
interaction, because they provide a shared dictionary so
that Web services can understand each other messages. In
addition, ontologies provide the basics for the use of the

knowledge exchanged by Web services by supporting
inferences when new knowledge is added.

Our work highlights some of DAML-S advantages.
The application described in this paper shows that indeed
DAML-S supports autonomous invocation of Web
services; but also shows that DAML-S provides only the
base for autonomous invocations and that it poses hard
requirements on the side of the application that have to
make very difficult decisions to take advantage of
DAML-S. It is still an open question whether DAML-S
provides any advantage over other technologies even in
absence of such powerful decision making mechanisms.
Indeed, it could be claimed that the use of ontologies
provide a more flexible interaction mechanism compared
with the use of pure XML data type as supported by XML
Schemas because mismatches between the information
received and the information expected may be resolved
through logical inference.

Future work toward the completion of a DAML-S
toolkit that supports the implementation of Web services
involves a tighter integration between the DAML-S port
and the discovery mechanism. Specifically, we need to
address issues like automatic generation of advertisements
from the problem description and criteria for the selection
of the best provider out of a pool of candidates.
Furthermore, the Matchmaker may provide the rational of
behind the matches that it found. Such matching rational
may be of use both during the selection process, and
during the interaction providing key information to be
used to interpret messages exchanged by the Web
services.

8. References

[Berners-Lee 2001] T. Berners-Lee, J. Hendler, and O. Lassila.:
The semantic web.: Scientific American, 284(5):34--43, 2001.

[Christensen 2002] E. Christensen, F. Curbera, G. Meredith, and
S.Weerawarana.: Web Services Description Language (WSDL)
1.1: http://www.w3.org/TR/2001/NOTE-wsdl-20010315
2001.

CLIPS: http://www.ghg.net/clips/CLIPS.html
[Curbera 2002] F. Curbera, Y. Goland, J. Klein, Microsoft, F.

Leymann, D. Roller, S. Thatte, and S. Weerawarana: Business
Process Execution Language for Web Services, Version 1.0:

http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[DAML+OIL 2001] DAML Joint Committee.: Daml+oil
(march 2001) language.:

http://www.daml.org/2001/03/daml+oil-index.html 2001
[DAMLJessKB]DAMLJessKB:http://plan.mcs.drexel.edu/projec

ts/legorobots/design/software/DAMLJessKB/
[DAML-S 2002] The DAML-S Coalition.: Daml-s: Web service

description for the semantic web: In ISWC2002.

TOWARD A SEMANTIC WEB E-COMMERCE 9

Witold Abramowicz, Gary Klein (eds.), Business Information Systems, Proceedings of BIS 2003, Colorado Springs, USA

[Erol 1994] K. Erol, J. Hendler, and D. S. Nau.: Htn planning:
Complexity and expressivity. In AAAI94.

[FIPA] The Foundation for Physical Agents (FIPA): FIPA ACL:
http://www.fipa.org

[Jess] Jess: http://herzberg.ca.sandia.gov/jess/
[Paolucci forthcoming] M. Paolucci, O. Shehory, and K.

Sycara.: Execution in a multiagent team planning
environment.: Electronic Transactions of Artificial
Intelligence, forthcoming.

[Paolucci 2002:1] M. Paolucci, T. Kawamura, T. R. Payne, and
K. Sycara.: Semantic matching of web services capabilities. In
ISWC2002, 2002.

[Paolucci 2002:2] M. Paolucci, T. Kawamura, T. R. Payne, and
K. Sycara.: Importing the semantic web in uddi. In

Proceedings of E-Services and the Semantic Web Workshop,
2002.

[Payne 2002] T. R. Payne, R. Singh, and K. Sycara.:Calendar
agents on the semantic web.:IEEE Intelligent Systems,
17(3):84--86, 2002.

[UDDI 2000] UDDI: The UDDI Technical White Paper.:
http://www.uddi.org/ 2000.

[NAICS 1997] United States Census Bureau: North american
industry classification system (NAICS).:
http://www.census.gov/epcd/www/naics.html 1997.

[Soap 2001] W3C.:Soap version 1.2, w3c working draft 17
december 2001.: http://www.w3.org/TR/2001/WD-soap12-
part0-20011217/ 2001.

