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Abstract

Multi-agent systems deployed in open networks,
where agents can come and go, need middle-
agents. Like middle-men in physical world,
middle-agents assist in locating and connecting the
ultimate (information or goods) provider with the
ultimate requester in the electronic world.
Different types of middle-agents exhibit different
performance characteristics in terms of privacy, ro-
bustness, adaptiveness, etc. Which type of middle-
agent to use in a system thus depends on the re-
quirements of the application. It is therefore es-
sential that we identify different design possibili-
ties for middle-agents, and investigate the require-
ments they satisfy.

In this paper, we identify a basic list of dimen-
sions along which middle-agents can differ from
one other, and derive a taxonomy.

To better characterize different types of middle-
agents, we give a formal specification of their pro-
tocols. Formal specification is important because
it can improve communication between designers
and developers, and enable formal verification of
these protocols.

Our work could be the first step towards standard-
izing middle-agents and their protocols.

Introduction

As the Internet moves from a networked set of
documents to a set of services, provided by au-
tonomous agents, a crucial problem that arises is
the connection problem (Davis & Smith 1983) -
finding the other agents who might have the in-
formation or other capabilities an agent needs.
SUN’s JINI (Sun ), for example, assumes a net-
worked system of services that can locate each other
through registries of services. In (Decker, Sycara, &
Williamson 1997), it was proposed that agents that
help others locate agent providers of services be
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called middle-agents. Like middle-men in physical
world, middle-agents assist in locating and connect-
ing the ultimate provider of services (information,
expertise, or goods) with the ultimate requester
in the electronic world. In a capability-based co-
ordination, what providers can provide (i.e., the
providers’ functionality) and requesters need are
given by specifications called capabilities. In other
words, agents are not found by their names only,
but by their functionality.

Different systems define their middle-agents dif-
ferently. For example, facilitators in Genesereth’s
federated systems (Genesereth 1997) and SRI’s
Open Agent Architecture (Martin, Cheyer, &
Moran 1999), and matchmakers and brokers in
Retsina (Sycara et al. 1996) all differ in their inter-
actions with service providers and requesters. And
as demonstrated through experimentation (Decker,
Sycara, & Williamson 1997), different types of
middle-agents exhibit different performance char-
acteristics in terms of privacy, robustness, adap-
tiveness, etc. For example, systems that use match-
makers are more robust, while those using brokers
achieve a better load balancing. The requirements
of an application thus dictate the type of middle-
agent to be used in the system. It is therefore essen-
tial that we identify different design possibilities for
middle-agents, and investigate the type of require-
ments they satisfy.

In this paper, we take one of the first steps
towards a comprehensive and systematic study
of middle-agents by formulating a taxonomy of
middle-agents. To formulate the taxonomy, we
first identify a number of dimensions along which
middle-agents can differ, and then possible values
for these dimensions. In this paper, we focus on
capability-based middle-agents involved in agent lo-
cation and transaction intermediation.

To better characterize different types of middle-
agents, we give a formal specification of their pro-
tocols. Formal specification is important because it



can improve communication between designers and
developers, and enable formal verification of these
protocols.

Our work takes the first step towards standard-
izing middle-agents and their protocols.

The Model

In an open multi-agent system, there are two types
of agents: end-agents and middle-agents. End-
agents need or can offer services. Middle-agents ex-
ist to enable interactions among end-agents. End-
agents act as providers when they offer services;
and act as requesters when they need them. Of
course, an agent can act both as a provider and as
a requester in a system. Strictly speaking, middle-
agents offer services too; services they offer include
locating end-agents for each other, and intermedi-
ating their transactions and dispute resolutions. In
this paper, we focus on agent location and transac-
tions themselves.

In capability-based coordination, providers and
requesters specify services they provide or need in
capabilities and requests. Capabilities are specifica-
tions of services providers can offer. They are some-
times accompanied by service parameters, which
specify conditions under which services will be of-
fered. For instance, price, availability, quality of
service are all service parameters. An example of
a capability and its service parameter is: agent X
is capable of providing information about weather
for any US city for 2 cents per query. Requests are
specifications of services requesters need. They can
be accompanied by preferences, which are counter-
parts of service parameters.

In our model, agents communicate through mes-
sage passing, and are capable of intelligent internal
processing.

In the rest of this work, we refer to requeters as
she, providers as he, and middle-agents as it.

A Taxonomy of Middle-Agents

The goal of this section is to determine different
modes under which middle-agents can operate. To
this end, we have identified 6 dimensions along
which middle-agents may differ, and the possible
variations within each of the dimensions. We do
not claim that these 6 dimensions are complete or
unique. But we believe that they constitute a ba-
sic set in characterizing typical location and trans-
action interactions, and in discriminating different
types of middle-agents.

To find agents with desired capabilities, end-
agents can adopt two different approaches. They
can ‘push’ or ‘pull’. In the ‘push’ approach, they
send information about themselves to the middle-

agent. In the ‘pull’ approach, they ask the middle-
agent information about what is available in the
system. Thus, the first dimension that character-
izes a middle-agent is:

P1: Who sends information to middle-agents?

There are two possibilities’: providers (0) or re-
questers (1). Providers and requesters need to act
in complementary ways: if providers ‘push’, re-
questers ‘pull’; and vice-versa.

When end-agents send information about them-
selves to a middle-agent, the information becomes
public, in that it will be known by the middle-agent
and potentially by those who get information from
the middle-agent. Depending on their privacy con-
cerns, end-agents may want to send only capabili-
ties/requests, or they may want to include param-
eters/preferences as well. Thus, the second dimen-
sion of a middle-agent description is:

P2: How much information is sent to the
middle-agent?

There are again two possibilities: capabilities (or
requests?) (0), or capabilities plus service parame-
ters (or requests plus preferences®) (1).

Once it is determined who sends what to the
middle-agent, we can ask:

P3: What happens to the information middle-
agents receive?

Again, there are two possibilities here. It can be
broadcast* (0) or kept in a local database(1).

If the information middle-agents receive is stored
in the middle-agents’ databases, the following ques-
tion arises:

P4: How is the content of the database used?

Here, again, there are two possibilities. It can
be browsed (0) or queried (1). If the database is
browsed, then the ‘puller’ of the information re-
ceives the content of the whole database. Other-
wise, the ‘puller’ gets only a subset of the informa-
tion in the database. The subset is determined by
the information the ‘puller’ specifies in the query.

'For a purpose that will become clear later, we enu-
merate the values within each of the dimensions, start-
ing from O.

2The alternative between capabilities and requests
is determined by the value of P1.

®This alternative is also determined by the value of
P1.

*In broadcast systems, ‘pullers’ must register with
middle-agents to express their interest in getting the
broadcast. This is because, in an open system, it is
not known which agents are in the system at any given
time.



The process of determining the relevant subset -
called matching - (e.g., of the advertised capabili-
ties of the providers to an issued request) - will be
discussed later in this paper.

Note that from the ‘puller”s point of view, brows-
ing and querying lead to different privacy guaran-
tees. The ‘puller’ does not reveal information about
itself to the middle-agent when it browses; the in-
formation specified in the query is revealed, how-
ever, when the ‘puller’ queries. This leads us to the
fifth dimension of a middle-agent:

P5: How much information is specified in a
query to the middle-agent?

There are two possibilities. One can provide only
the essential information - capabilities/requests (0);
or one can provide additional information - service
parameters/preferences (1) - as well. Depending on
the amount of information one specifies in a query,
a greater or lesser amount of privacy is guaranteed.
Finally, middle-agents may or may not act as in-
termediaries in end-agent transactions:

P6: Does the middle-agent intermediate trans-
actions?

Here too, we have two possibilities: yes (0) or no
(1). There are a number of reasons for middle-
agents to intermediate transactions. For example,
they may do so to implement anonymity of the par-
ties involved in the transaction; to guarantee fair-
ness; or to collect affidavits for possible future dis-
putes. When middle-agents intermediate transac-
tions, they get to know who transacted with whom,
which may be sensitive information by itself. How-
ever, if end-agents trust middle-agents more than
they trust each other, then having middle-agents
intermediate transactions can be preferable. For
example, in the NetBill electronic payment sys-
tem (Cox, Tygar, & Sirbu 1995), a trusted middle-
agent is used to make the exchange of payment and
delivery of goods atomic (by, for example, acting as
an escrow agent), thus guaranteeing the fairness of
a transaction.

With the above 6 dimensions and their respective
values, we can now devise a taxonomy of middle-
agents. Given that each dimension only allows for
2 possibilities, we can use an identification scheme
where different types of middle-agents are identi-
fied by binary numbers of 6 digits: given a middle-
agent, its type identifier is a number whose n-th
digit reflects the value of its n-th dimension.

Not all combinations of Os and 1s are meaningful.
For example, if P8 = 0, then the values of P4 and
P5 are irrelevant. That is, in a system where the
‘puller’ receives broadcasts, one cannot talk about
databases or database queries. Using valid combi-
nations of values in the 6 dimensions we consider,

we can obtain 28 different types of middle-agents.
For example, middle-agents [001100], [011100], and
[011110] are different variants of what is known in
the literature as matchmakers (Decker, Sycara, &
Williamson 1997) (Fig. 1). A matchmaker allows
providers to advertise their capabilities (and service
parameters), and requesters to send requests. In re-
sponse to a request, a matchmaker returns the con-
tact information of appropriate service providers.
The requester agent then chooses a service provider
and interacts with it directly. Matchmakers do not
intermediate transactions. Middle-agent [011111]

Request for service

Matchmaker

" Unsorted full description
of (PP, ..., P)

Delegation o service

Results of
service request

Figure 1: Matchmaker.

is known in the literature as a facilitator (Martin,
Cheyer, & Moran 1999) (Fig. 2). Facilitators work
as follows. 1) Provider agents advertise their ca-
pabilities with the facilitator. 2) The facilitator
keeps the advertised capabilities in its database. 3)
A requester makes a request with the facilitator
for a service provider that can provide a partic-
ular service. 4) in response to a request for ser-
vice, the facilitator selects one of the appropriate
providers and delegates the service request to it.
The provider does the service and returns the re-
sult to the facilitator, who then forwards the result
to the requester. Note that, in contrast to match-

Figure 2: Facilitator.
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the transation; i.e., they intermediate transactions.
The OAA system uses such a facilitator in its ar-
chitecture.

Example Protocols

In this section, we present informal protocol spec-
ifications. Different protocols presuppose different
local processing in andividual agents. For exam-
ple, if a middle-agent only allows its database to
be browsed, then no major processing is required
of it. On the other hand, if its database can be
queried, then it needs a matching engine capable of
filtering out database entries that match the spec-
ification provided in the query. If both parameters
and preferences are used in the matching, then the
output produced by the matching is a sorted list;
otherwise it is unsorted. LARKS (Sycara et al.
1998), for example, is a matching engine and a lan-
guage for capability and request specification used
in Retsina.

Matching processes can be studied independently
of protocols. Protocols concern interactions among
agents, while matching takes place within a single
agent. In this paper, we focus on the protocols.

Protocols

Due to space constraints, we present protocols only
for facilitated systems.

In what follows, P denotes provider, R de-
notes requester, and M denotes middle-agent;
A — B :m denotes agent A sending message m to
agent B; if an agent can send my or my, we denote
the alternative by mj | my. The actual format of
the messages can be expressed as KQML (Finin et
al. 1994), FIPA (FIPA 1997), or other agent com-
munication language. Some of our performatives
can be mapped to one of the reserved, predefined,
KQML performatives. For example, our advertise-
capability and make-request can be expressed in
terms of the KQML’s “advertise”. Finally, pid, rid,
cap, param, req, pref, input, and res are parameters
to be instantiated with provider and requester ids,
capabilities, (service) parameters, requests, prefer-
ences, input to and result of an execution respec-
tively.

Our example (Fig 3) shows the protocols needed
in a facilitated ([011111]) system. The two pro-
tocols in Fig. 3 are for advertising and delegating
respectively. Note that, in the delegation protocol,
a matching process occurs in between delegate and
perform (the facilitator matches the request with
advertisements in its database), and provider P is
the one that best matches the requester’s prefer-
ences. Also note that the requester is not consulted
once she submits the delegate message; she will only
receive the result of the transaction. From the point

of view of privacy, both requesters and providers
expose information about themselves to the facili-
tator.

Advertisement protocol :

P — M : advertise-capability pid cap param
M — P: success | fail

Delegation protocol :

R — M : delegate reg pref (input)
[matching: internal to M]

M — P : perform req pref (input)

P — M : result res

M — R: result res

Figure 3: Protocols for facilitated systems.

Protocols: A Formal Specification

In this section, we use a state machine formalism
to specify protocols. We chose to use Input/Output
(10) automata (Lynch 1996), but other specifica-
tion tools such as Z, CCS, and CSP, could have
been used.

Here, we give a brief overview of 10 automata.
IO automata is a state machine formalism for de-
scribing asynchronous concurrent systems in gen-
eral. Formally, the first thing that gets specified
for an 10 automaton is its ”signature”, which is
a description of its input, output, and internal ac-
tions. Given a signature S, acts(S) is the set of all
actions in S.

An IO automaton A, henceforth simply called an
automaton, consists of five components:

e sig(A): a signature;
o states(A): a (possibly infinite) set of states;

e start(A): a non-empty subset of states(A),
known as initial states,

o trans(A): a state-transition relation, where

trans(A) C states(4) x acts(sig(A)) x
states(A);

this relation must have the property that for ev-
ery state s and every input action m, there is a
transition (s, ,s’) € trans(A);
o tasks(A): a task partition.
We will not make use of the notion of tasks(A)
in this paper.
Typical output actions in IO automata model-
ing message passing processes are send(m);;, which

represents process P; sending a message m to pro-
cess P;. Typical input actions are receive(m);;,



which represents process F; receiving a message m
from process P;. When the automaton performs an
action, it may also transition to a new state.

In our specifications, the transition relation is
described in a precondition-effect style. The code
specifies the condition under which the action is
permitted to occur, as a predicate on the pre-state
s. Then it describes the changes that occur as a
result of the action, in the form of a simple pro-
gram that is applied to s to yield s'. The entire
piece of code gets executed indivisibly, as a single
transition.

In what follows, we model each agent as a pro-
cess, and specify each process as an 10 automaton.
In the specifications, messages are concatenations
of atomic messages, possibly preceded by a per-
formative. For example, in the specification below,
the middle-agent can send only messages success or
fail to P, indicating the result of capability adver-
tisement. On the other hand, it can receive from R
‘delegate’ messages (delegate req pref input), which
consist of the primitive delegate, followed by spec-
ifications of a request, its associated preferences,
and the input needed for execution of the service.

Atomic messages can be drawn from different
sets. In our specification, req, pref, cap, param,
pid, rid, tid, input, and res are drawn respectively
from the set of requests, preferences, capabilities,
parameters, provider ids, requester ids, transaction
ids, inputs needed for service executions, and re-
sults they generate.

Due to space constraints, we present only the
facilitator automaton.

Signature :

Input:

receivepy (advertise-capability pid cap param),
receive,, (delegate req pref input),
receivepm (result res tid).

Output:

sendp,, (msg), msg € {success, fail},
sendp,, (perform req pref input tid),
sendpyy (result res).

Internal:
matchy, (db°, (rid, req pref input)).
States :
db®: a capability database, initially empty;
ack-queue: a queue whose elements are pairs
(pid, success/fail), each enclosing the result

of an advertisement. This variable is initially
empty;

delegation-queue: a queue whose elements are
pairs (rid, req pref input), each associating del-
egations to their respective delegators. Re-
quests in this queue have been received by the
middle-agent, but have not yet been processed;

match-found-queue : a queue whose elements are
pairs (pid, (rid, req pref input)), each associat-
ing delegations to the result of the match - the
id of the provider that best matches the re-
quest in the delegation;

result-waiting-set: a set whose elements are pairs
(rid, tid) mapping transaction ids - identify-
ing requests - to their respective requester ids.
tid’s that appear in this set identify requests
that have been sent to the matching provider,
but that are still waiting for the result;

res-queue: a queue whose elements are pairs (rid,
res) associating results of service requests with
their requesters’ ids. Results in this queue are
ready to be returned to their requesters.

Transitions :
receivepm, (advertise-capability pid cap param)
Effect: db® := add (pid cap param) to db®;
if (add (pid cap param) to db®) is successful then
ack-queue := append(ack-queue, (pid, success))
else ack-queue := append(ack-queue, (pid, fail)).

sendp,, (msg)

Precondition: head(ack-queue) = (pid, msg);
Effect: ack-queue := tail(ack-queue).

receive,m, (delegate reg pref input)

Effect: delegation-queue :=
append (delegation-queue, (rid, req pref input))

matchy, (db°, (rid, req pref input))
Precondition:
head(delegation-queue) = (rid, req pref input);
Effect:
delegation-queue := tail(delegation-queue);
match-found-queue :=
append(match-found-queue
(pid, (rid, regprefinput))),
where pid is the best match for the request.

sendp,, (perform req pref input tid)

Precondition:
head(match-found-queue) =
(pid, (rid, req pref input));
Effect:
match-found-queue := tail(match-found-queue),
result-waiting-set :=
result-waiting-set U (rid, tid).

receivepm (result res tid)



Effect:
result-waiting-set :=
result-waiting-set - (rid, tid),
res-queue := append(res-queue, (rid, res)).

sendy,, (result res)
Precondition: head(res-queue) = (rid, res);
Effect: res-queue := tail(res-queue).

Conclusion

In this paper, we have presented a taxonomy for
middle-agents, and given a formal specification of
their protocols.

This work is significant for three reasons. First,
middle-agents are becoming common in open
MASs, and even make inroads in the commercial
world (Sun ). Second, different middle-agents ex-
hibit different performance characteristics in terms
of privacy, robustness, adaptiveness, etc. And fi-
nally, MASs using different middle-agents are be-
ing asked to work together. Thus, it is critical to
provide a taxonomy of different types of middle-
agents, with their respective characteristics. This
taxonomy will enable designers of MASs to choose
the type of middle-agent that best satisfy the re-
quirements of their application. As agents are pro-
liferating on the Internet, this could have signifi-
cant impact. Also composition o middle-agents can
lead to interesting protocols; e.g., ContractNet is a
combination of blackboard and brokering middle-
agents.

The formal protocol specifications, in their turn,
can guide developers in concrete implementation
of their protocols. In addition, they enable formal
verifications of the protocols.

Finally, this work provides the first step towards
standardization.

To our knowledge, no one has presented
such a comprehensive and systematic taxonomy
for middle-agents. The only other similar ef-
fort (Decker, Sycara, & Williamson 1997) focuses
on quantitative performance comparisons between
matchmaking and brokering.

The middle-agents in our taxonomy are ‘pure’,
in that they are capable of only one variant of co-
ordination. For example, a middle-agent is either
a broker, a matchmaker, or a blackboard. This
pure classification is useful for reference purposes.
In practice, however, they do not need to be pure.
They can be static hybrids and provide more than
one variant of coordination, depending on the de-
mands of the end-agents; or they can be dynamic
hybrids, and change from one variant to another
over time, depending on the environmental condi-
tions. That is, static hybrids can, for instance, do
both matchmaking and brokering at the same time,

while dynamic hybrids would do only one at a time,
depending on the conditions of the system (Decker,
Sycara, & Williamson 1997).

We have a few directions for future work. We
plan to investigate middle-agents in our taxonomy
with respect to a number of characteristics includ-
ing privacy, robustness, and load-balacing. We also
plan to expand our taxonomy to include other types
of mediating agents (inter-operators, for example,
are a different type of mediating agents). Finally,
we plan to implement a universal middle-agent -
one that would provide all the services taken into
account in our taxonomy.
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