
Modeling Information Agents: Advertisements, Organizational Roles, and Dynamic
Behavior

Keith Decker and Katia Sycara and Mike Williamson
The Robotics Institute, Carnegie-Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
(decker,sycara,mikew)@cs.cmu.edu

Abstract

One of the most important uses of agent models is for
problem-solving coordination. Coordination has been defined
as managing the interdependencies between activities, or prag-
matically as choosing, ordering, and locating actions in time
in an attempt to maximize a possibly changing set of deci-
sion criteria. Coordination activities include not only local-
ized agent interactions over specific problems, but also longer-
term agent organizations that can support current and future
problem-solving activity. Models that support coordination
can be divided into three classes: models of other agents’ cur-
rent intended actions, schedules, and/or plans; models of other
agents’ objectives (desires, goals); and models of other agents’
capabilities.

This paper will focus on the longer-term models of capabili-
ties that agents need in order to organize effectively to solve
problems. Such models deal with an agent’s capabilities and
long-term commitments to certain classes of actions. Besides
discussing the models themselves, we will discuss the basic be-
haviors agents should use to construct, communicate, and up-
date these models. Finally, we will discuss how these models
can support several different organizational forms such as eco-
nomic markets, Wiederholdian federations, and bureaucratic
functional units. The work will be presented in the context
of an implemented agent architecture for Internet information
gathering in dynamic domains such as financial portfolio man-
agement (called WARREN).

Introduction
One important reason that software agents build models of
other agents is so that they can choose, order, and time their
actions with respect to the actions of others. Such choices are
made in the context of an agent’s objectives1 and its knowl-
edge of the objectives of other agents. Examples of such rea-
soning include:

� Simulated wingmen acting to stay in formation with their
wing leader, and acting to avoid bad outcomes from con-
frontations with enemy pilots (Tambe 1995)

1We’ll use the word objective, rather than “goal” or “desire”, to
indicate a potentially complex specification of a desired outcome and
its associated multiple-attribute utility characteristics.

� Agents reasoning about the likely utility of possible decision
outcomes from their own and other agents’ points of view
so as to make a local decision on a particular action(Rosen-
schein & Genesereth 1985; Gmytrasiewicz, Durfee, &
Wehe 1991)

� Agents reasoning about what to say and when in carrying
out a conversation or negotiation (Chu-Carroll & Carberry
1995; Sycara 1989)

� Agents reasoning about how to choose between, order,
and temporally locate sequences of actions that arise dy-
namically during problem solving (Durfee & Lesser 1991;
Decker & Lesser 1995)

Most of this work has focussed on representing in the agent
model (1) the particular actions, schedules, and/or plans of
other agents and (2) the objectives of other agents. How-
ever, equally important is (3) the capabilities of other agents.
For example, in the tactical air domain the doctrine of the
various combatants, and the physical capabilities of the air-
craft, become a constraint on potential actions and objectives
(compare also limited vehicle velocity, acceleration, and turn-
ing radii in the DVMT (Corkill, Lesser, & Hudlická 1982)).
Some conversational models take into account limited hu-
man short-term memory (thus causing reminder-utterances
to be produced) (Walker 1994). Some models of non-local
schedules and plans include capability information (e.g., that
agent 1 can execute an action twice as fast as agent 2) (Decker
& Lesser 1995). The major issue addressed by this paper
is how to represent the capabilities of information agents
in a way that can be utilized for various organizational and
plan-coordination purposes. Furthermore, our solution is
constrained by our chosen application domain, open system
multi-agent information gathering.

This paper will first briefly describe information agents,
their basic behaviors, and the constraints placed on capability
modeling by the environment. Next, we will define a com-
munication model, overlaid on KQML, within which we can
define what it means to advertise an agent’s capability. We will
propose an extensible, KQML-aligned, capability representa-



tion and a corresponding basic information agent behavior
for advertisement. Finally, we will show how basic capability
advertisement can be incorporated into several popular agent
organizations, including markets, federations, and functional
units.

Information Agents

The domain we have been working with is that of open sys-
tem multi-agent information gathering (Sycara & Zeng 1995;
Oates et al. 1995). Such multi-agent systems can compart-
mentalize specialized task knowledge, organize themselves to
avoid processing bottlenecks (using models of other agents’
objectives), and can be built expressly to deal with dynamic
changes in the agent and information-source landscape (new
and changing agent capabilities). Such systems may comprise
many different types of agents, including information agents
that are closely tied to a source or sources of data. We will
be discussing capability advertisement for simple and multi-
source information agents.

The main function of an information agent is to process in-
telligently and efficiently one-shot, periodic, and information
monitoring requests. These requests come externally from
other agents; the information used to fulfill these requests
comes from arbitrary external information sources. Typically,
a single information agent will serve the information needs
of many other agents (humans or computational agents). An
information agent is quite different from a typical WWW ser-
vice that provides data to multiple users. Besides the obvious
interface differences, an information agent can reason about
the way it will handle external requests and the order in which
it will carry them out (using its models of others). Simple
information agents can carry out long-term interactions that
involve monitoring for particular conditions, as well as simple
information updating. More complex multi-source informa-
tion agents deal with the problems of dynamically combining
information from different simple information agents in ways
that provide more complete information, balance the load on
the underlying sources, and add extra robustness and timeli-
ness.

Information agents are built on top of a common set of
reusable basic behaviors. By “behaviors”, we mean the ex-
ecution of partially-ordered sequences of basic actions. By
“reusable”, we mean only that the behaviors are specified in
terms of domain-independent abstractions. To instantiate a
new simple information agent, one needs to define a database
schema (what information this agent presents to the world)
and develop a small piece of site specific code to handle a
portion of the external data access. We have implemented in-
formation agents and these shared, basic behaviors, and have
tested them experimentally on the WWW in several domains:
tracking stock prices, extracting news stories, retrieving funda-
mental historical SEC data, monitoring airfares, and KQML
matchmaking. Basic behaviors for simple information agents

include answering one shot and periodic queries, monitoring
for some pattern or change, polling for messages, maintaining
and rebuilding the local DB cache, self-cloning to improve
response times and balance loads, and advertising an agent’s
capabilities.

Because the environment that these agents are in is a dy-
namic and open one, where new sources and agents with new
capabilities are constantly coming and going, we cannot use
the traditional solution to the capability modeling problem—
assuming that all agents have the same, or predetermined ca-
pabilities. Instead, new agents must be able to communicate
thier capabilities through thier advertisements (regardless of
to whom these advertisements are sent, or how they are ulti-
mately used in the organization—see the next-to-last section).

Modeling Other Agent’s Objectives and
Capabilities

Next we will discuss the set of communication principles that
determine how agents know about one another’s capabilities,
constrain how and when an agent accepts requests, and con-
strain the behaviors used by the agent to carry out those re-
quests. How can we guarantee that information agents act
in ways that are predictable and useful enough for them to
take part in larger multi-agent systems and organizations?
We, along with others believe that commitments of various
types are the key to coordinated multi-agent behavior (Jen-
nings 1993; Cohen & Levesque 1990; Decker & Lesser 1995;
Rao & Georgeff 1995). KQML, however, has no explicitly
commisive performatives. We resolve this by assigning com-
misive semantics to the KQML ADVERTISE performative.
This section will first discuss a generalization of the large set of
KQML communicative acts that will allow us (and our agents)
to more succinctly represent and reason about classes of com-
municative acts, rather than needing to handle every perfor-
mative as a separate case. We will then discuss the ADVER-
TISE performative and an extensible agent capability model,
itself based on KQML.

Communicative Acts and Parameters

Rather than either discussing (and reasoning about) every per-
formative individually, we can group them (as suggested by
speech act theory and (Cohen & Levesque 1995)) into three
classes: assertives (TELL, REPLY, ERROR, ADVERTISE
(explicitly) . . . ), directives (ASK-ONE, ASK-ALL, STREAM-
ALL, MONITOR, ACHIEVE . . . ), and commisives (AD-
VERTISE (implicitly), but perhaps some day things like
COMMIT, PROPOSE, AGREE, POSTPONE, ACCEPT-
ROLE, JOIN-ORGANIZATION, etc.) An interesting at-
tribute of KQML is that some parts of the message content are
separated out into parameters (:sender, :receiver, :reply-with,
:ontology, :language, . . . ). Because information agents deal
with potentially time-sensitive information, we have added
two more parameters, :deadline and :period. Deadline used



by itself refers to an absolute time by which a request must be
serviced; soft deadline specifications are possible. Period refers
to how often a request must be re-fulfilled. When period and
deadline co-occur in a directive the deadline is assumed to be
relative to any change in the directive’s results. Finally, at least
for the purposes of capability advertisement (see the detailed
description later), we can view all of the various query direc-
tives (ASK-ONE, ASK-ALL, STREAM-ALL, GENERATE,
. . . ) as variants on a basic ASK directive and a directive pa-
rameter “:report-action” that describes what to do with the
query results (send the first, send them all in a list, send them
all in individual messages, hold them for me to request later,
. . . ).

Modeling other Agents’ Objectives
In tracking other agents’ objectives, an information agent
sends and receives messages about both objective creation and
objective cessation (modifying objectives is also possible, al-
though not presently supported outside of cessation of the
old objective and creation of a new objective) Both objective
creation and cessation may be assertive (telling another agent
a belief ) or directive (requesting another agent to do some-
thing: achieve an objective, answer a query in a certain way
etc) speech acts. Here is a list of these basic communicative
classes and their meaning:

Assertion of objective creation: An information agent may
assert to another agent that it has a objective, and in partic-
ular ADVERTISE asserts that an agent has an objective to
service the objectives of other agents if they fall within cer-
tain constraints (i.e., to answer any queries on its database).
This is an implicit commisive communication. When an
information agent advertises its database by sending the
database specification to, for example, some facilitator, it is
making an implicit commitment to accept requests on the
class of query objectives valid for that database. Any other
agent can then assume that if it sends a query request to
that agent, the agent will accept that request and work for
its achievement until it is either achieved or the accepting
information agent believes it cannot be achieved.

Request for objective creation: An agent may request that an
information agent adopt the objective of answering some
query Q, e.g., “Tell me the price of IBM every 10 minutes”.
This is done via the standard KQML directives. Informa-
tion agents are free to reject requests that do not match
their previous advertised commitments.

Assertion of objective dissolution: An information agent
may assert that a objective, accepted from another agent,
is being removed. This assertion normally carries with it
a reason—typically, the query was malformed, the agent is
unable to meet it’s implicit commitment because it is too
busy, or the agent is shutting down due to circumstances
beyond its control. “I can no longer provide the price of

IBM every 10 minutes due to a shutdown for preventive
maintenance”. Currently, there is no specific KQML per-
formative for this communicative act, and our agents use
ERROR/SORRY with an appropriate :in-reply-to parame-
ter to indicate which objective is being dissolved.

Request for objective dissolution: An agent my request that
an information agent give up a objective previously re-
quested by the agent. “Cancel the objective of telling me
the price of IBM every 10 minutes”. Currently, there is no
specific KQML performative for this communicative act,
so we use UNMONITOR.

Information agent behaviors that deal directly with objec-
tives from other agents, then, must obey these implicit com-
mitments. They can do this because they are built on an agent
architecture that provides planning and scheduling mecha-
nisms that detect or predict action failures.

Modeling Other Agent’s Capabilities
We believe that a very useful model of agent capabilities is
one that describes the constraints under which an agent will
accept another agent’s objectives. We will call such a descrip-
tion a service description. The key to an extensible agent
service description (advertisement) language are the KQML
parameters—a great deal of the necessary capability descrip-
tions are in fact constraints on service request parameters. An
agent capability description, or service advertisement, consists
of three parts: basic service characteristics, service modifier
characteristics (tied to KQML parameters), and service spe-
cific characteristics. The idea is that the first two sets of char-
acteristics are given fixed semantics irrespective of the par-
ticular service being advertised, but that different types of
services can also have service-specific characteristics, defined
on a service-by-service basis (akin to the :content parameter
of a KQML message). Matchmakers, Facilitators, Brokers,
Market-Makers, and default individual agent behaviors can
be defined to operate only on the fixed portion and avoid the
service-specific portion. Service-specific capabilities for well-
known capabilities, such as the query-answering capabilities
of information agents, will also be common knowledge (i.e.
used in default agent behaviors and exploited by some types
of message-routing agents). This section will discuss both the
fixed capability model and the service specific model used by
all of our information agents.

Basic Service Characteristics Basic service characteristics
deal with information applicable to any type of service but
not related to specific request/objective constraints. We be-
lieve that agents will attempt to make boundedly rational de-
cisions in environments containing considerable uncertainty
and where there are multiple, changing decision criteria. Such
high-level decision criteria include cost, time, precision, cer-
tainty, reliability—all basic service characteristics. Basic ser-
vice characteristics therefore include, but are not limited to:



pricing info: Service cost. This includes the concepts of a ba-
sic price, price modifier additions, and bulk or custom pric-
ing flags. Price modifier additions map from service mod-
ifier values (i.e. KQML message parameters as expanded
in the previous section) to price changes. For example, an
agent may charge a higher price to provide higher levels of
service (like very short periods). Bulk pricing refers to the
practice of providing n requests for a fixed cost (used by
some stock ticker providers, for example). Custom pric-
ing indicates that cost varies on a case-by-case basis (agents
might, for example, request a bid from the agent on a par-
ticular objective).

duration info: Service duration information, possibly includ-
ing ranges and averages.

reliability: Information about the likelihood of service fail-
ures.

Service Modifier Characteristics Service modifier charac-
teristics refer to constraints placed on the service modifiers
(KQML message parameters).

sender: constraints indicate organizational authority/power
relationships (e.g., an agent will only accept objectives from
certain other agents)

receiver: nominally, the agent itself, but some agents may
work only through proxies/secretaries/front offices/brokers.
Thus a capability advertised by agent X with the receiver
slot constrained to agent Y means that agent X can only be
contacted via Y.

ontology, language, period, deadline, report-action:
constraints on potential values for each of these KQML
message parameters can be given individually.

Service Specific Characteristics for Information Agents An
information agent’s local database is defined in terms of an
ontology, a set of attributes, a language, and a schema. The
database ontology links concept-names to their data types and
domain-specific meaning (and must match on any incoming
KQML message).2 Database attributes are meta-information
stored about a field in a database record. By default, infor-
mation agents will keep track of two attributes: timestamp
and previous value. The timestamp indicates when the field
value in the record was last updated. Note that when a lo-
cal agent database is formed from information gathered from
multiple external information sources, the timestamps on ev-
ery field in a record may be different. The previous value is
the value the field had before the last database update. No
absolute temporal relationship between the current value and

2This paper will not discuss ontological representation or reason-
ing, see for example (Gruber 1993; Collet, Huhns, & Shen 1991).

previous value can be assumed—only the relative temporal re-
lationship (“before”).3 The database query language specifies
a pre-determined format for the KQML “content” slot. The
“simple-query” query language is a set of predicate clauses on
field values and attributes, joined with an implicit “AND”.

The local database is constructed from a database defini-
tion language description. This description also serves as a
way to describe the information content a particular informa-
tion agent offers to other agents. The important parts of the
description, defined for each field in the database, are:

concept-name: the column or field name, the term referring
to what the value in the database represents. A concept-
name plus the ontology implies a data-type (string, integer,
float, data/time, enumerated, etc.)

selectable flag: A field is flagged “selectable” if it possible to
use that field to select records in a query. If the external
database is a full-fledged modern relational DB, then usu-
ally all fields will be flagged “selectable”. However, many of
the databases available over the WWW do not allow record
selection by every field, and so the agent needs to include
this in its specification.

primary key: A field is flagged as the primary key if every
record in the database must differ on that field. Every
database definition must have a primary key. This field
does not have to be selectable (or advertised). If necessary,
it can be internally generated.

predicates: optional. If present, it limits the predicates that
can be used in queries on this field. If absent, all of
the natural predicates associated with the data-type for the
concept-name can be used. Typically, a key field might
limit the operators to EQUAL only.

range: optional. Gives information on any range limits asso-
ciated with the field in question. If not present, the natural
limits for the field’s concept-name are assumed.

For example, the Security APL server is an Internet infor-
mation source that has stock prices. Our Security APL infor-
mation agent advertises:

(ADVERTISE
:SENDER secapl :RECEIVER matchmaker
:ONTOLOGY advertisement
:content

(SERVICE security-apl
:PRICING 0
:DURATION (5 seconds)
:RELIABILITY .89
:SENDER :ALL

3This restriction can be removed either by adding another basic
behavior to an information agent that creates in effect a new “value-
history” attribute, or by simply adding value-histories to the local
database definition itself. The first alternative is more conservative
of space.



:RECEIVER secapl
:LANGUAGE simple-query
:ONTOLOGY stocks
:PERIOD (> 5)
:DEADLINE (> 10)
:REPORT-ACTION (one all stream)
:TYPE answer-query
:CONTENT

(:ATTRIBUTES previous-value timestamp
:SCHEMA

(symbol :SELECTABLE :PRIMARYKEY
:PREDICATES (eq))

(company :SELECTABLE
:PREDICATES (eq =˜))

(exchange :RANGE (NYSE AMEX NASDAQ))
(reference-date :RANGE (- *now* 15))
(price )))

Advertising Behaviors

Along with the basic behaviors described earlier to deal with
one shot, periodic, and pattern-monitoring queries, message
polling, local database cache maintenance, and cloning, sim-
ple and multi-source information agents use a shared basic
advertising behavior, based on their local database schema as
described in the previous section. Figure 1 shows the task
structure which results from the basic planner reduction of
the “advertise” task, as shared by both types of information
agents.

The reduction is best understood in two parts: the first
is the initial communication to the matchmaker, the second
are the actions associated with the “shutdown” of the adver-
tise task (Make Un-Advertisement and the SendKQML on
the lower right). The task structure is expressed in a hierar-
chical task network planning formalism developed for infor-
mation gathering agents that focuses on representing the in-
formation flow in a plan, and allows the representation of so-
phisticated control relationships (such as loops and periodic4

actions). An important focus of our current (Williamson,
Decker, & Sycara 1996) and earlier work (Decker & Lesser
1993) is that control relationships are derivative of other, more
basic relationships such as required information flows, effects
of one task on the duration or result quality of another, etc.
The planner fleshes out these more basic relationships; the
agent’s scheduler uses this information to produce a sched-
ule (or schedules in a dynamic multi-criteria decision-making
situation (Garvey, Humphrey, & Lesser 1993)) that selects,
orders, and locates in time specific instantiated actions. More
information on the planner and this formalism can be found
in (Williamson, Decker, & Sycara 1996).

The three actions “Make Advertisement”, “Get Match-
maker Name”, and the topmost instance of “SendKQML”
are involved in sending the advertising message. Both “Get
Matchmaker Name” and this instance of “SendKQML” are

4Technically, what we are calling here informally “periodic” are
formally “distance-constrained” or “having a max repeated invoca-
tion separation constraint”.

periodic. All three tasks have an initial deadline of “as soon as
possible”. “Make Advertisement” constructs the KQML ad-
vertisement message content (using the agent’s local database
schema plus execution information gathered and persistently
stored from previous invocations) and provides it to Send-
KQML. The typical first reduction for “Get Matchmaker
Name” is to use a predefined name; alternate reductions in-
volving persistent memory or more complex network level
protocols are possible.5 The matchmaker name is supplied
as the RECEIVER of the KQML message, and the REPLY-
WITH field is supplied by the planner at reduction-time. If
no matchmaker currently exists or some other network error
occurs, the SendKQML signals a “DOWN” outcome, which
provides a new signal to Get Matchmaker name, and the two
tasks are rescheduled (they are periodic) and rerun. In general,
the planner strives to produce structures such that agents can
appear on the scene at any time and in any order (as well as
disappear, which see next).

The two action instances “Make Un-Advertisement” and
the second, lower right SendKQML instance comprise the
shutdown actions for this task. A task is shutdown whenever:

1. The planner removes the current reduction (because, for
instance, it has failed). This would not typically happen
for advertisement, but does for other tasks.

2. The agent itself intentionally (via a “Termination” action)
or unintentionally (unrecoverable error/signal) goes off-
line.

Shutdown actions are placed on both the regular and a special
shutdown scheduling queue. Both actions are non-periodic
and have a deadline of “only execute if there’s nothing bet-
ter to do”. Actions on the shutdown queue are architecturally
guaranteed to execute at least once, so in particular, the “Make
Un-Advertisement” action will either execute during normal
processing when the agent would otherwise be idle, or dur-
ing shutdown if the agent never managed to have a second
to spare. The SendKQML that actually passes the advertise-
ment retraction on to the matchmaker has two extra enable-
ment conditions: first, that the initial advertisement actually
completed without error, and secondly that the task is being
shutdown.

This basic advertising behavior is shared (reused) for all
information agents (simple and multi-source). Other types
of task agents also share this behavior, except that the tasks
“Make Advertisement” and “Make Un-advertisement” are ex-
panded differently for agents that are not advertising a local
database.

5In our system, the matchmaker is the only agent with a known
name. The default matchmaker name can be changed by a Unix
environment variable, thus our group can have agents working in
multiple logical agent namespaces even though they share a small set
of physical processors.



SendKQML
KQML

Receiver
Reply-With

OK
DOWN

Make
Un-Advertisement

OK

Make
Advertisement

OK

Get
MatchMaker

Name

Do-It OK

Advertise
Shutdown

SendKQML

enable
do-it

KQML
Receiver

Reply-With

OK
DOWN

Information flows

Subtask relationships

Figure 1: One planner task structure reduction for the “advertise” task.

Organizing Based on Capability Models
The previously described agent capability model and ac-
companying advertising behavior are very useful for forming
several different agent organizations. These organizational
possibilities include organizing as a market (agents choose
the lowest-priced service to do the queries), as a Federation
(agents defer all choice to a Facilitator Agent), or a functional
unit (a Manager multi-source information agent speaks for a
set of simple information agents that ’work’ for it).

The simplest organization supported is the dynamic, un-
structured, and uncoordinated team. Agents who request an
action or information figure out at that point if the query
can be answered and by whom, choosing an action- or in-
formation supplier randomly if there is more than one. For
one-shot, periodic, or change-monitoring queries, this sim-
ple behavior is implemented via a task reduction shared by
all information, task, and interface agents for the task “An-
swerQuery”. The shared behavior examines the target query
and constructs an appropriate matchmaker query. The match-
maker query would check for any agent that has advertised
to answer queries in the target language and ontology, with
the appropriate field names.6 An agent is chosen (randomly)
from this list, and the target query is wrapped in the appro-
priate KQML performative and sent on. Failures (either net-
work failures, or in the case of monitoring and other long-
term queries the failure of the remote agent) cause the agent
to go back to the matchmaker, looking for a new agent. With
sufficient redundancy and/or a quick restart for system fail-
ures, the resulting system is fairly robust. However, it is not
particularly good at balancing the load on redundant infor-
mation sources, dealing with multiple ontologies or queries

6Remember, these names are fixed by the ontology—this is an
important service provided by the information agent abstraction over
the true underlying data.

that cannot be answered by a single agent, or providing pre-
dictably robust service (as opposed to merely being able to
recover from errors. Different organizational forms can better
provide some of these characteristics.

For example, market coordination mechanisms (Wellman
1993) can provide better load balancing as well as more so-
phisticated services that cannot be provided for free. One
way to implement this is to more carefully peruse the list of
potential agents returned by the matchmaker query, paying
attention to the pricing and reliability information. Rather
than using one-shot matchmaker queries, agents can subscribe
to matchmaker information streams about their important
queries, so as new information sources come on-line, the agent
can take advantage of possible lower prices and/or higher re-
liability (transaction cost considerations aside). The basic ad-
vertising behavior could be broadened so as to periodically (or
under certain trigger conditions) update the agent’s advertise-
ment (i.e., reliability and pricing information that may factor
in load). This brings with it new pluses and minuses; our pur-
pose here is only to argue that we provide the basic support
for such an organization.

Federated organizations (Wiederhold, Wegner, & Cefi
1992; Genesereth & Katchpel 1994; Finin et al. 1994) pro-
vide a different set of organizing principals. In these architec-
tures what we have been describing as a fairly limited match-
maker becomes a facilitator, taking on the new behaviors of
brokering, mediation, and translation (between ontologies).
For example, in a brokered organization, the AnswerQuery
task is reduced to one in which the facilitator (matchmaker)
takes on the target query, and accepts responsibility for find-
ing who can answer it, forwarding the query to them, and
forwarding the reply to the original agent. By centralizing
communication, such organizations allow easier load balanc-
ing and the provision of services such as ontological trans-



formations or simple multiple query integration, but place a
great extra load (and responsibility) on the facilitator agent.

Traditional human bureaucratic functional units provide
another possible organization. A multi-source information
agent acts as a manager for agents with similar data sources
and ontologies, such as a stock ticker manager multi-source
information agent and a slew of individual stock ticker simple
information agents (Security APL, Galt, DBC Online, Lom-
bard, etc.) with partially overlapping schemas. When the
manager comes on-line, it recruits the others as employees.
These agents then un-advertise from the main matchmaker,
and the manager becomes the sole entry point for queries to
the new corporation. The manager acts as a KQML broker
or recruiter for this limited set of queries, allowing tight con-
trol over load balancing, greater service reliability, and a po-
tentially wider range or services (i.e. queries that cannot be
answered by a single agent acting alone).

Current & Future Work
One important are of future work is in expanding the adver-
tisement ontology to new classes of service. One new class of
service we need for our application is graphical web page con-
struction, which is currently done by two of the WARREN
agents. Currently, these agents advertise thier capabilities as if
they were simple information agents. For example, one agent
creates a web page consisting of a graph of intraday stock
prices notated by the temporal location of each new news
story about that stock. This agent advertises a database whose
records consist of a ticker symbol and a URL (of the corre-
sponding page). Only after some agent requests the URL for
a new stock does this agent actually begin the process of col-
lecting the different types of information (from other agents)
needed to produce the desired graphics.

Currently, the main WARREN system consists of 6 sim-
ple information agents (two different stock tickers, news, two
SEC Edgar agents for both historical fundamental data and
textual annual report (10-K) retrieval, and the matchmaker)
2 simple integration agents (one for price and news graphs,
one for the NAIC “stock check list” analysis of historical sales,
EPS, and pricing data) and a portfolio interface agent that
interacts with the user using a web browser and forms. The
portfolio agent can be customized to present different types
of users different kinds of information. Agents can enter and
exit the system at any time, in any order, and with any name,
organized as an unstructured team. An experimental study of
the various tradeoffs of the alternate organizations discussed
here is underway, beginning with matchmade and brokered
systems.

Acknowledgments
This work has been supported in part by ARPA contract
F33615–93–1–1330, in part by ONR contract N00014–95–
1–1092, and in part by NSF contract IRI–9508191.

References

Chu-Carroll, J., and Carberry, S. 1995. Communication
for conflict resolution in multi-agent colaborative planning.
In Proceedings of the First International Conference on Multi-
Agent Systems, 49–56. San Francisco: AAAI Press.

Cohen, P. R., and Levesque, H. J. 1990. Intention is choice
with commitment. Artificial Intelligence 42(3):213–261.

Cohen, P., and Levesque, H. 1995. Communicative actions
for artificial agents. In Proceedings of the First International
Conference on Multi-Agent Systems, 65–72. San Francisco:
AAAI Press.

Collet, C.; Huhns, M.; and Shen, W. 1991. Resource inte-
gration using a large knowledge base in Carnot. Computer.

Corkill, D. D.; Lesser, V. R.; and Hudlická, E. 1982. Uni-
fying data-directed and goal-directed control: An example
and experiments. In Proceedings of the National Conference
on Artificial Intelligence, 143–147.

Decker, K. S., and Lesser, V. R. 1993. Quantitative mod-
eling of complex computational task environments. In Pro-
ceedings of the Eleventh National Conference on Artificial In-
telligence, 217–224.

Decker, K. S., and Lesser, V. R. 1995. Designing a family
of coordination algorithms. In Proceedings of the First In-
ternational Conference on Multi-Agent Systems, 73–80. San
Francisco: AAAI Press. Longer version available as UMass
CS-TR 94–14.

Durfee, E., and Lesser, V. 1991. Partial global planning:
A coordination framework for distributed hypothesis forma-
tion. IEEE Transactions on Systems, Man, and Cybernetics
21(5):1167–1183.

Finin, T.; Fritzson, R.; McKay, D.; and McEntire, R. 1994.
KQML as an agent communication language. In Proceed-
ings of the Third International Conference on Information and
Knowledge Management CIKM’94. ACM Press.

Garvey, A.; Humphrey, M.; and Lesser, V. 1993. Task in-
terdependencies in design-to-time real-time scheduling. In
Proceedings of the Eleventh National Conference on Artificial
Intelligence, 580–585.

Genesereth, M., and Katchpel, S. 1994. Software agents.
Communications of the ACM 37(7):48–53,147.

Gmytrasiewicz, P. J.; Durfee, E. H.; and Wehe, D. K. 1991.
A decision-theoretic approach to coordinating multiagent
interactions. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, 62–68.

Gruber, T. 1993. Toward principles for the design of on-
tologies used for knowledge sharing. Technical Report KSL-
93-4, Knowledge Systems Laboratory, Stanford University.



Jennings, N. R. 1993. Commitments and conventions:
The foundation of coordination in multi-agent systems. The
Knowledge Engineering Review 8(3):223–250.

Oates, T.; Prasad, M. V. N.; Lesser, V. R.; and Decker, K. S.
1995. A distributed problem solving approach to coopera-
tive information gathering. In AAAI Spring Symposium on
Information Gathering in Distributed Environments.

Rao, A., and Georgeff, M. 1995. BDI agents: From theory
to practice. In Proceedings of the First International Confer-
ence on Multi-Agent Systems, 312–319. San Francisco: AAAI
Press.

Rosenschein, J. S., and Genesereth, M. R. 1985. Deals
among rational agents. In Proceedings of the Ninth Interna-
tional Joint Conference on Artificial Intelligence, 91–99.

Sycara, K., and Zeng, D. 1995. Task-based multi-agent
coordination for information gathering. In AAAI Spring
Symposium on Information Gathering in Distributed Environ-
ments.

Sycara, K. 1989. Multi-agent compromise via negotiation.
In Huhns, M., and Gasser, L., eds., Distributed Artificial In-
telligence, volume Volume 2. Pittman.

Tambe, M. 1995. Recursive agent and agent group tracking
in a real-time, dynamic environment. In Proceedings of the
First International Conference on Multi-Agent Systems, 368–
375. San Francisco: AAAI Press.

Walker, M. 1994. Planning to converse with an inference-
limited agent. In AAAI-94 Workhop on Planning for Intera-
gent Communication, 53–62.

Wellman, M. 1993. A market-oriented programming envi-
ronment and its application to distributed multicommodity
flow problems. Journal of Artificial Intelligence Research 1:1–
23.

Wiederhold, G.; Wegner, P.; and Cefi, S. 1992. To-
ward megaprogramming. Communications of the ACM
33(11):89–99.

Williamson, M.; Decker, K.; and Sycara, K. 1996. Unified
information and control flow in hierarchical task networks.
In Proceedings of the AAAI-96 workshop on Theories of Plan-
ning, Action, and Control.


