Importing the Semantic Web in UDDI

Massimo Paolucci!, Takahiro Kawamura!-2, Terry R. Payne!, Katia Sycara'

! Carnegie Mellon University
Pittsburgh, PA, USA
{paolucci, takahiro, terryp, katia}@cs.cmu.edu
2 Research & Development Center, Toshiba Corp.
1, Komukai Toshiba-cho, Saiwai-ku,
Kawasaki 212-8582, Japan
takahiro@isl.rdc.toshiba.co. jp

Abstract. The web is moving from being a collection of pages toward
a collection of services that interoperate through the Internet. A fun-
damental step toward this interoperation is the ability of automatically
locating services on the bases of the functionalities that they provide.
Such a functionality would allow services to locate each other and auto-
matically interoperate. Location of web services is inherently a semantic
problem, because it has to abstract from the superficial differences be-
tween representations of the services provided, and the services requested
to recognize semantic similarities between the two.

Current Web Services technology based on UDDI and WSDL does not
make any use of semantic information and therefore fails to address the
problem of matching between capabilities of services and allowing service
location on the bases of what functionalities are sought, failing therefore
to address the problem of locating web services. Nevertheless, previous
work within DAML-S, a DAML-based language for service description,
shows how ontological information collected through the semantic web
can be used to match service capabilities. This work expands on previous
work by showing how DAML-S Service Profiles, that describe service ca-
pabilities within DAML-S, can be mapped into UDDI records providing
therefore a way to record semantic information within UDDI records.
Furthermore we show how this encoded information can be used within
the UDDI registry to perform semantic matching.

1 Introduction

Web services provide a new model of the web in which sites exchange dynamic
information on demand. This change is especially important for the e-business
community, because it provides an opportunity to conduct business faster and
more efficiently. Indeed, the opportunity to manage supply chains dynamically
to achieve the greatest advantage on the market is expected to create great value
added and increase productivity. On the other hand, automatic management of
supply chain opens new challenges: first, web services should be able to locate
automatically other services that provide a solution to their problems, second,

services should be able to interoperate to compose automatically complex ser-
vices.

In this paper we concentrate on the first problem: the location of web services
on the basis of the capabilities that they provide. The solution of this problem
requires a language to express the capabilities of services, the specification of
a matching algorithm between service advertisements and service requests that
recognizes when a request matches an advertisement and the deployment of reg-
istries that implement such algorithm. We leverage on on going work to specify
DAML-S, a service description language that provides a logically grounded view
of web services, [6,4], and we leverage on on going work to develop an algorithm
for capability matching for DAML-S Profiles [7]. Specifically, in this paper we
show how DAML-S Profiles can be compiled into UDDI representations [11] and
how UDDI registries can be modified to use the semantic information provided
by DAML-S.

DAML-S ability of describing the semantics of web services is in stark con-
trast with emerging XML [12] based standards related with web services. Stan-
dards such as SOAP [13] and WSDL [3] are designed to provide descriptions
of message transport mechanisms, and for describing the interface used by each
service. However, neither SOAP nor WSDL are of any help for the automatic lo-
cation of web services on the basis of their capabilities. Another emerging XML
based standard is UDDI [11]; it provides a registry of businesses and web ser-
vices. UDDI describes businesses by their physical attributes such as name and
address and the services that they provide; business services are associate them
with a set of attributes called TModels. TModels can be associated with descrip-
tion standards such as WSDL, or taxonomies such as NAICS [2]. Because UDDI
does not represent service capabilities, it is of no help to search for services on
the basis of what they provide.

A limitation shared by the XML based standards described above is their
lack of an explicit semantics: two identical XML descriptions may mean very
different things depending on when and who uses them. This proves to be a
major limitation for capability matching: in fact, one crucial aspect of capabil-
ity matching is that it can be done only at the semantic level. This is the case
because the requester does not know what services are provided at any given
time, otherwise it could contact the providers directly without need to search
them; furthermore, advertisers and requesters have very different perspectives
and different knowledge about the same service. The major problem with capa-
bility matching is that it is unrealistic to expect advertisements and requests to
be equivalent, or even that exists a service that fulfills exactly the needs of the
request. For example a service may advertise as a financial news provider, while a
requester may need a service that report stock quotes. The task of the matching
engine is to use its knowledge of the world and its semantic understanding of the
advertisement and request to recognize their degree of mismatch and retrieve
the advertisements that more closely match the request. It will be a task of the
requester to select the provider that better suits its needs and how to deal with
the mismatches between the request and the services that are available.

DAML-S supports our need for semantic representation of services through
its tight connection with DAML+OIL [5]. DAML+OIL supports subsumption
reasoning on taxonomies of concepts. Furthermore, DAML+OIL allows the defi-
nition of relations between concepts so that, for instance, it is possible to express
statements like X is part of Y or more generally that a relation R exists be-
tween X and Y. The only limitations of DAML+OIL are its lack of a definition
of well formed formulae and an associated theorem prover. While these limita-
tions limit the expressivity of advertisements and requests, the language and the
reasoning that can be associated are rich enough to allow the description of a
wide range of services and matches between these descriptions.

In the rest of the paper, we describe DAML-S profiles to some detail; we will
then describe how DAML-S profiles can be compiled into UDDI records; finally,
we will then describe the main features of the matching algorithm adopted and
how it can be integrated with UDDI.

2 DAML-S Profiles

The objective of a Service Profiles is to describe the functionality of services so
that it can be selected to provide its functionalities. Service Profiles describe
the “public face” of a service, or, in other words, what the service decides to
provide to the community. Indeed, each service may have many functionalities,
but not all of them have to be advertised. For example, a book-selling service
may provide two different functionalities: it allows other services to browse its
site to find books of interest, and it allows them to buy the books they found.
The book-seller has the choice of advertising just the book-buying service or both
the browsing functionality and the buying functionality. In the latter case the
service makes public that it can provide browsing services, implicitly allowing
other services to browse its registry without buying a book. In contrast, by
advertising only the book-selling functionality, but not the browsing, the service
discourages browsing by requesters that do not intend to buy. The decision as
to which functionalities to advertise determines how the service will be used:
a requester that intends to browse but not to buy would select a service that
advertises both buying and browsing capabilities, but not one that advertises
buying only.

From the technical standpoint, Service Profiles consist of three types of in-
formation: a description of the provider of the service, or, as DAML-S calls it, of
the actor of the service; a specification of the functionalities that are provided
by the service [10,9] expressed in terms of the transformation produced by the
service; and a host of functional attributes which provide additional information
and requirements about the service and constraints on its use. For example, a
news service that reports information about the current news on some topic
could be described as follows: the actor describes the company that runs the
service, its address, contact information and so on; the functionality would be
described as a transformation that takes as input the news topic and as output

infendedPurg

texl-D*’"m -

Fig. 1. Upper Ontology of Service Profiles

the news relevant to the topic; and the functional attributes could represent the
response delay of the service, or its cost.

A service profile also describes the request for service, i.e. the expectations of
the requester. For instance, a requester may look for a news service that reports
stock quotes with no delay with respect to the market. The role of the registries
is to match the request against the profiles advertised by other services and
identify which services provide the best match.

Figure 1 shows the upper ontology for Service Profiles. The figure is logically
divided in three parts: the bottom consists of the definition of Actor: it represent,
for example, the type of information that is specified about the provider of the
service. The middle part describes the Functional Attributes: they range from
Quality Rating, that is the rating assigned to the service, to Geographic radius,
that specifies whether there are geographic constraints to the service. Geographic

Constraints are used to prevent that the requesters are beyond geographic scope
the service providers. Such a constraint, for example, prevents that a request for
Chinese food issued in Pittsburgh is served by a restaurant Shanghai.

The top part of the figure represents the Functional Description of the service.
It describes the capabilities of the service in terms of inputs, outputs, precondi-
tions and effects. An input is what is required by a service in order to produce
a desired output. For example, the input to a book buying service are the ti-
tle and the author of the desired book. The output is a confirmation that the
order has been received and successfully processed. The preconditions represent
conditions in the World that should be true for the successful execution of the
service. In the book buying example a precondition would be a valid credit card.
The execution of the service may result in actions in the World, these conditions
are described as the effects of the agent. In the buying of a book example, the
credit card is charged and the book changes property.

Business Entity

Cat@ones. TModel...

Services

e o

¢ TModel...
Business Service /

Categories@®] Binding Template
[N Y TModel...
Business Service
TModel...

Categories@
e

Bindings
o @ Binding Template
o TModel...

Fig. 2. UDDI Service Representation

3 From DAML-S to UDDI

The Universal Description Discovery and Integration (hereafter UDDI)[11] is an
industrial initiative whose goal is to create an Internet wide network of registries
of web services. UDDI allows businesses to register their presence on the web by
specifying their points of contact both in terms of the ports used by the service

to process requests and in terms of the physical contacts with people that can
answer questions about the service. In addition, UDDI provides a language to
specify an unbounded set of features of services that can help the process of
service location and selection as well as service invocation.

Because UDDI enjoys the wide support of many prominent software and
hardware companies that invested heavily in web-services, it is becoming the de
facto standards repository of web services. Nevertheless, as we describe below,
UDDI has a number of shortcomings especially in the search mechanisms that
prevent the exploitation of its full capacities.

DAML-S provides a way to solve this problem, by allowing a semantic de-
scription and matching of services within UDDI. Therefore, if we could translate
the DAML-S representations into UDDI representations we combine the best
of two worlds: we take advantage of the UDDI popularity and support, while
publishing semantically grounded descriptions of services that can be used to
perform capability based search for services. In this section we describe the
UDDI service representation and how DAML-S representation can be compiled
into UDDI representations.

3.1 UDDI Representation

The representation of services in UDDI is shown in figure 2. A business is rep-
resented as a BusinessEntity object that records information like name of the
business, points of contact such as the physical address, telephone number, e-
mail and fax number, the URL of the company web site, and so on (for a more
complete representation of BusinessEntities see figure 5). A BusinessEntity is
associated with one or more Business Services that are descriptions of the spe-
cific services that a business provides. In turn a Business Service is associated
with one or more BindingTemplates that specify the service access end point.
UDDI supports the specification of a wide range of binding specification that
range from HTTP, to mail, fax and others.

The description of businesses and services provided above supports the de-
scription of the basic information of services: how they are named, who to contact
to gain information, how to invoke them. But it does not provide any indication
of what type of service has been defined or additional technical details about
the service. In addition to the description of businesses, services and binding
templates, UDDI provides a data structure called TModel that allows the speci-
fication of additional attributes of the entities described in the UDDI repository.
An example of TModels is provided in figure 3; the example shows the different
fields of a TModel: Name is an identifier of the TModel, a unique Key assigned to
the TModel in form a UUID [1], an text Description of a TModel, an Overview
URL where a more detailed text description of the TModel can be found; finally,
the Technical Model Locators specify information that is used within UDDI to
control the use of the TModel.

TModels define attributes that can be used to specify information about the
services. Figure 4 shows how the NAICS TModel may be used to specify the
classification of a Commercial Banking service. The KeyName in the figure is

Technical Model Information

Name : ntis-gov:naics:1997
Key: UUSID:COB9FE13-179F-413D-8A5B-5004DBSE5BB2
Technical Model Description(s):
Business Taxonomy: NAICS (1997 Release)
This tModel defines the NAICS industry taxonomy.
Overview URL: http://www.uddi.org/taxonomies/Core_Taxonomy_0verviewDoc.htm#NAICS
Technical Model Locator(s):

Code: categorization
Description: types
Type: UDDITYPE

Fig. 3. TModel for the NAICS taxonomy

a name of the attribute, the KeyValue is the value is the code of Commercial
Banking services within the NAICS classification, and TModelKey is the key of
the TModel used, in this case the TModel defined in figure 3.

KeyedReference
KeyName= NAICS code
KeyValue= 52211
TModelKey= UUID:COB9FE13-179F-413D-8A5B-5004DBSE5BB2

Fig. 4. TModel for a Commercial Banking Service

UDDI supports two types of TModels: the first type are TModels that express
technical specifications of the services such as the protocols that they adhere
to or interchange formats such as the RosettaNet Partner Interface Processes
specification [8]. The second type of TModels express abstract specifications
about the service within predefined classification and taxonomic schemes, as the
example of the NAICS TModel above. In this case, a service can specify its
position within the general classification scheme.

UDDI allows a wide range of searches of the registry: services can be searched
by name, by location, by business, by bindings or by TModels. For example it is
possible to look for all the services that have a WSDL representation, or for all
the services that adhere to the specification of the RosettaNet. Unfortunately,
the search mechanism supported by UDDI is limited to keyword matches and
UDDI does not support any inference based on the taxonomies referred to by
the TModels. For example a banking service may describe itself as “Commercial
Banking” which is a valid entry in NAICS, but any search based for “Depository
Credit Intermediation” services will not identify the banking service despite the

fact that “Commercial Banking” is a subtype of “Depository Credit Intermedi-
ation.”

3.2 Compiling DAML-S Profiles into UDDI Representations

The mapping of DAML-S profiles into UDDI Representations is shown in figure
5. The figure shows that some information can be mapped directly from DAML-
S Profiles to UDDI records. This is the case with provenance information like
the name and address of the service provider. DAML-S specific attributes such
as inputs, outputs, geographicRadius and so on are instead represented using the
TModel mechanisms described above.

DAML-S Profile

ServiceProvider
name O—_|
phone

fax ©
e-mail O—
webURL
physicalAddress o |
serviceName
textDescription

isPresentedBy
hasProcess O

serviceType
serviceCategory
intendedPurpose
role

requestedBy

providedBy
domainResource
communicationThru
qualityGuarantee

BusinessEntity

O name

Contacts
=0 person Name
™o phone

=0 email

| O address

™0 discoveryURLs
O businessKey

BusinessService
Mo name
o description
™C businessKey
© pindingTemplates
CategoryBag

O DAML-S_TModel
O serviceType_TModel

§o serviceCategory_TModel
\

role_TMod
\2 requestedBy_TModel
providedBy_TModel

O intendedPurpl)ose_TModeI
@ e

\o domainResource_TModel

qualityRating | =0 communicationThru_TModel
input o qualityGuarantee_TModel
output I qualityRating_TModel

| =0 input_TModel
| =0 output_TModel
—— | =0 precondition_TModel
I

O effect_TModel

precondition
effect O—

Fig. 5. UDDI Service Representation

Following figure 5, the description of the provider of the service is mapped
into an instance of the UDDI BusinessEntity that is used as a representation of

the Business that deliver the service. If a business with the same information is
already available in the registry that business is reused and referenced by the
business service description, otherwise a new business is created. The latter case
is actually the most common, since in order to publish a service with UDDI, a
business has to declare itself, therefore all the provenance information is already
available to UDDI.

The mapping of the other attributes requires the specification of a set of 15
UDDI TModels, one for each attribute of the DAML-S Profile representation.
BusinessService records use these TModels to index the values they store from
the DAML-S Profile they intend to represent. As an example consider the case of
a stock quote reporting service that takes as input a ticker symbol and returns as
output the current quote. The representation of the inputs and outputs of such
a service is shown in figure 6. One of the TModels, the DAML-S TModelhas
a special meaning: it states that the service advertised has a DAML-S service
representation, and its value is the URI of the DAML-S service that is presented
by the current Profile.

CategoryBag
KeyedReference
KeyName= Input
KeyValue= financialOntology:ticker
TModelKey= ‘‘UUID of the DAML-S Input TModel’’
KeyedReference
KeyName= Output
KeyValue= financialOntology:quote
TModelKey= ¢ ‘UUID of the DAML-S Output TModel’’

Fig. 6. TModel for a Commercial Banking Service

Figure 5 also shows that two UDDI features are left unchecked: the first
one is the name of the business, the second one is the binding Templates of the
service. The business name has already been provided to UDDI at the time of
publishing the Profile because, as pointed out above, UDDI forces a business to
declare itself in order to publish the services it provides. The bindingTemplates
represent information that can be gathered from the Service Grounding module
of DAML-S, but the details of that module have not been specified yet.

One advantage of the mapping described here is that it is completely embed-
ded in UDDI. Indeed, the description of the service can be augmented by using
additional UDDI specific TModels such as the NAICS TModel described above
in figure 3. Furthermore, all the search functionalities provided by UDDI can
be used to retrieve information about services that are represented as DAML-S
services.

DAML-S/UDDI Matchmaker

f\:ﬂ%rgm;‘ nication Web based
DAML
Ontologies
DAML-S/UDDI DAML-S
Translator Matching
Engine

=

UDDI
Registry

Fig. 7. The architecture of the DAML-S/UDDI Matchmaker

4 Adding semantic matching capabilities to UDDI

We implemented a matching engine that can be used to augment UDDI reg-
istries® with an additional semantic layer that performs capability matching
between service records. The matching engine that we implemented is based on
the algorithm described in [7] that uses DAML ontologies published on the web
to compare attributes of the Service Profiles, with particular regard to Inputs,
Outputs, Preconditions and Effects. The result of this work is that services that
advertise using DAML-S are also advertised with the UDDI registry, and there-
fore they can be found and retrieved by using UDDI keyword search. In addition,
they can also be found through our capability matching engine.

The architecture of the combined DAML-S/UDDI Matchmaker is described
in figure 7. The Matchmaker receives advertisements of services and requests for
service in DAML-S format from outside through the Communication Module;
upon recognizing that a message is an advertisement, the Communication Mod-
ule sends it to the DAML-S/UDDI Translator that constructs a UDDI service
description using information about the service provider, and the service name.
The result of the registration with UDDI is a reference ID of the service. This
ID combined with the capability description of the advertisement are sent to the
DAML-S Matching Engine that stores the advertisement for capability matching.
Requests follow the opposite direction: the Communicator Module sends them
to the DAML-S Matchmaker that performs the capability matching. The result
of the matching is the advertisement of the providers selected and a reference to

3 We are currently using the IBM test site.

~ DAML Ontologies
DAML_S Matching Engine JPEAR RUSURSEEL
Advertisements Ontologies A’/
Data Base Data Base
Matching DAML+OIL
Engine Reasoner

Fig. 8. The architecture of the DAML-S Matching Engine

the UDDI service record. The combination of UDDI records and advertisements
is then send to the requester.

The actual DAML-S based matching engine architecture is displayed in fig-
ure 8. Upon receiving a request, the Matching Engine component selects the
advertisements from the AdvertisementDB that are relevant for the current re-
quest. Then it uses the DAML+OIL Reasoner to compute the level of match.
In turn the DAML+OIL Reasoner uses the OntologyDB to as data to use to
compute the matching process. The AdvertisementDB also takes advantage of
the OntologiesDB to index advertisements for fast retrieval at matching time.

5 Conclusion

This paper show how the limits of UDDI can be overcome by taking advantage
of DAML-S and its support for functional descriptions of capabilities of and
matching upon those descriptions. In its current form UDDI does not provide
any support for finding service on the basis of what tasks they perform. It is
impossible to ask UDDI for a “car selling service” because UDDI because such a
request cannot even be expressed. On the opposite DAML-S offers the specifica-
tion of what a service does and the possibility of expressing additional features
of services such as the expected response time or constraints in the availability
of the service. The mapping described in this paper supports the translation
of DAML-S Service Profiles into UDDI descriptions of Business Services allow-
ing therefore UDDI to express capabilities of services and laying the ground for
capability matching functionalities in UDDI.

The mapping described in the paper has been fully implemented and it is
currently being tested as a module of a DAML-S based capability Matchmaker
that uses UDDI as its advertisements storage. Future work involves a complete
integration between the Matching Engine and UDDI so that UDDI will be able
to take full advantage of DAML and the semantic web.

References

10.

11.
12.

13.

. ISO/IEC 11578:1996. Information technology — open systems interconnection —

remote procedure call. http://www.iso.ch/, 2001.

US Census Bureau. North american industry classification system (naics).
http://www.census.gov/epcd/www/naics.html, 1997.

Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva

Weerawarana. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

DAML-S Coalition. Daml-s 0.6 draft release (december 2001).
http://www.daml.org/services/daml-s/2001/10/, 2001.

DAML Joint Committee. Daml+oil (march 2001) language.

http://www.daml.org/2001/03/daml+oil-index.html, 2001.

DAML-S Coalition:, A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. McDer-
mott, D. Martin, S. Mcllraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
DAML-S: Web Service Description for the Semantic Web. Forthcoming in Proceed-
ings of the First International Semantic Web Conference (ISWC01), 2002.
Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Se-
mantic matching of web services capabilities. In ISWC2002, 2002.

RosettaNet. RosettaNet Web Site. http://www.rosettanet.org, 2000.

Katia Sycara and Mattheus Klusch. Brokering and matchmaking for coordination
of agent societies: A survey. In A et al Omicini, editor, Coordination of Internet
Agents. Springer, 2001.

Katia Sycara, Mattheus Klusch, Seth Widoff, and Janguo Lu. Dynamic service
matchmaking among agents in open information environments. ACM SIGMOD
Record (Special Issue on Semantic Interoperability in Global Information Systems),
28(1):47-53, 1999.

UDDI. The UDDI Technical White Paper. http://www.uddi.org/, 2000.

W3C. Extensible markup language (xml) 1.0 (second edition).
http:/ /www.w3.org/ TR/2000/REC-xml-20001006, 2000.
W3C. Soap version 1.2, w3c working draft 17 december 2001.

http://www.w3.org/TR/2001/WD-soapl2-part0-20011217/, 2001.

