

J. Cardoso and A. Sheth (Eds.): SWSWPC 2004. LNCS 3387, pp. 26 – 42, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Bringing Semantics to Web Services:
The OWL-S Approach

David Martin1, Massimo Paolucci2, Sheila McIlraith3, Mark Burstein,
Drew McDermott, Deborah McGuinness, Bijan Parsia, Terry Payne,
Marta Sabou, Monika Solanki, Naveen Srinivasan, and Katia Sycara

1 Artificial Intelligence Center, SRI International, Menlo Park, CA, USA
martin@ai.sri.com

2 Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA

paolucci+@ri.cmu.edu
3 Department of Computer Science, University of Toronto,

Toronto, Ontario, Canada
sheila@cs.toronto.edu

Abstract. Service interface description languages such as WSDL, and related
standards, are evolving rapidly to provide a foundation for interoperation be-
tween Web services. At the same time, Semantic Web service technologies,
such as the Ontology Web Language for Services (OWL-S), are developing the
means by which services can be given richer semantic specifications. Richer
semantics can enable fuller, more flexible automation of service provision and
use, and support the construction of more powerful tools and methodologies.
Both sets of technologies can benefit from complementary uses and cross-
fertilization of ideas. This paper shows how to use OWL-S in conjunction with
Web service standards, and explains and illustrates the value added by the
semantics expressed in OWL-S.

1 Introduction

The promise of Web services and the need for widely accepted standards enabling
them are by now well recognized, and considerable efforts are underway to define and
evolve such standards in the commercial realm. In particular, the Web Services De-
scription Language (WSDL) [5] is already well established as an essential building
block in the evolving stack of Web service technologies, and is being developed and
standardized in the W3C's Web Services Description Working Group [34]. WSDL, in
essence, allows for the specification of the syntax of the input and output messages of
a basic service, as well as other details needed for the invocation of the service.
WSDL does not, however, support the specification of workflows composed of basic
services. In this area, the Business Process Execution Language for Web Services
(BPEL4WS) [1], under development at OASIS, has the most prominent status. The
W3C's Web Services Choreography Working Group [33] also has been chartered to
explore this technical area. With respect to registering Web services, for purposes of
advertising and discovery, Universal Description, Discovery and Integration (UDDI)
[32] has received the most attention to date.

 Bringing Semantics to Web Services: The OWL-S Approach 27

At the same time, recognition is growing of the need for richer semantic specifica-
tions of Web services, so as to enable fuller, more flexible automation of service pro-
vision and use, support the construction of more powerful tools and methodologies,
and promote the use of semantically well-founded reasoning about services. Because
a rich representation language permits a more comprehensive specification of so
many different aspects of services, they can provide a better foundation for a broad
range of activities, across the Web service lifecycle. For example, richer semantics
can support greater automation of service selection and invocation, automated transla-
tion of message content between heterogeneous interoperating services, automated or
semi-automated approaches to service composition, and more comprehensive ap-
proaches to service monitoring and recovery from failure. Further down the road,
richer semantics can help to provide fuller automation of such activities as verifica-
tion, simulation, configuration, supply chain management, contracting, and negotia-
tion of services.

To meet this need, researchers have been developing languages, architectures and
related approaches; the resulting body of work goes under the heading of Semantic
Web services [21]. In particular, the authors of this paper, members of the OWL-S
Coalition, are developing the Ontology Web Language for Services (OWL-S) [25],
which seeks to provide the building blocks for encoding rich semantic service de-
scriptions, in a way that builds naturally upon OWL [19], the Semantic Web language
undergoing standardization at the W3C.

OWL-S (formerly DAML-S) and other related work may be viewed as efforts to
lay the foundations for the most effective evolution of Web service-related capabili-
ties that can be supported with current and maturing technologies. But at the same
time, our goal is to promote the rapid adoption of semantically expressive technolo-
gies that are already well-understood, and there is much that can be done in the near
term. Therefore, we have taken pains to construct mechanisms by which OWL-S can
be used along with the dominant Web services standards, such as WSDL. The pur-
pose of this paper is to provide an initial roadmap towards deployment of Semantic
Web services, using OWL-S in conjunction with WSDL and related standards, and to
begin to provide a clear delineation of the potential benefits of richer semantics in
specifying Web services.

In this paper, we show how to use OWL-S in conjunction with Web service stan-
dards — focusing particularly on its use with WSDL — and explain and illustrate the
value added by the semantics expressed in OWL-S. We illustrate these points using a
simple running example, which is presented in Section 2. Section 3 explains how
OWL-S can be used to describe the example service, and can be grounded in the
WSDL description. In Sections 4 – 6, we show how the combined OWL-S specifica-
tions can be used to support service enactment, service discovery, and service compo-
sition, respectively. Sections 7 and 8 present related work and a summary of our ap-
proach and its potential importance for the future of Web services.

2 A Motivating Example

Amazon.com provides an openly available Web service which allows client programs
to browse Amazon's databases, locate books and other products and put them in a
Web ‘shopping cart’ that can be accessed from the main Amazon Web site using a

28 D. Martin et al.

browser to finalize purchases. Web service client programs, written to avail them-
selves of the provided WSDL specification of the service, can request a wide range of
semi-structured keyword searches on the Amazon Web site data base. Clients can
search for books with a given author, products from a particular manufacturer, or
DVDs of movies by a given director. Customer reviews to seller profiles are also
accessible. (For more information visit http://www.amazon.com/webservices.)

Amazon provides a WSDL specification of its Web service describing the opera-
tions that can be performed, along with tutorials and code for sample clients. The
tutorials and code samples are needed so that programmers can properly utilize the
WSDL interface. No software system (agent) could read and utilize the WSDL inter-
face without human assistance, because the WSDL specification language provide no
means of including representations of the semantics of the defined operations and
associated messages elements. For example, all of the inputs and outputs (parts of
corresponding WSDL messages) in Amazon’s WSDL operations are typed as strings.
We take it as a key objective of Semantic Web services and OWL-S to bridge that
gap. OWL-S provides a language for specifying the function (preconditions and ef-
fects) of an operation and semantic types for each of the inputs and outputs of the
service. OWL-S is based on the assumption that the definitions of these semantic
concepts are available at referenced URIs on the Semantic Web, so that the service
and client programs have a means of sharing terms and clients can find the definitions
of all referenced concepts, represented in the OWL semantic description language.

The result is that, by taking an OWL-S description of the services together with the
WSDL description, a client program can distinguish the operation taking a model num-
ber of a camcorder from one requiring a book author’s name in what would otherwise
look to be similar request operations to search the database. The client can also properly
interpret the result of those queries, without programming specific to that interface. By
using OWL for semantic typing of the elements of communication, our Amazon client
[26] can automatically identify which inputs (elements of its own internal goals) are
required for the kind of search desired, transform those elements, if necessary, to the
appropriate (string) form, and interpret the elements of a returned message.

The WSDL specification of the outputs of each call to the service similarly lacks
semantic definition. All Amazon’s defined search operations return results using the
same data structure, named Details, regardless of what product information is re-
quested. Product types can be inferred from the data structure by analyzing the ele-
ments that are filled in. For example, Details contains a field for Authors which is
used to describe books, and a field Directors which is used to describe movies. It is
up to the client to recognize that values in these fields indicate whether it is a book or
a movie. Even if the type of item specified in a Details record were clearly identified
in a Type field by the interface designer, WSDL provides no way uniform way of
enabling such interpretations.

WSDL’s lack of semantic descriptions of the meaning of inputs and outputs makes
it impossible to develop software clients that can, without human assistance, dynami-
cally find and successfully invoke a service. WSDL specifications of services must be
interpreted by programmers, who interpret the names of keywords given for message
elements using other supporting documentation to integrate specific services with
their client applications. The objective of Semantic Web services is to support clients
that can find and correctly utilize newly discovered services without additional
programming. Such clients will, for example, be capable of finding sites selling books
or CDs and comparing the prices of particular items from those sites even when those

 Bringing Semantics to Web Services: The OWL-S Approach 29

CDs and comparing the prices of particular items from those sites even when those
services’ WSDL interfaces were not known, in advance, to the developer of that cli-
ent. Semantic Web service clients will be able to interact with any such service as
long as they describe their WSDL operations in terms of compatible, shared, Seman-
tic Web representations for books, CDs, information requests, purchase/sale requests
and monetary units. For the same reasons, these Web services can be discovered in a
service repository using semantic descriptions characterizing the services proviced
with no (or minimal) human intervention. Furthermore, both the discovery and use of
such services is robust in the face of service design changes over time, because the
service protocols would be republished and re-interpreted by the client software at the
time of use.

3 Introducing Semantics

OWL-S (formerly DAML-S) is an OWL ontology with three interrelated subontolo-
gies, known as the profile, process model, and grounding. In brief, the profile is used
to express “what a service does”, for purposes of advertising, constructing service
requests, and matchmaking; the process model describes “how it works”, to enable
invocation, enactment, composition, monitoring and recovery; and the grounding
maps the constructs of the process model onto detailed specifications of message
formats, protocols, and so forth (normally expressed in WSDL). This paper is primar-
ily concerned with some of the fundamental constructs of the process model, and their
groundings.

WSDL 1.1 allows for the specification of operations as the basic building blocks of
Web services. (Although the development of WSDL 2.0 is well underway, it is not yet
stable enough at time of writing to allow for OWL-S groundings based on it.) Opera-
tions provide the organizational structure around which input/output message syntax
and patterns are specified. OWL-S provides an analogous but somewhat more abstract
construct known as the atomic process, which is characterized primarily in terms of
its inputs, outputs, preconditions, and effects (IOPEs).

The inputs and outputs of an atomic process are given types from the (class-
hierarchical, description logic-based) typing system of OWL, which allows for the use
of concepts defined and shared as part of the Semantic Web. For example, the accom-
panying code sample (Fig. 1) gives a simplified OWL-S declaration of an atomic
process with its IO specifications. (Due to space constraints, we omit namespace
qualifiers in this example). In this case, AtomicProcess, input, output, and parameter-
Type belong to the OWL-S process model namespace. We assume that Human,
BookTitle, and ISBN are classes defined in appropriate domain ontologies having
other namespaces.

The grounding for this atomic process would establish its correspondence to a par-
ticular WSDL operation, and the correspondence of each IO element to a particular
WSDL message part element. Also, if needed, the grounding could specify an XSLT
script to transform each OWL-expressed input (an instance of the relevant class) to
the precise syntactic form specified by WSDL, and vice versa for outputs. Additional
details and examples of OWL-S groundings may be found in [14].

30 D. Martin et al.

Fig. 1. OWL-S declaration of an atomic process with its IO specifications

An important part of Semantic Web service description is the specification of con-
ditions and constraints, including the preconditions and effects of a process or service.
Preconditions are logical formulae that need to be satisfied (ensured to be true) by a
service requestor prior to the execution of the service. Effects are logical formulae
that state what will be true upon the successful execution of the service. OWL-S Ef-
fects are the side-effects of the execution of the service. Many information-providing
services have no side effects. Nevertheless, other, often transaction-oriented, services
do have side effects in the world, such as debiting the user’s credit card, sending
goods, etc. Description of these side effects is critical to certain aspects of Web ser-
vice automation, as we discuss in subsequent sections.

For the specification of a process’ preconditions and effects, OWL-S allows for the
use of a more expressive language than OWL, such as RuleML [31], DRS [18], or the
recently proposed OWL Rules Language [10]. For example, one of these languages
could be used to express a precondition for a bookselling service, stating that one
must have a valid account and a valid credit card in order to make a purchase.

A more complete exposition of OWL-S may be found at [25], and in the various
papers listed there. In the following three sections, we discuss several case studies of
OWL-S’ contributions in the areas of service enactment, discovery, and composition.

4 Enactment

Enactment is the process by which a client applies a declarative description of a ser-
vice to request something of the service and interpret the response. Here, the descrip-
tion being interpreted is the OWL-S process model published by the service along
with the WSDL specs to which it is grounded. Enactment begins by reasoning back-
wards from the inputs required by the selected service to find the information avail-
able to the client that is required to successfully invoke the service. These input values
are then mapped via the service grounding onto the corresponding elements of a
WSDL message pattern, resulting finally in a message being communicated to the
service. The output message (if any) is handled by essentially reversing the process.

<AtomicProcess ID=”AuthorSearch”>
 <hasInput>
 <Input ID=”Author”>
 <parameterType resource=”#Human”>
 </Input>
 </hasInput>
 <hasInput>
 <Input ID=”Title”>
 <parameterType resource=”#BookTitle”>
 </Input>
 </hasInput>
 <hasOutput>
 <Output ID=”BookID”>
 <parameterType resource=”#ISBN”>
 </Output>
 </hasOutput>
/At i P

 Bringing Semantics to Web Services: The OWL-S Approach 31

A WSDL output message that is received by the client is transformed (again, via the
grounding) into an OWL-S representation of the content of that message which can be
interpreted by the client’s reasoning engine.

To implement this process with Amazon’s Web service, we first require an OWL-S
description of that service that more fully represents the inputs and outputs of the
service. We can partially automate the creation of this description by generating an
initial OWL-S description of Amazon's Web service using tools that transform WSDL
into a partial OWL-S specification [27]. Since the WSDL description does not contain
sufficient information to form a complete OWL-S process model, we manually sup-
plement the generated description in two steps:

(1) adding semantic descriptions of each input parameter to the generated process
model, and supplying any (XSLT-based) data transformations needed to produce the
corresponding grounded message parameter strings

(2) constructing a composite process model that links the various operations pro-
vided by the Web service into semantically meaningful message patterns (e.g., login
before search before add-to-shopping-cart).

The resulting process model is given in Fig. 2, which shows the relationships be-
tween the various service operations represented in the resulting OWL-S process
model.

Fig. 2. Simplified process Model for Amazon Web Service

The client can perform three types of tasks: search the Amazon's data bases using
author search, artist search or other types of searches; view or modify the shopping
cart by adding new items, clearing it, or looking at its contents; or performing the
composite shopping process that combines the other two by first searching and then
adding the product found to the shopping cart. The WSDL description of the Amazon
Web service only described the operations corresponding to the leaves of this graph.

Each of the OWL-S process descriptions specifies the semantic types of the data
required as input, and returned as output. For example, the input of the author search
should be an instance of class Human that stands in a particular relationship to the
book being sought (written-by). The use of OWL classes and properties as constraints
on the instances that must be identified for particular input values is critical to the
inference process; it allows for the formulation of service requests without requiring a

32 D. Martin et al.

programmer to write special purpose code specific to each possible type of service
request.

If the client has a goal to find the price of a particular book by searching, it can
construct the appropriate elements of the search request by identifying the items (such
as author) that are relevant, based on their relationship to the information about the
book sought. Since the service to be invoked is selected because the right kind of
information is described as part of the output of the service, and it describes this in-
formation as associated with database elements about books, the client can reason
from that output description (ISBN of a book) back to the necessary input elements
(author, title of the book whose ISBN is sought). As a consequence the client also
knows what data will be returned with no need to guess from the instantiation of the
Details data structure.

The OWL-S grounding takes care of the mapping from the concepts that describe
the inputs and outputs of the processes to the inputs and outputs of the corresponding
operations in the Amazon WSDL specification. As a result, while reasoning about the
Web service can take advantage of the OWL logics and ontologies, the actual invoca-
tion is consistent with Amazon’s requirements. Indeed, we are able to interact suc-
cessfully with the Amazon Web site using the DAML-S Virtual Machine [26].

5 Discovery

Discovery is the process of finding Web services with a given capability. In general,
discovery requires that Web services advertise their capabilities with a registry, and
that requesting services query the registry for Web services with particular capabili-
ties. The role of the registry is both to store the advertisements of capabilities, and to
perform a match between the request and the advertisements. (Here we assume an
infrastructure based on a centralized registry, because this is the type of infrastructure
that is emerging for Web services. Nevertheless, our discussion generalizes to other
architectures.)

The discovery process requires a language that can be used to encode Web service
capabilities for advertisement and for requests. Furthermore, discovery requires a
matching process that compares the advertisements with the requests to verify
whether they describe matching capabilities.

 In this section, we will describe how OWL-S may be used to express and match
capabilities. Finally, we will show how OWL-S can be used to add capability match-
ing to UDDI, the de-facto standard discovery registry for Web Services.

5.1 Representing Capabilities

Capabilities of Web services correspond to the functionalities provided by Web ser-
vices. Broadly speaking, there are two ways to represent functionalities. The first
approach provides an extensive ontology of functions where each class in the ontol-
ogy corresponds to a class of homogeneous functionalities. A simple example of an
ontology which specifies a taxonomy of e-services is shown below (Fig. 3). Using
such an ontology, Web services such as Amazon may be defined as instances of
classes that represent their capabilities. Amazon, for example, may advertise itself as
a Bookselling service.

 Bringing Semantics to Web Services: The OWL-S Approach 33

<owl:Class rdf:ID="e_Service">

<owl:Class rdf:ID="Information_Service">
 <rdfs:subClassOf rdf:resource="e_Service"/>
</owl:Class>

<owl:Class rdf:ID="SellingService">

<rdfs:subClassOf rdf:resource="e_Service"/>
</owl:Class>

<owl:Class rdf:ID="BookSelling">
 <rdfs:subClassOf

 rdf:resource="SellingService"/>
</owl:Class>

<owl:Class rdf:ID="AirlineTicketing">
 <rdfs:subClassOf
 rdf:resource="SellingService"/>
</owl:Class>

Fig. 3. Example of an ontology which specifies a taxonomy of e-services

The second way to represent capabilities is to provide a generic description of
function in terms of the state transformation that it produces. The latter is typically
used by AI planning languages such as PDDL [17]. For example, Amazon may spec-
ify that it provides a service that requests a book title, author, address and a valid
credit card number, and produces a state transition where the book is delivered to
address, the credit card will be charged, and the book will change ownership. Despite
their differences, both ways to represent capabilities use ontologies to provide the
connection between what the Web service does and the general description of the
environment in which the Web service operates.

There are trade-offs between the two representations of functionalities that help
choose the representation by analyzing the task needs. The use of an explicit ontology
of capabilities facilitates the discovery process since the matching process is reduced
to subsumption between the capabilities in the ontology. On the other hand, enumerat-
ing all possible capabilities even in restricted domains for ontology encoding may be
difficult. For example, consider the problem of representing translation services from
a source language LS to a target language LT. Assuming n possible languages, there
are n2 possible types of translation services. A services taxonomy might have differ-
ent classes of service for each pair of languages that could be translated, or it might
just represent translation services as one general category, with explicit properties that
allow particular services to describe the languages that they can translate from and
translate to. This latter approach is consistent with describing the capability in terms
of a state transformation. It distinguishes the translators by describing how they pro-
duce different kinds of results.

Note that describing the types of the inputs and outputs of such a service is not suf-
ficient to distinguish capabilities. Consider, for example, a service that takes a geo-
graphic region as input and produces the names of different wines as output. This
input/output couple can be used by two very different services: one that reports which
wines are produced in a region, the other that reports the wines that are sold in a
region.

34 D. Martin et al.

OWL-S supports both views of the capabilities of Web services. The Service Pro-
file module of OWL-S provides a high level descriptions of services as a transforma-
tion from one state to another. To this extent, at its core, a Service Profile provides a
view of the Web service as a process which requires inputs, and some precondition to
be valid, and it results in outputs and some effects to become true. Furthermore,
OWL-S provides a schema by which Service Profiles can be subclassed to describe a
specific class of capabilities such as translation services, or wine selling services.
More precisely, a Service Profile provides two types of information: the first one is a
functional description of the Web service in terms of the transformation that the Web
service produces, the second one is a set of non-functional properties that specify
constraints on the service provided. The functional description describes both the
information transformation which results in the production of outputs from a set of
inputs; and the state transformation that results in the generation of the effects starting
from a state where the preconditions are satisfied. Non-functional properties specify
the quality of service provided by the Web service, or its security requirements [7],
such as the type of encryption and policies that apply.

Since OWL-S synthesizes both an extensional and functional view of Web ser-
vices, it provides a complete description of the services that it describes. It can take
advantage of ontologies of services and products wherever they exist to the extent that
they are able to represent the capabilities of a Web service. Furthermore, it can make
use of transformation produced by the Web service to provide a finer grain descrip-
tion of the Web service or to be able to describe the effects of using a Web service
even when its capability does not correspond to any functional description.

5.2 Matching Capabilities

Capability matching compares the capabilities provided by any of the advertised ser-
vices with the capabilities needed by the requester. The goal is to find the advertiser
that produces the results required for the requester. In general it is unrealistic to ex-
pect that the capability offered will exactly match the query. For example, the re-
quested service may be for stock quote information, and the task of the matching
engine is to decide whether it can be accomplished by a service that provides financial
news. The matchmaker should determine how likely it is that each capability adver-
tisement indicates that the service will accomplish the particular function specified in
the query.

A number of capability matching algorithms have been proposed for OWL-S. They
use the service descriptions in the Service Profiles and the ontologies that are avail-
able to decide whether there is a match between service requests and the advertise-
ments of the services provided. In general, they exploit one of the two views of the
capabilities described above.

Matching algorithms, such as described in [11] and [12], assume the availability of
ontologies of functionalities to express capabilities. Matching between the request and
the available advertisements is reduced to their subsumption relation. Different de-
grees of match are detected depending on whether the advertisement and the request
describe the same capability or whether one subsumes the other.

Other matching algorithms, such as in [28], [8], [2], and also again [13], assume
that capabilities are described by the state transformation produced by the Web ser-
vice. These matchmakers compare the state transformation described in each adver-

 Bringing Semantics to Web Services: The OWL-S Approach 35

tisement to the one described in the request. They perform two matches, one compar-
ing outputs and one comparing inputs. If the output required by the requester is of a
kind covered (subsumed) by the advertisement, then the inputs are checked. If the
inputs specified in the request are subsumed by the input types acceptable to the ser-
vice, then the service is a candidate to accomplish the requester's requirement.

In reality, there is an asymmetry between the matching of the inputs and the out-
puts of a Web service. Ultimately, the requester needs a Web service that produces
the desired outputs. Once the Web service that provides the desired outputs has been
found, the requester can either attempt to satisfy all the inputs, or use its own compo-
sition capabilities to find other Web services that can provide the desired inputs.

5.3 Relation with UDDI

UDDI (Universal Description Discovery and Integration) [32] is an industrial initia-
tive whose goal is to create an Internet wide network of registries of Web services.
UDDI allows businesses to register their presence on the Web by specifying their
points of contact both in terms of the ports used by the service to process requests and
in terms of the physical contacts with people that can answer questions about the
service. In addition, UDDI provides a language to specify an unbounded set of fea-
tures of services that can help the process of service location and selection as well as
service invocation.

UDDI enjoys the support of many prominent software and hardware companies
that invested heavily in Web services. Because of this support, UDDI is becoming the
de facto standard repository of Web services. Despite its role, UDDI provides a very
weak discovery mechanism which does not allow the discovery of any Web service
only on the bases of what problems it provides.

The main problem with UDDI is that it does not provide a capability representation
language such as the OWL-S Service Profile. As a consequence, UDDI does not pro-
vide capability based search. The result is that UDDI supports the location of infor-
mation about the Web service, once it is known which Web service to use, but it is
impossible to locate a Web service only on the basis of what problems it solves.

OWL-S and UDDI complement each other. UDDI provides a World Wide distrib-
uted registry that is virtually an industry standard. On the other side, OWL-S provides
the information required for capability matching. The OWL-S/UDDI matchmaker
[28] integrates OWL-S capability matching in the UDDI registry. This integration is
based on the mapping of OWL-S Service Profiles into UDDI Web service representa-
tions [29] shown in Fig. 4. The mapping function defines a set of specialized UDDI
TModels that store OWL-S information that cannot be represented in the standard
UDDI Web Service representation. (TModels are an unbounded set of properties that
can be associated with a Web service specification.)

The integrated OWL-S/UDDI provides all the functionalities provided by UDDI
using exactly the same API, so that any UDDI can interact with it to retrieve informa-
tion about available Web services. In addition, OWL-S/UDDI supports capability
matching by taking advantage of OWL-S capability representation and the matching
process proposed in [28]. The result is a UDDI in which it is possible to search, and
find, Web services by their capabilities.

36 D. Martin et al.

contactInformation
name
title
phone
fax
email
physicalAddress
webURL

serviceName

textDescription

hasProcess

serviceCategory

serviceParameter

qualityRating

input

output

precondition

effects

businessKey
name
description
categoryBag

hasProcess_TModel
serviceCategory _TModel
serviceParameter _TModel
qualityRating_TModel
input_TModel
output_TModel
precondition_TModel
effect_TModel

bindingTemplates

Business Entity

Name
Contact

person name
phone
email
address
discovery URLs

business Key

Business ServiceOWL-S Profile

Fig. 4. OWL-S to UDDI mapping

6 Composition

Composition is the process of selecting, combining and executing Web services (WS)
to achieve a user’s objective. “Make the travel arrangements for my WWW2004 con-
ference trip” or “Buy me an Apple iPod at the best available price” are examples of
possible user objectives addressed by composition. Human beings perform manual
WS composition by exploiting their cultural knowledge of what a Web service does
(e.g, that www.apple.com will debit your credit card and send you an iPod), as well as
information provided on the service’s Web pages, in order to execute a collection of
services to achieve some objective. To automate WS Composition, all this informa-
tion must be encoded explicitly in an unambiguous computer interpretable form.
None of the existing industrial standards for WS description encode this level of de-
tail. Further, the descriptions they provide are not unambiguously computer interpret-
able and as a consequence not reliably manipulated by an automated reasoning sys-
tem; hence the need for OWL-S.

Automated WS Composition is akin to both an AI planning problem and a soft-
ware synthesis problem, and draws heavily on both of these areas of research [20]. In
order to perform automated WS composition, a reasoning system must order, combine
and execute Web services that collectively achieve the user’s objective. This involves
resolving constraints between Web service inputs, outputs, preconditions and effects
(IOPEs) and (typically) the outputs and effects (OEs) the user desires. For example, if
one starts with an agent’s goal (some desired outputs and effects), and matches it to
the outputs and effects of a Web service (modeled as a process), the result is an in-
stantiation of the process, plus descriptions of new goals to be satisfied based on the
inputs and preconditions of that process. The new goals (inputs and preconditions)
then naturally match other processes (outputs and effects), so that composition arises
naturally. The constraints between these inputs, outputs, preconditions and effects
dictate the composition of Web services. Two types of composition problems can be
distinguished: i) those that involve only information-providing services, and ii) those

 Bringing Semantics to Web Services: The OWL-S Approach 37

that involve both information-providing and world-altering services. The former re-
quires a rich semantic representation of inputs and outputs (IO). The latter requires a
like representation of IOPEs. Recall that the effects (E) are the side effects of the
program (e.g., that www.apple.com will debit your credit card and send you an iPod).
WS preconditions and (conditional) effects are not encoded in any existing industrial
standard. They are encoded, in unambiguous computer-interpretable form in OWL-S.
Since they supplement the information contained in WSDL, there is no grounding for
these features at the WSDL level.

In addition to matching IOPEs, the automated WS Composition problem also can
involve selecting from among alternative Web services that match the IOPE con-
straints of the composition problem. For example, there are many Web services from
which a user can buy an iPod. In order to select from among alternative services, a
composition engine also requires some form of service selection. This is akin to the
discovery problem described in the previous section, and as argued there, requires a
representation of the properties, capabilities and functioning of a Web service.

There are several different approaches to WS Composition. All characterize OWL-
S processes as actions with inputs, outputs, preconditions and effects, and use plan-
ning technology to achieve WS composition. For example, the work of [16] models
processes in the same format as a STRIPS operator [9] and plans from a sequence of
Web services to achieve the user’s goal. In principle the system can string together a
series of actions to arrive at a novel plan for dealing with a Web service. However,
the system as described is at a very early stage of development, and fails to address
such basic problems as how to deal with unpredictable results of actions. [22] also
investigates the use of plan synthesis for WS Composition, though their focus is on
the specific problem of planning with existing composite Web services and the work
reported is preliminary.

In contrast to this approach to WS Composition, several other researchers have
taken the approach of using some sort of plan script or task model that describes ap-
proximately how to achieve some objective. This high-level plan is expanded and
refined using automated reasoning machinery. The first such system to be built was
the Golog system (e.g., [20], [21]). It models both world-altering and information-
providing services as actions with IOPEs, uses Golog procedures (modeled as OWL-S
composite processes) to represent generic procedures of approximately how-to per-
form tasks, and uses interleaving online deductive synthesis and execution to generate
a sequence of Web services customized to user’s preferences and constraints. Infor-
mation gathering actions are executed as necessary, while world-altering actions are
projected or simulated in order to enable the system to deliberate before committing
to the execution of world-altering services.

In a similar spirit, several other researchers (e.g., [35],[30]) have used the paradigm
of Hierarchical Task Network (HTN) planning (e.g., [23]) to perform automated WS
composition. In this paradigm, a planner is supplied with a library of standard plans,
each characterized by what it is supposed to accomplish (that is, effects given precon-
ditions)[35] uses the SHOP2 system (e.g., [23] [24]), which is a state-of-the-art HTN
planner. To solve a composition problem, SHOP2 must be given a top-level sketch of
the composed plan (encoded in OWL-S as a CompositeProcess). However, many of
the steps in the plan are described in a high-level vocabulary (analogous to the OWL-
S control constructs) that allows multiple alternative subplans to carry out those steps.

38 D. Martin et al.

The system searches through ways of combining those subplans in order to arrive at
an overall plan. Central to the SHOP2 approach to planning with Web Services is the
exploitation of the sharp distinction between information-providing and world-
altering services in the planning process, given that the information provided by ser-
vices is often critical to finding a plan. When mapping from a set of OWL-S service
descriptions to a SHOP2 domain, information-gathering services are detected and
encoded so as to be executed at planning time, rather than at run time (as so-called
“book-keeping” operators, or, in current work, as SHOP2 evaluated preconditions).
[20],[21],[30] also execute information-gathering services at plan time to reduce the
search space for plans and to reduce non-determinism.

HTN planning has also been used in [30] to compose Web services in the travel
domain and in the organization of a B2B supply chain. The basic idea explored in this
work is that Web services expand their own capabilities through collaboration. Con-
sistently with the work presented above, especially [16] and [35], during the planning
process, outputs and preconditions are satisfied either directly using an action that the
Web service can perform or by asking other Web services to do something that satis-
fies that output or precondition. Locating appropriate Web services can be done using
the OWL-S/UDDI matchmaker as discussed in Section 5.

There are many systems that deal with the restricted problem of composing ser-
vices without consideration of preconditions and effects (PEs). Included in these is the
work of [12] that augments BPEL4WS, a popular business-process language [1], with
a composition module. When the BPEL4WS process requires a certain input, de-
scribed as an XML data type, their system searches for a WS that can translate from
available formats to the desired format. For example, if the process declares a need
for a complex type containing a date in US format, and a known service supplies a
data type identical except that the date is in UK format, the system searches for a
translation service that can perform the desired data transformation. If necessary, it
breaks the transformation process into substeps and recursively searches for methods
to accomplish the substeps. A similar approach is integrated with an end-user interac-
tive composition system, STEER described in [15]. These approaches represent proto-
type solutions to an important subtask of service composition, namely, data-transfer
interoperation. For it to work, it is necessary for process descriptions to include rich,
computer-interpretable descriptions of the inputs and outputs of a process — the IO
half of IOPEs.

While this early work is promising, we are still some distance from the goal of
automated WS composition. We have argued that we need rich, representations of
Web services in a language with a well-defined semantics, to enable automated WS
composition. Specifically, we require rich, declarative descriptions of Web service
IOPEs to determine a composition, and we require rich representations of the proper-
ties, capabilities and functioning of services to enable WS selection during the com-
position process. We have achieved both these requirements in great measure with
OWL-S. In contrast, current industrial standards for WS description only describe WS
inputs and outputs and they do so in a language that is not richly expressive and is
without a well-defined semantics.

We also require rich declarative representations of composite processes (existing
compositions of Web services, such as Amazon’s workflow) so that we can exploit
them in our WS composition tasks. (Many of the existing WS composition technolo-

 Bringing Semantics to Web Services: The OWL-S Approach 39

gies only compose atomic processes.) We have addressed the problem of describing
composite processes in OWL-S, but we believe the solution can be improved upon by
appealing to a language that is more expressive than OWL, leveraging emerging in-
dustrial process modeling standards. To realize the goal of automated WS composi-
tion, we also require further advances in automated reasoning/planning technology for
WS. A final barrier to the goal of automated WS composition is the need for wide-
spread adoption of OWL-S WS descriptions.

Despite the need for further work, the accomplishments of OWL-S and associated
composition technologies provide immediate value-added. With existing technology
we can perform automated composition of information-gathering services. It has also
been demonstrated [12] that we can augment existing industrial WS choreography and
orchestration tools with composition technology for data-transfer interoperation and
for run-time binding of Web services. These systems enable manual composition of
WSs. We can augment this with some semantic integration of the data sources. Fi-
nally, as demonstrated, we can currently perform automated WS composition of both
information-gathering and atomic world-altering services under controlled conditions.
Automated WS Composition is at the heart of seamless interoperation among Web
services. With adoption of approaches to WS description such as OWL-S and ad-
vances in planning-related technologies, we believe that broad-scale automated WS
composition is well within reach.

7 Related Work

Throughout this paper we have identified related work that exploits OWL-S (or
DAML-S, the name by which earlier versions of OWL-S were known). Here we
briefly note other work on Semantic Web Services that does not use DAML-S or
OWL-S to describe Web services.

Most of the work on discovery of Web services using the Semantic Web has been
based on OWL-S. Nevertheless, other work on discovery does not assume OWL-S,
most notably [2] which bases Web service descriptions on the MIT Process Handbook
[12]. In this work, the matching process is based on the workflow description of the
process model of a Web service rather than an abstract representation such as the
OWL-S Profile. The retrieval mechanism maps the request against all the process
models advertised by available services until only the process models that match the
request are retrieved.

The matching process allows the requester to ask for Web services that “do X be-
fore Y”. In other words, the requester can constrain not only the type of process it
performs and the results that it achieves, but also the way in which a service is
achieved. Implicitly, it also assumes that the requester and the provider have a shared
and intimate knowledge on how processes are performed. In turn, this assumes that
the provider and the requester should share ontologies such as the MIT Process Hand-
book. While OWL-S does not make such strong assumptions on the ontologies
needed for discovery, when those assumptions are known to hold, results similar to
those obtained in [2] can be obtained by using the matching processes suggested for
OWL-S, by first selecting Web services with a given capability and then selecting
those services whose process model satisfies the temporal constraint.

40 D. Martin et al.

In the area of WS Composition, most of the early work has exploited OWL-S.
More recently, researchers from the planning community (e.g., [1]) have begun to
examine the WS Composition problem; however, most have not explicitly addressed
the problem of how to describe Web services, beyond modeling service IOPEs as
actions in first-order logic, propositional logic or PDDL [17].

8 Summary

Our objective in this paper has been to show how OWL-S can be put to use in the
near-term, in the context of emerging Web service standards such as WSDL, UDDI
and BPEL. We have explained some of the basics of OWL-S, and the techniques by
which it can be used in conjunction with these standards; and we have given an over-
view of projects that have employed OWL-S in combination with one or more of
them.

We have discussed the benefits of the richer service descriptions supported by
OWL-S, focusing primarily on the descriptions of inputs, outputs, preconditions, and
effects of services. In the area of enactment, OWL-S supports the specification of
composite processes, and allows for flexible, robust invocation and interoperation
between service clients and providers. In addition, OWL-S grounding mechanisms
allow process descriptions and enactment procedures to be used in conjunction with
WSDL. In the area of discovery, OWL-S allows service registries and matchmaking
algorithms to take advantage of two distinct styles of ontology-based characterization
of services, whose use may be integrated with UDDI. In the area of service composi-
tion, a variety of approaches exist to reason about OWL-S IOPEs, in support of
manual, semi-automated, and, under controlled conditions, automated composition of
both information-gathering and world-altering services.

In conclusion, OWL-S can help to enable fuller automation and dynamism in many
aspects of Web service provision and use, support the construction of powerful tools
and methodologies, and promote the use of semantically well-founded reasoning
about services.

References

[1] J. L. Ambite (Ed.). Proceedings of the ICAPS2003 Workshop on Planning for Web
Services, 2003.

[2] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank
Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte (Editor), Ivana Trickovic,
Sanjiva Weerawarana. Business Process Execution Language for Web Services, Version
1.1, 2003. At http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

[3] A. Bernstein and M. Klein. High Precision Service Retrieval. In Proceedings of the First
International Semantic Web Conference (ISWC 2002), Sardegna, 2002.

[4] Boualem Benatallah, Mohand-Said Hacid, Christophe Rey and Farouk Toumani. Request
Rewriting-Based Web Service Discovery. In Proceedings of the Second International
Semantic Web Conference (ISWC 2003), pp 335-350, October 2003.

[5] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana. Web Services
Description Language (WSDL) 1.1, 2001. At http://www.w3.org/TR/2001/NOTE-wsdl-
20010315

 Bringing Semantics to Web Services: The OWL-S Approach 41

[6] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P.F.
Patel-Schneider, L. A. Stein. Web Ontology Language (OWL) W3C Reference version
1.0, 18 August 2003. At http://www.w3.org/TR/2002/WD-owl-ref-20021112.

[7] Grit Denker, Lalana Kagal, Tim Finin, Massimo Paolucci, Naveen Srinivasan and Katia
Sycara. Security For DAML Web Services: Annotation and Matchmaking. In Proceed-
ings of the Second International Semantic Web Conference (ISWC 2003), pp. 335-350,
October 2003.

[8] Tommaso Di Noia, Eugenio Di Sciacio, Francesco M. Donini and Marina Mongiello.
Semantic Matchmaking in a P-2-P Electronic Marketplace. SAC 2003, pp. 582-586,
2003.

[9] R. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence 2, pp. 189-208, 1971.

[10] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet. OWL Rules Lan
guage, Draft version . Technical report, 29 October 2003

[11] Lei Li and Ian Horrocks. A Software Framework for Matchmaking Based on Semantic
Web Technology. In Proc. of the Twelfth International World Wide Web Conference
(WWW 2003), pages 331-339, ACM, 2003.

[12] T. W. Malone, K. Crowston, B. P. Jintae Lee, C. Dellarocas, G. Wyner, J. Quimby, C. S.
Osborn, A. Bernstein, G. Herman, M. Klein, and E. O'Donnell. Tools for Inventing Or-
ganizations: Toward a Handbook of Organizational Processes. Management Science,
45(3):425--443, March, 1997.

[13] Daniel J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation. . In Proceedings of the Second
International Semantic Web Conference (ISWC2003), pp. 227--241, 2003

[14] David Martin, Mark Burstein, Ora Lassila, Massimo Paolucci, Terry Payne, Sheila
McIlraith. Describing Web Services using OWL-S and WSDL. October 2003. At
http://www.daml.org/services/owl-s/1.0/owl-s-wsdl.html

[15] Ryusuke Masuoka, Yannis Labrou, Bijan Parsia, and Evren Sirin. Ontology-Enabled
Pervasive Computing Applications. In IEEE Intelligent Systems, 18(10):68-72, 2003.

[16] D. McDermott. Estimated-Regression Planning for Interaction with Web Services. In
Proceedings of the Sixth International Conference on AI Planning and Scheduling, pp.
204—211, 2002.

[17] D McDermott. The Planning Domain Definition Language Manual. Yale Computer
Science Report 1165 (CVC Report 980003), 1998.

[18] D. McDermott and D. Dou . Representing Disjunction and Quantifiers in RDF. Proceed-
ings of the First International Semantic Web Conference (ISWC2002), 2002.

[19] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language Over-
view. World Wide Web Consortium (W3C) Candidate Recommendation. August 18,
2003. At http://www.w3.org/TR/owl-features/

[20] S. McIlraith and T. Son. Adapting Golog for Composition of Semantic Web Services. In
Proceedings of the Eighth International Conference on Knowledge Representation and
Reasoning (KR2002), pp. 482-493, 2002.

[21] S. McIlraith., T.C. Son and H. Zeng. Semantic Web Services. IEEE Intelligent Systems,
Special Issue on the Semantic Web, 16(2):46--53, March/April, 2001.

[22] S. McIlraith and R. Fadel. Planning with Complex Actions. In Proceedings of the Ninth
International Workshop on Non-Monotonic Reasoning (NMR2002), pages 356-364,
April, 2002.

[23] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. SHOP: Simple Hierarchical Ordered
Planner. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI-99), pp.968—973, 1999.

[24] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F. Yaman 2003
SHOP2: An HTN Planning System. To appear, Journal Artificial Intelligence Research.

42 D. Martin et al.

[25] OWL-S Coalition. OWL-S 1.0 Release. At http://www.daml.org/services/owl-s/1.0/
[26] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. Sycara. The DAML-S Virtual Ma-

chine. In Proceedings of the Second International Semantic Web Conference (ISWC
2003), pp 335-350, October 2003.

[27] M. Paolucci, N. Srinivasan, K. Sycara, and T. Nishimura. Toward a Semantic Choreog-
raphy of Web services: from WSDL to DAML-S. In Proceedings of ICWS03, 2003.

[28] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic Matching of Web
Services Capabilities. In Proceedings of the First International Semantic Web Confer-
ence (ISWC2002), 2002.

[29] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Importing the Semantic Web in
UDDI. In Proceedings of E-Services and the Semantic Web (ESSW02), 2002.

[30] Massimo Paolucci, Katia Sycara, and Takahiro Kawamura. Delivering Semantic Web
Services. In Proceedings of the Twelfth World Wide Web Conference (WWW2003),
Budapest, Hungary, May 2003, pp 111- 118.

[31] The Rule Markup Initiative. At http://www.dfki.uni-kl.de/ruleml/.
[32] The Universal Description, Discovery and Integration (UDDI) protocol. Version 3, 2003.

At http://www.uddi.org/
[33] Web Services Choreography Working Group. At http://www.w3.org/2002/ws/chor/
[34] Web Services Description Working Group. At http://www.w3.org/2002/ws/desc/
[35] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S Web Services

Composition Using SHOP2. In Proceedings of the Second International Semantic Web
Conference (ISWC2003), 2003.

