Carnegie Mdlon University
| nformation Networking Institute

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Science in Information Networking

MIGSOCK
Migratable TCP Socket in Linux

Bryan Kuntz and Karthik Rajan

Accepted by the Information Networking Institute

Thesis Advisor: Katia Sycara

Print Name

Signature Date

ThesisReader: Joseph Giampapa

Print Name

Signature Date

Academic Advisor: Richard Stern

Print Name

Signature Date

Thesis Presentation Date: Thursday, the 21% of February, 2002

TR#

Officeuse only

Acknowledgment

We would like to thank everyone who directly or indirectly contributed to our the-
sis. Thanks to our advisors Dr. Katia Sycara and Joseph Giampapa. Thanks to
all of the support we received from the Information Networking Institute: Susan
Jones, Lisa Currin, Jasen Lentz, Joe Kern, and Dr. Richard Stern. Thanks to
the members of the Intelligent Software Agents laboratory at the Robotics Insti-
tute. Thanks to the entire MS12 class for enriching our experience throughout the
program. Finally, thanks to Nithya, Shannon, and our families for their support
during the program and otherwise.

Contents

Introduction

Process Migration Background

2.1 What is Process Migration?

2.2 Process Migration Importance

2.3 Process Migration Difficulties

2.4 General Process Migration Approaches
24.1 OSLevelsupport
2.4.2 User Level solutions

Socket Migration Discussion

3.1 What is Socket Migration?

3.2 General Socket Migration Approaches
3.2.1 Proxy Based Forwarding
3.2.2 Packet Spoofing
3.2.3 Host-to-Host Migration Support

Background of Socket Implementation

4.1 Overview of Network Implementation in BSD
4.2 Socket API — The User Perspective
4.3 Internal Representation and Data Structures
4.4 Creatinganewsocket
45 Sending Data
4.6 ReceivingData oo

High Level Design

5.1 Design Goals
5.2 Assumptions and Limitations
5.3 High Level Design
5.4 Counsiderations for Server Socket Migration

Detailed Design

6.1 MIGSOCK Application Programming Interface

6.2 Interface Usage
6.2.1 Source Side
6.2.2 Destination Side L oL

Sy UL UL UL i W W

© o

10
10
12
14

16
16
17
18
20
21
22

24
24
25
26
28

6.3 Process or Thread Behavior

6.3.1 Stage 1 — Migration Initiation
6.3.2 Stage 2 — State Relocation
6.3.3 Stage 3 — Migration Conclusion
6.3.4 Summary of Steps for Socket Handoff
6.3.5 Summary of Steps for Socket Migration
6.4 Considerations for Security

7 Implementation

7.1 General Points
7.2 Header Files. e
73 ModuleFile
7.4 Kernel Source Files

8 Integration and Testing

8.1 Socket Handoff
8.2 Socket Migration
9 Related Work
9.1 Process Migration Systems
9.1.1 MOSIX e
9.1.2 CRAK e
9.1.3 CONDOR
9.1.4 SPRITE
9.2 Socket Migration Solutions
9.2.1 Mockets — Transparent Redirection of Network Sockets . . .
9.2.2 Modular TCP Handoff
9.2.3 Mobile TCP Socket
9.2.4 Migratory TCP (M-TCP)
9.2.5 TCP Splicing and MSOCKS
9.2.6 Unverified Solutions

10 Future Work
11 Conclusion

A User Program Source Code
A.1 Start_Handoff.c
A.2 Finish Handoff.c
A3 Start_Migrate.c
A.4 Finish Migrate.c

39
39
41
44
45

48
48
50

53
53
93
95
95
56
o7
o7
99
60
62
62
63

64

66

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

5.1

6.1
6.2

7.1
7.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Linux System Architecture 6
OSTI Model o o e 8
Socket Migration 10
Socket Handoff oo o 11
Single Proxy on the Gateway 11
Chain of Proxies Created as a process migrates 12
Packet Spoofing 13
Host to Host Migration Support 14
Network Stack Implementation 17
Internal Data Structures 19
Overview of Socket Migration 27
TCP Message Timeline 33
Possible Security Attack 38
Interaction between top-half and bottom-half of TCP implementation 40
Socket Migration Message Format 43
Mosix Kernel Architecture oL 54
Mocket Components 57
Mocket Structureo 58
TCP Handoff 59
Plug-in Modules for TCP Handoff 60
The Mobile Socket Layer 60
The Virtual Socket oo 61
M-TCP Message Exchange 63

Abstract

Process migration is the act of transferring a process between two machines dur-
ing its execution. Although it has not achieved widespread use, it is expanding
in importance with the growth of distributed computing. There are already some
important identified contributions that this capability can provide to the field of
distributed systems, including dynamic load distribution and data access locality.
But there are also some potential benefits of the development of this idea that will
be realized as more advances continue to be made.

We have identified a shortcoming in many of the current process migration
approaches: the lack of network socket migration support at the operating system
level. A network socket is the interface provided by the operating system to a user
program that abstracts-away the complexities involved in network communica-
tions. A socket is represented in a process by a socket descriptor. Comprehensive
process migration systems should include this socket descriptor as part of the pro-
cess that migrates or else you limit the candidates for process migration to the
processes that do not have network connections.

We have focused our efforts exclusively on this problem of socket migration.
We provide a Linux kernel module that re-implements TCP to make migration
possible. This implementation requires minimal modifications (patches) to the
kernel files and makes the migration option available transparently to user appli-
cations without them needing to be recoded. The remainder of the functionality
exists in a kernel module that can be loaded on demand by the kernel.

We have demonstrated the utility of socket migration by migrating a pro-
cess using an existing process migration system called CRAK, while migrating
the socket using our implementation. We have also demonstrated an alternative
use for migratable sockets, the handoff of a live socket from one process to another.

Chapter 1

Introduction

Process migration is the act of transferring a process between two machines during
its execution. It involves capturing the state of a running process at a point in
time, transferring this state to a new host, and recreating the process on this host
from the point at which it halted. There are some important identified contribu-
tions that this capability can provide to the field of distributed systems, including
dynamic load distribution, fault tolerance, and data access locality. Process mi-
gration has not achieved widespread use and we feel that one of the reasons for
this is the lack of good network socket migration support in the existing process
migration systems.

The standard definition for a socket is simply the combination of a machine’s
host address and port [12]. A connected socket then is the combination of the
two communicating machines’ hosts and ports — four values all-together. A net-
work socket interface is provided by the operating system to a user program. It
abstracts-away the complexities involved in network communications by providing
an API or set of system calls. An application using a particular family of proto-
cols, such as TCP/IP, can avoid all of the programming required to implement
its side of the communication with a remote host by simply invoking this set of
system calls. Migration of sockets during process migration is difficult because a
socket can be in one of multiple states — unconnected, listening, connecting, and
connected — and because a migration candidate may have multiple open sockets
with processes on different hosts. More importantly, migrating an open socket
involves cooperation from the remote communicating entity. Some current pro-
cess migration systems choose to address socket migration without having to make
modifications to the remote socket implementation [5] [15] [16] [17] [21] [22]. The
systems that do choose to include the remote coordination accomplish it without
providing kernel-level support, usually in the form of an application layer socket
recreation [6]. Thus some of these systems ignore the socket migration component
altogether, others code solutions that add bulk and complexity to the applica-
tions. We do not feel that these approaches provide the support required for a
robust socket migration capability. We propose to focus our efforts exclusively
on the problem of socket migration, by tackling it head-on with a solution at the
operating system kernel level that involves modifying the TCP implementation.

Our solution is called MIGSOCK, for MIGratable SOCKet. It consists of a
patch to and a module for the Linux kernel, providing a set of system calls that
support socket migration. This implementation resides at the OS kernel level, and
the TCP layer of the network stack (OSI layer 4). Thus the migration of sockets
can be performed transparently on any application programs that are compiled
to run on the Linux distribution that we port to. These programs do not need
to be specially coded or configured for migration. MIGSOCK does not degrade
the performance of TCP except for the two messages needed to initiate and con-
clude migration of the socket. Also, with one small exception, TCP continues to
function correctly when communicating with a remote host that does not support
socket migration. MIGSOCK provides a socket migration capability that can be
used in two realms. It can be used to accompany a process migration system such
as CRAK that does not support socket migration, and it can be used to enable
the handoff of a live network socket connection between two separate processes.
These two uses will be developed in the sections of this paper.

The remainder of this paper is organized as follows. Chapter 2 introduces
process migration and provides a summary of the important characteristics and
features of process migration systems. In chapter 3 we introduce socket migra-
tion and discuss varying socket migration techniques, highlighting the differences
and improvements offered by a kernel level implementation versus a user level im-
plementation. Chapter 4 of this paper provides a high level background of how
UNIX in general and LINUX in particular implement socket communication. An
understanding of this will be necessary before the discussion of our design can
be presented. In chapter 5 we offer a high level depiction of our design, which
will serve as an introduction to chapters 6 and 7 of this paper where the design
and implementation are laid-out in full. Chapter 6 is the detailed design section,
and chapter 7 reviews the implementation. Chapter 8 demonstrates the tests and
results that were conducted to verify functionality. We explain how our network
socket migration mechanism was easily integrated with an existing process migra-
tion scheme to prove the concept. In chapter 9 we cover the work that is related
to process and socket migration. It includes a survey of the important modern
process migration implementations, as well as applications or APIs that in some
form involve the migration of a network socket.

Chapter 2

Process Migration Background

We consider socket migration a facilitator for process migration. To understand
the impact socket migration has in this context, we first examine process migra-
tion.

2.1 What is Process Migration?

A process is an operating system representation of a program [25]. In the most
general sense, process migration is the suspension of execution of a process on one
machine and the resumption of that process on another. This migration requires
that the state of the process be captured at a given moment and recorded or seri-
alized in a persistent file or network message. This state is made up of the CPU
register values, the process memory including both user and kernel space, open
file descriptors including sockets, other device specific parameters, and any other
kernel data structures associated with the process. Having collected a consistent
description of the state of the process at the point of capture, the next step is to
transfer this state information to the new host of the process. The final step is the
recreation of the process on this host by building and populating the appropriate
kernel data structures with this state information and scheduling the process [7].

Process migration systems are implemented in many different ways. However,
there are some common characteristics that the varying approaches must share in
order to support the process migration we are talking about [7].

e Process execution point maintained

True process migration requires that the migrated process resume execution
from the point at which it left off on the old host. Reinitializing the process
in order to resume it is not an acceptable solution.

e Export/Import interface.
The system must provide some type of export/import interfaces that allow

state extraction from the source node and importation by the destination.

e Post migration accessibility.

The migrated process should be accessible by the same name and mecha-
nisms after the migration as it was before. It should have access to the same
communication channels, files, and devices.

e Source host cleanup.

All of the resources that the source kernel administers to the exported process
must be returned. Data structures must be freed, file or network pipes must
be waited-on or aborted, and no outstanding system calls can be running on
behalf of the process.

2.2 Process Migration Importance
There are four primary advantages of using process migration [7]:

Load balancing The process loads can be dynamically distributed among vari-
ous nodes in a cluster by dynamically shifting processes from heavily loaded
systems to systems that are relatively free. This is the most important ad-
vantage of the four; the popular network operating systems — including Mach
[17], Mosix [15], and Sprite [16] — support process migration to achieve this
end. In the Sprite Network Operating System for example, processes are mi-
grated by invoking a system call on the process (from the shell for example).
The kernel keeps track of which machines are idle, and chooses one of these
hosts as the target destination for the process. The migration is transparent
to both the process and the user other than the performance boost evident
after relocation. The Sprite paper indicates that the process’s environment,
including file and device access, is preserved but network sockets are not
mentioned.

Fault tolerance Processes can be migrated from failing nodes to other nodes
in the system, thus improving the overall reliability of the system. Sys-
tems that employ periodic, transparent check-pointing of the process, such
as Libckpt [29] and MIST/MPVM, use rollback recovery to achieve fault-
tolerance. Such systems store the process state to disk during the frequent
checkpoints. If the system crashes, the most recent copy of the process state
can be retrieved by a neighboring node and resumed from that checkpoint
[23].

Anytime system administration By migrating all important processes from a
machine, the administrator can perform his system maintenance work on a
node at any time and not be concerned with potentially killing tasks that
are running there.

Data access locality By moving the code to the source of data rather than
moving the data to the code, systems can be made more efficient in terms
of network traffic and process throughput.

2.3 Process Migration Difficulties

Besides some commercial uses of Mosix, the systems described above have not
been widely adopted into the marketplace for several reasons [7]:

Lack of support for heterogeneity The proliferation of the Internet over the
past several decades has encouraged the development of systems and appli-
cations that are capable of running and communicating in a heterogeneous
environment. Process migration requires the capture and transfer of state,
which is difficult to accomplish if the participating hosts have a different
architecture or OS.

Lack of applications Scientific or long running applications are the types that
could benefit most from migration capabilities. These make up only a small
percentage of today’s applications, as the majority are standard PC desktop
applications.

Lack of infrastructure Despite their apparent usefulness, distributed operating
systems have not been widely transferred to the marketplace because none
of the major Operating System vendors have taken the initiative to come
out with explicit process migration support.

Socket Migration Inadequately Addressed As discussed in the previous sub-
section, most implementations of process migration have skimmed through
socket migration due to the complexity of adding transparent socket migra-
tion to the systems.

2.4 General Process Migration Approaches

All modern systems that support process migration can be categorized into one of
two groups based on the level at which process migration is implemented. These
are user space and kernel space, as shown in Figure 2.1. Kernel space is made up of
the OS Core, which performs the base kernel operations such as process scheduling
and memory allocation. On top of this core, layers are built which provide more
use-specific functionality such as the networking functionality or device drivers.
All of the functionality provided by these layers and by the core is accessible to
the user space through a kernel-provided system call interface. Programming lan-
guages in the user space write libraries that make use of these system calls. User
programs are coded using these libraries.

2.4.1 OS Level support

In systems that support process migration at the OS level, the user code remains
unchanged. This can be done in one of two ways:

e Underlying OS

User Application

| C Libraries | O3 Services | User Space

Kemel S
| System Call Interface | ernel Space

TCP/IP Protocol MIGSOCK Module

0SS CORE

Figure 2.1: Linux System Architecture

Modifications can be made to the underlying OS to support process migra-
tion. Two good examples of this are MOSIX[15] and Sprite[16].

o Microkernels

There are many distributed systems that support process migration through
modifications to the base microkernel architecture. There are two mains
systems of this kind - MACH[17] and AMOEBA[19].

2.4.2 User Level solutions

User level solutions can again be grouped into two sets — the first being support
through application relinking /recompiling and the second through programming
environment support

o Application relink and recompile.

In this method the application program is linked / compiled with special
migration libraries. These libraries provide routines for state capture and
migration. The system is less transparent than OS level implementations,
and requires that programs be aware of mobility. A good example of this is
Condor[21].

e Programming environment.

This involves support from the programming language and execution envi-
ronment for process migration. Java is well suited for such applications and
is one of the main platforms for migration. All Mobile agent systems would
come under this category, including Agent-TCL [26], Aglets[27], MOCKETS
[6], TACOMA and Telescript [1]. The system is portable across platforms /
machines. However, transparency is limited since users must program their

applications in their specific programming languages to take advantage of
the provided mobility code. Also, the system performance is relatively slow
when compared to the other systems.

Chapter 3

Socket Migration Discussion

The simplest definition of a network socket is the combination of a machine’s
host address and port [12]. A connected socket then is the combination of the 2
communicating machines’ hosts and ports — local IP, local port, remote IP, and
remote port. The OS provides user programs with a set of socket system calls
or API. This API sits on top of layer 5 of the OSI model [11] (Figure 3.1). The
complexities of network communication are abstracted by this API. The user pro-
gram calls the socket system calls to initially establish communication, the result
of which is a socket file descriptor. This socket file descriptor can then be used
like a normal file descriptor to read and write data. Thus an application using a
particular family of protocols, such as TCP/IP, can avoid all of the programming
required to implement its side of the communication with a remote host by simply
invoking this set of socket system calls.

Application

Presentation

«— Socket Interface

Session

Transport
Network

Data Link
Physical

= N W AR OO~

Figure 3.1: OSI Model

This section will discuss various approaches to solving the socket migration
problem. The discussion will be general in that it will not mention existing socket
migration solutions. The Related Work chapter near the end of this paper will
review some of the actual implementations and discuss their merits and demerits.

3.1 What is Socket Migration?

Socket migration is the seamless transfer of one end of a live socket connection
from one host to another, without loss or interruption to the packet flow. There
are two important impacts of socket migration. One is that it enables process mi-
gration to include live network connections among the process’s migrating state.
The other is that it enables the handoff of a live socket connection. This handoff
could take place between two separate processes potentially running on different
hosts, or a process could handoff the socket to itself while it is still executing in
the case of a network reconfiguration. Socket migration is difficult because the im-
plementations are constrained by the semantics of TCP/IP and the requirements
for interoperability with different TCP/IP stack implementations.

Socket migration for process migration A socket, represented in a process
or program by a socket descriptor, is part of the process’s state and should ideally
be included when a process’s state is transferred to a new host. This requires that
the communication be suspended on both ends and that the state of the socket
be identified and preserved with the rest of the process’s state at checkpoint time.
When the process state is serialized and transferred to the destination host, the
socket descriptor is included. When the process is reconstructed on the destina-
tion host using the serialized state data, open sockets must be created so that the
process can continue to access these socket descriptors. These sockets should be
connected to the remote entity so that communication can proceed as it did be-
fore the migration began. Figure 3.2 illustrates the main steps involved in socket
migration.

Socket handoff Socket migration in this context requires that only the state of
the socket, not the parent process, be captured, serialized, and transferred. Figure
3.3 illustrates this scenario. It requires that the socket destination host be ready
to accept the live connection by running an identical process that is somehow
synchronized to the same state as the source process at the time of migration.
In other words, the upper (application) layers should have access to a socket de-
scriptor and be ready to use it in the connected state. An example use for this
is allowing processes to maintain execution during a network reconfiguration. An
ad-hoc private network might suddenly need to reassign its hosts’ IP addresses to
avoid a DoS attack, or when a new router goes online. A process’s socket could
be suspended, handed-off to itself, and resumed using socket migration while this

Source

E ® SLEF’E'W

T th
CP S'Dckef eg rabﬂshﬁd

Coﬂn 4
SCiton
Capture, serialize, and transfer = —
@ process and socket state to J ORI
Destination
ae
Destination neci 500 ?\—008'55

Figure 3.2: Socket Migration

reconfiguration takes place.

3.2 General Socket Migration Approaches

There are three categories of approaches that we can think of for solving the prob-
lem of socket migration: proxy-based forwarding, packet spoofing, and host-to-
host support. In each of the three approach scenarios, we call the migrating process
the “local” or “source entity”. It migrates from the source host to the destination
host and becomes known as the “destination entity”. The source/destination en-
tity communicates with a “remote entity”, which resides on a remote host.

3.2.1 Proxy Based Forwarding

Proxy based forwarding is the most noninvasive approach because it does not in-
volve modifications to the underlying protocols. In one implementation, all packets
to a socket on a source host are directed there using a single proxy host. The proxy
is then responsible for directing the incoming packets to the destination host on
the network where the destination process resides. Figure 3.4 illustrates this. In
another approach, a proxy process can be instantiated on each host to replace the
communicating process whenever its socket migrates to a new destination host.
As shown in Figure 3.5, This sets up a chain of proxies between the source and
the destination hosts until the process ultimately finishes executing.

In both cases, the proxy does not actually execute the server process — it just
forwards packets to its destination address. Each process that opens a socket

10

Source

@ s
Der
TCo q =X
o .
Sockercani?j@hég
Cf
N

Capture, serialize, and transfer
@ socket state OMLY to
Destination

Destination e fptot
d._."ﬁ'ﬁ_e dee.{} i+ emd;_e

Figure 3.3: Socket Handoff

Gaeway
{Proyprocess) e
Source Host TCR

_] Remote Entity

Femots

Desfingtion n

{afer o
£ Migration

Figure 3.4: Single Proxy on the Gateway

11

Entity

E =

Befbre migration
Atter 15t
o DCestingtion 1
13
; E
After nth
Migration Cesfingtion n

Figure 3.5: Chain of Proxies Created as a process migrates

has an entry in the proxy routing table. The table contains a unique key for the
socket-process pair. Thus, all packets to this socket-process pair can be identified.
With this key is an associated TP address and port. Thus, all packets destined for
this socket-process pair is forwarded to the respective host IP and port.

When a process moves from one host to another, it updates the data on the
proxy machine. Thus, the next packet will be forwarded to the new host IP / port.

These two methods have some advantages and disadvantages. The imple-
mentation is relatively simple, intuitive and uncomplicated. The proxy could be
implemented on the gateway to the network if you can restrict the process migra-
tion to within the physical subnet. If you do not want to impose this restriction,
then the second method can be used where a proxy process that forwards packets
to the next known destination is instantiated to replace the source process on
each machine that hosted a migrated process. The primary disadvantage to this is
that all packets traveling between the two communicating entities are forwarded
through the proxy chain, introducing a bottleneck and multiple points of failure.
This generates a lot of extra network traffic and also uses up resources on each
machine that is running one or more proxy processes.

3.2.2 Packet Spoofing

Packet spoofing relies on the fact that a host on a subnet can receive all packets
passing through the subnet. For example, placing your network interface card in
promiscuous mode allows it to catch every packet in the subnet regardless of whom
it is destined for. When migrating a socket from one host to another, the destina-
tion process initiates a promiscuous mode capture of all packets on the destination
host. Thus, packets intended for the source process on the source host are captured
by the new destination host. When sending packets back to the remote host, the
destination process replaces its local sender address and port information with the

12

values from the source host. In other words, it “spoofs” the origin of the TCP /IP
packet data. The remote entity will not be able to tell the difference. This relies
on the fact that TCP/IP will not complain when sending packets with an address
other than the real origin. Figure 3.6 illustrates a typical packet spoofing scenario.

subnst

--.._ Before migration

St izt
Migrafion

TP E Rernots
] Entity

Figure 3.6: Packet Spoofing

In order to work, the following assumptions must be made:

e That promiscuous mode processing is possible. Not all network cards sup-
port promiscuous mode, on which this entire method is based.

e That the source host and the destination host must be on the same subnet
in order for the source hosts’ packets to be intercepted by the destination
hosts’ network card in promiscuous mode. This also implies that the two
hosts are not part of a switched network.

e That there is some mechanism on the source host to prevent it from receiving
the packets and sending a TCP reset signal to the remote entity. It would
normally do this if it thinks the socket on its end is closed. This would cause
the remote entity to close its half of the socket as well, thus defeating the
whole purpose of the migration.

e Extra processing is involved in analyzing each TCP packet to determine
which socket it belongs to.

The implementation is also fairly complex and inefficient. The processing and
number of resources required to receive each packet, determine if it is destined for
one of the migrated processes, and spoof addresses are substantial.

A variation of this spoofing mechanism is used for implementing TCP handoffs
in load-balanced web server clusters [10] [20].

13

3.2.3 Host-to-Host Migration Support

Host-to-host migration is when a process moves from one host to another and
notifies its remote counterpart of the change of address. Thus, the next packet
from the remote host will be sent to the new host. This is shown in Figure 3.7.
Such an implementation requires support from both sides of the peer-to-peer com-
munication. For example, TCP sockets would require that the local and remote
implementations both support this control message passing structure and should
be capable of modifying the remote host address.

Soure Host

Befare migration

Aterist
Migration

Figure 3.7: Host to Host Migration Support

Host-to-host migration support can be provided in user space or kernel space:

User space means that the socket migration capability is provided as an appli-
cation layer API (layer 7 of the OSI model). This API can be built on the
existing socket library implementation, and the user applications must use
this API in place of conventional socket programming if they would like the
socket migration option. Advantages of this are that it is simple to im-
plement because it does not require modifications to the operating system.
This further implies migration support across heterogeneous systems. That
is, provide the API on two different operating systems and you can enable
socket migration between the two. Disadvantages of offering user level sup-
port are that every application wishing to use the API needs to be recoded.
Therefore it is not a transparent solution. Also the API makes the migration
process slower than it has to be because it closes and recreates the sockets
in order to simulate migration.

Kernel space socket migration support is provided in the operating system ker-
nel (layer 4 and below in the OSI model). It requires direct modifications
to the TCP and socket implementation in the operating system. The ad-
vantages of this approach are efficiency and performance. It is faster than
the user space API because sockets are not closed and recreated; instead the
socket state is frozen and transferred to a new host. Also this method is po-
tentially transparent to the applications that run on the system if the socket
migration control (initiation and conclusion) is separate from the processes

14

that run. Disadvantages of this approach are that it requires all participat-
ing hosts support the migration capability, and that it is more complex to
implement.

We chose to implement our design using the kernel space approach because the
transparency and performance advantages are best suited for process migration.

15

Chapter 4

Background of Socket
Implementation

This section is an in-depth discussion of the way sockets and T'CP are implemented
in any NET 3 or NET 4 ! distribution based on the BSD networking core(the first
and the most popular). It is necessary to spend time understanding the mecha-
nisms and structures employed by the operating system in its implementation of
network communication to lend context to the ensuing discussion of our socket
migration design.

4.1 Overview of Network Implementation in BSD

The communications between applications or user programs on distributed hosts
are enabled by the kernel in the form of system calls. The system calls provide
the programmer with a uniform set of simple functions that abstract away the
complexities of coordinating the remote correspondence. Figure 4.1 illustrates the
way in which the kernel approaches the implementation of the most widely used
combination, sockets with TCP/IP as the underlying protocol.

The TCP/IP layer in Figure 4.1 is the layer at which the kernel handles the
intricacies of the transport and network communications. The Ethernet layer is
the device driver for the network card. It is responsible for interfacing the network
card while following one of the data link standards such as Ethernet or FDDI. The
network card and the interface it provides is out of the realm of kernel space, and
is hardware dependent. The layers of the OSI model are shown to the right in the
diagram. The physical layer corresponds to the network hardware. The data link
layer is the network card device driver. The network and transport layers are IP
and TCP (UDP). The other OSI layers lie in user space, out of the realm of the
kernel.

The system calls that the kernel provides to the user are at the socket layer.
They include socket(), bind(), listen(), connect(), accept(), send(), receive(), as

INET3 and NET4 refer to various versions of Linux network stack implementations

16

- 7. Agmbetlon
- Flocess 5. Freseniation
EErapace 5 Zesion
Syseny |Calks
Kemel Snans Socker _.a:.-n':r
1. TErspon
TCPAR Layer I et
Devics Drberlayer Shemel) Z.EELDE
Harndw ae Melwaork Cand 1. Bmysicz

Figure 4.1: Network Stack Implementation

well as file functions such as read() and write() (since a socket descriptor is treated
as a file descriptor) . These functions will be discussed in the next section from
the user’s perspective. In general, the kernel implements this layer by checking the
input arguments for validity and for options/instructions pertaining to the lower
layers.

4.2 Socket API — The User Perspective

In this section we provide a brief functional description of each of the TCP socket
related system calls. The socket API is a client/server architecture and the dis-
cussions below will indicate whether the particular system call is a client or server
function.

Socket()? is used by both the client and server to initialize the kernel struc-
tures for a new socket and return a socket descriptor. The socket descriptor is
used in all future socket system calls, and differs only slightly from a file descriptor
both in the way the kernel implements it and the way a user reads and writes to it.

Bind() is used by the server to specify its TCP host address and port. It binds
this information to the socket descriptor. Bind() essentially creates a half-socket
with this assignment because a full-socket would include the address/port pair for
both the client and the server. Bind() specifies only the server pair and is followed
by a call to listen() to begin accepting incoming client requests.

2The actual system call

17

Listen() is a server function that attaches a half-socket to the port and begins
listening for client request attempts. Listen() is typically followed in the server
code by calls to accept().

Accept() is the last TCP call that is exclusively a server function. It is a
blocking call that waits until an incoming request is received from the client. This
request will contain the host address / port information for the client socket. Ac-
cept() will attach this information to a new socket descriptor, along with the server
address and port, and return this new socket descriptor to the server code. The
socket descriptor can now be read and written like a typical file descriptor.

Connect() is the client function that initiates an active TCP open connection
request. It will assign an arbitrary port to the client and send the port / address
duo to the server address and port specified in the arguments to connect(). It will
block until the connection is established or return an error if the connection fails
for some reason.

Read(), Write(), and Close() are used in the same way that they would be
with a file descriptor, but with a socket descriptor as the first argument instead.
Read() will block until an EOF is sent by the other end. Write() will block until
the buffer that is passed to the call has been completely copied into the kernel
buffer. Close() will initiate the active / passive close operation for TCP.

4.3 Internal Representation and Data Structures

The main data structures used to support the socket API in a BSD style NET
3 implementation are itemized below in order of use. Please refer to Figure 4.2
(figure from [11]) for a graphical representation of the data structures.

proc data structure The proc structure is central to the kernel. Every process
has a proc structure associated with it. This structure contains all informa-
tion about the process, like its process id, process group id, parent process
id etc. Among these things is a link to the file descriptor table. Often times
this is referred to as the Process Control Block. In Linux this is called struct
task_struct.

file descriptor table The file descriptor table has pointers to two structures.
One is a pointer to the open file table. The other is an array of flags used to
indicate if a particular file is open or not. Every process has a file descriptor
table.

open file table The open file table is an array, with each element pointing to
a device/ file / socket. The index into an array is a file descriptor / socket
descriptor that is returned by an open or socket call respectively. Each
element is a pointer to the file structure described next.

18

udb:

proc(}

Figure 4.2: Internal Data Structures

19

ghar (]

{0_!? 0
5 filedesc(} (1:| |o
p_fd i T in® [21: 0
' ik (31:[o
fd_ofi1leflags 4 g
fd_otiles
_*file}1]
{0): T
{1]: 7_—"———-——-\
{21: S EEE—
(3):] —+4- R
£ileops(} _
soo_read fo_read =
s500_write W‘]
soo_loctl fo_ioctl file(}
soo_select _f_o_select R b
soo_close foﬁclaé'é__ ;
T M- f_ops
inpcb{} inpeb{} — f_data
inp_next inp_next . {7 f_type |DTYPE_SOCKET
inp_prev inp_prev \ socket {} R
inp_faddr inp_faddr Lot g
inp_fport inp__fporft_ k so_type SOCK_DGRAM
inp_laddr inp_laddr —~ so_pch
inp_lport inp_lport Forig BNy
inp_socket inp_socket 4
_ doubly linked circular list ofallUDP
Internet protocol control blocks
fileops(}
vr_read fo_read -
vn_write | fo_write | file{}
vn_ioct] fo_ioctl AT (] '_"4—--—/
vn_select wfé:select .
vn_close —E:)___EIOSE) - f_ops
DTYPE_VNODE

_vnode {}

- f_data '
/ f_type

file structure This file structure is a structure similar to an inode. It contains
three elements. The first is a pointer to the file operations structure de-
scribed below. The other is a pointer to the actual data block storing more
information on the file / socket. The third element is a type field, which
specifies the type of file being referenced — that is a file or a socket or a pipe
etc. In Linux it is called struct file.

file operations structure The file operations structure contains pointers to func-
tions that implement the main operations possible. For example, the ele-
ments include pointers to functions that implement the open, close, read and
write functions. Thus, when processing, the kernel can directly access the
necessary function to call instead of processing the type of file structure and
then branching.

socket structure This structure contains information about the type of socket —
whether a UDP or TCP socket. The structure also contains a pointer to the
inetpcb structure. In Linux this is represented by struct socket and struct
sock, which is contained within socket.

inetpcb structure This structure contains information on the destination IP
and port, the host IP and port. Each structure element has front and back
pointers to other inetpchb structures in the system. Thus, they form a doubly
linked list. The structure also contains a pointer back to the socket structure.
This pointer is used while processing incoming messages. In Linux this is
called struct tcp_opt.

4.4 Creating a new socket

Creating a new socket from the user’s perspective has been explained in the pre-
vious section. This section deals with the actual kernel level data structures and
procedures that occur during the creation of a socket.

When a socket system call is made by a user application, the C library function
that implements the system call in the user level copies the parameters into the
stack and suitably triggers the software interrupt for that system call. Processing
now shifts to the kernel mode. The kernel first checks to see if the parameters
passed to the function are valid. It then references the proc structure followed by
the file descriptor table to locate the open file table. It then locates the lowest
unused entry in the open file table and maps it to a new file data structure. This
index is also returned as the result of the socket system call to the application.
It’s function is similar to that of a file descriptor. The file type in this structure is
set to DTYPE_SOCKET - to indicate a socket connection. The appropriate file
operation structure is linked to this file structure. The file data pointer is linked
to a newly created socket structure that holds the socket type and a pointer to
the process control block for the socket. As the variables for this socket have not
been initialized yet (no connect and bind calls have been made yet), this pointer

20

is left NULL.

When a connect / bind / sendto (for UDP) call is made, the internet control
block is initialized with the respective fields containing the data passed through
the sockaddr_t structure. This includes the destination host / port and the local
host / port. The connection is then added to the list of active ports (the doubly
linked list).

4.5 Sending Data

Before going into the actual process of sending data, a passing reference has to be
made about the kernel mbuf structure. The kernel deals with messages in fixed
blocks of 128bytes. These blocks have a fixed format and can be used for creating
linked lists. Data is passed between the various kernel functions using this struc-
ture.

When an application wants to send data through a socket, it invokes a system
call. For example, for UDP the call is sendto(). The structure of a simple send
function for UDP is given below:

sendto (sockfd, buff, BSIZE, flag, (struct sockaddr *) &serv, sizeof(serv))

Explanation of the various variables:

sockfd The socket file descriptor obtained from a socket call

buff The buffer containing the data to be transmitted

BSIZE The size of the buffer

Flag The flags

Serv A structure of type sockaddr containing the remote host and port nos.

The following steps are involved in sending the message through the socket
connection:

1. The kernel checks to see if the data reference passed to the function has valid
memory addresses.

2. It then creates an mbuf structure / mbuf linked list for the data that needs
to be sent.

3. The kernel then creates a special mbuf structure containing the destination
host and port information. This mbuf structure is made the head of the
linked list containing the data. The information is obtained by traversing
through the kernel data structures explained in the previous section.

21

4. The new linked list is then passed to the IP layer for processing. The IP
layer adds its headers to the link list head (the linked list head mbuf is so
placed and formatted that it resembles the header of a datagram packet that
progresses thorough the protocol hierarchy).

5. The mbuf list is then passed on to the link layer. The link layer adds its
own headers to the mbuf list head (now the format resembles a link layer
datagram).

6. The device is then invoked to transmit the data on the physical medium.

7. The mbuf structures are then released and added to the kernel’s pool.

4.6 Receiving Data

When an application wishes to receive data, it generally calls a receive function
with the necessary parameters. The user process is then blocked waiting till data
comes in / a timeout occurs. The format of a simple UDP receive call is shown
below:

recvfrom(sockfd, buff, BSIZE, 0, (struct sockaddr *) &raddr, (int *)rsize)

Buff and BSIZE refer to the memory region where the incoming data has to
be stored, and the size of the same. Raddr and Rsize refer to the remote host
address details (IP + port) and the size of the structure respectively.

When a user application makes this call, the following things happen:

1. The user application is blocked waiting on the socket.

2. When data comes in thorough the link, the hardware causes a sp/imp inter-
rupt.

3. This interrupt executes the link layer that takes the data from memory and
creates the mbuf structures. It also removes the link level headers. It then
adds this memory to the IP queue.

4. After adding it to the IP queue, the splnet interrupt is raised.

5. The interrupt causes the execution of the IP layer code. The IP layer code
removes the IP headers. Based on the higher-level protocol (TCP / UDP),
the mbuf structure is added to the corresponding protocol input queue.

6. The TCP / UDP level code then processes the data in queue. It goes through
the doubly linked list and locates the internet control block corresponding
to the particular port. Once this port is determined, the reverse pointer is
then used to determine the process.

22

7. Once the process is determined, it is sent a SIGIO, which makes the process
runable.

23

Chapter 5

High Level Design

The design proposed in this project is based on the host-to-host paradigm pre-
sented in chapter 3. This chapter first goes into the design goals set forth for
the proposed socket migration system. Then the assumptions and constraints are
discussed. The next section will then discuss the actual high-level design of the
migration system and the overall steps involved. The last section will sketch out
the differences involved in server socket migration.

5.1 Design Goals

The following design goals guided the design of the MIGSOCK migratable socket
system:

Transparency The whole socket migration process should be transparent to the
applications on either side of the socket connection. There should be no
change in application code, and it should support most current programs.!

Kernel Level Support The migration should be implemented at the kernel level.
The implementation should be at the transport layer(OSI Level 4) as op-
posed to implementations that are wrappers to the standard sockets library
(in layer 5). Kernel level support results in overall faster migration as there
are no user overheads.

Compliance with TCP Semantics The implementation should preserve the
TCP end-to-end semantics. Additionally, there should be no loss of data
when sockets are migrated from one host to another. This makes the MIGSOCK
implementation compatible with other normal TCP stacks, and enables the
use of standard TCP parameters like windows, sequence numbers etc.

State Preservation The implementation should preserve the state of the source
socket and transfer it to the destination host. The socket should not be
re-established by going through the three-way handshake (SYN - SYN ACK
- ACK). This supports faster migration by minimizing messaging overheads.

!Some programs like FTP store the IP address of the other end of the socket connection. Thus
these programs cannot be migrated without application support.

24

Interoperability The implementation should be able to interoperate with other
TCP implementations. In other words, the implementation should be able
to communicate with other TCP stacks that do not have these special mod-
ifications. A host that has socket migration support should be able to com-
municate with a host that does not support it. Of course migration will
not be possible unless both support it; but standard TCP communication
should work correctly.

Performance There should be no significant slowdown in the network subsys-
tem with this implementation. The implementation should be scalable and
should not cause adverse delays in processing data packets.

Cross-platform portability The implementation of MIGSOCK, with little or
no modification should be portable across as many operating systems as

possible, just as TCP is, so as to facilitate socket migration across these
OSs.

Modular Design Migration support should be implemented as a kernel module
to support dynamic loading and the ability to disable support without re-
booting a new kernel.

Ease of Integration into existing process migration environments The im-
plementation of MIGSOCK should be easy to integrate with both new and
current process migration systems.

One note on interoperability: Our implementation does function normally with
other TCP stacks when there’s no migration. However, when migration is initi-
ated, it does not check to see if the remote host supports migration. This results
in certain unpredictable behavior on the remote side not supporting socket migra-
tion. This can be easily rectified by using a handshake protocol to determine the
compatibility of the remote host.

5.2 Assumptions and Limitations

The following are the assumptions made about the operating context necessary to
support socket migration.

1. It is assumed that to support migration, both ends of a socket connection
must support MIGSOCK. In other words, both the end points must enable
the MIGSOCK kernel option.

2. A process migration system must be in place for socket migration to accom-
pany it. We do not implement a process migration system; rather we use
CRAK in our tests and demonstrations.

3. A socket handoff requires that the destination process be in a position to
use a socket descriptor in a connected state.

25

4. MIGSOCK is currently available only for the 2.4.6 Linux kernel. Other
versions of Linux and variants could be supported once the design is imple-
mented and tested.

5. The security aspects of MIGSOCK are not considered. For example, MIGSOCK
is prone to a "man-in-the-middle” attack. Security issues are further dis-
cussed in Section 6.4.

6. There will be an unavoidable latency when a process migrates from one host
to another. This delay is caused due to the serialization of the process state,
transfer of process state from one host to another, and the re-setup of the
process state and data structures in the kernel. The timeouts involved in
the system should be large enough to account for this delay. Alternatively,
mechanisms should be present that effectively ignore this lag.

7. There are some services that copy the IP address and port information of
a remote socket into user space for future use. Even after migration, the
service might try to connect to the old host, though the kernel has the
right information associated with the socket. Thus, any changes made to
the kernel data structures after a migration should be propagated to the
application. This problem would not occur if the application would refer
to the kernel data structures whenever it needed to determine the host and
port information of a remote socket interface.

8. We assume that the transfer of serialized socket state from source to desti-
nation is handled by the application calling the MIGSOCK module. Thus,
the kernel module does not transfer the state from source to destination.
We will transfer the state to and from the user application layer via a data
buffer. The user is responsible for writing this buffer to a file (or otherwise),
transferring it to the destination, and passing it back to the system call via
a data buffer.

5.3 High Level Design

Although the design of MIGSOCK is scalable, the design algorithm is given for
hosts communicating over a single socket connection. This is done for the sake of
simplicity. The algorithm is illustrated in figure 5.1.

1. One of the processes decides (or the system decides for it) that it will migrate
to a new host. The process initiating the migration is referred to as the
control process. The migration mechanism recognizes that there are one or
more open sockets for this process.

2. For each open socket, the process on the source host needs to inform the re-
mote process that it intends to move to a destination host. The generation of
new TCP packets should cease from both ends, and existing un-transferred
packets should remain in the buffers. Any socket calls by the remote process
should block appropriately as they would for any delay in the transfer of the

26

Host 2 Host 1

192.168.0.2 192.168.0.1

i I

i |

\‘1‘ Data Transfer ,.'Ir
Resume After / Suspend for
Migration " i/ Migration

S s
s -
~ -~
~ Remote 1 P

192.166.0.100

Figure 5.1: Overview of Socket Migration

TCP data. Once this is achieved for all open sockets, then communications
can be considered suspended. When resuming communications, the socket
descriptor at the remote process should be updated with the new host and
port information of the migrating process.

One important thing to note at this step is that the remote process might
attempt to create a new socket connection to the migrating process at its
source host and port. This connection attempt will obviously fail since the
process is no longer running on that host. The remote process programmer
must be cognizant of the fact that the source socket might have relocated,
and must code the application to use the existing socket descriptor to ob-
tain the destination host and port information so that he can be assured of
continued contact with the migrated process.

. While the relocating process executes its migration, it must serialize all of
the kernel data structures that make up its communication state and send
this to its new host along with the rest of its execution state. Once all
of the state has been received on the destination machine, these structures
can be returned to the kernel as they would if the process had terminated
normally. In other words, the kernel must clean up and free all of the memory
associated with that process.

. When the migrating socket arrives at its destination host, it must de-serialize
this data and recreate new data structures to represent the state of its ex-
isting sockets.

. When the relocating process is reactivated on the new host, it will send a
TCP message to the server informing it that it is up and running on host X
and port Y, and TCP communications can proceed as normal. Communica-
tions are resumed. The TCP buffers will empty as packets pass each other
on the wire, and the socket system calls on the stationary host will return
(wake up) allowing that application to continue sending and receiving data
with the relocated process.

27

These five steps constitute the major sections of work involved for successful
transfer of the network socket along with the process. They highlight the impor-
tant pieces of the problem and ignore the intricacies that will be dealt with in the
ensuing sections of this paper where the implementation is laid out in detail.

5.4 Considerations for Server Socket Migration

Server sockets do not necessarily require special consideration while designing a
socket migration system. Server sockets are different from client sockets in the
way that they are set up. A server program listens for the incoming connection
requests instead of initiating them. Once a socket descriptor is part of a live con-
nection however, there is no difference between the server socket and the client
socket. The reason for this is that the four components that uniquely identify a
socket — (hostIP, hostPort, remotelP, remotePort) — are the same for both client
sockets and server sockets.

Socket descriptors that are used during the listen() system call (setup using
the bind() system call) are a different story. Such socket descriptors are not con-
nected because they only consist of a local IP address and port. Migration of this
type of socket descriptor is probably not of practical use, as listening sockets are
mainly used to provide service to clients that know their IP address and port?.

Server sockets are generally bound to a port where they listen for incoming
connections. These ports that they bind to are generally well known and publi-
cized. For example, the HTTP server generally listens on port 80, the FTP server
on 21, SSH on 22, POP3 on 110, SMTP on 25, telnet on 23 etc. Thus, when
these server processes move from one host to another, finding the server process
becomes a problem for clients. For example, a client might want to reach the FTP
server on 128.2.213.151. When this server process shifts to 128.2.64.158, the port
on the first machine is closed and thus the client will not be able to connect to it.

Another problem arises with port sharing and conflicts. A port that a mi-
grated process normally listens to could be in use at the remote host. Thus, port
sharing is not possible, but socket connections that were formed before the server
process migrated would still be valid. The problem with changing IP address and
port numbers could be solved by a discovery service. For these reasons, we will
deal only with connected sockets.

2An argument can be made that clients can use directory services to locate a process, and
thus, such processes could benefit from server socket migration

28

Chapter 6

Detailed Design

The purpose of the detailed design chapter is to formalize and elaborate on the
high level design previously presented and to provide a blueprint for implemen-
tation. We will start by introducing the API that will be provided to user level
programs. We will show how these user level programs should utilize the interface
to achieve socket handoff or migration. Next we will give guidelines for how the two
communicating endpoints should behave at the onset, during, and at the conclu-
sion of socket migration. Finally we will touch on some considerations for security.

6.1 MIGSOCK Application Programming Interface

The following system calls comprise the socket migration API. In the next section
we will show that these can be coded as indirect system calls via the ioctl() call,
but are essentially no different than a typical kernel interrupt.

1. Send_Migration_Request(pid, sockfd)

Input Arguments
pid Process ID of running process that is to be migrated.
sockfd Socket file descriptor number for the socket that is to be migrated.

Description

This is the first system call invoked by the user program from the source
host to initiate a socket migration. It sets a local flag in the kernel socket
structure to indicate that socket migration is underway. It then constructs
and sends a message to the remote socket indicating its intention to migrate
its half of the socket connection to a new host.

Return Value
integer Returns 0 on success or a negative error value on failure.

2. Serialize_Socket_Data (pid, sockfd, buf)

29

Input Arguments

pid Process ID of running process that is to be migrated.

sockfd Socket file descriptor number for the socket that is to be migrated.
buf A byte array that is large enough to hold all of the serialized data that
describes a local socket. This buffer is passed to and populated by the kernel.

Description

This function is also called from the source host and should follow the
Send _Migration_Request call. It captures all of the pertinent state data for
the socket indicated by the sockfd argument. This data is organized into the
byte array buf that is passed from user space. When the function returns,
this buffer will contain a serialized representation of the socket state. It can
be written to a file or otherwise passed to the destination host where the
socket can be reconstructed. This buffer should not be modified before it is
passed to a deserialize function; otherwise it could become unreadable. The
function also cleans up the now unused socket resources; the socket struc-
tures are removed or returned to the kernel.

Return Value
integer On success, returns the number of bytes written to the buffer. Re-
turns a negative error value on failure.

. Deserialize_Socket_Data (pid, sockfd, buf)

Input Arguments

pid Process ID of running process that is to be migrated.

sockfd New socket file descriptor identifying the socket on the remote host.
buf A byte array that is large enough to hold all of the serialized data that
describes a local socket. This buffer is passed to and used by the kernel to
populate the socket data structures. It should be the same data that was re-
turned to the user in the buf argument of the Serialize_Socket_Data function.

Description

This function is invoked when the destination process is ready to resume
the connection with the remote host. It is almost identical to Deserial-
ize_And_Restart except that it assumes the destination process is running.
It reconstructs the socket state using the serialized data from buf, allocat-
ing a new local TCP port in the process. It assumes that the socket file
descriptor that is passed in as an argument is a valid socket that is not cur-
rently connected (ie - it is the result of a call to socket(), but not connect()).
When this call returns, the sockfd that was passed in is now connected to
the remote process so that when it wakes up, communication can proceed
as normal.

Return Value

30

integer Returns the new TCP port number that was generated for this
socket.

. Deserialize_And_Restart(pid, sockfd, buf)

Input Arguments

pid Process ID of running process that is to be migrated.

sockfd New socket file descriptor identifying the socket on the remote host.
buf A byte array that is large enough to hold all of the serialized data that
describes a local socket. This buffer is passed to and used by the kernel to
populate the socket data structures. It should be the same data that was re-
turned to the user in the buf argument of the Serialize_Socket_Data function.

Description

This function is invoked when the destination process is ready to resume
the connection with the remote host. It is almost identical to Deserial-
ize_Socket_Data except that it assumes the destination process is currently
stopped. It reconstructs the socket state using the serialized data from buf,
allocating a new local TCP port in the process. It assumes the socket file
descriptor that is passed in as an argument is a valid socket that is not cur-
rently connected (ie - it is the result of a call to socket(), but not connect()).
When this call returns, the local process is added back to the running queue
and the sockfd that was passed in is now connected to the remote process.
When the remote process wakes up, communication can proceed as normal.

Return Value
integer Returns the new TCP port number that was generated for this
socket.

. Send_Remote_Restart (pid, sockfd, msg_contents)

Input Arguments

pid Process ID of running process that is to be migrated.

sockfd New socket file descriptor identifying the socket on the remote host.
msg_contents Contains new host and port information, along with old host
and port information so the remote process knows which of its sockets is now
resuming communication.

Description

This function is the destination host counterpart of Send_Migration_Request
(which is called from the source host). It sets a local flag in the kernel socket
structure indicating that the socket migration is complete. It then constructs
and sends a message to the remote socket indicating that it should wake up
any waiting threads and resume normal communication.

31

Return Value
integer - Returns 0 on success or a negative error value on failure.

6. Get_Local_Host (pid, sockfd)

Input Arguments
pid Process ID of running process
sockfd Socket file descriptor number

Description

This function returns the local IP address of the host that this process runs
on. It requires the pid and sockfd inputs because it extracts the address
value from the socket data structure to ensure that the address is in the
correct format when passed to the remote host.

Return Value
integer Returns the IP address of the local host in a format appropriate for
passage to the remote host.

6.2 Interface Usage

6.2.1 Source Side

Initiating a socket migration involves two major steps on the source side. First,
notify the remote party that this socket will migrate. Second, capture and serialize
the socket state. An algorithm for using our API is presented here:

// Obtain the pid and socket fd for the migrating socket.
Send_Migration_Request (pid, fd)

num_bytes = Serialize_Socket_Data (pid, sockfd, buf)
write(somefile, buf, num_bytes);

// Transfer somefile to destination host

6.2.2 Destination Side

Finishing a socket migration involves three major steps on the destination side.
First, create a socket on or steal a socket from the destination process. Second,
replace this socket’s state with the serialized data stored in the file. Finally,
notify the remote process that migration is complete and that communication can
resume. An algorithm for using our API is presented here:

// Create a socket using the socket() call for the process
// 0Obtain the pid and socket fd for the process and newly
// created socket.

read(somefile, buf);

32

newport = Deserialize_And_Restart(pid, sockfd, buf)

newhost = Get_Local_Host(pid, sockfd)

// Add the newport and newhost to msg_contents

// Get oldhost and oldport from buf and add this to msg_contents
Send_Remote_Restart(pid, sockfd, msg_contents)

6.3 Process or Thread Behavior

Recall that socket migration is supported only for sockets that are in the con-
nected state. Refer to the message timeline in Figure 6.1 for establishing a socket
connection . Note that once the TCP connection is established, socket migration
can proceed. When socket migration finishes, the TCP link is once again in the
established state.

Source Remote Destination

SYN
e L

M+ ACK

Established.

Time

Wigration —-—-—-_._._____________‘_‘_‘
Start

Tranefer of ' +
i aENERRR T ey T — i

Figure 6.1: TCP Message Timeline

To address the behavior characteristics of the local process and the remote
entity during socket migration, we’ll split time into three periods: migration ini-
tiation, state relocation, and migration conclusion. The initiation period includes
the capture and serialization of the socket state. Once this has completed, the
state must be transferred to its destination host where migration will conclude.
When it arrives, the recreation of the sockets constitutes the final stage of the
migration. For the following discussion, the migrating socket starts on the source
host and process and winds up on the destination host and process. The other
half of the socket connection is called the remote entity.

33

6.3.1 Stage 1 — Migration Initiation

Migrating Process Asnoted in the previous section, migration of a local socket
begins with the Send_Migration_Request() system call. Once underway, no data
should be written to that socket by the local host. The user should suspend the
process if necessary before calling Send_Migration_Request() to ensure that no
more packet data is generated locally. Send_Migration_Request() sets a migration
flag in the local sock structure and then generates a special TCP message to the
remote process.

The packet transmission function checks the migration flag before every send,
and sets a bit in the outgoing packet’s header to reflect this flag. Therefore once
the flag is set, all outgoing packets in this socket’s queue will be modified. The
special TCP message is generated by Send_Migration_Request() for the case where
there are no messages in the outgoing queue. In other words, its only purpose is
to make sure the remote party gets the message immediately if there are no other
news bearers around. The receiver function at the remote host will watch out for
this special message and drop this packet so that the data contained within is not
accidentally passed up to the application layer. The remote party will send a TCP
ACK before the packet is dropped.

Remote Process In addition to dropping the packet, the receiver function sets
its own local socket flag to indicate that a migration is under way for its com-
municating entity. This flag will be checked each time before a send() function is
called on this socket. If it is set, then the send() will be added to a wait queue
and put to sleep. This will put the thread to sleep in the case of a multithreaded
application, or the entire process otherwise. Of course this sleep merely prevents
additional packets from joining the outgoing queue. Any packets already in the
socket queue, including the ACK to the special TCP messenger packet, will be
sent by the kernel. Note that if this remote process or thread makes no attempt
to send data over the socket throughout the entire migration, then it will continue
to run unimpeded. It will only block when attempting to send data to the socket.

Migrating Process Again Before proceeding, the local process should sleep
for a second or two to ensure that all of the packets in the queue of the remote
entity have been received. It should receive ACKs for any TCP messages it sent,
and should send an ACK for any further messages it receives. Only when the
queues are empty and the TCP guarantees are met should the socket migration
proceed. Once this is the case, the Serialize_Socket_Data() call can be made on
the local socket. Since the local socket state will be static (no more traffic), this
call can safely copy the important socket data structures into user space. The last
step is for the local socket to be destroyed, returning the resources to the kernel.

34

This involves freeing any memory associated with the socket, releasing the port,
and other related items.

6.3.2 Stage 2 — State Relocation

Migrating Process In the case of a socket handoff, this process should continue
to run as normal; the only difference being that it has one less socket now. Any
calls to that socket should fail. In the case of a process/socket migration, the local
process will be killed anyway so no specifications are required for its behavior
during this stage. The state is transferred from the source to the destination in
the form of the buffer that was returned from the Serialize_Socket_Data() call.
This buffer can be written to a file, passed over the network, or transferred in
any other creative way. But the bytes within the buffer should not be modified
because the deserialize functions expect to be able to parse the buffer in the same
form that it is created.

Remote Process To reiterate what was said above, the remote process can
continue to execute and accomplish tasks during this stage of the migration un-
less it attempts to write data to the socket. Recall that a local flag remains set
throughout the duration of the migration so that if such an attempt is made, the
process will sleep indefinitely until socket migration has finished.

6.3.3 Stage 3 — Migration Conclusion

The behavior of the local process in this stage is slightly different depending on
whether a socket handoff or process/socket migration took place. This is why two
different deserialize functions exist. For a socket handoff, the destination process
already exists and is running. For a socket migration, the destination process is
being created along with the new socket, so it is in the suspended state. Both
scenarios are presented here.

Socket Handoff

Migrating Process The first step in completing a socket handoff is to identify
a local socket descriptor that will now be connected to the remote host. Of course,
this socket should be running the same upper layer protocols as the source and
remote processes. The TCP and lower layers will work fine regardless of which
application layer protocols are running, but Telnet can never talk to FTP for
example. Once an appropriate socket is identified, it will be reconnected to the
remote party by passing the state buffer to the Deserialize_Socket_Data() function.
This will update all of the addresses, sequence numbers, and other aspects of the
socket with the values from the source process. This function will return the local
port number of this socket. The user process should then collect the local host
IP address, and extract the old source port and IP address values from the state
buffer. It should pass these four values (old port, old IP, new port, new IP) to the

35

Send_Remote_Restart() function which will generate a second special TCP mes-
sage to be sent to the remote host. This is the wake-up call to the remote send().

Remote Process The remote receive function is always checking for the arrival
of the special TCP message. When it detects it, it first changes the migration flag
to indicate that socket migration is finished for this socket. The receive function
then dissects the contents to retrieve the old and new values for the host and
port. It needs the old values so that it can look up the socket descriptor in its
hash tables, and send a signal to the socket wait queue in the case of a blocking
send(). Once it has retrieved the socket, it replaces the host and port values in
the data structures with the new values, rehashes the socket, and then signals the
wait queue. If the process is blocking, it will wake up at this point and resume
the send(). If the process was not waiting on a send(), then it has been executing
all along and has no idea that the socket has changed at all.

Socket Migration

Migrating Process The first step in completing a socket migration is to cre-
ate a new local socket descriptor that will now be connected to the remote host.
This is accomplished using the standard socket() call. This socket should have
the same descriptor number as it did on the source host for the application layer
to continue to refer to the correct socket. Once an appropriate socket is created,
it will be reconnected to the remote party by passing the state buffer to the De-
serialize_And_Restart() function. This will update all of the addresses, sequence
numbers, and other aspects of the socket with the values from the source process.
Finally it returns the local port number of this socket. The user process should
then collect the local host IP address, and extract the old source port and IP
address values from the state buffer. It should pass these four values (old port,
old TP, new port, new IP) to the Send_Remote_Restart() function which will gen-
erate a second special TCP message to be sent to the remote host. This is the
wake-up call to the remote send(). At this point the state of the migrated process
is changed from suspended to running.

Remote Process The behavior of the remote process is the same as for a socket
handoff.

6.3.4 Summary of Steps for Socket Handoff

In the following algorithm, we assume that the socket is being handed off from
the Source computer to the Destination computer, with the other end-point of the
connection being the Remote computer.

1. The process holding the socket is first suspended.

36

10.

The socket file descriptor is then determined.

A message is then sent to the Remote computer indicating a socket migra-
tion. Any writes on the remote host would then be suspended till migration
is complete.

The state of the socket is captured and written to a file.

The state is then transferred to the Destination host using a shared file
system.

The process id and socket file descriptor of the process receiving the handoff
socket is determined.

The socket currently held by the process on the Destination is destroyed.
The socket state is replaced by the transferred state.

A message is sent to the Remote host indicating the new IP address and
Port number of the socket, causing an update of the remote host socket
structures.

Normal communication is resumed after this point and the socket behaved
like a normal ESTABLISHED socket.

6.3.5 Summary of Steps for Socket Migration

1.
2.

10.
11.

The user program is first suspended.
A message is sent to the Remote host indicating a start of migration.

The state of the open socket is serialized to file.

. The socket data structures are then destroyed, so that any calls to close()

from CRAK would not result in the closing of the TCP connection.

The CRAK checkpoint function is called and the process state is serialized
to file.

The process is KILLED by CRAK

On the remote host, the CRAK restart function is called to restore the
checkpointed process.

The process is put to sleep.

The state of the open socket is restored from file by the MIGSOCK restart
routines.

A message is sent to the remote host indicating that migration is complete.

The sleeping process is then woken up, restoring normal operation.

37

6.4 Considerations for Security

Though we do not directly deal with any security issues with the proposed Mi-
gratable Sockets implementation, we do realize the vulnerability of the proposed
implementation to spoof attacks. In its current form, any host monitoring the
data connection can step in after the initial migration request. As shown in Fig-
ure 6.2, a malicious host can take over a live socket connection by sending a false
restart message after the migration request message.

Source Remote Malicious Destination

SYN
— YN

e |
|

Established

Socket [... "'M"G"REQ) S RS Time

Migration “‘——‘___________*
Start 4_,__—-———‘—‘—4__—"

ERd B ENROE IO). oo e S S :

State | M e —

Figure 6.2: Possible Security Attack

The above security issue can be easily solved by using a Public Key Infras-
tructure or some form of Digital Signature. As shown in Figure 7.2, the message
header includes a code field that can be used for a unique signature known only to
the two communicating hosts. In the current implementation, this code is fixed at
the time when the kernel and its supporting user programs are compiled. However,
this can be easily modified, and the code can be changed every time a message is
sent.

38

Chapter 7

Implementation

In this section we will show where and how we carried out the detailed design.
We will give some general information about the implementation, followed by the
actual file and function names for the module and kernel. A minimal amount of
code will be included where it is necessary to illustrate a point.

7.1 General Points

To choose an operating system for implementing this project, it is necessary of
course to have the complete source code tree. This narrowed the field to two
options, Free BSD and Linux. Although the network stack implementation for
Free BSD is more carefully coded and commented we chose Linux for two rea-
sons. First of all, because of the commercial presence of Linux, it is more likely
for instances of practical application of our solution than there would be for Free
BSD. Secondly, there is already at least one process migration solution for Linux
— CRAK — that provides us a means to integrate and test our project realistically.

We implemented MIGSOCK on Linux Kernel version 2.4.6. Modularity was
achieved by using the Linux device driver architecture. For more information
about this architecture, please refer to Linux Device Drivers [24]. The kernel
module was implemented in C and was tied to the device file /dev/migsock. Any
applications wishing to employ our module functions must first open this device
and get a file descriptor for it. Then they must pass this file descriptor as the first
argument to an ioctl() call.

The API functions listed in the detailed design chapter are coded within a
Linux kernel module that can be dynamically loaded and unloaded from the ker-
nel. This makes the design less invasive than if it were all done within the kernel
itself. However, parts of the design require modifications to the packet send and
receive functions in the TCP layer. The TCP code exists within the kernel, mak-
ing modifications unavoidable in this case.

39

To understand the nature of the changes we made to existing TCP files within
the Linux kernel, please refer to Figure 7.1. We think of the implementation of
TCP as being split into two halves, a top-half and a bottom-half. This figure
shows the handshake between the two halves for a socket read(). A write() would
be similar except that data would move in the opposite direction.

— Top Half
| Appication Socketcall |

L

‘ C Socket Library |

[l
L

‘ Socket Layer Read |

‘ B | C:l C: TCP Layer Processor
TCP Layer Read :
i

‘ IP Layer Processor |

struchk sock ﬂ
data queues |

User Space

Kernel Space

MNetwark Driver |

Bottom Half

Figure 7.1: Interaction between top-half and bottom-half of TCP implementation

Bottom Half When a packet comes in on the network device driver, it is passed
up to the IP layer and then to the TCP layer. The packet does not yet
belong to a particular socket. The T'CP layer determines the socket that
this packet belongs to from the IP and port combination. It then places the
packet into the read queue of this socket.

Top Half A user space application initiates a read() on the socket descriptor.
This read call propagates to the TCP layer tcp_recvmsg() function. This
function coordinates the removal of the packets from the read queue that
belong to this particular socket. It buffers the data and passes it back up
through the layers to the user calling function.

All of the MIGSOCK functionality in the module file discussed below can be
thought of as part of the top half, in the kernel space above the TCP layer. The
changes made to the kernel files affect the bottom-half of TCP, except for the

40

changes to tcp.c, which affect the top-half of TCP.

In the sections that follow, we will need to specify our location within the
kernel source directories. We will identify the root of the source tree install point
as SOURCEHOME and give relative pathnames from there. The location of the
MIGSOCK module implementation is SOURCEHOME /net/ipv4/migsock.

7.2 Header Files

It was mentioned in the previous chapter that a field would be added to one of
the socket data structures in the kernel enabling the use of the migration flag.

First of all, there are two kernel header files that include modifications to sup-
port socket migration:

SOURCEHOME/include/linux/sched.h
SOURCEHOME/include/net/sock.h

All changes made to the kernel are controlled by a compiler flag. CON-
FIG_.MIGSOCK is defined whenever socket migration in selected in the kernel
configuration scripts. The definition of this variable controls the inclusion of the
MIGSOCK code into the kernel by enclosing it between #ifdef and #endif com-
piler directive pairs.

The change to sched.h is an additional member added to struct task_struct.
It is of type wait_queue_t and is used in the Deserialize_And_Restart() function
implementation to add the migrated process to the wait queue.

The change to sock.h is an additional member to struct sock called migsock_ptr.
It is of type struct migsock_info which is defined in migsock.h. This pointer holds
the flags used on both the migrating side and remote side of the socket. This is
the flag that facilitates the communication between the module functions and the
TCP functions.

There are two primary MIGSOCK header files supporting migratable sockets.
migsock.h is appropriate for inclusion in kernel and module files as it contains all of
the macros and definitions employed in the implementation. migsock_user.h is only
appropriate for inclusion in the user level applications that will invoke the migsock
functionality. It contains the macros for the interface specification, and some
structures, but excludes structures that use data types available only to the kernel.
Both of these header files are found in the SOURCEHOME /net/ipv4/migsock
directory. Any other kernel directory should make a soft link to migsock.h to
include it. Any user applications should make a soft link to migsock_user.h in
their local directory. Some points to note about each file follow:

41

e migsock_user.h
A user program desiring to use the MIGSOCK API will need to specify the
particular ioctl() call it is making by referring to it with the macro given in
this header file. The macros are:

MIGSOCK_IOCTL_REQ
MIGSOCK_IOCTL_RST
MIGSOCK_IOCTL_GETHOST
MIGSOCK_IOCTL_TOFILE
MIGSOCK_IOCTL_FROMFILE
MIGSOCK_IOCTL_RESTART

An actual ioctl() call looks like:

retval = ioctl(fd, cmd, (unsigned long)arg);

where

fd the file descriptor of the open device file (/dev/migsock)

arg a structure of type struct migsock_params. It must be allocated by the
user program.

cmd one of the macros listed above.

Next the header file includes the definition for the migsock_params structure.
As the name implies, it facilitates the passage of parameters to the ioctl()
call:

struct migsock_params {
/* This must be first, and of sufficient
* size to store serialized socket data */
char data[MIGSOCK_MAX_BUFF];

pid_t pid;
int sockfd;
};

In the message passing ioctl() calls - IOCTL_REQ and IOCTL_RST - the

data value of this structure variable will be populated with struct migsock_con-
fig-data:

struct migsock_config_data {
/* This must be first. It will hold the message used by the
* receive side to determine that this is a special TCP packet.

*/

42

char id[MIGSOCK_ID_CODE_SIZE];

unsigned char opcode; /* Type of operation */
__u32 ohost; /* 01d Source Host */
__ulé oport; /* 01d Source Port */
__u32 nhost; /* New Source Host */
__ulé nport; /* New Source Port */

};

The id member of the migsock_config_data structure will be populated with
the string in MIGSOCK ID_CODE. This string is used by the source, desti-
nation, and remote hosts to signify special migration messages. See section
6.3. The migsock_config_data structure represents the message format shown
in Figure 7.2.

31
? bits |

Message Code

OPERATION

Cld Host TP

0ld Port New Port

New Host IP

Figure 7.2: Socket Migration Message Format

e migsock.h

This file includes migsock_user.h and therefore contains everything in it. In
addition, it declares the functions that are defined in the migsock_mod.c
module file and declares two more structures. The first structure is:

struct migsock_info {

/* set to SEND_REQ after request by migrator */
short req_flag;

43

/* set to RECV_REQ after receiving request by remote */
short rcv_flag;

};

As mentioned above, the migsock_ptr member of struct sock is of this data
type. The req_flag is set on for the migrating sock structure to indicate that
migration is underway. The rcv_flag is set on the remote sock structure to
indicate the same thing.

The other structure in this file is the migsock_serialized_data structure. It
is too large to list here, but in summary it has members that will hold
important values from struct socket, struct sock, and struct file that are
necessary for state representation. It also holds the entire tcp_opt structure.

7.3 Module File

Each of the functions referred to in the detailed design chapter can be coded as
part of the module. The modules interact with the TCP kernel functions via the
migration flags. Recall that during the initiation stage, there is a flag that is set
by the Send_Migration Request() module function to indicate that migration is
underway. This flag is set within the sock structure representing this socket, mak-
ing it readable by the TCP layer as well. When the TCP packet transmit function
is called, it checks this flag for every socket and updates the header of outgoing
packets accordingly if it is set. When this flag is reset following the migration,
the TCP transmit function treats packets from this socket no differently than any
other socket in the kernel.

On the remote host, there are no modules that need to be loaded because all
of the migration support is supplied within the kernel TCP implementation.

Every function takes a pid and sockfd as input arguments. The reason is that
the first step in each of these functions is to retrieve the corresponding kernel data

structures belonging to this process and socket before proceeding.

There is a single file that implements all of the module functions that are de-
clared in migsock.h: SOURCEHOME/net/ipv4/migsock/migsock-mod.c.

The first step in implementing the module functions is to define the file_operations
structure for /dev/migsock:

struct file_operations ops = {

owner: THIS_MODULE,
ioctl: migsock_ioctl,
open: migsock_open,
release: migsock_release,

44

};

Then migsock_open() and migsock_release() are implemented within the mod-
ule file to add functionality to the standard file open and file release functions.
They simply invoke the MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT
macros respectively. The migsock_ioctl() implementation extends the standard
ioctl() call by performing a switch on the cmd argument — one of the IOCTL
macro — and invoking the corresponding module function. The function names,
with the corresponding IOCTL macros, relate to the API functions listed in the
design section as follows:

Macro function definition API function

MIGSOCK_IOCTL_REQ
MIGSOCK_IOCTL_RST
MIGSOCK_IOCTL_GETHOST
MIGSOCK_IOCTL_TOFILE
MIGSOCK_IOCTL_FROMFILE
MIGSOCK_IOCTL_RESTART

sys-migsock_req
sys_migsock_rst
sys_migsock_gethost
sys_migsock_tofile
sys_migsock_fromfile
sys_migsock_restart

Send_Migration_Request
Send_Remote_Restart
Get_Local_Host
Serialize_Socket_Data
Deserialize_Socket_Data,
Deserialize_And_Restart

7.4 Kernel Source Files

There are four bits within the TCP header that are reserved for future use. We
appropriate the least significant of these bits, resl, for our purposes. On the send
side, the TCP function responsible for transmitting a single packet must be mod-
ified to check the socket structure containing the migration flag to see if it is set.
If so, it sets this bit in the header of outgoing packets in this socket. When the
receiver catches a packet with this bit set, it knows to check the contents of the
packet to see if it is the special message. The contents of this message include an
identifying byte sequence, an opcode, and host and port information. A special
migration message is identified by comparing the byte sequence to the expected
value. A match tells the receiver to ACK and discard this packet. The opcode
identifies the packet as a migration initiation or migration completion message. In
the case of a migration completion message, the receive side will extract the host
and port information before dropping the packet.

In chapter 6 we explained how on the migrating hosts the module functions
communicate with the TCP functions using the migration flag. On the remote
host, there are no module functions. However, the migration flag in the sock
structure is still used by the TCP code to facilitate communication between the
packet receive function and the send() function. The packet-receive function runs
within the network daemon and is therefore independent of any application layer
processes. The send() function is invoked by application processes to pass data
to the socket. The packet receive function sets the migration flag for a particu-
lar socket whenever a migration initiation request comes in. The send() function
checks this flag each time before sending a packet out on the socket. If the flag is
set, it will block. When the packet receive function gets the message indicating

45

migration is finished, it unsets the migration flag and signals the wait queue where
the send() function is blocking.

We have added somewhere on the order of 200 lines of code to the files in the
SOURCEHOME /net/ipv4 directory of the kernel. This is a minimal and requi-
site amount of modification to the kernel implementation of TCP. The four files
affected in this directory are tcp.c, tcp_input.c, tcp_output.c, and tcp_ipv4.c. Any
changes to these files are enclosed within #ifdef/#endif pairs.

The header file migsock.h would need to be included in each of these kernel
files because the modifications use the newly defined macros and structures.

The changes to the files are outlined here.

Bottom Half

o tcp_output.c
In tcp_transmit_skb(): After the TCP header has been built, check the
migsock_ptr flag in struct sock. If it is set, then set the resl bit in the
header to indicate to the remote host that migration is underway.

e tcp_ipud.c
In tcp_v4_rev(): This function is changed in 2 major places: before the struct
sock is retrieved and after.
Before
1. Check the resl bit of the incoming packet.
2. If set, retrieve the message contents and determine the opcode.

3. If the opcode indicates this packet is a restart message, then grab the
old host, old port, new host, and new port information.

4. Use the old host and port information to look up the struct sock.
5. Set the ts_recent member of the tcp_opt member of struct sock to 1.

6. Apply the new destination host and port values to the socket and rehash
it.

7. Make the destination cache structure member obsolete so that it uses
these new address values.
After
1. Check the resl bit of the incoming packet, and check the header value
to make sure this is the special message.

2. If the bit is set and the message code indicates this is a special migration
message, then check the opcode.

46

3. If opcode indicates a migration request, then make sure a migration is
not already underway and, if not, set the migration flag in struct sock
to indicate as much.

4. If opcde indicates a restart message, then make sure that a migration is
underway and, if so, reset the migration flag in struct sock to 0. Then
signal the sleep queue of the socket to awaken any send() attempts.

e lcp_input.c
In tep_rev_established(): Check the resl bit in the packet. If it is set, and if
this is a special migration message, then discard it.

Top Half

e icp.c
New function wait_for_migration_to_finish(): Check the migration flag in
struct sock. If set, then put the calling thread or process to sleep.

In tcp_sendmsg(): Near the top of the function, call wait_for_migration_to_finish()
to see if it is necessary for the calling thread to wait on a migration in process.

47

Chapter 8

Integration and Testing

The migratable socket implementation provides many generic APT calls that can
be easily tailored to fit the needs of an application. To test the API, we came up
with two different test scenarios. The first was to test the system with a simple
case of socket handoff. The next test was to integrate socket migration with an
existing process migration system and to demonstrate the ease of integration.

8.1 Socket Handoff

Socket handoff refers to transfer of one endpoint of a live socket connection to
another host. The socket structure is migrated from one host to another, but the
process is not. This is often used in a clustered server environment where load
balancing needs to be achieved [9] [10].

To demonstrate socket handoff, we migrate one end-point of a live telnet con-
nection on machine A to a telnet process on Machine B. The application process
receiving the socket on the destination host must be in a state to communicate
on a live connected socket. This is generally achieved through specially coded
applications. However, most common programs follow the typical progression of
socket calls — bind(), listen(), accept(). The program is ready to receive data on a
CONNECTED socket (which is what we handoff) only after the above sequence
of steps. Thus, to use the program for socket handoff, it becomes necessary to
perform Socket Stealing.

To steal a socket, we first establish a live CONNECTED socket. The applica-
tion is then ready to accept data on this socket. We then overwrite this connected
socket with the socket being handed off. Thus, the application will now communi-
cate on the socket being handed off and the old one is closed. Thus, the old socket
is stolen to get the application ready for communication over a handoff socket.

To test socket handoff, we created test programs that utilize the MIGSOCK

module to achieve the steps previously described to achieve socket handoff. There
are two programs that achieve the overall process of socket handoff - start_handoff

48

and finish_handoff. The source code for both programs is given in the appendix.
Below, we provide snippets from the source code and explain the steps achieved.

Code Flow

The handoff is started by calling start_handoff with the process ID of the process
whose socket is being handed off, and the socket file descriptor of the socket. This
can be obtained by looking into the fd directory of the process’s /proc directory.
For example, for process 3354, the socket file descriptor can be obtained by looking

in /proc/3354/fd/.

Start_handoff does the following on the source host:

1. It first opens the MIGSOCK device file to make further calls using the ioctl()
interface.

fd = open("/dev/migsock", O_RDONLY) ;

2. A migration request is sent to the remote host through the correct socket.
For this, the process ID and socket file descriptor are passed to the MGISOCK
module through the arg structure shown below:

arg->pid = atoi(argv[1]);
arg->sockfd = atoi(argv[2]);
strcpy (data->id, MIGSOCK_ID_CODE);
data->opcode = MIGSOCK_SEND_REQ;
data->ohost = data->oport = data->nhost = data->nport = O;
memcpy ((void *)arg, (void *)data,
sizeof (struct migsock_config_data));

/* Send migration request to remote process.
* Puts him to sleep. */
ret = ioctl(fd, MIGSOCK_IOCTL_REQ, (unsigned long)arg);

3. After this, the state of the socket is serialized and obtained in a buffer by
calling the serialize routines.

ret = ioctl(fd, MIGSOCK_IOCTL_TOFILE, (unsigned long)arg) ;
4. The serialized data is then written to file in MIGSOCK_FILENAME.

fout = open(MIGSOCK_FILENAME, O_WRONLY | O_CREAT);

/* Write this serialized junk in arg->data to file */

ret = write(fout, (void *) (arg->data),
MIGSOCK_SERIAL_DATA_SIZE);

49

On the client side, the finish_handoff routine completes the handoff process on
the destination host. This function takes the same arguments as start_handoff,
except that the process ID passed in is the process ID of the process receiving the
handoff socket, and the socket file descriptor the one that is being replaced by the
new handoff socket.

Finish_handoff does the following:

1. The MIGSOCK device is again opened as before.

2. The serialized data is then stored in a structure that will be passed on to
the MIGSOCK module.

3. The FROMFILE process is then called that initializes the socket file de-
scriptor provided with the data from the socket being handed off. This also
creates a new port number for the socket.

ret = ioctl(fd, MIGSOCK_IOCTL_FROMFILE, (unsigned long)arg);

4. The new host and port information is then communicated to the remote host
using the RST ioctl() call.

ret = ioctl (fd, MIGSOCK_IOCTL_RST, (unsigned long)arg);

5. Once this is done, normal communication is restored and socket handoff is
complete.

8.2 Socket Migration

In order to demonstrate our socket migration functionality, we integrated our
MIGSOCK migration mechanism with CRAK, a checkpoint / restart system for
Linux. Process migration in CRAK is achieved by checkpointing a process and
capturing its state to a file, transferring its state using a shared medium to another
computer, and restarting the process there.

To successfully integrate CRAK with MIGSOCK, we needed to make mod-
ifications to CRAK. CRAK does not support processes with sockets. When it
detects that a file descriptor is a socket, it simply aborts the checkpoint process.

For the initiating process, we modified CRAK’s file handling functions to in-
clude sockets among the file descriptors it transfers, and prevent it from aborting

when it encounters sockets.

For the restart process, we modified CRAK to setup the base socket structures
(file descriptor to inode to socket mapping). This was done by calling the socket

50

system call and duplicating the file descriptor to initialize the correct socket file
descriptor.

In addition to this, we needed to make some changes to the scheduling of pro-
cesses. The CRAK restart process works by ultimately replacing itself with the
process that was checkpointed. Thus, the process begins executing immediately
— even before the socket data structures are initialized by the MIGSOCK socket
migration functions. The checkpointed application would then restart and find
that the socket was closed, resulting in an abort of socket communication.

Thus, we made changes to CRAK and put it to sleep in a wait queue declared
within its Process Control Block (task_struct). The MIGSOCK restart process
then restores the state of the open socket from a file, and wakes up the process
put to sleep by CRAK.

In terms of code functionality, there are four programs that are used to migrate
a process along with its socket from a source host to destination host. The four
programs, in the order in which they are run are as follows:

start_migrate Start migrate first serializes the state of a process’s socket and
writes that to a file. It then modifies the internal kernel structures for
the socket such that the TCP socket is not closed when the program is
terminated. It is almost identical to start_handoff.

ckpt This is a CRAK program that calls the CRAK module. It serializes the
state of the process and writes it to a file. All associated file descriptors
are closed during this process. However, socket connects are not closed as
the start_migrate has already set the internal kernel variables to indicate a
closed socket.

restart This program is run on the destination host to restore the process from
the serialized file. It is a part of the CRAK program suite. When this
program is successful, it is effectively replaced with the process that was
serialized. The basic socket structures are set up, but no sockets are created
or connected.

finish_migrate This program completes the whole process migration process.
The serialized state of the socket is restored from file. Then the connection
is re-established.

The algorithm for finish_migrate is given below. The source code is available
in the appendix.

1. The MIGSOCK device is again opened as before.

2. The serialized data is then stored in a structure that will be passed on to
the MIGSOCK module.

o1

3. The RESTART process is then called that initializes the socket file descriptor
provided with the data from the socket being handed off. This also creates
a new port number for the socket.

ret = ioctl(fd, MIGSOCK_IOCTL_RESTART, (unsigned long)arg);

4. The new host and port information is then communicated to the remote host
using the restart ioctl() call.

ret = ioctl (fd, MIGSOCK_IOCTL_RST, (unsigned long)arg);

5. Once this is done, normal communication is restored and socket handoff is
complete.

A typical sequence of calls to the user programs would look as follows:

SOURCE HOST:
start_migrate <process_id> <sock_fd>
ck process_id <filename>

DESTINATION HOST:

restart <filename>
finish_migrate <process_id> <sock_fd>

52

Chapter 9

Related Work

9.1 Process Migration Systems

9.1.1 MOSIX

MOSIX [15] is a scalable computing cluster operating system developed by the He-
brew University of Jerusalem. Specifically, MOSIX consists of software that mod-
ifies the host UNIX operating system with cluster computing capabilities. These
cluster computing abilities include the process migration capabilities, load balanc-
ing as well as adaptive resource sharing among the nodes in a cluster. There have
been 8 versions of MOSIX to date, the most recent being developed for LINUX.

Packaging

MOSIX consists of two packages. The first is a kernel patch that is applied to the
Linux source tree. This source patch implements preemptive process migration
capabilities at the kernel level. The kernel patch monitors node performance, and
if necessary migrates processes from one node to another.

The second is a user-level package that implements load sharing and monitor-
ing. Its primary use is to deliver balanced work distributions between the various
nodes in the cluster, without preemptive process migration. This package is use-
ful when a job’s tasks are short enough to not warrant migration, but many in
number to distribute across the cluster.

Architecture

MOSIX implements two key components as kernel modules — a preemptive process
migration mechanism (PPM) and a set of algorithms for adaptive resource sharing.
The PPM module can migrate any process, at any time, to any node. Migration
is controlled by the outcome of the above-mentioned algorithms. Manual process
migration can also be triggered.

93

Each process has a unique node, called Unique Home Node (UHN), where it
was created. I/O and network sockets are bound to this node. Thus, processes
can migrate to remote nodes, but would ultimately return to the UHN for user,
I/O and network socket communication.

™, -
User-lavel Lser-level

P
;" ."u_ remaol _

- -------'-----‘-‘-,i-ff:: Link bmmmm e ememm el ik

et EREEL S P : o= layer

Kernel Kernal
- .,

Figure 9.1: Mosix Kernel Architecture

Processes are internally split into two components by the MOSIX kernel. The
first component called the deputy is never migrated, and always resides at the
UHN. The other entity is the remote, which is basically the user context ! The
remote can be migrated from one node to another. This migration is performed by
the deputy. The deputy also keeps track of the resources used by the user process
(remote). The remote calls upon the deputy’s services from other nodes for things
like user input and I/0O.

The way MOSIX handles system calls is very interesting. If a system call is
independent of the node, the system call is made locally. Otherwise the call is
sent back to the deputy at the UHN. The deputy then executes the system call on
behalf of the remote.

Effectively, the user-level / kernel-level interaction is abstracted across the net-
work in MOSIX. This is done by introducing a LINK Level between the user level
and kernel level. A communication link is established between the deputy and
remote which is used for the asynchronous transmission of events, such as signals
and wake-up events.

MOSIX supports socket migration indirectly by forwarding through the deputy.
A process establishes a socket only at the UHN and nowhere else. All communica-
tion on that socket has to go through the UHN irrespective of the current location
of the process.

!Every process has two contexts — a user context that consists of program code, stack, data,
memory maps and process registers; and a kernel context which contains the internal kernel
execution state for the process, the kernel stack, system call information, signals pending etc.

54

The overall system architecture introduces severe penalties for system calls and
other kernel accesses, network latency being the primary problem. To ameliorate
this, MOSIX uses kernel/user page caches to improve the common case kernel
memory access routines like copy_from_user() and copy_to_user().

9.1.2 CRAK

CRAK [22] is a transparent checkpoint / restart package for LINUX based on
Epckpt epckpt and Libckpt [29]. CRAK provides a mechanism to migrate Linux
applications without modifying or recompiling them. CRAK is implemented as a
kernel module. CRAK claims to support network socket migration, but no imple-
mentation source code is available.

CRAK provides a loadable kernel module that is used to checkpoint and restart
a process. User programs are provided that checkpoint and restart processes, us-
ing the kernel module. Checkpointing captures the process’s code segments, data,
registers, user and kernel stacks and kernel context and serializes it to a file. Open
files are closed. Resources held by the process are freed and returned to the kernel.
The running process is then killed.

The restart user utility restarts the checkpointed process. The current process
(the restart user utility process) is converted to the chekpointed process by re-
mapping its memory maps, re-opening files and restoring the registers. If the pro-
cess was blocked in a system call during checkpointing, the system call is restarted.

A solution to network socket migration is proposed in the recently revised ver-
sion of the original CRAK paper. However, no implementation is available. The
approach to socket migration discussed in the paper is again at the module level,
with no kernel modifications. CRAK makes use of user level socket calls to recre-
ate the socket, and then uses a kernel module to modify the TCP state to reflect
the previously open socket. The new host IP / port changes are propagated to
the other end of the socket using rsh / ssh or alike.

CRAK does have limitations. It assumes that the migrating hosts are homo-
geneous — run the same Linux kernel version, same architecture and even have the
same library versions. It also assumes the presence of a global file system such as
NFS or AFS, and that the open files are stored in such a global file system. The
socket migration mechanism proposed also has extra overheads like the use of rsh
/ ssh.

9.1.3 CONDOR

Condor [21] is a high throughput distributed computing environment designed to
harness the unused CPU cycles of a large collection of workstations. CONDOR
strives to effectively utilize the wasted computing cycles of workstations to achieve
high throughput over prolonged periods of time. It’s an on-going project at the

95

University of Wisconsin at Madison, and was started in 1988.

CONDOR is a user space migration system. It relies on specialized libraries
for achieving migration. In this process, transparency is lost, and applications
need to be recompiled and linked for use. CONDOR has been ported to various
architectures and Unix variants. Efforts are also under way to port CONDOR to
Windows NT.

CONDOR relies on advertisements from workstations to identify free comput-
ing power. Advertisements include the computing power available and the type
of host CPU. Jobs are matched against the advertisements and are assigned to
various workstations.

Processes are linked against the CONDOR libraries, as opposed to the normal
C libraries. Processes thus linked can be migrated using a simple checkpoint and
restart mechanism. The libraries also introduce remote system call capabilities.
System calls are redirected to a shadow process on the source machine for execu-
tion.

The CONDOR libraries keep a record of all the system calls being called by
a process, along with a list of resources being used. The library checkpoints a
process and commits it to stable storage (NFS / AFS etc). This serialized process
state is then restarted at another workstation to achieve process migration. CON-
DOR closes file descriptors before migrating and reopens them on the restarted
side.

CONDOR has many limitations which makes it useful only for scientific com-
putational purposes. It does not support processes that call fork() or exec(). It
does not support any form of IPC; it does not support processes that communicate
to others via sockets, pipes, open files, signals or other means.

9.1.4 SPRITE

The Sprite Network Operating System was developed at Berkeley between 1984
and 1994, with a goal to achieve time-shared system performance from a network
of workstations, with the performance guarantees of the latter. Sprite is a new
kernel in its own right — it is derived by heavily patching the BSD kernel.

At the heart of Sprite is a shared network file system, with a single image
and a fully consistent cache. Sprite relies heavily on this file system to implement
most of the System V functionality. For example, user level RPC, shared memory,
virtual memory and even TCP connections are implemented using the file system.
Thus the file system servers become the single main bottleneck in Sprite.

Similar to MOSIX, migration is based on the concept of a home machine and
a foreign process. Every process has a shadow process associated with it on the

o6

home machine. All system calls are executed by this shadow process. Communi-
cation takes place either using the file system or through kernel-kernel RPC.

Sprite does support rudimentary socket migration in the sense that data is
delivered to the process wherever it is in the cluster. This is done by splicing the

link into two, and through the use of the file system communication architecture
between the foreign process and its shadow process on the home system.

9.2 Socket Migration Solutions

9.2.1 Mockets — Transparent Redirection of Network Sockets

I User Code |

Figure 9.2: Mocket Components

The idea for mobile sockets, or Mockets[6], came from the need to support
process migration in the NOMADS system from the University of West Florida.

A Mocket is a Java class that allows agents to open network socket connec-
tions to other systems and then to be able to move between hosts running the
same modified Java Virtual Machine without having to interrupt, disconnect, and
reconnect any of these sockets. A Java programmer wishing to employ this capa-
bility would use the Mockets class in place of the Java socket API.

The Mockets provide a Java stream interface to the programmer. These buffers
enable the Mocket to be suspended prior to migration, and resumed after relo-
cation in a manner transparent to the user. A Mocket can be used in programs
just like a java socket. Migration is only possible if both ends of the connection

o7

TCP
Socket

Network
Output Traffic
Stream

Mocket [nput Mocket Output
Stream Stream

Wrapper
Methods for

TCP Socket

Figure 9.3: Mocket Structure

are using Mockets. The future work section suggests that a Mocket could be mi-
grated while connected to a normal TCP socket by employing a proxy between
the mobile agent (using Mockets) and a remote host (using a normal socket). The
proxy would use normal TCP sockets to communicate with the remote host, and
use MOCKETS to communicate with the mobile agent.

The Mockets design is fairly hefty (figure 9.2) — requiring each participating
node (host) to run a NodeController program and each virtual machine (VM) to
run a VMController. The NodeController acts as a repository for all MOCKETS
on that particular host. Any node hosting a Mocket must run a NodeController
because it acts as the single point of entry for all control and query messages to
and from all Mockets - both from the network and from the application layer. It
determines the destination VM and passes these messages along. The VMCon-
troller is in charge of passing messages to and from the Mockets that are open
in a particular Java program, as well as coordinating the suspend and resume
operations.

The third component is the Mocket API, which is just a wrapper around a
normal TCP socket (figure 9.3). A TCP socket is established between the two
communicating Mocket layers whenever a Mocket is initialized or resumed, and is
closed whenever a Mocket is closed or suspended. Thus Mockets are essentially
an additional layer of abstraction between the user and the system. That is, they
do not solve the migration problem by addressing it at the socket implementation
level; instead they avoid it and create additional bulk with the Node and VM
controllers.

o8

9.2.2 Modular TCP Handoff

TCP Handoff, as discussed in [20] refers to the dynamic handoff of an active
TCP connection from one host to another. Though it does not address process
migration in particular, it is relevant to our work, as our migratable socket imple-
mentation can be used to provide a similar solution.

TCP Handoff has been presented as a technique to improve current load bal-
ancing architectures for web servers. The front-end receives an HTTP (or other)
request from a client and opens a socket connection with that client. It then
chooses a back-end server from a pool and assigns it the responsibility of ser-
vicing the request. In the process, it hands off the active TCP request to the
back-end, thus creating a communication loop between the client, the front-end,
and the back-end. The back-end effectively spoofs the TP of the front-end. This
loop allows the client to remain under the impression that it is communicating
exclusively with the front-end, while in fact its messages are being forwarded by
the front-end to the back-end, which replies to its request (see Figure 9.4).

Back-End

Client Front-End

Back-End

Figure 9.4: TCP Handoff

To achieve the loop communication the designers must make modifications to
the implementation of TCP — called the TCP handoff protocol. These modifica-
tions come in the way of kernel modules that insert layers of abstraction between
the IP, TCP, and socket layers (see figure 9.5). The lower layer is called Bot-
tomTCP (BTCP) and lies between the IP and TCP layer. The upper layer is
called UpperTCP (UTCP) and lies between the TCP and socket layer. By in-
troducing these two layers they have provided a wrapper around the TCP layer
that completely encapsulates the loop. For example, the BottomTCP layer on
the back-end can replace its local host IP address with the front-end IP address
before passing it down to the IP layer. The UpperTCP layer will intercept mes-
sages passed up to the application that might confuse it (since the forwarding is
transparent to it).

Because the front-end has to act as a go-between for the client and the back-

99

TPl module
UpperTCP

TCP module

BottomTCP

i
b

[P module

i

Figure 9.5: Plug-in Modules for TCP Handoff

end, it is not a true handoff of the TCP connection in that sense.

9.2.3 Mobile TCP Socket

The Mobile TCP Socket Implementation discussed in this section is presented in
a technical report from The Australian National University [8]. The report talks
about the implementation of a mobile socket layer below the normal TCP socket
as part of a solution for the Mobile IP problem. In mobile IP, laptops move from
one cell to another, changing IP addresses and other parameters in the process.
Normally, any active network connections will be lost in the process. There have
been many solutions proposed to implement persistency of network connections.
The paper suggests that a mobile socket will help in faster re-establishment of
network connections, with little or no loss of connectivity.

Host Ha, IPa Host Hb, IPb
Process A Process B Pb
. mobile socket T
Pa. e
e o
4 ¢
/| 1Pal transport b
o
s]
&, AJI———_—_—_——’C? Irbl
IPa2 !
}

Figure 9.6: The Mobile Socket Layer

60

The report suggest the implementation of a mobile socket layer (MSL) (see
figure 9.6). The MSL implements an abstraction called Virtual Socket. The vir-
tual socket forms the bridge between the actual socket call and the lower IP level.

client server

socket API

virtual port

\ TCP purt

Figure 9.7: The Virtual Socket

Each machine on the network can have two IP’s during migration — a home IP
that never changes and a current IP that varies depending on the cell in which it is
located. Socket persistence is a problem when they are established with the tuple
(current IP, currentPort, remotelP, remotePort). The virtual socket (see figure
9.7) however is based on a virtual port ID. Thus, a socket using this abstraction is
distinguished by (virtuallD, homelIP, homePort, remotelP, remotePort). The vir-
tuallD is assigned by the server socket when a client socket connects to it. When
a client machine moves, this mapping is changed to (virtualID, currentIP, home-
Port, remotelP, remotePort). This change is achieved thorough control messages
passed between the two virtual socket layers. Thus, this tuple remains unique
on all machines. Persistence of state is achieved through buffering in the virtual
socket. It also allows for the sharing of ports. However, a lot of control messages
are introduced in the process.

The virtual socket — TCP socket — application socket associations are as follows:

e Each physical TCP port is associated with a virtual socket (one to one
mapping).

e Each socket (software abstraction used by programs) is associated with a
virtual socket (many to one mapping).

Thus the socket forwards incoming packets to the appropriate stream based
on the parameters mentioned.

The virtual socket abstraction provides a good solution for the mobile IP prob-
lem. However, it assumes that the machine remains the same — which is not really

61

useful for a process migration situation. The solution does preserve TCP end-
to-end semantics. However, in reality, the lower level connection is re-established
each time the machines shifts domains (rather than preserving the connection).

The above can be thought of as a lower level implementation of the Mock-
ets idea — the abstraction is brought below the socket layer rather than above it.
Though the solution proposed is not directly applicable to the socket migration
problem, the kernel level implementation offers cues to a suitable socket solution.

Another fact to consider is that the proposal’s current form is just a report.
The system has not been implemented yet, and thus there are no papers discussing
its performance.

9.2.4 Migratory TCP (M-TCP)

Migratory TCP [31] [32] [33] is a migration oriented transport protocol developed
by the Distributed Computing Lab at Rutgers University. M-TCP is targeted
specifically at the clustered server environment.

The primary intention of M-TCP is to decouple a service from the fixed iden-
tity of its service provider. In M-TCP, a client host can initiate migration of the
remote endpoint of a live connection. Migration can take place transparent to
the client application, and may occur under various conditions like server over-
load, network congestion, degradation in performance perceived by client etc. The
origin and destination server hosts cooperate by transferring supporting state in
order to accommodate the migrating connection. The client initiates migration
with a SYN to a destination server, which then fetches the supporting state and
completes the handshake for the migrated connection.

A client is supplied with the addresses of cooperating servers when it connects
to its primary service provider. It can then migrate the connection to one of these
alternate servers.

M-TCP assumes that each server can uniquely identify and isolate the state
associated with each service session. Transfer of this state from one server to
another allows the servers to serve the client request without any interruptions.

M-TCP has been implemented for the BSD kernel, but has not been ported
to Linux yet. Additionally, a modified version of PostgreSQL database server is
available for testing.

9.2.5 TCP Splicing and MSOCKS

Projects such as MSOCKS [35] support service connectivity by using proxies. A
mobile client establishes a connection to a proxy, which then connects to the
remote server. The proxy thus splices the two links — mobile client to proxy and
proxy to remote server. The proxy maintains a record of all connections and

62

Server 1

<C’s State Reply> (3)

Server 2

Figure 9.8: M-TCP Message Exchange

forwards incoming packets to the current location of the mobile client. When
the location or network address of a mobile client changes, it updates the proxy,
which then forwards all incoming packets to the new address. Though the project
helps in maintaining session connectivity, it does not address the issue of state
migration.

9.2.6 Unverified Solutions

There are two ongoing projects that are allegedly taking strides toward providing
kernel level support for network socket migration. The MOSIX project that was
discussed in section 9.1.2 contends on their website that they are currently in the
process of building this capability into their system. However, an email response
posted in April 2001 indicated that the current status of socket migration support
is “Ongoing R&D.” No other details can be found anywhere about this topic. The
CRAK project that was also mentioned in section 9.1.2 claims to support socket
migration as well but it is not currently included in any of the freely available ver-
sions. Furthermore, we were denied access to any details of CRAK’s approach to
socket migration directly by the lead developer of the system. Thus we can only
conclude that kernel support for socket migration in each of these two systems
remains an unsolved problem.

63

Chapter 10

Future Work

In section 6.4 of this paper we noted that security was not a priority for phase
one of work on MIGSOCK. We did, however, discuss a way in which a Public Key
Infrastructure could be incorporated into MIGSOCK using the Message Code field
in the Message Header. Thus a future phase of the project could involve the in-
corporation of a security structure to prevent spoof attacks.

Figure 6.1 showed where socket migration fits into the TCP message timeline.
In particular, the communicating TCP sockets must be in the Established state in
order for our implementation to work. This automatically excludes the migration
of listening sockets. We felt that for a first phase of work on socket migration
it was more important to handle connected sockets. The usefulness of migrating
listening sockets is debatable because if there is no connection, then there is no
connection state and therefore nothing to migrate. However, it should be possible
to migrate a process that has listening sockets. One approach could be to simply
close such sockets in a process on the source host, and recreate them on the des-
tination host after process migration.

We mentioned in chapter 7 that MIGSOCK was developed on Linux version
2.4.6, and is not supported on other versions or operating systems. Another phase
of the project could include the porting of our code to other versions of Linux or
other operating systems.

The current MIGSOCK implementation makes the assumption that socket mi-
gration will not be attempted on a connection unless both participating hosts sup-
port it. Sending a migration request to a remote host without MIGSOCK support
could corrupt the communication protocol and terminate the socket connection.
As a result, the user must be cognizant of which machines in a network support
migration, and which processes have sockets that are connected to machines that
don’t support it, thus excluding these processes as candidates for migration. A
better approach can be developed in a future phase of work that improves this
compatibility with non-migration-supporting hosts.

In the current implementation, we rely on the presence of a shared file system

64

or a messaging medium to transfer process and socket state from one machine
to another. A state-transportation mechanism can be built that automatically
transfers state from one host to another for automated migration without user
intervention.

65

Chapter 11

Conclusion

In chapter 5 we described the goals that guided our design of socket migration
in MIGSOCK. These were transparency, kernel level implementation, compli-
ance with TCP semantics, state preservation, interoperability, performance, cross-
platform portability, modular design, and ease of integration into existing process
migration environments. Most of these objectives were met successfully with a
few qualifications.

The implementation was indeed done at the kernel level, and it was a modular
design in two ways. First, the MIGSOCK system calls were coded in a Linux
kernel module that can be dynamically loaded and unloaded into the kernel at
runtime. Second, the steps required to complete migration successfully were each
split into a separate system call function, making the design modular in a more
conventional sense of the word.

Cross-platform portability is hard to prove at this point since we did not port
our design to any systems besides Linux 2.4.6. However, because of the modular
nature of the coding, we believe MIGSOCK will be easily ported to other systems
as long as they support TCP. MIGSOCK demonstrates ease of integration into
existing process migration environments in that we coupled it to CRAK with very
little modifications to the CRAK source code.

State preservation was achieved since our implementation did not require the
re-instantiation of sockets after migration. Furthermore, the design ensures that
no data is lost during the migration, thus preserving the state of the application
layer protocols.

MIGSOCK does not violate the semantics of TCP. It essentially sits on top
of TCP and employs its mechanisms during a migration. The changes to TCP
primarily involved the sending, processing, and catching of the special migration
messages so that they did not interfere with the behavior of TCP. In terms of
TCP interoperability, a host that supports MIGSOCK can communicate perfectly
with a host that does not. However, if the former attempts to initiate a migration
of its socket, it may corrupt the application layer communication protocol on the

66

remote host if that host does not support MIGSOCK.

Performance is difficult to characterize for socket migration because there are
no benchmarks to compare it with. Process migration takes time, and socket mi-
gration invariably adds overhead to this. However, we showed in chapter 6 that
the messaging semantics were kept to a minimum.

Transparency was achieved at several levels. First, no changes are required for
any of the user level applications or processes that wish to migrate TCP sockets.
Thus no recoding is required to make an application migratable. Second, since
socket migration is supported at the system level, control is contained within the
user program that invokes these calls. Thus, the running processes that are migra-
tion candidates can be effectively unaware that socket migration is being enacted
upon them. Furthermore, the remote user and process will be totally unaware
that his counterpart is relocating. He will only detect a temporary block in com-
munication while the migration takes place.

67

Appendix A

User Program Source Code

A.1 Start_Handoff.c

/* start_handoff.c

This user program is run on a process and a socket that is
connected to a remote host. It will suspend the socket by
putting the remote socket to sleep. That remote socket will
wake up when finish_handoff is called from the new host and

* X ¥ X X *

process.

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <fcntl.h>

#include "migsock_user.h"

int

main (int argc, char *argvl[])

{
int fd; /* file descriptor for /dev/migsock */
int ret; /* return val */
struct migsock_params *arg =

(struct migsock_params *)

malloc (sizeof (struct migsock_params));
struct migsock_config_data *data =

(struct migsock_config_data *)

malloc (sizeof (struct migsock_config_data));
int fout;

68

if (argc < 3)
{
printf ("Usage : user <pid> <sockfd>\n");
return -1;

}

arg->pid = atoi (argv[1]);
arg->sockfd = atoi (argv[2]);

strcpy (data->id, MIGSOCK_ID_CODE);
data->opcode = MIGSOCK_SEND_REQ;
data->ohost = data->oport = data->nhost = data->nport =

memcpy ((void *) arg, (void *) data,
sizeof (struct migsock_config_data));

fd = open ("/dev/migsock", O_RDONLY);
printf ("FD = Jd\n", fd);
if (£d < 0)
{
printf ("Bad FD.\n");
return -1;
}
/* Send migration request to remote process. Puts him to sleep. */
ret =
ioctl (fd, MIGSOCK_IOCTL_REQ, (unsigned long) arg);
if (ret < 0)
{
printf
("MIGSOCK_IOCTL_REQ system call failed.\n");
return -1;
}
/* Allow enough time for ack to come back before proceeding */
sleep (2);

/* Serialize data and store the result in arg->data */
ret =
ioctl (fd, MIGSOCK_IOCTL_TOFILE,
(unsigned long) arg);
if (ret < 0)
{
printf
("MIGSOCK_IOCTL_TOFILE system call failed.\n");
return -1;

}

69

fout = open (MIGSOCK_FILENAME, O_WRONLY | O_CREAT);
if (fout == -1)
{
printf
("Failed to create %s. Migration aborted\n",
MIGSOCK_FILENAME) ;
return -1;
+
/* Write this serialized junk in arg->data to MIGSOCK_FILENAME */
ret =
write (fout, (void *) (arg->data),
MIGSOCK_SERIAL_DATA_SIZE);
if (ret == -1)
{
printf
("Failed to write to %s. Migration aborted\n",
MIGSOCK_FILENAME) ;
return -1;

}

printf ("Migration initiated.\n");

printf ("%d bytes of serialized data written to %s\n",
ret, MIGSOCK_FILENAME) ;

close (fout);

close (fd);

return ret;

A.2 Finish Handoff.c

/* finish_handoff.c

*

* This user program is run on a process and a socket that can be
* migrated (stolen) from communicating with some arbitrary host

* and reconnected to the remote host that was talking to the

* start_handoff side. It will send a message to this remote host
* saying two things: 1) wake up. 2) point your socket to my

* address and port.

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>

70

#include <sys/ioctl.h>
#include <fcntl.h>

#include "migsock_user.h"

int

main (int argc, char *argvl[])

{
int fd;
int ret;
struct migsock_params *arg =

(struct migsock_params *)

malloc (sizeof (struct migsock_params));
struct migsock_config_data *data =

(struct migsock_config_data *)

malloc (sizeof (struct migsock_config_data));
char fdata[MIGSOCK_SERIAL_DATA_SIZE];
int fin;

if (argc < 3)
{
printf ("Usage : user2 <pid> <sockfd>\n");
return -1;

}

arg->pid = atoi (argv[1]);
arg->sockfd = atoi (argv[2]);
fd = open ("/dev/migsock", O_RDONLY) ;
if (£d < 0)
{
printf ("Bad FD.\n");
return -1;

}
fin = open (MIGSOCK_FILENAME, O_RDONLY);
if (fin == -1)
{
printf

("Failed to open %s. Migration aborted.\n",
MIGSOCK_FILENAME) ;
return -1;
}
/* read in file contents */
ret = read (fin, fdata, MIGSOCK_SERIAL_DATA_SIZE);
if (ret '= MIGSOCK_SERIAL_DATA_SIZE)
{

71

printf

("Read failed. Data file size maybe incorrect. Abort.

close (fin);
return -1;

}

strcpy (data->id, MIGSOCK_ID_CODE);
data->oport = *((__ul6é x) fdata);
data->ohost = *((__u32 *) (fdata + 4));
/* Get your IP address */
ret =
ioctl (fd, MIGSOCK_IOCTL_GETHOST,
(unsigned long) arg);
if (ret == 0)
{
printf
("MIGSOCK_IOCTL_GETHOST system call failed.\n");
return -1;
}
data->nhost = (__u32) ret;

memcpy ((void *) arg, (void *) fdata,
MIGSOCK_SERIAL_DATA_SIZE);
/* Now update structures with serizlied data */
ret =
ioctl (fd, MIGSOCK_IOCTL_FROMFILE,
(unsigned long) arg);
if (ret < 0)
{
printf
("MIGSOCK_IOCTL_FROMFILE system call failed.\n");
return -1;
}
data->nport = (__ul6) ret;

printf ("Socket Migrated to Local Port %d\n",
ntohs (data->nport));

printf ("from host %d . %d . %d . %d ",
*((unsigned char *) &(data->ohost)),
*(((unsigned char *) (&(data->ohost)) + 1)),
*(((unsigned char *) (&(data->ohost)) + 2)),
*(((unsigned char *) (&(data->ohost)) + 3)));
printf ("on port %d\n", ntohs (data->oport));
/* Now send the restart message */
data->opcode = MIGSOCK_SEND_RST;

memcpy ((char *) arg, (char *) data,

72

\nll) ;

sizeof (struct migsock_config_data));
ret =
ioctl (fd, MIGSOCK_IOCTL_RST, (unsigned long) arg);
if (ret < 0)
{
printf
("MIGSOCK_IOCTL_RST system call failed.\n");
return -1;

}

return ret;

A.3 Start_Migrate.c

/* start_migrate.c

This user program is run on a process and a socket that is
connected to a remote host before crak is called on that host.
It will suspend the socket by putting the remote socket to
sleep. That remote socket will wake up when finish_migrate.c
is called from the new host and process, after the process
has been migrated using crak.

* X ¥ X * x *

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <signal.h>

#include "migsock_user.h"

int
main (int argc, char *argvl[])
{
int fd; /* file descriptor for /dev/migsock */
int ret; /* return val */
struct migsock_params *arg =
(struct migsock_params *)
malloc (sizeof (struct migsock_params));
struct migsock_config_data *data =
(struct migsock_config_data *)

73

malloc (sizeof (struct migsock_config_data));
int fout;

if (argc < 3)
{
printf ("Usage : user <pid> <sockfd>\n");
return -1;

}

arg->pid = atoi (argv[1]);
arg->sockfd = atoi (argv[2]);

if (kill (arg->pid, SIGSTOP) == -1)
{
printf
("Couldn’t Suspend Process %d. Aborting migration.\n",
arg->pid) ;
return -1;
}

strcpy (data->id, MIGSOCK_ID_CODE);
data->opcode = MIGSOCK_SEND_REQ;
data->ohost = data->oport = data->nhost = data->nport =

memcpy ((void *) arg, (void *) data,
sizeof (struct migsock_config_data));

fd = open ("/dev/migsock", O_RDONLY) ;
printf ("FD = %d\n", fd);
if (fd < 0)
{
printf ("Bad FD.\n");
return -1;

}

/* Send migration request to remote process. Puts him to sleep. */
ret =
ioctl (fd, MIGSOCK_IOCTL_REQ, (unsigned long) arg);
if (ret < 0)
{
printf
("MIGSOCK_IOCTL_REQ system call failed.\n");
return -1;

}

/* Allow enough time for ack to come back before proceeding */
sleep (2);

74

/* Serialize data and store the result in arg->data */
ret =
ioctl (fd, MIGSOCK_IOCTL_TOFILE,
(unsigned long) arg);
if (ret < 0)
{
printf
("MIGSOCK_IOCTL_TOFILE system call failed.\n");
return -1;

}
fout = open (MIGSOCK_FILENAME, O_WRONLY | O_CREAT);
if (fout == -1)
{
printf

("Failed to create %s. Migration aborted\n",
MIGSOCK_FILENAME) ;
return -1;

}

/* Write this serialized junk in arg->data to MIGSOCK_FILENAME */
ret =
write (fout, (void *) (arg->data),
MIGSOCK_SERIAL_DATA_SIZE);
if (ret == -1)
{
printf

("Failed to write to %s. Migration aborted\n",
MIGSOCK_FILENAME) ;

return -1;

}

printf ("Migration initiated.\n");

printf ("%d bytes of serialized data written to %s\n",
ret, MIGSOCK_FILENAME) ;

close (fout);

close (fd);

return ret;

A.4 Finish_Migrate.c

/* finish_migrate.c
*

* This user program is run on a process and a socket that has been

75

* X ¥ X X *

your socket to my address and port.

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <fcntl.h>

#include "migsock_user.h"

int

main (int argc, char *argvl[])

{
int fd;
int ret;
struct migsock_params *arg =

(struct migsock_params *)

malloc (sizeof (struct migsock_params));
struct migsock_config_data *data =

(struct migsock_config_data *)

malloc (sizeof (struct migsock_config_data));
char fdata[MIGSOCK_SERIAL_DATA_SIZE];
int fin;

if (argc < 3)
{
printf ("Usage : user2 <pid> <sockfd>\n");
return -1;

}

arg->pid = atoi (argv[1i]);
arg->sockfd = atoi (argv[2]);
fd = open ("/dev/migsock", O_RDONLY);
if (£d < 0)
{
printf ("Bad FD.\n");
return -1;

}

76

migrated from some host and restarted on this host using crak.
It will reestabilsh connection to the remote host that was

talking to the start_migrate side. First it wakes the process
that crak restore just created. It will then
the remote host saying two things: 1) wake up.

send a message to
2) point

fin = open (MIGSOCK_FILENAME, O_RDONLY);
if (fin == -1)
{
printf ("Failed to open %s. Migration aborted\n",
MIGSOCK_FILENAME) ;
return -1;
}
/* read in file contents */
ret = read (fin, fdata, MIGSOCK_SERIAL_DATA_SIZE);
if (ret '= MIGSOCK_SERIAL_DATA_SIZE)
{
printf
("Read failed. Data file size maybe incorrect. Abort.\n");
close (fin);
return -1;
}

close (fin);

strcpy (data->id, MIGSOCK_ID_CODE);
data->oport = *((__ul6 *) fdata);
data->ohost = *((__u32 *) (fdata + 4));

memcpy ((void *) arg, (void *) fdata,
MIGSOCK_SERIAL_DATA_SIZE);
/* Update structures with serialized sock, socket, and file data */
/* Also wake up suspended crak process */
ret =
ioctl (fd, MIGSOCK_IOCTL_RESTART,
(unsigned long) arg);
if (ret < 0)
{
printf
("MIGSOCK_IOCTL_RESTART system call failed.\n");
return -1;
}
data->nport = (__ul6) ret;

printf ("Socket Migrated to Local Port %d\n",
ntohs (data->nport));

/* Get your IP address */
ret =
ioctl (fd, MIGSOCK_IOCTL_GETHOST,
(unsigned long) arg);
if (ret == 0)
{

77

printf
("MIGSOCK_IOCTL_GETHOST system call failed.\n");
return -1;
}
data->nhost = (__u32) ret;

printf ("From host %d . %d . %d . %d ",
*((unsigned char *) &(data->ohost)),
*(((unsigned char *) (&(data->ohost)) + 1)),
*(((unsigned char *) (&(data->ohost)) + 2)),
*(((unsigned char *) (&(data->ohost)) + 3)));
printf ("and port %d\n", ntohs (data->oport));

/* Now send the restart message */
data->opcode = MIGSOCK_SEND_RST;
memcpy ((char *) arg, (char *) data,
sizeof (struct migsock_config_data));
ret =
ioctl (fd, MIGSOCK_IOCTL_RST, (unsigned long) arg);
if (ret < 0)
{
printf
("MIGSOCK_IOCTL_RST system call failed.\n");
return -1;

}

close (fd);
return ret;

78

Bibliography

1]

2]

[4]

[6]

8]

Joseph Kiniry, Daniel Zimmerman. A hands-on look at Java mobile agents.
IEEE Internet Computing, VOlumel, No. 4, 1997

Ophir Holder, Israel Ben-Shaul, Hovav Gazit. System Support for Dynamic
Layout of Distributed Applications.In Proceedings of International Conference
on Distributed Computing Systems (ICDES’99)

Ophir Holder, Israel Ben-Shaul, Hovav Gazit. Dynamic Layout of Distributed
Applications in FarGo. In Proceedings of 1999 international conference on
Software Engineering

Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter Dr-
uschel, Willy Zwaenepoel, Erich Nahum. Locality-Aware Request Distribution
in Cluster-based Network Servers. Department of Electrical and Computer
Engineering, Rice University.

Lior Amar, Amnon Barak , Ariel Eizenberg, Amnon Shiloh.The MOSIX
Scalable Cluster File Systems for LINUX. Papers on MOSIX available at
WWW.mOosix.org

Timothy S. Mitrovich, Kenneth M. Ford, and Niranjan Suri. Transparent
Redirection of Network Sockets. In proceedings of OOPSLA Workshop on
Experiences with Autonomous Mobile Objects and Agent Based Systems.

’

nian Zhou. Process Migration. In ACM Computing Surveys, Volume 32, No.
3, September 2000

Xun Qu, Jeffrey Xu Yu and Richard P Brent. A Mobile TCP Socket. TR-
CS-97-08, Joint Computer Science Technical Report Series, The Australian
National University

Mohit Aron, Darren Sanders, Peter Druschel and Willy Zwaenepoel. Scal-
able Content-aware Request Distribution in Cluster-based Network Servers.
Proceedings of the 2000 Annual Usenix Technical Coference.

Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Efficient Support for P-
HTTP in Cluster-Based Web Servers. Proceedings of the USENIX Annual
Technical Conference, 1999

79

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[21]

[22]

W. Richard Stevens. TCP/IP Illustrated Volume 1. Addison-Wesley Profes-
sional Computing Series.

W. Richard Stevens. TCP/IP Illustrated Volume 2. Addison-Wesley Profes-
sional Computing Series.

W. Richard Stevens. TCP/IP Illustrated Volume 3. Addison-Wesley Profes-
sional Computing Series, 1999

W. Richard Stevens. Uniz Network programming Volume 1, Second Edition.
Prentice Hall International PTR, 1998

Amnon Barak and Oren La’adan. The MOSIX Multicomputer Operating Sys-
tem for High Performance Cluster Computing. From the MOSIX site at
WWW.mOosix.org.

John K Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N
Nelson, Brent B Welch. The Sprite Network Operating System. Computer,
Volume 21, No. 2, Feb 1988.

School of Computer Science, Carnegie Mellon University. The MACH Operat-
ing System. At http://www.cs.cmu.edu /afs/cs.cmu.edu/project/mach /pub-
lic/www /mach.html. 1985 - 1994

Amnon Barak and Oren La’adan, Amnon Shiloh. Scalable Cluster Computing
with MOSIX for LINUX. Available at www.mosix.org.

Computer Science Department, Virje University. The AMOEBA Distributed
Operating System. http://www.cs.vu.nl/ pub/amoeba/amoeba.html.

Wenting Tang, Ludmila Cherkasova, Lance Russell, Matt W. Mutka. Mod-
ular TCP Handoff Design in STREAMS-Based TCP/IP Implementation.
Hewlett-Packard Labs, Department of Computer Science and Engineering,
Michigan State University.

Michael Litzkow, Miron Livny, and Matt Mutka, Condor - A Hunter of Idle
Workstations, Proceedings of the 8th International Conference of Distributed
Computing Systems, pages 104-111, June, 1988.

Hua Zhong and Jason Nieh, CRAK: Linux Checkpoint / Restart As a Kernel
Module, Technical Report CUCS-014-01, Department of Computer Science,
Columbia University, November 2001

James S. Plank, An Overview of Checkpointing in Uniprocessor and Dis-
tributed Systems, Focusing on Implementation and Performance, University
of Tennessee Technical Report CS-97-372, July, 1997

Alessandro Rubini, Jonathan Corbet , Linuz Device Drivers, 2nd Edition,
OReilly & Associates Inc., June 2001.

80

[25]

[26]

Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System
Concepts, Sixzth Edition , John Wiley & Sons, Inc., June 15, 2001.

Robert S. Gray, Agent Tcl: A transportable agent system, In Proceedings
of the CIKM Workshop on Intelligent Information Agents, Fourth Interna-
tional Conference on Information and Knowledge Management (CIKM 95),
Baltimore, Maryland, December, 1995.

IBM Research, IBM Aglets Website, http://www.trl.ibm.com/aglets/

Eduardo Pinheiro EPCKPT Checkpoint Project, Homepage at
http://www.cs.rutgers.edu/ edpin/epckpt/

James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li, Libckpt: Transpar-
ent Checkpointing under Uniz, Conference Proceedings, Usenix Winter 1995
Technical Conference, New Orleans, LA, January, 1995, pp. 213-223.

Daniel P. Bovet, Marco Cesati, Understanding the Linuz Kernel, OReilly &
Associates Inc., January 2001.

Rutgers University, M-TCP, http://discolab.rutgers.edu/mtcp/

Florin Sultan, Kiran Srinivasan, Deepa Iyer and Liviu Iftode, Highly Available
Internet Services Using Connection Migration, Rutgers University Technical
Report DCS-TR-462, December 2001

Kiran Srinivasan, MTCP: Transport Layer Support for Highly Available Net-
work Services, Master of Science Thesis. Rutgers University Department of
Computer Science Technical Report DCS-TR-459, October 2001

Niranjan Suri, Jeffrey M. Bradshaw, Maggie R. Breedy, Paul T. Groth, Gre-
gory A. Hill, Renia Jeffers, Timothy S. Mitrovich, An Overview of the NO-
MADS Mobile Agent System, University of West Florida

D. A. Maltz, P. Bhagwat. MSOCKS: an architecture for transport layer mo-
bility Proc. IEEE 17th InfoCom’98, 1037-1045, 1998

81

