
Policy Recognition for Multi-Player Tactical Scenarios

Gita Sukthankar
Robotics Institute

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA
gitars@cs.cmu.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA
katia+@cs.cmu.edu

ABSTRACT

This paper addresses the problem of recognizing policies
given logs of battle scenarios from multi-player games. The
ability to identify individual and team policies from observa-
tions is important for a wide range of applications including
automated commentary generation, game coaching, and op-
ponent modeling. We define a policy as a preference model
over possible actions based on the game state, and a team
policy as a collection of individual policies along with an
assignment of players to policies. This paper explores two
promising approaches for policy recognition: (1) a model-
based system for combining evidence from observed events
using Dempster-Shafer theory, and (2) a data-driven dis-
criminative classifier using support vector machines (SVMs).
We evaluate our techniques on logs of real and simulated
games played using Open Gaming Foundation d20, the rule
system used by many popular tabletop games, including
Dungeons and Dragons.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Misc.; I.2.1 [Applications
and Expert Systems]: Games

General Terms
Algorithms

Keywords
policy recognition, multi-player games, Dempster-Shafer ev-
idential reasoning, Support Vector Machines (SVM), plan
recognition

1. INTRODUCTION
This paper addresses the problem of analyzing multi-player

tactical battle scenarios from game logs. The ability to iden-
tify individual and team plans from observations is impor-
tant for a wide range of applications including constructing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

opponent models, automated commentary, coaching appli-
cations, and surveillance systems. However, the military
adage “no plan, no matter how well conceived, survives con-
tact with the enemy intact” reveals that in many cases team
plan execution halts early in the course of battle due to un-
expected enemy actions. Of course, an ideal plan would
include courses of action for all possible contingencies, but
typical battle plans only include options for a small set of
expected outcomes. If the enemy’s actions cause the world
state to deviate from this expected set, the team is often
forced abandon the plan. After multiple plans have been
initiated and abandoned, matching the observation trace
becomes a difficult proposition, even for an omniscient ob-
server. Moreover, it is unclear whether expert human teams
create deep plan trees in situations where enemy actions may
force plan abandonment after a few time steps.

Even in cases when the pre-battle plan has been aban-
doned, we hypothesize that successful teams continue to fol-
low a policy through the course of battle and that this policy
can be recovered from the observed data. We define a policy
as a preference model over possible actions, based on the
current game state. A team policy is a collection of individ-
ual policies along with an assignment of players to policies
(roles). Policies are typically broad but shallow, covering all
possible game states without extending far through time,
whereas plans are deep recipes for goal completion, extend-
ing many time steps into the future, but narrow, lacking
contingencies for all but a small set of expected outcomes.
The same player intentions can be expressed as either a plan
or a policy for game play.

In this paper, we present two techniques for recovering
individual and team policies from multi-player tactical sce-
narios. Our scenarios are described and played using the
Open Gaming Foundation d20 Game System (v3.5) [18].
The d20 System is a set of rules governing combat, negotia-
tion, and resource management employed by popular turn-
based tabletop games including Dungeons and Dragons and
the Star Wars role-playing game.

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes related work on goal, policy, and plan
recognition in games. Section 3 defines the policy recogni-
tion problem, describes the d20 rule system, and presents
the battle scenarios that are used by our human players.
The game logs from these battles provided the data on which
our policy recognition approaches are evaluated. Sections 4
and 5 present two complementary methods for policy recog-
nition: an evidential reasoning system for scoring data from
game logs and a discriminative classifier trained on simu-



lated game logs. Section 6 discusses results in the context
of plan recognition, and Section 7 concludes the paper.

2. RELATED WORK
In this section, we present a brief overview of related

work on analyzing player actions in games and military
scenarios. Single-player keyhole plan recognition was im-
plemented for text-based computer adventure games by Al-
brecht et al. [1] where dynamic Bayesian networks were used
to recognize quest goals and to predict future player actions.
Mott et al. [11] demonstrated a similar goal recognition sys-
tem for interactive narrative environments using scalable n-
gram models. Unlike those systems, our work focuses on the
tactical aspect of battlefield adventures where multi-player
interactions, limited player knowledge and stochastic action
outcomes significantly increase the degree of unpredictabil-
ity.

Behavior recognition has also been explored in the context
of first-person shooter computer games. Moon et al. [10]
analyzed team effectiveness in America’s Army Game in
terms of communication and movement patterns. Rather
than recognizing behaviors, their goal was to distinguish be-
tween effective and ineffective patterns. Sukthankar and
Sycara [16] employed a variant of Hidden Markov Mod-
els to analyze military team behaviors in Unreal Tourna-
ment based exclusively on the relative physical positioning
of agents.

Team behavior recognition in dynamic sports domains has
been attempted using both model-based and data-driven
approaches. Intille and Bobick [8] developed a framework
for recognizing known football plays from multi-agent belief
networks that were constructed from temporal structure de-
scriptions of global behavior. Bhandari et al. [3] applied un-
supervised data mining and knowledge discovery techniques
to recognize patterns in NBA basketball data. Recently,
Beetz et al. [2] developed a system for matching soccer ball
motions to different action models using decision-trees. The
work on behavior recognition in sports has focused primar-
ily on the mapping of movement traces to low-level game
actions (e.g., scoring and passing). By contrast, our paper
examines sequences of higher-level agent actions and game
state to infer the player’s policy and current tactical role in
the team.

Policy recognition has been applied to problems in the
Robocup domain. Chernova and Veloso [6] presented a tech-
nique to learn an opponent evasion policy from demonstra-
tion. Kuhlmann et al. [9] fitted a team’s movement patterns
to a parametric model of agent behavior for a coaching task.
Patterns were scored according to their similarity to models
learned from the pre-game logs. This work is conceptually
similar to our data-driven approach for policy recognition.

3. DOMAIN
To simulate the process of enemy engagement, we adapted

the combat section of Open Gaming Foundation’s d20 Sys-
tem (v3.5) to create a set of multi-player tactical scenarios.
The d20 System has several useful properties that make it
a promising domain:

1. D20 is a turn-based rather than a real-time game sys-
tem. A game can thus be logged as a sequence of
discrete actions performed by each player and policy

recognition can be directly executed on these streams
of actions and observed game states.

2. The outcome of actions is stochastic, governed by rolling
dice (typically an icosahedral die, abbreviated as d20 ).
The rules define the difficulty levels for a broad range
of combat tasks; to determine whether a particular ac-
tion succeeds, the player rolls a d20 and attempts to
score a number that is greater than or equal to the
difficulty level of the task.

3. Spatial arrangements affect the outcome of many of
the combat actions, making the difficulty level easier
or harder; for instance, two allies on opposite sides of
a target gain a mutual benefit for flanking the enemy.
Thus, the tactical arrangements of units on the grid
can significantly influence the course of a battle. Ex-
perienced players coordinate such actions to maximize
their chance of success.

4. Teamwork between players is of paramount importance.
The opposing forces are designed to be impossible for a
single player to defeat. However, certain game rewards
are occasionally awarded to the first player to achieve
an objective. To succeed, players must simultaneously
contribute to team goals in battle while pursuing their
own competitive objectives.

A typical d20 Game is played by a group of 3–6 play-
ers with one referee. Each player controls one character
within the virtual gaming world that the referee brings to life
through verbal descriptions and miniatures on a dry-erase
tabletop gaming map (Figure 1). Characters have a well-
defined set of capabilities that determine their competence
at various tasks in the virtual world. The referee controls the
actions of all other entities in the virtual world (known as
non-player characters). During a typical four hour session,
the referee poses a series of challenges—diplomatic negotia-
tions, battles, and puzzles—that the players must coopera-
tively solve. Success for the players enhances the capabilities
of their characters, giving them more abilities and resources.
Failure can result in the death of characters or the loss of
resources Thus, characters’ capabilities persist over multiple
gaming sessions which makes it different from other iterative
games where state is reset at the conclusion of each session.

Although tabletop gaming lacks the audio and visual spe-
cial effects of its increasingly-popular computerized cousins,
tabletop games have a stronger emphasis on team tactics
and character optimization. In battle, time becomes a lim-
ited resource and players typically have to coordinate to
overcome their foes before the foes defeat them. Since most
computer games are real-time rather than turn-based, they
disproportionally reward fast keyboard reflexes and manual
dexterity over tactical and strategic battle planning.

3.1 Multi-Player Tactical Scenarios
Our experiments in policy recognition focus on the sub-

set of the d20 system actions that deal with tactical battles
(as opposed to diplomatic negotiation or interpersonal in-
teraction). Each scenario features a single battle between
a group of player characters and a set of referee-controlled
opponents. The players have limited knowledge of the world
state and limited knowledge about their opponents’ capabil-
ities and current status; the referee has complete knowledge
of the entire game state. Players are allowed to communi-
cate in order to facilitate coordination but the referee will



Figure 1: A tactical battle in the d20 System. Play-
ers control characters represented by plastic minia-
tures in a discretized grid environment. Actions
with stochastic outcomes are resolved using dice,
with probabilities of a successful outcome listed in
rulebooks. A human referee (not shown) adjudi-
cates the legality of player actions and controls op-
ponents, such as the dragon.

Table 1: Characters and summarized capabilities

Name Offensive Defensive Magic Stealth
A high medium low low
B medium high low low
C low medium medium low
D high low medium medium
E medium low low high
F medium low high medium

usually disallow excessive communication during battle and
limit players to short verbal utterances.

Figure 2 shows a typical multi-player tactical scenario
from Dungeons & Dragons. The three players must cooper-
ate to achieve one of two objectives: defeat the dragon, or
distract the dragon to rescue the prisoner in the corner of the
room. Based on the capabilities of their characters, the play-
ers select a goal and allocate functional roles for the upcom-
ing battle. Each of the three players was assigned a charac-
ter originally developed for the 2006 Dungeons and Dragons
Open Championships [7]; their capabilities are summarized
in Table 1. Each character is capable of fulfilling multiple
roles in a team but each is poorly suited to at least one role.
The roles are:

1. slayer who fights the dragon in close-combat;
2. blocker, a defensive character who shields more vul-

nerable characters;
3. sniper, who skirmishes the dragon at range;
4. medic who restores health to other characters;
5. scout, a stealthy character who can rescue the pris-

oner without being noticed by the distracted dragon.

3.2 Game Mechanics
The battle sequence in each scenario is as follows:
1. The referee draws the terrain and places the opponents

on the grid at the beginning of the scenario. Then the

Figure 2: Primary tactical scenario. The three hu-
man players select roles that enable them to achieve
one of two goals: (1) defeat the dragon in battle; (2)
distract the dragon while one character frees the
prisoner.

players place their miniatures on the grid to indicate
their starting location.

2. At the start of the battle, each entity (players and op-
ponents) rolls an initiative to determine the order of
action each round (time unit). This initiative is main-
tained through the battle (with a few possible excep-
tions).

3. Each round is a complete cycle through the initiatives
in which each entity can move and take an action from
a set of standard actions.

4. If a character’s health total goes below 0, it is dead or
dying and can no longer take any actions in the battle
unless revived by another player’s actions.

Each character has the following attributes that affect
combat actions: (1) hit points: current health total; (2)
armor class: a measure of how difficult a character is to
hit with physical attacks; (3) attack bonus: a measure of
how capable a character is at handling weaponry. When a
character attacks an opponent, the attack is resolved using
the following formula to determine whether the attack is
successful:

d(20) + attack bonus + modifiers ≥ armor class + modifiers

where d(20) is the outcome of a twenty-sided die roll. If the
expression is true, the attack succeeds and the opponent’s
hit points are reduced.1 Situational modifiers include the
effect of the spatial positioning of the characters. For in-
stance, the defender’s armor class improves if the attacker
is partially occluded by an object that provides cover.

3.3 Problem Formulation
We define the problem of policy recognition in this do-

main as follows. Given a sequence of input observations O
(including observable game state and player actions) and a

1For Dungeons and Dragons, which is based in a fantasy
setting, a similar system details how different characters can
employ magic to attack opponents and how resistant char-
acters are to the effects of magic.



set of player policies P and team policies T , the goal is to
identify the policies ρ ∈ P and τ ∈ T that were employed
during the scenario. A player policy is an individual’s pref-
erence model for available actions given a particular game
state. For instance, in the scenario shown in Figure 1, the
archer’s policy might be to preferentially shoot the dragon
from a distance rather than engaging in close combat with
a sword, but he/she might do the latter to protect a fallen
teammate. In a team situation, these individual policies can
be used to describe a player’s role in the team (e.g., combat
medic). A team policy is an allocation of players to these
tactical roles and is typically arranged prior to the scenario
as a locker-room agreement [15]. However, circumstances
during the battle (such as the elimination of a teammate
or unexpected enemy reinforcements) can frequently force
players to take actions that were a priori lower in their in-
dividual preference model.

In particular, one difference between policy recognition in
a tactical battle and typical plan recognition is that agents
rarely have the luxury of performing a pre-planned series
of actions in the face of enemy threat. This means that
methods that rely on temporal structure, such as Dynamic
Bayesian Networks (DBNs) and Hidden Markov Models are
not necessarily be well-suited to this task. An additional
challenge is that, over the course of a single scenario, one
only observes a small fraction of the possible game states,
which makes policy learning difficult. Similarly, some games
involve situations where the goal has failed and the most
common actions for a policy are in fact rarely observed (e.g.,
an enemy creates a smokescreen early in the battle, forcing
the archer to pursue lower-ranked options). The following
sections present two complementary approaches to policy
recognition: (1) a model-based method for combining evi-
dence from observed events using Dempster-Shafer theory,
and (2) a data-driven discriminative classifier using support
vector machines (SVMs).

4. MODEL-BASED POLICY RECOGNITION
The model-based method assigns evidence from observed

game events to sets of hypothesized policies. These beliefs
are aggregated using the Dempster-Shafer theory of eviden-
tial reasoning [14]. The primary benefit of this approach is
that the model generalizes easily to different initial start-
ing states (scenario goals, agent capabilities, number and
composition of the team).

4.1 Dempster-Shafer Theory
This section presents a brief overview of the Dempster-

Shafer theory of evidential reasoning [14]. Unlike tradi-
tional probability theory where evidence is associated with
mutually-exclusive outcomes, the Dempster-Shafer theory
quantifies belief over sets of events. The three key notions
of Dempster-Shafer theory are: (1) basic probability assign-
ment functions (m); (2) belief functions (Bel); (3) plausi-
bility functions (Pl). We describe these below.

The basic probability assignment function assigns a num-
ber between 0 and 1 to every combination of outcomes (the
power set). Intuitively this represents the belief allocated
to this subset and to no smaller subset. For example, after
observing an agent’s actions over some time, one may assert
that it is following either policy ρ1 or ρ2, without further
committing belief as to which of the two is more likely. This

contrasts with the standard Bayesian approach that would
typically impose a symmetric, non-informative prior over ρ1

and ρ2 (asserting that they were equally likely). More for-
mally, given a finite set of outcomes Θ whose power set is
denoted by 2Θ, the basic probability assignment function,
m : 2Θ 7→ [0, 1] satisfies:

m(∅) = 0
X

A⊆Θ

m(A) = 1.

Following Shafer [14], the quantity m(A) measures the be-
lief committed exactly to the subset A, not the total belief
committed to A. To obtain the measure of the total belief
committed to A, one must also include the belief assigned to
all proper subsets of A. Thus, we define the belief function
Bel : 2Θ 7→ [0, 1] as

Bel(A) =
X

B⊆A

m(B).

Intuitively the belief function quantifies the evidence that
directly supports a subset of outcomes. The non-informative
belief function (initial state for our system) is obtained by
setting: m(Θ) = 1 and m(A) = 0 ∀A 6= Θ.

The plausibility function quantifies the evidence that does
not directly contradict the outcomes of interest. We define
the plausibility function Pl : 2Θ 7→ [0, 1] as

Pl(A) =
X

B∩A 6=∅

m(B).

The precise probability of an event is lower-bounded by its
belief and upper-bounded by its plausibility functions, re-
spectively.

We employ Dempster-Shafer theory to model how ob-
served evidence affects our beliefs about a character’s cur-
rent policy. For instance, seeing a character moving on the
battlefield could indicate that the agent’s role is that of
a sniper, a medic or a scout (rather than a slayer or
blocker). This can be expressed as:

m({sniper,medic,scout}) = 0.7 and m(Θ) = 0.3.

The belief that the agent is adopting one of these roles is
0.7, yet the belief that the agent is specifically a sniper is
0 (although the plausibility for either of these is 1). Con-
versely, while the belief that the agent is adopting a slayer
policy is also 0, the plausibility is only 0.3.

Dempster-Shafer theory also prescribes how multiple, in-
dependent sources of evidence should be combined. Demp-
ster’s rule of combination [14] is a generalization of Bayes’
rule and aggregates two basic probability assignments m1

and m2 using the following formula:

m12(∅) = 0

m12(C 6= ∅) =

P
A∩B=C m1(A)m2(B)

1−
P

A∩B=∅ m1(A)m2(B)
.

One potential issue with this rule is its treatment of con-
flicting evidence. The normalizing term in the denominator
redistributes the probability mass associated with conflict-
ing evidence among the surviving hypotheses. Under certain
conditions, this has the undesirable property of generating
counterintuitive beliefs. In the pathological case, an out-
come judged as unlikely by both m1 and m2 can have a



value of 1 in m12 if all other subsets conflict. To address
this problem, several other rules of combination have been
proposed [13].

Yager’s rule [19] is very similar to Dempster’s rule with
the single exception that conflicting evidence is assigned to
the universal set, m(Θ), rather than used as a normalizer.
The rule can be stated as follows:

m12(∅) = 0

m12(C 6= ∅) =
X

A∩B=C

m1(A)m2(B)

m12(Θ) ← m12(Θ) +
X

A∩B=∅

m1(A)m2(B).

Although this formulation is not associative, we implement
Yager’s rule in a quasi-associative manner to enable efficient
online update [13]. In the absence of conflict, Yager’s rule
gives the same results as Dempster’s rule of combination.

Finally, we consider another quasi-associative rule: the
intuitive idea of averaging corresponding basic probability
assignments [13]:

m1...n(A) =
1

n

nX

i=1

mi(A).

Unfortunately it is impossible to know a priori which rule
will perform well in a given domain since no single rule has
all desirable properties.

4.2 Empirical Evaluation
Based on domain knowledge, we identified a general set of

observable events that occur during a Dungeons and Drag-
ons battle. Each of these events was associated with a basic
probability assignment function to assign beliefs over sets
of individual policies. For example, the observed event of a
character being attacked by an opponent is associated with:
m(Θ) = 0.1, m({scout}) = 0.4, m({blocker}) = 0.5. This
rule assigns a large belief (0.5) to the blocker policy, while
reducing the plausibility of the scout policy to 0.1. Note
that the set {scout} also includes the blocker policy, thus
the plausibility of blocker is 1. The plausibility of the re-
maining three policies is 0.5.

Data from a series of Dungeons and Dragons games using
the tactical scenario shown in Figure 2 was recorded and
annotated according to our list of observable events. The
m-functions for the set of events observed for each char-
acter was aggregated using the three rules of combination
described in Section 4.1.

We computed the average accuracy over the set of battles
for each of the three rules of combination. At the conclu-
sion of each battle, the system made a forced choice, for
each player, among the set of policies (roles). Each player
was classified into the singleton policy with the highest be-
lief. Comparing this against the ground truth and averaging
over battles produces the confusion matrix given in Table 2.
We note that, according to this forced-choice metric, all of
the combination rules perform reasonably well, with Demp-
ster’s Rule scoring the best. The largest source of confu-
sion is that the slayer policy is occasionally misclassified as
blocker. This motivates the data-driven method described
in Section 5.1 where we specifically learn classifiers to dis-
criminate between these two similar policies.2

2The blocker and slayer policies can generate very simi-

To illustrate how belief changes as evidence is aggregated
using the different combination rules, we plot the belief for
each policy for one battle from our dataset (Figure 3). Since
neither Yager nor averaging employ normalization, we plot
their beliefs on a semi-log scale. We note the following.
Yager’s rule makes conflicting evidence explicit by allocating
significant mass to the unknown policy. In particular, this
reveals the difficulty of distinguishing between the blocker
and slayer, even late in the battle. A concern with Yager’s
rule is that the belief for a policy decays over time, despite
increasing evidence because all of the rules leak some mass
to the unknown set. Averaging corresponding m-values
performs the least well in our domain.

5. DATA-DRIVEN POLICY RECOGNITION
To discriminate between similar policies, we propose a

data-driven classification method that is trained using sim-
ulated battle data. By training the method on a specific sce-
nario, it can exploit subtle statistical differences between the
observed outcomes of similar policies. For instance, char-
acters following the slayer policy should both inflict more
damage on their opponents and receive more damage in re-
turn, whereas the more defensive blocker policy occupies
the enemy without resulting in substantial losses on either
side. This section describes the classifier that we employ,
Support Vector Machines (SVM), and evaluates the method
on a second scenario (Figure 4).

5.1 Support Vector Machines
The goal of policy classification is to label an observed

action sequence as a member of one of k categories (e.g.,
blocker vs. slayer). We perform this classification us-
ing support vector machines [17]. Support vector machines
(SVM) are a supervised binary classification algorithm that
have been demonstrated to perform well on a variety of pat-
tern classification tasks. Intuitively the support vector ma-
chine projects data points into a higher dimensional space,
specified by a kernel function, and computes a maximum-
margin hyperplane decision surface that separates the two
classes. Support vectors are those data points that lie closest
to this decision surface; if these data points were removed
from the training data, the decision surface would change.
Given a labeled training set {(x1, y1), (x2, y2), . . . , (xl, yl)},
where xi ∈ <N is a feature vector and yi ∈ {−1, +1} is
its binary class label, an SVM requires solving the following
optimization problem:

min
w,b,ξ

1

2
wT w + C

lX

i=1

ξi

constrained by:

yi(w
T φ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.

The function φ(.) that maps data points into the higher di-
mensional space is not explicitly represented; rather, a ker-
nel function, K(xi,xj) ≡ φ(xi)φ(xj), is used to implicitly
specify this mapping. In our application, we use the popular

lar observable state since intelligent opponents often target
the slayer preferentially in order to eliminate their biggest
threat.



Table 2: Confusion matrix for model-based policy recognition

Dempster Yager Averaging
sniper slayer medic blocker scout sniper slayer medic blocker scout sniper slayer medic blocker scout

sniper 100% 0% 0% 0% 0% 100% 0% 0% 0% 0% 88% 0% 0% 12% 0%
slayer 0% 83% 0% 17% 0% 0% 83% 0% 17% 0% 7% 40% 7% 39% 7%
medic 0% 0% 100% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 100% 0%
blocker 0% 0% 0% 100% 0% 0% 0% 0% 100% 0% 0% 0% 0% 100% 0%
scout 0% 0% 0% 0% 100% 0% 0% 0% 0% 100% 0% 0% 0% 0% 100%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

B
el

ie
f

Time

(a) Character A, policy=slayer

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

B
el

ie
f

Time

(b) Character C, policy=medic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

B
el

ie
f

Time

(c) Character E, policy=sniper

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8

Lo
g-

B
el

ie
f

Time

(d) Character A, policy=slayer

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8

Lo
g-

B
el

ie
f

Time

(e) Character C, policy=medic

 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 0.01
 0.1

 1

 0  1  2  3  4  5  6  7  8

Lo
g-

B
el

ie
f

Time

(f) Character E, policy=sniper

 0.1

 1

 0  1  2  3  4  5  6  7  8

Lo
g-

B
el

ie
f

Time

Sniper
Slayer
Medic

Blocker
Sneak

Unknown

(g) Character A, policy=slayer

 0.1

 1

 0  1  2  3  4  5  6  7  8

Lo
g-

B
el

ie
f

Time

Sniper
Slayer
Medic

Blocker
Sneak

Unknown

(h) Character C, policy=medic

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8

Lo
g-

B
el

ie
f

Time

Sniper
Slayer
Medic

Blocker
Sneak

Unknown

(i) Character E, policy=sniper

Figure 3: Evolution of beliefs over the course of one battle from the scenario shown in Figure 2. The beliefs
for policies adopted by each of the three characters, according to the three rules of combination, are shown.
The three rows correspond to Dempster’s Rule, Yager’s Rule and m-function averaging, respectively. The
columns correspond to three characters A, C, E from Table 1, adopting the ground-truth policies, slayer,
medic and sniper, respectively.



Table 3: Confusion matrix for data-driven policy
recognition on the scenario shown in Figure 4 using
the three different feature sets.

action state combined
blocker slayer blocker slayer blocker slayer

blocker 96% 4% 82% 18% 98% 2%
slayer 0% 100% 16% 84% 0% 100%

radial basis function (RBF) kernel:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0.

Many efficient implementations of SVMs are publicly avail-
able; we use LIBSVM [5] because it includes good routines
for automatic data scaling and model selection (appropriate
choice of C and γ using cross-validation). To use SVMs for
k-class classification, we train kC2 pair-wise binary classi-
fiers and assign the most popular label.

5.2 Empirical Evaluation
The data-driven method takes as input a feature vector

summarizing the observed information about the battle and
performs a forced classification into policies. We investi-
gated three choices for feature sets: (1) a histogram of the
observed character actions over the battle — this is similar
to a bag of words model in information retrieval; (2) a vec-
tor with character and enemy status at every time step; (3)
a concatenation of these two vectors.

To train the SVM, we generated training data by simu-
lating a set of single player battles in a simplified scenario,
using the policies of interest (blocker and slayer). The
trained SVM was then evaluated on several other scenarios.
Table 3 shows the confusion matrices for battles on one of
these scenarios. This scenario, shown in Figure 4, is a two-
player battle where the characters defend a bridge against
multiple opponents; the goal is to correctly classify the pol-
icy employed by the front-line character. We observe that
the data-driven method using the combined set of features
can reliably discriminate between the blocker and slayer
policies. The other two matrices indicate that, in this case,
the classifier relies mainly on the histogram of observed ac-
tions. However, we note that such data-driven methods re-
quire sufficient quantities of training data to avoid overfit-
ting, and that they generalize poorly to novel scenarios when
such data has not been provided.

6. DISCUSSION
One interesting aspect about battles in the d20 System

is that a player’s action choices are constrained by a com-
plex interaction between the character’s capabilities, its lo-
cation on the map and its equipment (including consumable
resources). Hence, different players have different attack
options, and each player has different choices over time, de-
pending on the current state of the battle. Despite the sto-
chastic nature of the domain, players typically follow battle
tactics that are identifiable to other humans. As the human
referee controlling the opponents recognizes the players’ tac-
tics, he/she will often intelligently adapt to the players’ tac-
tics better than computer game engines that are relatively
insensitive to player actions. An application of our work
would be the development of computerized opponents that
react realistically to player tactics to enhance both computer

Figure 4: Tactical scenario where two players defend
a bridge against multiple opponents.

games and military simulations. Despite its fantasy setting
with dragons and magic, the d20 tabletop system exercises
many of the tactical concepts that current military com-
manders employ in decision-making games and situational
awareness exercises [12].

Teamwork is an important aspect of tactics in the d20
system since the actions of other players can significantly af-
fect the difficulty level of various combat actions. Although
building a fully-specified team plan is typically impractical
given the complexity of the domain, players generally en-
ter battle with a “locker-room agreement” specifying the
policy that the character will seek to use in the upcom-
ing confrontation. There is not a simple mapping between
a character capabilities and this policy; an effective team
role must consider the capabilities of team members, the
expected abilities of opponents and the overall team goal.
We believe that identifying each character’s policy is an im-
portant first step towards predicting the character’s future
actions, identifying the set of team goals, and generating an
automated higher-level commentary on the scenario.

The model-based and data-driven approaches are very
complementary approaches to battle analysis. The model-
based approach generalizes well to other sets of characters,
different opponent types, and variations in scenario. The
data-driven classifier is able to detect subtle statistical differ-
ences in action and game state sequences to correctly classify
externally-similar policies. The data-driven approach does
not generalize as well to different character capabilities since
a character’s capabilities are implicitly incorporated into the
training set; thus a testing set that is statistically-different
cannot be classified accurately. We believe that the two ap-
proaches should be combined into a hybrid system where
the model-based recognizer identifies high-belief policy sets
and the data-driven classifier discriminates between those
specific policies. Such an approach is similar in spirit to
Carberry’s work on incorporating Dempster-Shafer beliefs
to focus heuristics for plan recognition [4].

7. CONCLUSION
This paper explores two promising approaches for pol-

icy recognition: (1) a model-based system for combining



evidence from observed events using Dempster-Shafer the-
ory, and (2) a data-driven classification using support vector
machines (SVMs). Evaluation of our techniques on logs of
real and simulated games demonstrate that we can recognize
player policies with a high degree of accuracy.

Using our game logging methodology and domain-generated
m-functions, the model-based approach performs extremely
well over a broad range of initial conditions. Dempster’s
rule slightly outperforms the other two rules on the forced
classification task. The majority of errors involve confusion
between the blocker and slayer policies, which appear sim-
ilar at a coarse level. To address this issues, we trained a set
of discriminative classifiers using simulated battle logs and
evaluated the effects of different feature vectors. The result-
ing classifiers are highly accurate at classifying these policies,
although they do not generalize to characters’ with different
capabilities. Thus, our two approaches are complementary
and could be combined into a hybrid policy recognition sys-
tem to provide detailed automated battle commentary of
multi-player tactical scenarios.

8. ACKNOWLEDGEMENTS
The authors would like to thank Rahul Sukthankar for

his research suggestions. This work has been supported by
AFOSR grant F49620-01-1-0542 and is continuing through
participation in the International Technology Alliance spon-
sored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-06-
3-0001.

9. REFERENCES
[1] A. Albrecht, I. Zukerman, and A. Nicholson. Bayesian

models for keyhole plan recognition in an adventure
game. Journal of User Modeling and User-Adapted
Interaction, 9:5–47, 1998.

[2] M. Beetz, J. Bandouch, S. Gedili, N. v.
Hoyningen-Huene, B. Kirchlechner, and
A. Maldonado. Camera-based observation of football
games for analyzing multi-agent activities. In
Proceedings of International Conference on
Autonomous Agents and Multi-agent Systems, 2006.

[3] I. Bhandari, E. Colet, J. Parker, Z. Pines, R. Pratap,
and K. Ramanujam. Advanced Scout: Data mining
and knowledge discovery in NBA data. Data Mining
and Knowledge Discovery, 1(1):121–125, 1997.

[4] S. Carberry. Incorporating default inferences into plan
recognition. In Proceedings of National Conference on
Artificial Intelligence, 1990.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[6] S. Chernova and M. Veloso. Tree-based policy learning
in continuous domains through teaching by
demonstration. In Proceedings of Workshop on
Modeling Others from Observations (MOO 2006),
2006.

[7] D&D Open Characters, 2006.
http://www.wizards.com/default.asp?x=rpga/

conventions/genconindy-opencharacters.

[8] S. Intille and A. Bobick. A framework for recognizing
multi-agent action from visual evidence. In Proceedings
of National Conference on Artificial Intelligence, 1999.

[9] G. Kuhlmann, W. Knox, and P. Stone. Know thine
enemy: A champion RoboCup coach agent. In
Proceedings of National Conference on Artificial
Intelligence, 2006.

[10] I.-C. Moon, K. Carley, M. Schneider, and
O. Shigiltchoff. Detailed analysis of team movement
and communication affecting team performance in the
America’s Army Game. Technical Report
CMU-ISRI-TR-04-100, Carnegie Mellon University,
2005.

[11] B. Mott, S. Lee, and J. Lester. Probabilistic goal
recognition in interactive narrative environments. In
Proceedings of National Conference on Artificial
Intelligence, 2006.

[12] J. Phillips, M. McCloskey, P. McDermott, S. Wiggins,
and D. Battaglia. Decision-centered MOUT training
for small unit leaders. Technical Report 1776, U.S.
Army Research Institute for Behavioral and Social
Sciences, 2001.

[13] K. Sentz and S. Ferson. Combination of evidence in
Dempster-Shafer theory. Technical Report
SAND2002-0835, Sandia National Labs, 2002.

[14] G. Shafer. A Mathemtical Theory of Evidence.
Princeton University Press, 1976.

[15] P. Stone and M. Veloso. Task decomposition, dynamic
role assignment, and low-bandwidth communication
for real-time strategic teamwork. Artificial
Intelligence, 12:pp.241–273, 1999.

[16] G. Sukthankar and K. Sycara. Robust recognition of
physical team behaviors using spatio-temporal models.
In Proceedings of International Conference on
Autonomous Agents and Multi-agent Systems, 2006.

[17] V. Vapnik. Statistical Learning Theory. Wiley & Sons,
Inc, 1998.

[18] d20 v3.5 System Reference Document, 2003.
http://www.wizards.com/default.asp?x=d20/

article/srd35.

[19] R. Yager. On the Dempster-Shafer framework and
new combination rules. Information Sciences,
41:pp.93–137, 2000.


