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1.1 Introduction

Agents display a dual behavior: on the one hand they are goal directed pro-
grams that autonomously and proactively solve problems for their users; on
the other hand agents have a social dimension when they interoperate as
part of Multi-Agent Systems (MAS). As autonomous problem solvers, agents
need to develop a model of their environment that allows them to reason on
how the actions that they perform affect their environment, and how those
changes lead them to achieve their goals. Ontologies provide the conceptual
framework that allows agents to construct such models: ontologies describe
the type of entities that agents encounter, the properties of those entities,
and the relations between them. For example, a stock reporting agent may
require ontologies describing not only concepts like ticker symbol, but also
the relation between stock and ticker symbol and properties of stocks such
as its value expressed in some currency.

In their social dimension, agents in a MAS necessarily interact with other
agents. They may compete for resources, or collaborate toward the solution
of a problem or toward the achievement of a common goal. While some of
these interactions are quite accidental, for example when an agent has to
wait to access a resource because other agents use it, the agents’ main tool
for interaction and interoperations is communication. Communication allows
agents to exchange information as well as requests for services. For example
an agent that needs to make financial decisions may want to ask other agents
for stock quotes, or it may want to subcontract parts of its financial analysis
to other agents. When combining communication and problem solving, the
solution of a problem is rarely restricted to the agent itself, rather it often
involves other agents. Ontologies provide agents the basic representation that
allows them to reason about those interactions, but also, and most impor-
tantly, ontologies provide agents with shared knowledge that they can use to
communicate and work together.

In order to interact, agents must first know of each others’ presence and lo-
cation in the MAS. Since MAS are open systems, i.e. they are societies where
agents enter or leave at unpredictable times, any attempt at programming
the agents under the assumption that they know of all their peers would fail,
or reduce the MAS to a closed system whose capabilities cannot be modified
without re-programming all the agents and their interactions. The alterna-
tive is to introduce a discovery mechanism so that agents can find each other
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dynamically. In such a discovery scheme, agents entering the system adver-
tise their presence, while agents in need of services, issue service requests.
The objective of the discovery process is to locate those agents whose adver-
tisement matches an issued request. Dynamic discovery removes the need for
hardcoded references, while allowing agents to enter and exit the MAS and
engage in flexible global interaction patterns.

The dual behavior, individual problem solving and social interactions,
displayed by agents is reflected in different approaches toward ontologies. In
general, we can distinguish between private ontologies that allow the agent
to organize its own problem solving and reasoning, and public ontologies that
the agent shares with the rest of the agents in the MAS.

Private ontologies serve the problem solving purposes of the agent. Be-
cause of this function it is often difficult to distinguish between ontologies as
conceptualization of the domain of the agent, and the knowledge represen-
tation needed by the problem solving process that the agent employs. For
example, an agent that uses planning technology to solve its problems may
base its private ontologies on a STRIP [1.13, 1.17] like representations, with
the result of representing its domain in terms of actions that the agent can
perform, and plans that the agent constructs. On the other hand, an agent
based on a DATALOG Data Base would instead represent its domain in
terms of static facts and inference rules that allow the agent to extract the
knowledge that is implicitly stored in the data base

Public ontologies are shared among multiple agents in the MAS. They
are independent of the specific problem solving mechanism adopted by the
agents; furthermore, ontologies need to respect the heterogeneity of the agents
in the MAS. For example, while each agent in the MAS may entertain its
own private knowledge representation, agents may also share knowledge us-
ing ontology languages, such as DAML+OIL [1.8], which provide their own
formalism, and their own independent proof theory. The main role of public
ontologies is to support agents in their interoperation; particularly in com-
munication and information exchanges. Specifically, public ontologies need to
provide a description of the domain of the whole MAS that is shared across
all the agents, and a shared vocabulary so that agents understand the content
of the messages that they exchange.

A crucial subset of the domain of an agent is the MAS the agent is part
of. Other agents in the MAS affect what the agent does and how it does it.
To this extent, ontologies should support the description of agents in terms
of their capabilities, basic information on how to contact them, interaction
protocol, reliability, reputation, security and so on. Furthermore, the social
dimension of a MAS does not emerge just by developing agents and hoping
that somehow they interact; rather agents need an infrastructure that pro-
vides the services such as location registries, and conventions such as standard
protocols that allow agents to find each other and interact [1.49]. Therefore,
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ontologies should also support the description of the MAS infrastructure,
what kind of registries it employs [1.54], what kind of protocols, and so on.

It is virtually impossible to find a common denominator across all possible
private agent ontologies. This is because intelligent agents have been based
on virtually every problem solving mechanism that has been invented in Al
Examples range from deductive agents based on ConGolog [1.18] that use
ontologies expressed in Situation calculus [1.28], to agents exploiting various
types of synthetic planning, as for example the RETSINA agents [1.46, 1.34]
based on HTN planning [1.12], or BDI [1.36] inspired agents based on reactive
planning [1.16, 1.24, 1.32], to agents that use decision theoretic and game
theoretic approaches [1.26, 1.39].

In this paper we concentrate on the use of public ontologies in agent
discovery, interoperation and communication. The rest of the chapter is or-
ganized as follows: section 1.2 concentrates on the contribution of ontologies
to agents’ social activities. We will show that ontologies are essential to the
description of agents’ “social interfaces”, and in particular the description of
agents’ capabilities which are needed for agent discovery in a MAS. In section
1.3 we describe ontologies for agent communication and show how ontologies
contribute to mutual understanding of agent messages and interactions. Sec-
tion 1.4 We will then conclude highlighting some of the open challenges.

1.2 Agent Discovery

Dynamic discovery mechanisms have four distinctive characteristics: the first
one is a representation of the agents in the system; the second one a match-
ing process that identifies the similarities between requests for agents, and
advertisements of agents in the MAS; the third characteristic is a set of
infrastructure components such as registries and protocols that support dis-
covery; and finally, the last characteristics of discovery processes, relates to
the problem solving of the agents. The different discovery schemes proposed
in the literature are distinguished by the way they address the four different
aspects of discovery, leading to a range of various levels of flexibility in the
dynamic reconfiguration and coordination regimes of the agents in the MAS.
For example, OAA [1.31] assumes a centralized broker which mediates all the
interactions between agents; Contract Net [1.43] does not assume any global
registry, rather agents use a bidding protocol to reply to task announcements
and contract tasks.

Ontologies are an essential ingredient of discovery. They provide the
means to represent the different aspects of agents and the basic mechanisms
for the match between agents requests and agents advertisements. First of
all, since agents are objects in the domain, any ontological representation of
the domain should necessarily also represent the agents themselves. But more
importantly, agents modify their environment, so any descriptions of an agent
necessarily refers to the ontological description of the environment the agent
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lives in. In this section, we analyze the different aspects of discovery, and its
relations with ontologies. Specifically we will analyze the representation of
agents in advertisements and requests, and how this representation affects
the matching process and the agent’s problem solving.

1.2.1 Capability Representation

Agents can be represented at many levels of abstraction. At the physical
level they are characterized by their ports and network protocols. This is
essentially the representation provided by the Web services infrastructure
specifications such as WSDL [1.6] and UDDI [1.51]. At a more abstract level,
agents interact with other agents through a communication language, and use
a set of ontologies to encode their messages and interpret the messages that
they receive. From another point of view, agents are characterized by their
capabilities, their interaction protocol, the problem solving procedures that
they employ, the legal entity that is responsible for their correct functioning,
and so on.

In this section we concentrate on the representation of capabilities which
we believe is crucial for the discovery of autonomous intelligent agents in an
open MAS. In such systems, agents are aware of the problem solving needs
that emerges during their reasoning, but they do not know which agent in the
MAS can satisfy those needs. The task of the agent is then to abstract from
the specific problem to the capabilities that it expects from a provider. For
example, an agent that provides financial advice may need the latest quote
of the IBM stock. To this extent, the agent should transform the particular
problem, i.e. get the quotes of the IBM stock, to a description of the capa-
bilities it expects from the stock quotes provider, i.e. stock market reporting.
Finally, the financial planning agent should use that capability description to
locate the stock reporting agents.

A number of capability representation schemes have been proposed by
the agent community and more recently by the Web Services and Seman-
tic Web community. Each of these representation schemes makes different
assumptions on the representation of the agents, and most importantly on
what kind of ontologies they use in their representation. Specifically, we dis-
tinguish between two types of representation schemes: the first one assumes
ontologies that provide an explicit representation of the tasks performed by
agents. In those ontologies, each task is described by a different concept, while
agents are described by enumerating the tasks that they perform. The second
representation scheme describes agents by the state transformation that they
produce, therefore there is no mention of the task performed by the agent;
the task is implicitly represented by the state transformation of the agent’s
inputs to the outputs it produces.

The two approaches to agent representation provide two ways to use on-
tologies. The schemes that make an explicit use of tasks ontologies provide a
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Sell Reserve Credit ‘

Sell Credit Card |
Sell Loan
Sell Mortgage ‘
Sell Credit Line |
Sel IFinancial Servuce Sell Saving and Investment Service ‘

Sell Management Service ‘

Sell Account Access Services ‘

Fig. 1.1. Fragment of ontology of loan selling tasks

straightforward way to locate agents with give capabilities. But they also re-
quire ontologies that assign a concept for each task performed by each agent
in the MAS. Since agents can perform many different tasks, these ontologies
can grow very large thus becoming unmanageable and may not scale up when
agents with new capabilities enter the system. Another drawback of the ex-
plicit representation schemes is that they do not represent what information
the provider agent needs in order to interact with a requesting agent. The im-
plicit representation schemes require only concepts that describe the domain
of the agent, and then use those concepts to describe the task computed by
the agent. In addition, some implicit representation schemes provide informa-
tion (e.g. in terms of needed inputs) that a requester must provide to interact
with a service provider agent. On the other hand, explicit representations fa-
cilitate the matching process since there is no need to infer the task from
its implicit representation. Each capability representation scheme strikes a
different balance between the two extremes depending on the ontologies that
it has available, and how closely they describe the capabilities of the agents
in the MAS.

1.2.2 Explicit Agent Capability Representations

An example of ontology which provides an explicit description of tasks and
processes is the MIT Process Handbook [1.30]. Figure 1.1 shows a fragment
of the specialization hierarchy of the ontology of tasks with the root ”sell fi-
nancial services” [1.30]. Furthermore, it shows that the concept Sell Loan is
a specialization of Sell Financial Service which in turn is specialized by
Sell Credit Card, Sell Mortgage and other concepts. In turn, the ontol-
ogy associates to each process properties such as port that describes the I/O
behavior of the process, and decomposition that describes how the process
is realized by the composition of other processes described in the ontology.
The MIT Process Handbook can be used to index Web services and agents for
later retrieval [1.1]. For example, an agent that sells loans would be associated
with the concept Sell Loan in the taxonomy in figurel.l. The advantage of
this approach is that it reduces the burden of modeling the agent, since it



6 Katia Sycara and Massimo Paolucci

is represented by the task it performs. The disadvantage of this representa-
tion, at least in principle, is that it is impossible to distinguish between Web
services or agents that sell loans whose amount is greater that $50,000 from
agents that sell loans whose amount is smaller than $10,000!. To represent
these constraints on the loan amount that the two agents offer would require,
at least in principle, the definition of two subclasses of Sell Loan to describe
the two different cases.

The use of explicit task ontologies for agent representation has been pro-
posed for a number of agent representations and more recently for represen-
tation of semantic web services. InfoSleuth [1.33] describes different aspects
of agents using concepts drawn from different ontologies. An agent represen-
tation based on InfoSleuth is shown in figure 1.2. The representation inher-
its from the finance ontology the definition of stock quotes, and from the
conversation ontology the specifications of the communication language
that the agent uses, namely KQML. Requests for capabilities and adver-
tisements of capabilities have the same representation; a match between an
advertisement and a request is recognized when the advertised agent has all
the features that are specified in the request.

capability example-capability
ontology finance
class stockQuote
slot ticker
slot delay in immediate
ontology conversation
class conversation
slot language in kqml

Fig. 1.2. example of stock quote agent in InfoSleuth

The representation used by InfoSleuth takes advantage of the types of
agents that were used in InfoSleuth applications, namely information agents.
For example, from the description of the agent above there is no way of telling
whether the agent provides information about conversation languages, or
whether it uses a specific conversation language. In both cases the description
is exactly the same. The resolution of the ambiguity is possible only with the
reference to the context since no agent in InfoSleuth provides information
about communication languages.

Other capability representation languages include Phosphorous [1.19,
1.45] which represents capabilities as a predicate in which the functor is
the name of the task represented and the arguments are the parameters of

! We selected “amount” because it does not seem to be represented in the ontology.
In general any unmodeled feature can be used here instead.
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the task. The matching process is reduced to a series of tests that analyze
the subsumption relation (or the inverted subsumption) between the adver-
tisement and the request. Another approach that makes use of the semantic
web has been proposed in [1.50]; tasks of web services are represented by the
instance of the task that they perform, and a set of properties that depend
on the task. Matching of the request with the advertisement is reduced to
a subsumption or inverted subsumption between the advertisements and the
request.

1.2.3 Implicit Agent Capability Representation

LARKS [1.48, 1.47] provides an example of agent representation that uses
an implicit task definition. LARKS represents the capabilities of agents as
transformation from a set of inputs to a set of outputs. Consistent with this
view, each LARKS advertisement and request requires the specification of
seven features of the agent.

Context The context, or the domain, of the agent.

InTypes and OutTypes An optional set of input and output data types.

Inputs and Outputs The inputs that the agent expects, and the outputs
that it generates.

InConstraints and OutConstraints Sets of constraints on the inputs and
outputs if the agent.

ConcDescription a list of concepts used in the agent description, that do
not appear in the ontologies.

Different agents are described by different settings of the parameters. For
example, a stock quote reporting agent in LARKS is described in figure 1.3;
the context specifies that the agent operates in the domain of Finance and
that given a ticker as input, it generates a quote as output. This definition of
course assumes that there exist ontologies that define the concepts of Finance,
ticker, and quote and that those ontologies are shared by the agent that
provides the service, all possible requesters and the infrastructure components
that are responsible for the matching between the two.

Context = Finance
InTypes = String
OutTypes = Real

Inputs = ticker

Outputs = quote
InConstraints = retail A banking
OutConstraints = retail A banking

ConcDescription =

Fig. 1.3. LARKS advertisement of stock reporting agent
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The matching process adopted by LARKS uses a combination of informa-
tion retrieval techniques such as TF/IDF [1.38] and logic inference to identify
the relation between the advertisement and the request. The information re-
trieval techniques are used as heuristics that remove all the advertisements
that for sure have nothing to do with the request. The logic inference is based
on subsumption and on weighted relations to compute the distance between
the concepts used in the advertisement and the concepts used in the request.

The LARKS matching process allows for partial matches to find advertise-
ments of providers whose capabilities are similar enough to the capabilities
requested. This is because in practice, it is unrealistic to expect that the re-
quest will match exactly one or more advertisements of agents in the MAS
since the requester and provider may use local ontologies that could be differ-
ent. The goal of partial matching is to maintain validity by rejecting matches
of advertisements and requests that are totally unrelated, and measuring
the degree of match between two capability descriptions: the more similar
the services described, the higher the degree of match. LARKS deals with
partial matching by measuring the conceptual distance between the adver-
tisement and the request, and it leaves to the requester to determine a cut-off
value that limits the distance between the advertisement and the request to
some value acceptable to the requester. A high cut-off value would eliminate
most of the providers even if their capabilities are close to the capabilities
requested, a low value would include many providers whose capabilities may
differ substantially from the capabilities requested.

1.2.4 Combining Explicit and Implicit Representation

Other approaches to capability representation use a combination of the im-
plicit and explicit representations. These approaches combine the ease of use
of ontologies of tasks, when those ontologies are present, with the ability of
describing the capability of any agent provided by the implicit approach.

The most notable example of this approach is the DAML-S Service Pro-
file? [1.2]. It provides an implicit description of agents in terms of a host of
features as LARKS does. In addition profiles are concepts in a DAML on-
tology and therefore it is possible to organize them in a taxonomy similar to
the taxonomy shown in figure 1.1.

DAML-S Profiles provide three types of agent information: the first type
is a specification of an actor who is responsible for the advertisement or
the request. The second type of information consists of a host of Functional
Attributes such as the category of service, quality of service and additional
service parameters which can be used to specify details of the service. The

2 DAML-S is composed of three modules: the Service Profile that describes the
agent, the Process Model that describes the workflow of the agent and the Service
Grounding that describes the communication details of how to interact with the
agent.
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last type of information specifies the Functional Specification which defines
the transformation produced by the agent in terms of the inputs, outputs,
preconditions and effects. Functional Attributes and the Functional Specifi-
cation describe the capability of the agent.

Functional Attributes allow to specify features of the agent that are im-
portant to decide whether the agent adequately addresses a request. For ex-
ample, one of the functional attributes of a stock reporting agent may be the
delay in stock reporting with respect to the market. This could be described
using DAML-S by specifying a service parameter as shown in figure 1.4. In
the figure, the value of the stock quoting delay is 1 minute.

<profile:serviceParameter>
<profile:QuoteDelay rdf:ID="agentDelay">
<profile:serviceParameterName rdf’:value=’’one minute"/>
<profile:sParameter rdf:resource="time:#1minute"/>
</profile:GeographicRadius>
</profi1e:serviceParameter>

Fig. 1.4. example of DAML-S service parameter

The functional representation describes the transformation computed by
the agent in a way that is similar to LARKS. An example of functional repre-
sentation is shown in figure 1.5. The agent requires as input a ticker symbol
and it returns the quote of the stock. To execute correctly the requester will
have to prove that it is a valid subscriber to the service (we assume in this
example a subscription-based payment model for the stock quoting service).
As a result of invoking the service, the requester’s account will be charged?

Inputs = ticker
Outputs = quote
Preconditions = valid(membership)
Effects = charged(account)

Fig. 1.5. DAML-S functional representation of stock agent

The matching process for DAML-S [1.35] recognizes a match between the
advertisement and the request, in case when the advertised service could be
used in place of the requested service. Specifically, the matching process uses
the inputs and outputs, of the advertisement and the request to derive the
different degrees of match: exzact when the advertisement and the request are

3 At the time of writing, DAML does not support a rule language, therefore,
conditions like valid(membership) or charged(account) cannot be expressed.
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synonymous, plugln when the advertisement subsumes the request, subsumed
when the request subsumes the advertisement, and fail when no relation can
be found. When plugIn match holds, the provider claims it provides all the
requester needs, but the advertisement may be so generic that it is useless for
the requester. For example, a provider may advertise that it retails all kinds
of products. This advertisement partially matches a request for a book seller.
When subsumed match holds, the provider provides only part of the capabil-
ities that the requester needs, and it is up to the requester to verify if those
capabilities are enough. For example, a provider may advertise that it sells
Ford and Chrysler cars. This advertisement matches in a subsumed match a
request for a provider of sedan cars. Presumably the provider provides Ford
and Chrysler sedans, and it is up to the requester to decide whether these
brands of sedans meet its needs so it would interact further with the provider.

As pointed out above the DAML-S Profile specifies a class in a DAML
ontology, therefore, at least in principle it is possible to follow a different
matching process that makes use of DAML classifiers to match advertisements
and requests. The challenge with matchmaking of DAML-S Profiles is to
combine the explicit and implicit way of matching to improve the final result.

1.2.5 Trade-offs

We have described how the capabilities of agents play an essential role in
discovery, and we analyzed in some detail different agent and web service
representation formalisms. We classified them into two main types: explicit,
when they take advantage of an extensive taxonomy of tasks, and implicit,
when such an ontology is not used. There are clearly trade-offs between the
two representations. Representations that use explicit representations of tasks
require ontologies that are difficult to built. Furthermore, they suffer from
the weakness that every time an agent with a new functionality enters the
MAS, a new class must be defined in the ontology. Implicit representations
do not need any explicit coding of tasks in the ontology providing a natural
expression of tasks using domain ontologies already available. The tradeoff
is that the use of explicit task representations makes matching of requests
and advertisements much easier reducing it to test what kind of subsump-
tion relation holds between advertisements and requests. Matching between
capabilities expressed implicitly is more complex. Since there may not be an
easy way to classify different tasks, matching requires a careful comparison
between the input/output transformation described in the request with the
transformations described in the advertisements.

1.3 Ontologies for Agent Communication

In a MAS, knowledge and capabilities are distributed across the agents in
such a way that no single agent has a complete knowledge of the whole
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multiagent system and no single agent can perform all the operations that
can be performed by all the other agents. Despite their limited knowledge
and capabilities, agents can ask other agents to perform some action or to
provide information. Ultimately, communication allows any agent to extend
the set of goals that it can satisfy by asking other agents with a different set
of capabilities to contribute to its plans. For example an agent in the blocks
world may be able to slide boxes, but not lift them; nevertheless, it may still
construct plans for stacking blocks by pushing the blocks close to each other
and then asking a lifting agent to put them one on top of the other.

The ability to communicate with other agents is one of the central skills
of any agent in a Multi-agent system. Furthermore, since communication ex-
tends the knowledge and the capabilities of any agent, it becomes an integral
part of the problem solving of any agent. Crucially, in the example of the
blocks world agent described above, the resulting plan contains both physi-
cal actions: pushing blocks together, and communicative actions: asking the
lifting agent to stack blocks.

The interleaving of communication and problem solving requires the agent
to decide whether to achieve its goals via direct action, or by asking other
agents to achieve some of those goals. In turn, this requires communication
actions to be described as any other actions: they must have preconditions
and they achieve some effect. This is the approach taken by the speech act
theory [1.3, 1.41, 1.7], which, in a nutshell, adopts the view that by saying
something the speaker achieves the effect of producing either a change in its
world, or a change in the beliefs and intentions of the listener. For example,
some utterances have very striking effects: when a public official declares two
people married, the effect is a change in their marital status. Other utterances
have more subtle effects, for instance by saying ”its raining” the speaker
attempts to make the listener belief that indeed it is raining; similarly, by
asking the listener to do something, the speaker may induce in the listener
the desire to do what was asked.

1.3.1 Representation of Speech Acts

Speech act theory, and its predication that communicative actions are essen-
tially equivalent to other action in the world proved to be very appealing to
the agent community. First, it allows a precise definition of communication
actions and of the consequences of message exchanges; second, communica-
tive actions can be defined in terms of planning operators and they may easily
inserted in the plan that the agent is developing to achieve its goals?.

* The linguistic basis of the speech act theory is more complicated than described
here, and cannot be represented faithfully with planning operators. Nevertheless,
our description is faithful to the use that agents make of it.
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Speech act theory is the base of ontologies of communication actions such
as KQML [1.14] and FIPA ACL5 [1.15]. For example FIPA ACL specifies
22 speech acts, which are described by two properties: the first one specifies
feasibility preconditions which are conditions that should be satisfied for the
communicative action to be performed; and rational effects that represent
the effects that the speaker hopes to achieve with the communicative action.
As an example, consider the definition of the inform action in FIPA ACL as
shown in figure 1.6. It states that it is appropriate for the speaker to inform
the listener of ¢ when (feasibility condition: FP) the speaker believes the ¢
holds, and it does not believe that the listener believes that ¢ is true, nor the
speaker is uncertain on whether the listener believes ¢ to be true. The result
(rational effect) of the inform action is that the listener believes ¢.

Inform
< speaker,inform(listener,p) >
FP: Bspeaker¢ \% _‘Bspeaker (Bspeaker flistener¢ A Uspeake'r flistener¢)
RE: Blistenerd)

Fig. 1.6. FIPA definition of Inform

The use of FIPA ACL allows the speaker agent to have expectations on the
behavior of the listener, but there are no guarantees that the expectation will
be met by reality. The first problem is that since the listener is an autonomous
agent with its own knowledge, it may already know that ¢ is false or it may
believe that the speaker is a liar and therefore it may reject the inform on
those grounds. The second problem is that both FIPA ACL and the speech
acts theory assume that the listener understands ¢, but when this assumption
does not hold, the listener will fail to hold the beliefs that the speaker expects
it to hold. Suppose for example that the speaker informs the listener of the
IBM quotes using the message in figure 1.7. Even if we assume that both
parties agree on the FIPA ACL interpretation of inform speech act, still
the listener has to understand the meaning of the terms “quote“, “IBM,“
and “$87¢ and the way their meanings are combined to form the meaning
of the statement. Furthermore, the speaker should agree with the listener’s
interpretation. The failure to reach an agreement on the meaning of those
terms would lead to a failure to share the same interpretation of the message
and it would prevent successful communication between the speaker and the

5 KQML and FIPA ACL are usually described as agent communication languages,
not as ontologies. In reality they are both, they provide a syntax that can be
used by agents to compile messages, and a semantics that specifies concepts like
message and speech act. To this extent FIPA ACL and KQML are effectively
ontologies for agent communication.
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listener. This very simple example shows that in the absence of any shared
ontologies that define the meaning of the terms used in the message exchange,
the two parties have no way to communicate.

(inform
:sender speaker
:receiver listener
:content (quote IBM $87))

Fig. 1.7. example of inform message

Ontologies provide the tools to interpret the content of the message. For
example, the speaker may encode its message using the DAML+OIL ontology
shown in figure 1.8. The ontology provides a description of quote, specify that
it relates to the concept Ticker through the ticker relation and to a Value
through the hasValue relation. Furthermore, it specifies how these concepts
are related to other concepts that may be defined elsewhere. For example,
the ticker symbol is related to a company description that will contain other
information about that company, while the value relates to a currency and so
on. In this framework, the content of the message could be expressed as an
instance built on the basis of the ontology. In this case it describes a quote,
using an instance of the ticker that happens to point to IBM, and the value
of the quote is 89 measured in US Dollars.

As the example shows, ontologies, by providing a shared conceptualization
of the domain, effectively contribute to agent communication by providing a
language and dictionary that can be used to express concepts and statements
about the domain of the agents. Furthermore, those languages and dictionar-
ies are standardized and shared by all the agents in the MAS. While each
agent may have its own knowledge and its own beliefs on the value of the
IBM stocks, they all share the same understanding of terms like IBM and
quote so that all of them achieve the same interpretation of the statements
that are communicated.

The second contribution of ontologies is in the use of the knowledge that
the agent receives through its communication with other agents. The rational
effect of the inform speech act, as we defined it in figure 1.6, is that the
listener believes the content of the message. This means that the content of
the message has to be added to the knowledge base of the agent and used to
derive new inferences. Ontologies support this integration by providing the
bases for the organization of knowledge in the agents knowledge base and of
a proof theory so that the agent can derive inferences from the knowledge it
gathers.
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Message Content

Ontology

<Quote> <class rdf:ID="Ticker” >
<hasTicker> <property rdf:ID="symbol” />
<Ticker> <domain rdf:resurce="#Ticker” />
<symbol <range rdf:resurce="xsd#string” />
rdf:value="IBM” /> < /property>
<company <property rdf:ID="company” />
rdfiresource=" #IBM” /> <domain rdf:resurce="#Ticker” />
< /Ticker> <range rdf:resurce="#Company” />
< /hasTicker> < /property>
<hasQuote> < /class>
<Value>
<currency <class rdf:ID=""Value” >

rdf:resurce="#US Dollar” />
<hasValue rdf:value="89" />

<property rdf:ID="currency” />
<domain rdfiresurce="#Value” />

</Value> <range rdfresurce="#Currency” />
< /hasQuote> < /property>
</Quote> <property rdf:ID="hasValue” />

<domain rdf:resurce="#Value” />
<range rdf:resurce="xsd#float” />
< /property>
< [class>

<class rdf:ID="Quote” >
<property rdf:ID="hasTicker” />
<domain rdf:resurce="#Quote” />
<range rdfiresurce="#Ticker” />
< /property>
<property rdf:ID="quote” />
<domain rdf:resurce="#Quote” />
<range rdfiresurce="#Value” />
< /property>
< /[class>

Fig. 1.8. Description of a Quote using a DAML+OIL ontology.

1.3.2 Extending communication to conversations

The use of speech acts in communication is quite limited. It provides a frame-
work for interpreting each message that agents exchange, but it does not
provide a framework that extends to longer conversations. FIPA ACL, for
example, mandates that every query action should be responded to with an
inform action. But the use of FIPA ACL speech acts does not extend beyond
these two message exchanges. Ideally, long conversations should be built as
composition of simple atomic speech acts as human conversations are. From
this point of view, agent A may ask B do X, B may query A asking for clari-
fications, A responds to B, and B satisfied commits to X. While humans find
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very easy to be part of this kind of conversations, software agents are not yet
sophisticated enough to be part of the “game of language” [1.29].

The management of long conversations suffers from a number of serious
problems. The first problem is that the compositional semantics of speech
acts may result in multiple interpretations for the same sequence of speech
acts. This is the so called basic problem [1.20] which may lead to ambiguity
and misunderstanding between the different parties. The second problem is
in the definition of speech acts in FIPA ACL: speech acts require the speaker
to have a model of the private beliefs of the listener which are never avail-
able, so the very preconditions of FIPA ACL speech acts, if taken at their
extreme consequences, cannot be satisfied by any agent ultimately preventing
communication [1.42]. The last problem is that these long conversations are
often constructed by agents that do not share the same goal, and that may
very easily lose track of the coherence of the conversation. Furthermore, the
reasoning required to maintain coherence of the conversation is extremely
difficult to model, as, for example, it requires employing abductive reason-
ing, to construct a model of the other parties involved in the conversation to
“guess” their goals [1.23, 1.27]; but abductive reasoning is rarely adopted by
software agents

In addition to the problems listed above, agents often enter in very
scripted interactions where the meaning of speech acts is artificially mod-
ified to fit the situation. For instance, e-commerce agents enter auctions and
bid to buy widgets there. Those agents need to follow the protocol of the
auction. Furthermore, e-commerce agents need to understand what counts as
a valid bid, how much commitment is associated with the bid, what is the
cost of retracting the bid. Much of this information cannot be represented
using speech acts. While there has been a great deal of work on agents in e-
commerce on exploiting game theoretic reasoning to select a winning auction
strategy [1.40], from the communication point of view, it is always assumed
that the agent is able to participate in the auction.

Agents interactions are very constrained and goal directed. Agents do not
entertain each other with small talk, rather their interactions are often very
well defined and constrained by the context. In the example of e-commerce
agents whose interaction is constrained by the auction protocol, any commu-
nicative action that is outside what is prescribed by the auction protocol is
inappropriate and potentially dangerous when interpreted as a bid. From this
point of view, the power of speech acts only adds non-needed complexity to
long conversations. In general, each conversation is regulated by Conversa-
tional Policies , or in other words “set of principles that constrains the nature
and exchange of semantically coherent ACL messages” [1.20].

Ontologies provide a way to formalize conversational policies as objects
in the domain so that they can be used by the agents to participate in long
conversations. For example, an auction may be formalized as an object that
has a protocol, a number of participants that should have well defined char-
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acteristics and that play well defined roles in the auction. Furthermore, an
auction is characterized by negotiation rules, products to sell, and bids placed
by the potential buyers. The use of ontologies to formalize conversations has
two advantages: first of all it specifies in a precise and declarative way what
agents should do to be part of the conversations, or as in our example of the
auction, the second advantage is that the same knowledge is shared across
all the agents so that they not only know what they have to do but they also
have expectations on what the auctioneer and the other bidders plan to do.

A similar approach is followed by DAML-S [1.2] when it defines the in-
teraction protocol with an agent®. Using DAML-S the agents specifies the
protocol of interaction with others as a workflow that mimics its own pro-
cessing workflow. Furthermore it specifies what information it needs as input
what it generates as output and the format of the messages exchanged. Us-
ing DAML-S allows any agent to infer the interaction protocol and to decide
what information to send at any given time.

The use of ontologies to represent conversations is producing a shift in the
interpretation of agent communication languages. By representing explicitly
conversations as protocols and the set of messages that have to be exchanged,
the ontological representation effectively departs from the traditional repre-
sentation of agent communication based on speech acts. Indeed, when the
protocol is completely specified there is no need to use speech acts at all.
The cost of this switch is the transition from an extremely powerful way to
represent agent messages based on speech acts where agents have the ability
to say all they want at any time, to a constrained way that carefully specifies
the interaction protocol limiting the messages that can be exchanged with
the advantage of gaining management of the conversation.

1.4 Social Knowledge

Communication achieves two objectives for agents. First it allows agents to
work together in such a way that the work of one agent contributes to the work
of other agents. For example, the performance of the requester of information,
depends on the quality of the information provided and the timely answers
of the provider. The second contribution of communication is to provide a
coordination mechanism whereby agents negotiate how they are going to
share a common resource or how they are going to collaborate toward the
solution of a problem.

Agent’s interaction and collaboration results in the emergence of a soci-
ety of agents with its own (often implicit) social structure. As a consequence
agents need social knowledge [1.25] which specifies how agents work together

5 DAML-S is designed to represent “Semantic” Web services, which are, from our
prospective, indistinguishable from agents.
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and the norms of acceptable social behavior in the MAS [1.5, 1.9]. For exam-
ple, asking an agent to perform an action or to provide information implies
a commitment on the part of the speaker of waiting for the answer, and a
commitment on the part of the listener to respond truthfully, coherently, and
in a timely manner to the request [1.42]. When agents do not live up to their
commitments, the interaction fails, therefore either the listener fails to receive
an appropriate answer, or the speaker will not be able to deliver its answer to
the listener. Norms provide a tool to represent explicitly what is expected by
an agent in a given situation; the utility of norms is in making the MAS and
the agents in it more predictable. Because of the existence of norms, agents
can develop predictions on the behavior of other agents, which in turns allow
higher levels of cooperation.

At the knowledge level, norms specify constraints on the behavior of the
agent within what is acceptable for the rest of the agents at large. In general,
it is up to the agent to decide whether to adhere or violate a norm, knowing
that violations of the norm come at some cost for the agent itself, or for other
agents in the MAS. Violations may result when the agent believes that the
adherence to the norm is either too costly or it prevents the agent from the
achievement of its goals.

While in principle, norms can be used to express any social constraint,
they find their immediate application in the definition of concepts like con-
tracts and commitments that agents develop as they work together. For ex-
ample, contracts carry the obligation of the parties to perform their role in
the contract, and the authorization to take some action when the contract
is violated [1.11]. For example, the obligation of an airline to transport all
passengers that have a reservation and the obligation of the passengers of
paying for their ticket are shown in figure 1.9. Here the goal condition repre-
sents the goal that the agents have to fulfill their obligation, while the exit
condition represents the condition that results if the agents do not fulfill their
obligations.

obligation(airline,passenger,transport(airline,passenger)

in:  flightReservation(passenger,airline)

goal: transport(passenger,airline)

exit: cancel(passenger,ticket) —
obligation (passenger ,airline,payCost (passenger ,airline)) A
auth(airline,passenger,direct (payCost(passenger,airline)))

cancel(airline,flight) —

obligation(airline,passenger,payCost(airline,passenger)) A
auth(passenger,airline,direct (payCost(airline,passenger)))

Fig. 1.9. Example of an obligation
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Authorizations provide a permission to the agent to perform an action.
For instance, our example of obligation shown in figure 1.9 specifies that the
passenger is authorized to ask for a reimbursement if the flight is canceled.
This authorization allows the passenger to actually ask for the reimburse-
ment. The formal definition of this authorization is shown in figure 1.10. The
authorization allows the passenger to assume the goal of making the airline
pay the cost of canceling the reservation.

auth(passenger,airline,direct(payCost(airline,passenger))
in:  flightReservation(passenger,airline)
goal: payCost(airline,passenger)

Fig. 1.10. Example of an authorization

Norms provide ontologies for the specification of the expected social be-
havior in a given community of agents. To this extent, ontologies provide
the language to express norms that are shared by every agent in the MAS;
furthermore, ontologies provide the conceptual structures to represent norms
as shared concepts. Despite the importance of expressing norms in the agent
community, virtually no work has been done to develop an ontological repre-
sentation of norms. Much of the contribution of this community has been in
the study of the effects of norms on the problem solving process of the agent.

In addition to the work on norms in the agent community, there are
other two sources of ontologies to represent concepts similar to norms. The
first contribution is the representation of laws in legal reasoning. [1.53, 1.52].
The main task of these ontologies is indexing of laws and regulations for
information retrieval and possibly for validity checking to verify that the
regulations do not contradict each other. These ontologies provide a different
notion of norm which is basically a description of a law, and the acts to which
those norms apply, as for instance robbery or murder.

The second effort to construct ontologies for norms comes from the e-
commerce community and their needs to express concepts such as contracts
that regulate electronic transactions. SweetDeal [1.22] bases its representation
on a combination of Semantic Web ontology languages such as DAML and
RuleML [1.37] in conjunction with the MIT Process Handbook. Contracts
are associated with a process such as selling, or delivery and with a set of
exceptions which describe what can go wrong, such as late delivery, with
the contract and the associated penalties. Furthermore, this work shows how
contracts can be used in conjunction with business rules to manage risk of
penalties
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1.5 Open Challenges

Despite the considerable effort toward the construction of ontologies that
allow agents to interoperate in open MAS, very difficult and challenging
problems are still open. We can divide these problems in two major sets
of challenges: the first set of challenges are related to the type of languages
and logics that provide sufficient expressive power to be of use for agents in
their interactions; the second set of challenges lies in the creation of ontologies
that help the agents in their everyday interaction in MAS. We will leave the
first set of challenges to other chapters of this book, and we will concentrate
on the second set of challenges.

A major challenge comes with the description of ontologies that describe
concepts such as commitments, agreements and contracts. As shown in [1.21]
these ontologies prove to be essential for a wide spread use of the Semantic
Web and Semantic Web services [1.2] in real World e-commerce applications.
Crucially, there seems to be a schism between the use and representation of
norms that comes from the agent community which is mostly concerned with
the mental attitudes that the agent adopts as a consequences of accepting
a given norm; and the Semantic Web attitude of providing a description
of contracts that is consistent with the underlying semantics of Semantic
Web languages leaving to the proof theory of the language and the inference
engines adopted by the agents the derivation of the appropriate consequences.

In addition to the development of ontologies for commitments, agents and
Semantic Web services need ways to express and reason about the reputation
and trust of the agents that they encounter. These are fundamental evaluation
criteria that we typically use when we enter in a business relation with our
partners. These concepts need to be expanded to communities of agents so
that a cheating agent is penalized by its unacceptable behavior. Some seminal
work in the area is represented in [1.4, 1.55, 1.56].

Agents can interoperate if they adopt the same modes of communication,
including agreeing on the security protocols used in their communication.
Ontologies are needed to specify the security requirements of agents [1.10].

Throughout the paper we referred generically to “ontologies” as if there
is a consistent corpus of ontologies available to the agents. In reality many
ontologies are redundant in the sense that they present the same domain,
but with little or no interoperation between the ontologies [1.44]. Since on-
tologies play a pivotal role in agent interoperation by providing a shared
representation of the domain and of the concepts that the agents need to
use, agents that use different ontologies fail to interoperate. Effectively, it is
as if the two agents end up speaking two different languages. The problem of
ontology interoperation is very difficult since ontologies may provide differ-
ent prospective and different sets of information on the concepts that they
represent.
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