Semantic Matching of Web Services Capabilities

Massimo Paolucci!, Takahiro Kawamural-2, Terry R. Payne!, Katia Sycara!

! Carnegie Mellon University
Pittsburgh, PA, USA
{paolucci, takahiro, terryp, katia}@cs.cmu.edu
2 Research & Development Center, Toshiba Corp.
1, Komukai Toshiba-cho, Saiwai-ku,
Kawasaki 212-8582, Japan
takahiro@isl.rdc.toshiba.co. jp

Abstract. The Web is moving from being a collection of pages toward
a collection of services that interoperate through the Internet. The first
step toward this interoperation is the location of other services that can
help toward the solution of a problem. In this paper we claim that lo-
cation of web services should be based on the semantic match between
a declarative description of the service being sought, and a description
of the service being offered. Furthermore, we claim that this match is
outside the representation capabilities of registries such as UDDI and
languages such as WSDL.

We propose a solution based on DAML-S, a DAML-based language for
service description, and we show how service capabilities are presented in
the Profile section of a DAML-S description and how a semantic match
between advertisements and requests is performed.

1 Introduction

Web services provide a new model of the Web in which sites exchange dynamic
information on demand. This change is especially important for the e-business
community, because it provides an opportunity to conduct business faster and
more efficiently. Indeed, the opportunity to manage supply chains dynamically
to achieve the greatest advantage on the market is expected to create great value
added and increase productivity. On the other hand, automatic management of
supply chain opens new challenges: first, web services should locate other services
that provide a solution to their problems, second, services should interoperate
to compose complex services.

In this paper we concentrate on the first problem: the location of web services
on the basis of the capabilities that they provide. The solution of this problem
requires a language to express the capabilities of services, and the specification
of a matching algorithm between service advertisements and service requests
that recognizes when a request matches an advertisement. We adopt DAML-S
as service description language because it provides a semantically based view of
of web services which spans from the abstract description of the capabilities of

the service to the specification of the service interaction protocol, to the actual
messages that it exchanges with other web services.

DAML-S ability to describe the semantics of web services is in stark contrast
with emerging XML [14] based standards related with web services. Standards
such as SOAP [15] and WSDL [3] are designed to provide descriptions of message
transport mechanisms, and for describing the interface used by each service.
However, neither SOAP nor WSDL are of any help for the automatic location
of web services on the basis of their capabilities. Another emerging XML based
standard is UDDI [13]; it provides a registry of businesses and web services.
UDDI describes businesses by their physical attributes such as name, address and
the services that they provide. In addition, UDDI descriptions are augmented by
a set of attributes, called TModels, which describe additional features such as the
classification of services within taxonomies such as NAICS [2]. Because UDDI
does not represent service capabilities, it is of no help to search for services on
the basis of what they provide.

A limitation shared by the XML based standards described above is their
lack of an explicit semantics: two identical XML descriptions may mean very
different things depending on the context of their use. This proves to be a ma-
jor limitation for capability matching: in fact, one crucial aspect of capability
matching is that it can be done only at the semantic level. This is the case
because the requester does not know what services are provided at any given
time, otherwise it could contact the providers directly without need to search
them; furthermore, advertisers and requesters have very different perspectives
and different knowledge about the same service. The major problem with ca-
pability matching is that it is unrealistic to expect advertisements and requests
to be equivalent, or even that exists a service that fulfills exactly the needs of
the requester. For example, a service may advertise as a financial news provider,
while a requester may need a service that reports stock quotes. The task of the
matching engine is to use its knowledge of the World and its semantic under-
standing of the advertisement and request to recognize their degree of mismatch
and retrieve the advertisements of services that more closely match the request.

DAML-S supports our need for semantic representation of services through
its tight connection with DAML+OIL [4]. DAML+OIL supports subsumption
reasoning on taxonomies of concepts. Furthermore, DAML+OIL allows the defi-
nition of relations between concepts so that, for instance, it is possible to express
statements like X is part of Y or more generally that a relation R exists be-
tween X and Y. The main limitation of DAML+OIL is its lack of a definition of
well formed formulae and an associated theorem prover. While these limitations
affect the expressivity of advertisements and requests, the language and the rea-
soning that it supports are rich enough to allow the description of a wide range
of services and to allow matches between these descriptions.

In the rest of the paper, we describe DAML-S profiles to some detail; we
will then discuss a matching algorithm between advertisements and requests
described in DAML-S that recognizes various degrees of matching. We will then

conclude by showing how DAML-S and an implemented version of the matching
algorithm are used to provide capability matching to the UDDI registry.

2 DAML-S Profiles

The objective of a Service Profiles is to describe the functionalities that a Web
Service wants to provide to the community. Web Services may have many func-
tionalities, but not all of them have to be advertised. For example, a book-selling
service may provide two different functionalities: the first one is to allow other
services to browse its data base to find books of interest; the second one is to
allow them to buy the books they found. The book-seller has the choice of ad-
vertising just the book-buying service or both the browsing functionality and
the buying functionality. In the latter case the service makes public that it can
provide browsing services, implicitly allowing other services to browse its data
base without buying a book. In contrast, by advertising only the book-selling
functionality, but not the browsing, the service hides the browsing functionality
from requesters that do not intend to buy. The decision as to which functionali-
ties to advertise determines how the service will be used: a requester that intends
to browse but not to buy would select a service that advertises both buying and
browsing capabilities, but not one that advertises buying only.

Figure 1 shows the upper ontology for Service Profiles, an example of Service
Profile used to advertise a service is shown in figure 7. The figure is logically
divided in three parts: the bottom consists of the definition of Actor: it records
information about the provider of the service. The middle part describes the
Functional Attributes such as Quality Rating, that is the rating assigned to
the service, to Geographic Radius, that specifies whether there are geographic
constraints to the service. Such constraints are used to prevent that a request
for Chinese food issued in Pittsburgh is served by a restaurant in Shanghai.

The top part of the figure represents the Functional Description of the service
[12,11]. It describes the capabilities of the service in terms of inputs, outputs,
preconditions and effects. An input is what is required by a service in order to
produce a desired output. For example, the inputs of a book buying service are
the title and the author of the desired book. The output is a confirmation that the
order has been received and successfully processed. The preconditions represent
conditions in the World that should be true for the successful execution of the
service. In the book buying example a precondition would be a valid credit card.
The execution of the service may result in actions in the World, these conditions
are described as the effects of the agent. In the buying of a book example, the
credit card is charged and the book changes property.

Service Profiles describe service requests as well as services provided. A re-
quest consists of a description of an hypothetical service that performs a task
needed by the requester. For instance, a requester that needs the latest quotes
from the stock market may compile a profile of an hypothetical financial news
service. Requests are sent to registries of web services that match them against

Fig. 1. Upper Ontology of Service Profiles

the profiles advertised by other services to identify which services provide the
best match. An example of request is shown in figure 8.

3 Matching Engine

We envision a Web wide infrastructure for web services supported by a set of
registries that function as directories. These registries record advertisements of
services that come on line, and support search of services that provide a set of
requested functionalities. In this section we describe an algorithm for matching
service advertisements and service requests.

An advertisement matches a request, when the advertisement, describes a ser-
vice that is sufficiently similar to the service requested. Of course, the problem
of this definition is to specify what “sufficiently similar” means. In its strongest
interpretation, an advertisement and a request are “sufficiently similar” when
they describe exactly the same service. This definition is too restrictive, because
advertisers and requesters have no prior agreement on how a service is repre-
sented; furthermore, they have very different objectives. A restrictive criteria on

matching is therefore bound to fail to recognize similarities between advertise-
ments and requests.

To accommodate a softer definition of “sufficiently similar” we need to al-
low matching engines to perform flezible matches, i.e. matches that recognize
the degree of similarity between advertisements and requests. Service requesters
should also be allowed to decide the degree of flexibility that they grant to the
system. If they concede little flexibility, they reduce the likelihood of finding ser-
vices that match their requirements, i.e. they minimize the false positives, while
increasing the false negatives. On the other hand, by increasing the flexibility of
match, they achieve the opposite effect: they reduce the false negatives at the
expense of an increase of false positives.

An additional problem related with performing flexible matches is that the
Matching Engine is open to exploitation from advertisements and requests that
are too generic in the attempt to maximize the likelihood of matching. For
instance, a service may advertise itself as a provider of everything, rather than
to be honest and precise with what it does. Similarly, a the requester may ask
for any service, rather than specifying exactly what it expects. The matching
engine can reduce the efficacy of these exploitations by ranking advertisements
on the basis of the degree of match with the request.

In a nutshell, we expect the matching engine to satisfy the following desider-
ata:

— The matching engine should support flexible semantic matching between
advertisements and requests on the basis of the ontologies available to the
services and the matching engine.

— Despite the flexibility of match, the matching engine should minimize false
positives and false negatives. Furthermore, the requesting service should have
some control on the amount of matching flexibility it allows to the system.

— The matching engine should encourage advertisers and requesters to be hon-
est with their descriptions at the cost of paying the price of either not be
matched, or being matched inappropriately.

— The matching process should be efficient: it should not burden the requester
with excessive delays that would prevent its effectiveness..

The algorithm we propose strives to satisfy all four desiderata. Semantic
matching is based on DAML ontologies: advertisements and requests refer to
DAML concepts and the associated semantic. By using DAML, the matching
process can perform inferences on the subsumption hierarchy leading to the
recognition of semantic matches despite their syntactic differences and difference
in modeling abstractions between advertisements and requests.

The use of DAML also supports accuracy: no matching is recognized when
the relation between the advertisement and the request does not derive from the
DAML ontologies used by the registry. Furthermore, the semantic of DAML-S
descriptions allows us to define a ranking function which distinguishes multiple
degrees of matching.

Finally, the matching process is necessarily a complex mechanism that may
lead to costly computations. In order to increase efficiency, the algorithm de-
scribed here adopts a set of strategies that rapidly prune advertisements that
are guaranteed not to match the request, thus improving the efficiency of the
overall matching engine while maintaining its precision.

3.1 Matching Algorithm

The main rational behind our algorithm is that an advertisement matches a
request when the service provided by the advertiser can be of some use for the
requester. Specifically, an advertisement matches a request when all the outputs
of the request are matched by the outputs of the advertisement, and all the
inputs of the advertisement are matched by the inputs of the request. This
criteria guarantees that the matched service satisfies the needs of the requester,
and that the requester provides to the matched service all the inputs that it
needs to operate correctly.

In this section we discuss the matching algorithm in some detail. We will first
present the main loop in which a request is matched against all the advertise-
ments recorded by the registry; then we will discuss the rules for matching each
advertisement with the request; we will then show how the degree of match is
computed and how the results of the match are sorted. We will conclude the sec-
tion with an example and a discussion of how the matching algorithm proposed
satisfies the desiderata listed above.

The main control loop of the matching algorithm is shown in figure 2. Re-
quests are matched against all the advertisements stored by the registry. When-
ever a match between the request and any of the advertisements is found, it is
recorded and scored to find the matches with the highest degree.

match(request) {
recordMatch= empty list
forall adv in advertisements do {
if match(request, adv) then
recordMatch.append(request, adv) }
return sort(recordMatch);}

Fig. 2. Main control loop

A match between an advertisement and a request consists of the match of
all the outputs of the request against the outputs of the advertisement; and all
the inputs of the advertisement against the inputs of the request. The algorithm
for output matching is described in detail in figure 3: a match is recognized
if and only if for each output of the request, there is a matching output in the
advertisement. The degree of success depends on the degree of match detected. If
one of the request’s output is not matched by any of the advertisement’s output

the match fails. The matching between inputs is computed following the same
algorithm, but with the order of the request and the advertisement reversed:
whereas the request’s outputs are matched against the advertisement’s outputs,
the advertisement’s inputs are matched against the request’s inputs.

outputMatch(outputsRequest, outputsAdvertisement) {
globalDegreeMatch= Exact
forall outR in outputsRequest do {
find outA in outputsAdvertisement such that
degreeMatch= maxDegreeMatch(outR,outA)
if (degreeMatch=fail) return fail
if (degreeMatch<globalDegreeMatch)
globalDegreeMatch= degreeMatch
return sort(recordMatch);}

Fig. 3. Algorithm for output matching

The degree of match between two outputs or two inputs depends by the
relation between the concepts associated with those inputs and outputs. For
instance, consider how a request whose output is specified as vehicle matches
the advertisement of a car selling service whose outputs are car and price.
Given the ontology fragment shown in figure 5, the matching engine would match
vehicle with car instead of matching it with price, because car is subsumed by
vehicle, while no subsumption relation is found between vehicle and price.

degree0fMatch(outR,outh) :
if outA=outR then return exact
if outR subclassOf outA then return exact
if outA subsumes outR then return plugln
if outR subsumes outA then return subsumes
otherwise fail

Fig. 4. Rules for the degree of match assignment

The degree of match is determined by the minimal distance® between con-
cepts in the taxonomy tree. We differentiate between four degrees of matching
according to the rule displayed in figure 4, where outR corresponds to one output
of the request and outA corresponds to one output of the advertisement*. The
rational for the degree assignment is described below.

3 DAML+OIL supports multiple inheritance, therefore there may be more than one
path between two nodes. We optimistically always select the shortest.

4 The degree of match of inputs is assigned in the same way, but the arguments
reversed: degreeOfMatch(inA,inR)

Legend:

! isa Relation

ancestor
Vehicle

\Bus\ \Car\

‘ Sedan‘ ‘ SuUv ‘ ‘StationWagon

Fig. 5. A fragment of the Vehicle Ontology

exact If outR=outA then outR and outA are equivalent, which we label as exact.
The second clause is a bit more complicated; if outR subclass0f outA then
the result is still exact under the assumption that by advertising outA the
provider commits to provide outputs consistent with every immediate sub-
type of outA. This is like to say that, given the ontology fragment in figure 5,
the provider, by advertising car, commits to provide sedan, station wagon
and SUV. If instead it provides only station wagon, than a better strategy
would be to restrict its advertisement to the latter.

plug in If outA subsumes outR® than outA is a set that includes outR, or, in
other words, outA could be plugged in place of outR [16]. For example, the a
service that provides (any type of ...) vehicles could be of use for another
service that expects station wagons. This rule acknowledges that there is
a weaker relation between outR and outA in this case, than in the exact
case above: we can expect that a service that advertises an output of vehicle
provides some type of cars, but we cannot expect that it provides every type
of SUV.

subsumes If outR subsumes outA, then the provider does not completely fulfill
the request. The requester may use the provider to achieve its goals, but it
likely needs to modify its plan or perform other requests to complete its task.

fail Failure occurs when no subsumption relation between advertisement and
request is identified.

Degrees of match are organized along a discrete scale in which exact matches
are of course preferable to any another; plugln matches are the next best level
because the output returned can probably be used instead of what the requester
expects. Subsumes is the third best level since the requirements of the requester
are only partially satisfied: the advertised service can provide only some specific

% subclassOf in DAML also defines a subsumption relation, therefore the exact match
defined above is also based on the subsumption relation. The rules for plug in match-
ing apply when the concepts are not the same and no subclassOf relation holds.

cases of what the requester desires. Fail is the lower level and it represents an
unacceptable result.

The last piece of the algorithm to discuss is the scoring system used to
sort the resulting matches. The rules used to sort are shown in figure 6. The
rationale behind them is that the requester expects first and foremost that the
provider achieves the output requested at the highest degree. This is reflected
in our rules by establishing that the main sorting criteria is to select the match
with the highest score in the outputs. Input matching is used only as secondary
score to break ties between equally scoring outputs: the requester may solve any
mismatch between the information that it has available and the expectations of
the provider with additional problem solving or by querying the registry to find
additional providers.

sortRule(matchl,match2) {
if matchl.output > match2.output then matchl > match2
if matchl.output = match2.output
& matchl.input > match2.input then matchl > match2
if matchl.output = match2.output
& matchl.input = match2.input then matchl = match2

Fig. 6. Rules for the degree of match assignment

3.2 An Example: Looking for Cars

In this section we show a simple example of how a request for service is matched
with service advertisements. The service advertised is a car selling service which
given a price reports which car can be bought for that price. A strip down version
of the advertisement for the service is shown in figure 7: it shows that the inputs
expected by the service are restricted to instances of the concept Price as defined
in the Concepts ontology, while the outputs the service generates are instance of
the concept Car as defined in the ontology Vehicle shown in figure 5.

A request for service is expressed in the same format of the advertisement;
a possible request is expressed in figure 8. The request shows that the service
sought sells sedans, specifically, it should accepts as inputs to instances of Price
and it generates as outputs instances of Sedan.

The match between the advertisement and the request requires the matching
between their inputs and outputs restrictions respectively. For ease of example,
both inputs are restricted to the same concept, therefore they match exactly. The
algorithm for output matching is shown in figure 3 and 4; it recognizes that Car
and Sedan are an exact match because Car is a superclass of Sedan in the Vehicle
ontology displayed in figure 5. As a result the advertisement and the request
match exactly because of the exact match of both their inputs and outputs. As
a consequence, the Car service advertised is reported to the requester.

<profile:Profile rdf:ID="CarSellingService">
<profile:serviceName>CarSellingService</profile:serviceName>
<profile:providedBy> ... </profile:providedBy>
<input>
<profile:ParameterDescription rdf:ID="Price_Input">
<profile:parameterName>Price</profile:parameterName>
<profile:restrictedTo rdf:resource="Concets.daml#Price"\>
</profile:ParameterDescription>
</input>
<output>
<profile:ParameterDescription rdf:ID="Car_QOutput">
<profile:parameterName>Car</profile:parameterName>
<profile:restrictedTo rdf :resource="Vehicle.daml#Car"\>
</profile:ParameterDescription>
</output>
</profile:Profile>

Fig. 7. Advertisement of a car selling service

The example shows a case of an advertisement and request that look super-
ficially different but match exactly nevertheless using ontological information.
More relaxed matches would result if the advertising service produces more gen-
eral outputs, such as Vehicle instead of Car. The latter case would result in a
lower degree of matching: plugln instead of ezact because the output of the ad-
vertisement subsumes the output of the request. A failure would instead result
if the outputs of the advertisement are instances of Bus because no subsumption
relation is recognized between the outputs of the advertisement and the outputs
of the request.

3.3 Satisfaction of Desiderata

The matching algorithm supports a flexible semantic match between advertise-
ments and requests. The only thing that matters during matching is whether the
matching engine can draw an inference between inputs and outputs of the ad-
vertisements and requests on the basis of the ontologies available to the registry.
Furthermore, the result of the match is not a hard true or false, but it depends
on the degree of similarity between the concepts in the match.

Despite this flexibility, the matching engine still rejects advertisements that
do not match the requests, and accepts, but with a low score, matches that
may be unsatisfactory for the requester. The requester can specify which types
of match it wishes the matching engine to perform by constraining the mini-
mal acceptable degree of match. Also, the amount of search required may be
constrained by forcing the matching engine to restrict the search within a close
subset of concepts in the ontology. The last desiderata: that the matching process
be efficient is currently under testing.

<profile:Profile rdf:ID="RequestSedanSellingService">
<input>
<profile:ParameterDescription rdf:ID="Price_Input">
<profile:parameterName>Price</profile:parameterName>
<profile:restrictedTo rdf:resource="Concets.daml#Price"/>
</profile:ParameterDescription>
</input>
<output>
<profile:ParameterDescription rdf:ID="Sedan_QOutput">
<profile:parameterName>Sedan</profile:parameterName>
<profile:restrictedTo rdf:resource="file:data/Vehcle.daml#Sedan"/>
</profile:ParameterDescription>
</output>

Fig. 8. Advertisement of car selling service

4 Application to UDDI

Universal Description Discovery and Integration (hereafter UDDI)[13] is an in-
dustrial initiative whose goal is to create an Internet wide registry of web services.
UDDI allows businesses to register their contact points, and the web services
that they provide. UDDI supports the registration of attributes of services via
a construct called TModel. A TModel is a form of meta data that provides a
reference system for information about services. For instance services can specify
that they are based on the WSDL specification by referring to a publicly known
WSDL TModel. In general TModels have two functions: the first is to tag the
type of service advertised and whether some specific conventions on the use of
the UDDI registry have been applied. The second is to provide abstract keys to
be associated with a service specific value. For example, a service may specify
its category using the North American Industry Classification System (hereafter
NAICS) [2] published by the US Census.

UDDI provides poor search facilities: it allows only a keyword based search of
businesses, services and TModels on the bases of their names. In addition services
can be searched by their type specification through TModels. For instance, it is
possible to search for all the services that adhere to the WSDL representation
or that have a some value associated with a TModel. Since search in UDDI is
restricted to keyword matching, no form of inference or flexible match between
keywords can be performed.

We implemented a matching engine that can be used to augment UDDI
registries® with an additional semantic layer that performs a capability based
matching. The matching engine that we implemented is based on the algorithm
described above and it takes advantage of DAML ontologies published on the
web. The result of this work is that services that advertise using DAML-S are
also advertised with the UDDI registry, and therefore they can be found and

5 We are currently using the IBM test site.

DAML-S/UDDI Matchmaker

Eﬂ%rgmg nication Web based
DAML
Ontologies
DAML-S/UDDI DAML-S
Translator Matching
Engine

=

uDDI
Registry

Fig. 9. The architecture of the DAML-S/UDDI Matchmaker

retrieved by using UDDI keyword search. In addition, they can also be found
through our capability matching engine.

The architecture of the combined DAML-S/UDDI Matchmaker is described
in figure 9. The Matchmaker receives messages from outside through the Com-
munication Module; upon recognizing that a message is an advertisement, the
Communication Module sends it to the DAML-S/UDDI Translator that con-
structs a UDDI service description using information about the service provider,
and the service name. The result of the registration with UDDI is a reference ID
of the service. This ID combined with the capability description of the advertise-
ment are sent to the DAML-S Matching Engine that stores the advertisement for
capability matching. Requests follow the opposite direction: the Communicator
Module sends them to the DAML-S Matchmaker that performs the capability
matching. The result of the matching is the advertisement of the providers se-
lected and a reference to the UDDI service record. The combination of UDDI
records and advertisements is then send to the requester.

The actual DAML-S based matching engine architecture is displayed in fig-
ure 10. Upon receiving a request, the Matching Engine component selects the
advertisements from the AdvertisementDB that are relevant for the current re-
quest. Then it uses the DAML+OIL Reasoner to compute the level of match.
In turn the DAML+OIL Reasoner uses the OntologyDB to as data to use to
compute the matching process. The AdvertisementDB also takes advantage of
the OntologiesDB to index advertisements for fast retrieval at matching time.

This system show the limits of UDDI and the value added by DAML-S and
its support for functional descriptions and matching upon functional descriptions
of services. In its current form UDDI does not provide any support for finding
services on the basis of what tasks they perform. It is impossible ask UDDI for
a “car selling service” because UDDI because such a request cannot even be

77 WebBased
- DAML Ontologies .

DAML_S Matching Engine 7
Advertisements Ontologies |~
Data Base Data Base
Matching DAML+OIL
Engine Reasoner

Fig. 10. The architecture of the DAML-S Matching Engine

expressed. By adding an additional layer for service capability matching and by
using DAML-S as service capability language we allow services to select each
other on the bases of what they do and ultimately to interoperate and solve
problems autonomously minimizing human intervention.

5 Discussion

DAML-S and its Service Profile take up the challenge of representing the func-
tionalities of web services. This paper contributes to this challenge by describing
a matching engine that allows matching of advertisements and requests on the
bases of the capabilities that they describe. This is a major improvement on cur-
rent technology that allows only location of services based on keyword matching.
Indeed we show how the matching engine can be used to improve the function-
alities of existing web service repositories such as UDDI.

The Service Profile is an evolution of the work on representation of agents
in open Multi-Agents Systems (hereafter MAS) and specifically of LARKS [12].
DAML-S as well as LARKS represents services on the bases of their inputs and
outputs. The major difference between DAML-S and LARKS is that DAML-S
relies on DAML and its ontologies, while LARKS allowed for their incremental
creation by associating needed concepts directly with the advertisements and
requests. The two systems rely on similar matching algorithms. LARKS identifies
a set of filters that progressively restrict the number of advertisements that are
candidates for a match. The filtering mechanism allows services to strike the most
advantageous trade off between the precision of matching and the time required
for a match: the higher the precision, the longer the time the matchmaker needs
before delivering an answer. The matching engine described in this paper is based
on the more restrictive of the LARKS filters that performs logic and ontological
inferences between advertisements and requests. While, the filters adopted by
LARKS cannot be efficiently ported into DAML-S, we suggest similar filters that
achieve the same results.

The Multi-Agent community has addressed the problem of capability based
matching in an open MAS suggesting a number of solutions. The OAA [6] rep-
resents agents by their “solvables”: a representation of the queries the agent
replies to. The problem with OAA solvables is that any agent should know at
request time what solvables the provider replies to, but the solvables are not
known until the provider is selected. Ultimately this impasse can be solved only
by abstracting from the solvables to the information that is exchanged. Infos-
leuth [9] associates an ontological concept with each type of services that agents
perform, then at matching time, it selects only those services that perform the
desired function. In practice InfoSleuth uses an extensive representation of func-
tionalities (one concept for each possible type of services), while DAML-S use an
intensive representation in which services are implicitly defined by the transfor-
mation that they produce. More recently DReggie [8] defined an ontology based
on DAML+OIL to describe mobile devices and then use a matching engine to
locate devices on the bases of their features. Unfortunately, publicly available
descriptions of the system are still sketchy.

Software Reuse Systems also need to index software components appropri-
ately for efficient and precise retrieval. Still, work on software reuse differs sharply
from our attempt to represent and match web services principally because soft-
ware reuse requires programmers, rather than automatic services, to construct a
request for a software component to search; furthermore, our aim with DAML-S
as a whole, is automatic interaction between services, while work in software
reuse requires programmers to program the interaction between different soft-
ware components. Because of this difference, techniques like the faceted classifi-
cation [10] are of no use to help automatic queries since they represent features
of the providers rather than the goals it achieves. Techniques such as analogical
software reuse [7] share a representation of components that is based on goals
achieved by the software, roles, conditions. To this extent their approach is sim-
ilar to ours, but it requires a complex compilation of a case to match against.
Zaremsky and Wing [16] describe a specification language and matching mech-
anism for software components that bear many similarities with the Matching
Algorithm described here. As in our work they allow for multiple degrees of
matching. We depart from their work because we match on the semantics as-
sociated with inputs and outputs, while they consider only type information.
Of all the reuse models UPML [5] shares the greater similarities with our rep-
resentation by representing inputs, outputs, preconditions and effects of tasks.
Nonetheless, UPML still requires programmers in the loop.

Despite superficial similarities with Case Based Reasoning Systems (CBR),
and specifically CBR supported planning [1], the work described here is very
different. The goal of Case Base Reasoning Systems is to retrieve a previously
learned case and to adapt it to the problem solving case that they are facing.
To this extent they have a fix retrieval function while here is flexible retrieval
mechanism is used. Furthermore, when a profile is retrieved by the repository it
is not applied as a case, rather the requesting service and the provider interact
following a script described by the DAML-S Process model.

The result of the research effort shows that web services can indeed find
each other automatically and interoperate autonomously without the need of
hardcoded interactions. Our matching algorithm provides a way for automatic
dynamic discovery, selection and interoperation of web services, which is a crucial
feature in the web of the future in which services dynamically reconfigure their
supply chain to better match changes in the market.

References

1. Jim Blythe and Manuela Veloso. Analogical replay for efficient conditional plan-
ning. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI-97), pages 668—673. AAAI Press / MIT Press, 1997.

2. US Census Bureau. North american industry classification system (naics).
http://www.census.gov/epcd/www /naics.html, 1997.

3. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva

Weerawarana. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.
4. DAML Joint Committee. Daml+oil (march 2001) language.

http://www.daml.org/2001/03/daml+oil-index.html, 2001.

5. Dieter Fensel, V. Richard Benjamins, Enrico Motta, and Bob J. Wielinga. UPML:
A framework for knowledge system reuse. In IJCAI pages 16-23, 1999.

6. David Martin, Adam Cheyer, and Douglas Moran. The Open Agent Architec-
ture: A Framework for Building Distributed Software Systems. Applied Artificial
Intelligence, 13(1-2):92-128, 1999.

7. P. Massonet and A. van Lamsweerde. Analogical reuse of requirements frameworks.
In Proc. of the 8rd IEEE Int. Symp. on Requirements Engineering (RE’97), pages
26-39, 1997.

8. Yun Peng and Nenad Ivezic. Semantic resolution inf multi-agent systems. In
Proc.of Goddard/JPl Workshop On Radical Agent Concepts, 2002.

9. Brad Perry, Malcolm Taylor, and Amy Unruh. Information aggregation and agent
interaction patterns in infosleuth. In cia99. ACM Press, 1999.

10. Ruben Prieto-Diaz. Implementing Faceted Classification for Software Reuse. Com-
munications of ACM, 134:88-97, 1991.

11. Katia Sycara and Mattheus Klusch. Brokering and matchmaking for coordination
of agent societies: A survey. In Omicini et al, editor, Coordination of Internet
Agents. Springer, 2001.

12. Katia Sycara, Mattheus Klusch, Seth Widoff, and Janguo Lu. Dynamic service
matchmaking among agents in open information environments. ACM SIGMOD
Record (Special Issue on Semantic Interoperability in Global Information Systems),
28(1):47-53, 1999.

13. UDDI. The UDDI Technical White Paper. http://www.uddi.org/, 2000.

14. W3C. Extensible markup language (xml) 1.0 (second edition).
http://www.w3.org/TR/2000/REC-xml-20001006, 2000.
15. W3C. Soap version 1.2, w3c working draft 17 december 2001.

http://www.w3.org/TR/2001/WD-soap12-part0-20011217/, 2001.

16. Amy Moormann Zaremski and Jeannette M. Wing. Specification matching soft-
ware components. ACM Transactions on Software Engineering and Methodology,
1997.

