
���������
	��
�����
���������������
�����
���

�! #"%$'& & ()*$' #",+.-#/0" 132546$87�)9$: #"<;>=�25?

@ ACBED F

�G�H�I�J�K�L	M�J�N�O����PQ�SRT���I�U�V	W���N�S�X�K��Y

Z\[^]^]_[
`ba $c�d e"f$g&<&C(C)h$g e"L+_-e/i"C1j2
4k$c7�)h$g e"f;l=m2
?

n 2
"f(C2�+_ogp.2
4q2
r 4k(Cs�2
4koc7�t8uMvw$gx^$g&<-eye$g4qz#{I2
4q"f(C Qx^2
 Q|�$g&<;5$g

}c~>(C"f-e4qz#{S(<p a 2
$g&^��$gpg"f$g E1j2
&<~
`ba $c��-e?e-e"f(Cp.;l�� e;5"f(C"f��"f$

u�2
4k e$g)h(C$c{S$.&C&C-e Q�� e(<x^$g4q;5(<"�o
�]_]^] t8-e4q?e$g;�73x^$

�^���%�<�<�g�
���'�����_�S���9���9�9�����9���

�� ��

T A B L E O F C O N T E N T S

Preface 1

PART I: INTRODUCTION 3

Overview 3
System and Software Requirements 10
Installation Instructions 11

 General Running Instructions: Running An Agent 13

PART II: EXAMPLES

Example One: Agent Communications 17
Building The First Example Agents 20
Example Two: Adding An Information Agent 28
Building The Second Example Agents 30
Example Three: Using the Matchmaker 37
Building the Third Example Agents 39
Example Four: Using Discovery 43
Testing the Fourth Example Agents 52
Example Five: Integrating Third-Party Reasoning Modules 53
Example Five, Cont: Deriving an Agent that Uses the
CProblemSolver Class 57
Example Six: Auction Demo 60
Example Seven: Distributing Your Agents Over a Number of 61
Machines

PART III: AGENT ATTRIBUTES AND CONVENTIONS

Examining Your Agents 64
 Commandline Parameter Handling 64
 Agent Creation 64
 Agent Initialization 65
 Agent Message Processing 65
 Agent Timer Events 65
 Agent Shutdown 65
 Network BeliefDB Data Structures 66
 Agent Destruction 68
 Processing Updates to the Agent Environment 68

Working with Top-Level Agent States 72
Forcing Global Lookup Refresh 73

 Client Module 73

Agent User Behavior, Agent Naming Convention 78

PART IV: VISUALIZATION TOOLS 80

The KQML Message Sender 80

�%��%��%��%�

PART V: DATA STUCTURES, TOOLS, UTILITIES 86

Data Structures 86
Tools and Utilities 91
 Generating and Using GUIDs 91
 File and Directory Access Tools 92
 Database File Access 94

 Wildcard Matching Support 98
 Adding Custom Sockets to Your Agent 99
 Miscellaneous Utilities 101
 White Space 102
 Tokenizing 102
 Tokenating 102
 Creating Unique ‘reply-with’ Fields 103
 String Manipulation 104
 URLs and Web Development 104

APPENDICES

A: The RETSINA Software License Agreement 106

Preface

Agent technology promises to revolutionize the World Wide Web and a range of
other domains.1 The prospects for the development of artificial intelligence are
only now beginning to be glimpsed. From information agents searching the web,
to a new kind of travel agent helping drivers/travelers navigate traffic and busy
schedules, to stock agents aiding in the management of user portfolios, to agents
joining forces in the defense against terrorism, the ubiquitous use of agent
technology is beginning to see the light of dawn. 2

Despite the heralding of a new age of computing and integratio n of artificial
intelligence into everyday life, there has been very little distribution and
implementation of agent technology on a routine basis. 3

Given the widening gap between promises of widespread use and actual
availability, we at the Intelligent Software Agents Lab wanted to develop a means
by which agent technology could be made accessible, both physically and
technically, to expert agent developers/programmers, as well as early, non -
expert adopters of agent technology. We wanted to produce a pack age that
would allow comparatively easy building, testing and interacting with agents and
communities, while also allowing expert developers to experiment with complex
agent configurations.

Furthermore, and admittedly as a means for promotion of our own research and
development, we wanted this distribution to be based on the RETSINA model of
agent community architectures. We feel that the RETSINA system merits this
promotion and distribution, given its advanced development and the
demonstrably sound principles on which it has been based (see below). This
RETSINA Agent Foundation Classes (AFC) kit is the result of the RETSINA
research vision and the need for an Agent Building kit that meets the demands
for relatively wide distribution and easy assembly and use of agent technology.

1 We define an Agent as an autonomous, (preferably) intelligent, communicative, collaborative, adaptive
computational entity. Here, intelligence is the ability to infer and execute needed actions, and seek and
incorporate relevant information, given certain goals.
2 See, for example, Julian Dibbell and Lisa Granatstein, “Smart Magic Intelligent Agents Are Changing
Cyberspace for Good” in Time Magazine, June 24, 1996; John Carey, “Smart Manufacturing: Agents of
Change on the Factory Floor,” in Business Week, August 7, 2000; Jon Sidener, “Intelligent Agents Getting
Practical: From Laboratory Curiosity to Practical Application,” The Arizona Republic, March 27, 2001;
Stephanie Franken, “CMU Robotics Institute developing communication tools for cars that can warn of
traffic jams and map out alternative routes,” the Pittsburgh Post-Gazette, May 27, 2001; the Associated
Press article by technology writer Jim Crane, which appeared in numerous newspapers and internet news
sources, including USA Today, “AI: Latest foot soldier in war on terror,” October 2, 2001.
3 Several agent tool kits are available. See Sycara, Paolucci, van Velsen and Giampapa, “The RETSINA
MAS Infrastructure,” JAAMS, forthcoming, 2002 (available online at
http://www.softagents.ri.cmu.edu/papers/AAMAS.pdf). The complete list of publications of the Intelligent
Software Agents Lab is available at http://www.softagents.ri.cmu.edu/publications.html. Most papers are
accessible electronically.

�� ��

While the RETSINA vision for agents and agent communities is described in
detail in our academic publications, 4 a brief overview of this vision is in order
here.

Since the inception of agent research, we have acknowledged that w hile agents
of any complexity could theoretically be developed, their actual use would always
depend on their functioning within a community of other agents and software
infrastructure. That is, we assumed from the outset that agents are social, that
other agents were often different than themselves, and that agents should be
free to join and leave communities “at will.” Given these and other conditions,
agents should nevertheless be able to find and communicate with each other. It
was under these assumptio ns that we developed the RETSINA Multi -Agent
Infrastructure (MAS). This infrastructure would not impose constraints upon
individual agent design. It would not limit agents to one language. It would not
require a centralized system of registration and commu nication. It would support
the ongoing introduction of new agent types and services.

As one can see, these acknowledged conditions begin to suggest requirements
for an MAS. To meet these requirements, we developed a communications
language that would allow different types of agents to talk, despite speaking
different languages (LARKS). We developed a “white pages” directory that
allowed agents to have names and addresses available to each other and to
infrastructure components (Agent Name Server or ANS). W e developed a “yellow
pages” that allowed agents to locate other agents who fit descriptions of service
providers they needed (Matchmaker). We developed a means by which agents
who had little or no knowledge of each other could find each other in either Lo cal
Area Networks (LAN) or Wide Area Networks (WAN). This means is known as
Discovery. Finally, we have demonstrated the interoperability of disparate agent
communities by means of an “Interoperator,” a translation agent who can
mediate between heterogeneous MASs.

This kit represents the first release of RETSINA MAS agents and infrastructure to
a wider public. While the entire capability of our agents cannot be included here,
we have provided the main components of our agents and their infrastructure
support, as well as the libraries for the more complex agent development. We
invite you to test the agents provided, to build your own agents and agent
communities, and to provide feedback to our researchers and developers.

For more detailed information about the RETSINA MAS Infrastructure, please
visit our website at http://www.softagents.ri.cmu.edu

4 For a description of the RETSINA Multi-Agent Infrastructure and its implications for agent infrastructure,
see in particular, ibid.

Overview: RETSINA Agent Types, Agent Classes and
Multi -Agent System (MAS) Infrastructure

Before you begin with the installation and use of the RETSINA agent libraries and
Developers’ kit, you should have some understanding of the agents you will use and
build, and their relationship to the agent system where they will live. Here, we will
introduce you to the agent types and classes on which the AFC is based, and the
RETSINA MAS to which they contribute and from which they derive their design
parameters.

The advantages of this agent-builder kit are those derived from the RETSINA MAS
itself (see Introduction). Using the AFC, you will be able to build agents that can

1. Interoperate with each other, and other, heterogeneous agent types and
systems;

2. Advertise their services and capabilities, and find agents whose capabilities
they seek, using the RETSINA Matchmaker;

3. Find and communicate with each other across distributed systems, on a peer-
to-peer basis;

4. Link to a planning or reasoning component that controls the activities of the
agent.

In this Guide, we will illustrate each of the features of the system, by means of
examples. After most of the examples, we give step-by-step instructions on how to
build them. The developer can then go on to build other agents and agent
interactions.

RETSINA Agent Types

In the RETSINA MAS, there are four primary agent types: Information Agents, Task
Agents, Interface Agents and Middle Agents.

Interface Agents interact with users, receive user input, and display results to users.

¡¡ ¡¡

Task Agents help users perform tasks. They formulate problem-solving plans and
carry out these plans by coordinating and exchanging information with other software
agents.

Information Agents provide intelligent access to a heterogeneous collection of
information sources

Middle Agents help match agents that request services with agents that provide
services.

We discuss these agent types, their uses and construction, in the course of this
Developers’ Guide.

In addition to these agent types, the RETSINA MAS Infrastructure includes the
Agent Name Service (ANS) se rver . The RETSINA ANS server acts as a
registry or "white pages" of agents, storing agent names, host machines, and
port numbers in its cache. The ANS server helps to manage inter -agent
communication by providing a mechanism for locating agents.

When an agent becomes active and an ANS server is available, the agent
registers with an ANS server by providing its name, host name, and port number.
An ANS server keeps a list of agent locations, so that, should agents relocate to
different host machines, other agents will still be able to find them. Agents locate
other agents by querying ANS servers that store the location data of the agents
that they wish to find. The means by which agents locate ANS servers and each
other has been radically revised by the addi tion of Discovery.

The RETSINA MAS Infrastructure includes the Matchmaker. The Matchmaker
helps make connections between agents that request services and agents that
provide services. The Matchmaker serves as a "yellow pages" of agent
capabilities, matching service providers with service requestors based on agent
capability descriptions. The Matchmaker system allows agents to find each other
by providing a mechanism for registering each agent's capabilities. An agent's
registration information is stored as an "advertisement," which provides a short
description of the agent, a sample query, input and output parameter
declarations, and other constraints.

When the Matchmaker agent receives a query from a user or another software
agent, it searches its dynamic database of "advertisements" for a registered
agent that can fulfill the incoming request. The Matchmaker thus serves as a
liaison between agents that request services and agents that can fulfill requests
for services.

Discovery is a means by which knowledge of agents and infrastructure entities is
propagated in Local and Wide Area Networks. Using Discovery, agents are
dynamically registered and unregistered on multiple ANS servers, and clients (a
module in the agent) and servers update their lists of available agents and servers on

¢¢ ¢¢

a dynamic basis. As agents and ANS servers come and go from the network, the
client and server lists are expanded and contracted respectively. Agents can be
initiated before an ANS server is online, and instead of failing, they will register
with an ANS server when one becomes available. ANS servers can be updated
with knowledge about agents from other servers who relay agent registrations
and unregistrations to them. We describe ANS and Discovery below, and in more
detail in the document entitled ANS v.2.8 (file name: javaANS.PDF – included in
the CD distribution and online at http://www.softagents.ri.cmu.edu/ans/ANSv2.9.PDF).

Agent Design in RETSINA AFC

Agents can be designed and built in many ways. Several toolkits (AgentBuilder,
JADE, Tryllian) already exist. Each of these toolkits implements agents differently,
based on different design philosophies and different agent architectures. The agents
built with the Agent Foundation Classes are based on the RETSINA software agent
architecture. In Figure 1, we show the RETSINA agent types, as derived from the
basic agent:

Every agent is based on the basic agent. In AFC terms, every agent inherits from the
BasicAgent class. Any class derived from the basic agent is part of the Agent
Abstraction Layer (AAL). All other lower level components are part of the
Communications Abstraction Layer (CAL). These CAL components are used by the
basic agent, and are of course available to all agents. Of these CAL components, the
Communicator module and one or more look-up modules are already incorporated
into the basic agent.

Even though it is possible to write an agent based on the BasicAgent class, it is
recommended that agent creators and programmers base new agents on one of the
existing sub-classes deriving from the basic agent. These four agents are the second
level down in the inheritance tree.

Within this tree there are several more levels, depending on the complexity of the
agent class and how much development exists along a branch. For example, as
Figure 2 shows, middle agents can be further refined into: Matchmakers, Brokers
and BlackBoards. We have identified sixteen types of middle agents in our research,
but in AFC only provide the three types shown below. Developers are invited to
derive their own set of middle agents.

Basic Agent

Information Agents Task Agents Interface Agents Middle Agents

Figure 1

££ ££
Agent Abstraction

Layer (AAL)

¤¤ ¤¤

Figure 2

Anatomy of an Agent

Before exploring agent functions, we first need to define an agent, and how we can
view them from a software standpoint. We could describe a generic agent as a
standalone survivable piece of code with communicative and intelligent behavior.
What should be noticed immediately is that this describes an entity that is completely
separate from any system design or configuration. We therefore need a construction
abstract enough to facilitate intelligent behavior, while also allowing for integration
into existing operating systems.

The mechanism by which we do this is called “containment.” We contain the agent in
a sub-shell with a well-designed Agent Protocol Interface (API), so that developers
can write custom binding for specific operating systems and architectures. The actual
abstract agent is what we will work with to create complex agent types. Figure 3
illustrates the principle whereby the barrier between operating system and agent is
termed the AgentShell, and the Agent base code (base class) itself is termed the
BasicAgent.

The agent shell has two main functions. First, it makes the existence of an agent
possible in the world of heterogeneous operating systems. Secondly, it provides the
agent with a number of basic facilities. For example, when writing a shell, a developer
will have to provide the agent with a one second resolution timer. It will also have to
handle messages originating from within the agent regarding its operation. An agent
can indicate that it wishes to shutdown or, if it has a visible client area, it can indicate
that this should be minimized or even hidden from view. A number of pre-defined
agent shells are shipped with the AFC distribution. These standard shells are:

Middle Agents

MatchMakers Brokers BlackBoards

Figure 3

¥¥ ¥¥

- CDlgContainer , a Microsoft MFC based shell that encapsulates an MFC
dialog window;

- CSDIContainer, which can be used to create MFC SDI based applications;

- CMDIContainer, this is the same as the previous shell but creates an MDI
window;

- CQtContainer , A Unix and Windows targeted shell for visual agents;

- CDeamonContainer, a shell for Unix daemon development;

The instructions below (see Building the First Example Agents) contain detailed
instructions on how to develop a new agent shell using the BasicAgent class.

For generic agent development, you do not need elaborate knowledge of the
operating system or agent shell programming. You will most likely remain within the
basic agent context and will use the tools provided by the AFC.

The basic agent itself runs and manages a set of client modules designed to manage
data and dialogs with external entities, as shown in Figure 4. Their tasks can range
from providing file logging to interaction visualization, to middle agent interaction. The
AFC provides a number of tools and base classes to develop custom clients, and we

Figure 4

¦¦ ¦¦

highly recommend their use whenever an agent is designed to interact with other
agents.

All of the modules managed by the basic agent are run separately and have no direct
influence on one another. This modular independence makes the agent more robust
and prevents total agent failure due to a cascading effect.

Basic Agent Behavior

Every agent designed and developed with the AFC will incorporate a set of basic
behaviors. These behaviors were developed for the agent’s survival, maintenance
and management.

Agent Life Cycle

All agents constructed using the AFC SDK will have a fixed and well-defined life
cycle. Each stage of this cycle represents a checkpoint at which either the agent or
agent developer can influence the behavior of the agent. Since all AFC agents are
event driven, so too is the life cycle. Each cycle or stage can be triggered by an

- Internal event

- External event

- Agent developer imposed event

In the process of the development of your agent, you will be confronted with
decisions regarding each of the agent’s life stages. There are a number of main
events/triggers that drive the cycle transitions. All of the events and stages are
managed and generated by the Basic agent. There are 5 main stages an agent can
experience during its lifetime. These are:

- Agent Birth

- Agent Initialization

- Agent Creation

- Agent Main

- Agent Shutdown

- Agent Destruction

The stages listed above correspond to virtual methods within the CBasicAgent class.
Within the Main stage, an agent can be given more detailed events. (The Main stage

§§ §§

is the main running loop of the agent’s life cycle). Overriding one or more of these
methods will provide you (the developer) with control over the agent’s general
behavior.

Other methods are provided to govern and refine your agent. For instance, every
agent is equipped with lookup modules, which give your agent the capability to
investigate its network surroundings. There are also modules designed to work
specifically with specific infrastructure components such as matchmakers and
logging agents. We will explain how to work with these events in the section below
entitled, “Building the First Example Agents.”

Agent Logging Behavior

Every agent is configured with one or more file-logging modules. These modules
provide detailed information to external entities as to the functioning of the agent. The
file-logging module allows an agent to stream internal events to a file on disk. The file
contains detailed information on the agent’s actions. We will demonstrate in a later
section how to add entries to the log-file. All log-files are maintained in the root
(RETSINA) directory under a subdirectory called “Logfiles”. These files are organized
in date-stamped directories. (See Installation Instructions, below, for how to manage
the behavior of logging modules). All log-files are created by the agent in a directory
with the name of the day and month on which the agent was started.

Agent Process ID (PID)

All agents built with the AFC maintain PID files in the RETSINA system directory.
The PID provides for the following functions:

1) It assists agents in identifying other agents running on the same platform. If it
is programmed to communicate with a user via a voice, for example, an Interface
agent should be able to find a SpeechAgent running on the same system.

2) It allows agent management tools to rapidly see what agents are running and
what agents have crashed, by pro viding a comparison of the file entries with the
list of agents actually running on an ANS server.

¨#©¨#©¨#©¨#©

System and Software Requirements

To use the RETSINA Agent Foundation Classes you will need

1. Pentium 90Mhz
2. 16 Mb RAM
3. A minimum of 50 Mb free disk sp ace for full installation
4. 2x speed CDROM
5. Windows 95/98/NT/2000/Xp

The version of the RETSINA Agent Foundation Classes as described in
this manual requires that the following applications are present prior to
installation:

1. Visual Studio 6.0 (this has t o have been run at least once prior to AFC
installation)
2. Java 1.2 or higher (runtime environment)

Networking

To run agents on your own computer only, you do not need to be connected to a
networked domain. To discover and communicate with agents runnin g on your
local area network (LAN) or across networks (WAN) (see Discovery section
below), you will need a live Ethernet connection.

When we refer to Agent Name Servers below, we mean an agent infrastructure
component that can reside locally on your mac hine. You can register with an
ANS server on your own machine; you do not need to be connected to a specific
network to connect to an ANS Server, but in order to find and communicate with
other agents, you will need to find and register with non -local ANS servers using
Discovery.

¨#¨¨#¨¨#¨¨#¨

Installation Instructions

1. You must be logged in to Windows as the

“Administrator” in order to properly install the AFC.
If logged in otherwise, restart and login as
“Administrator.”

2. Insert the AFC Development Kit CD -ROM into CD ROM
Drive. The CD should start up automatically. If it
does not, go to “Start” menu, scroll to “Run” and
browse to the CD -ROM drive. Select the setup.exe
file and click ok.

3. A welcome GUI (shown below) for the Installshield™
Wizard, which install s the RETSINA Agent
Foundation Classes, should appear. To begin
installation, click “Next.”

4. Please read and accept the CMU licensing agreement.

5. The Read -me file will appear. It contains information on
the latest updates, which may not be reflected in
this manual. It will be stored in the directory for the
software. Click “Next.”

6. The next GUI is for setting the installation path. This
path designates the root location where all the
libraries, files and examples will be stored. The

¨#�¨#�¨#�¨#�

default path is C: \program files \RETSINA. You can
change this path, but we recommended that you do
not.

7. The next GUI is the “Setup Type” window.

Choose installation type and click “Next.” The
options signify:

a. Administrator (for WinNT 2000 and XP, for
installation of mult iple users).

b. Compact: installs the smallest configuration
necessary to build agents: for users with limited
drive space or who do not need agent examples.
Not recommended for first -time users.

c. Custom: To choose components. For experienced
users.

d. Typical: T o install complete set of files. This is the
default and recommended installation setting.

8. The next window, “Start Copying Files,” is an overview

of the installation. In this part of the installation, the
program detects whether or not C Visual Stud io 6.0
is installed on your computer.

In the figure below, you can see that version 1.10 of

¨# ¨# ¨# ¨#

AFC will be installed and that the program has
detected the presence of Visual Studio 6.0. Click
“Next” to begin the installation.

 If Visual Studio 6.0 has not been installed,
cancel the installation. Install Visual Studio 6.0, and
run it at least one time before reinitiating the
installation.

 If you have Visual Studio 6.0 installed, and it is
not detected by AFC, then you may have never run
the program. In order to set its environment, the
program needs to run at least one time. Cancel the
installation and run Visual Studio 6.0, then
recommence installation.

9. Click “Finish”. The installation is complete.

General Running Instructions: Running An Agent

Note: This section provides general reference information on running agents.
Follow the instructions in the example sections to begin running your first agents.

¨#¡¨#¡¨#¡¨#¡

When you navigate to the directory examples (see instructions for using
examples, below) you will find example projects with fully working agents.

Step1, Starting an Agent

An agent can be started in two ways, either by double clicking its icon or by starting it
from the command line. There is a clear distinction from the agent's standpoint what
the different methods signify. When an agent is started by double-clicking its icon, it
assumes that it will have to find its basic information somewhere on disk, or from the
user. When an agent is started from the command line it will expect to supplement
the information it finds in well-known locations and resources with the information
supplied in command-line parameters. If it doesn't find that information, it will revert to
the first method, as if it had been started as an icon.

Every agent understands a number of command line parameters. Below is a list of all
the parameters that every agent build with the Agent Foundation Classes
understands:

Parameter: Value: Example:

-name The name of the agent as should be
registered with an ANS

-name SpeechBroker

-help Show a help screen which explains the
command line options

-help

-port This specifies what port the agent
should use for listening

-port 6678

-ansname The hostname or ip address of the ANS -ans
midea.cimds.ri.cmu.edu

-ans The port at which the ANS server is
listening

-ans 6677

Every agent is compiled with a number of internal client modules. These modules
complement the agent’s basic behavior and allow inspection of its internal workings.
Other modules dictate basic behavior such as:

• Register with a MiddleAgent

• Process and/or propagate window parameters to the agent shell

• Enable/Disable internal components to create non-communicative agents

Below is a list of additional parameters that can be used to control a number of non-
essential modules.

¨ ¢¨ ¢¨ ¢¨ ¢

Parameter: Value: Example:

-win min If the agent has a graphical window, minimize
upon creation

-mm min

-win max If the agent has a graphical window, maximize
upon creation

-win max

-win hidden Hide any graphical user interf ace from the
desktop

-win hidden

-noans Disable the ANS module and run standalone -noans
-mm The name of a primary MatchMaker -mm MatchMaker
-ddp Name of a visualizer or logging agent -ddp DemoDisplay

-ddn <enable/disable> Enable or disable the
visualizing module

-ddn enable

-dpp Portumber of a desktop agent (if used) -dpp 6658

Step 2, Choosing a Visualization System

If you haven't specified a visualization system with command line parameters, the
agent will prompt you for the name of a visualization or logging agent. You will
not get this dialog box if the agent hasn't compiled support for this type of
logging. Below is a screenshot of the window, which will pop up when an AMS has
not specified a visualization agent

When you don't specify
anything at this point, but
instead just click 'OK', the
visual logging module will be
initialized with a default name.
This is normally
'DemoDisplay'. After you've
selected a different name for
the target agent, click
on 'Commit'. This will ensure

that information is propagated to the agent code.

Step 3, Registering with an ANS

If no ANS server was specified using either one of the configuration files or command
line parameters, the agent will pop-up a dialog box. You can use this window to
register with an Agent Name Server.

Choose a server from the list, or enter a new one. Then press 'register' and the agent
should inform you whether or not the registration process was successful. Use the
'unregister' button if you accidentally register with the wrong server. This process will

¨#¤¨#¤¨#¤¨#¤

not affect the already-running agent. When all goes well, the dialog should look like
the dialog box in the second figure, below. The list of agents you will see in the drop-
down box is obtained from the RETSINA system directory. We provide more
information on this in the following sections.

Before Registration

After Successful Registration

¨ ¥¨ ¥¨ ¥¨ ¥

Example One: Agent Communications

Now that the AFC software is installed, you should now be able to test your agent
system by running the most basic agen t examples. The test will verify that the
system is properly installed, while also demonstrating a basic communication
between agents.

1. From the Windows start menu, scroll to Java ANS (in
Programs\RETSINA\tools).

2. An ANS5 console window will appear.

 If you do not have Java installed, you will not be able to run the Java
ANS server. In this case, or in case of failure of the Java ANS server, you
may run the Windows -only version of the ANS server, by going to
Programs\RETSINA\tools. Select Windows ANS ser ver. If you use the
Windows-only ANS server, an icon will appear in the system tray, which
signifies that the ANS server is active.

3. Start RETSINA\DemoDisplay. The RETSINA DemoDisplay will open,

where agents will appear when running. Note : the RETSINA agents will
function without the DemoDisplay, but you will not be able to easily verify
the functioning of the agents.

4. Go to the AFC files on your C drive (the default is
Programs \RETSINA\Examples \Step 1 \).

5. Start AgentA by double clicking. AgentA will open:

 An iconic representation will appear on the DemoDisplay.

6. Start AgentB.

5 ANS is an acronym for Agent Name Server. For detailed information about the Agent Name
Server, go to the document entitled “ANS Version 2.8” (file name javaANS.PDF in:
RETSINA/documentation/Java ANS Manual, or online at
http://www.softagents.ri.cmu.edu/ans/ANSv2.9.PDF.

¨#¦¨#¦¨#¦¨#¦

AgentB will appear with AgentA on the DemoDisplay:

The agents will automatically register with the ANS server, and will begin to
pass a series of messages to each other b ased on a simple pattern: AgentB
will send a message= “0” (seconds). AgentA will reply with B 1 + 1 (AgentB’s
first message + 1) (or 0+1). AgentB will wait a second and reply with A 1 +1 (or
2 seconds). AgentA will wait two seconds and reply with B 2 +1. AgentB will
wait three seconds and reply with A 2+1, etc, until you quit one of the agents.

7. Double click on the ANS server icon in the system tray (in the Windows -
only version of the ANS server only) to check the registration of the agents. A
window like the one below should appear, which shows the Hostname and
port, the agents’ names port numbers, and the time of registration.

¨#§¨#§¨#§¨#§

8. Unregister the agents (from the ANS server GUI) and shut them down

(from the agent interfaces).

�#©�#©�#©�#©

Building the First Exampl e Agents

Now that you have run the first example of a RETSINA agent system, we will
show you how to build that example using the Agent Foundation Classes and
Visual Studio. In this example, we demonstrated two agents, AgentA and
AgentB.

This means that we will have to create two workspaces in Visual Studio, one for
each agent. We will show you how to build the skeleton for AgentA. From this,
you should be able to build AgentB. If you have difficulty, you can always refer to
the agent code in the actual examples provided.

Both AgentA and AgentB are identical in that they take in a number wait for the
number of seconds indicated, add one to the number and send it back to the
receiver. The only difference between A and B is that A starts the sequence. Thi s
means that AgentA needs some additional code to begin the dialog with AgentB.

We will go through the example by showing what parts were added to the files
generated by the workspace. Once you have the full set of agents as used in
step 1, we will expla in how the added code works together with the AFC to create
the small agent system. Let's begin by building the workspace for AgentA.

We will now construct a basic RETSINA agent using the Agent Foundation Classes.

This example is for Microsoft Windows™. The CDROM contains
numerous examples for other operating systems. Except for the interface
differences, the agent programming interfaces are all the same. Once
you know how to construct your agent, building the agents begins in the

same way on all platforms.

 Start Visual C++ and select the ‘new’ option from the file menu.

You should now see the dialog window as shown in the Figure below. If the AFC
SDK has been properly installed you should see a MFC project called: MFC Retsina
Agent AppWizard . Select this project and type the name of your agent (AgentA) in
the ‘Project name’ field.

�#¨�#¨�#¨�#¨

When clicking ok you should see a dialog where you can choose what sort of
graphical user interface style you would like to use.

We strongly suggest that you construct these agents with the use of a Visual C++
guide. We chose to create a Dialog based agent for this example. The agent is
labeled AgentA.

�#��#��#��#�

Once you’ve navigated through the configuration dialogs you will end up with a
screen similar to the figure above (AgentA Workspace). It shows the newly created
agent project and an empty dialog window that can be used by the agent. A status
bar has already been included, which will show all the messages generated by the
AFC components and modules. These files mirror the messages logged to disk.

With the AgentA project a number of files were created. Most of these files are
particular to Microsoft Visual C++ and can be used to connect any visual code to the
agent code. The files you should be seeing in the file pane are: c_AgentA.cpp,
AgentA.cpp, AgentA.rc, AgentADlg.cpp and StdAfx.cpp. These are the basic source
files. The actual agent code is contained in c_AgentA.cpp. It contains the
implementation of an agent derived from CBasicAgent. Comments are included to
explain the behavior of the example code.

In a previous section we described the general anatomy of an agent. We will
now provide the translation between that model and its implementation. At the
base of our agent is one class that represents all core behavior a nd functionality:
CBasic Agent. No matter what kind of agent you create, it will be derived from the
basic agent. Throughout the examples provided here, we will use an agent class
called AgentA, which is directly derived from our basic agent. As we progre ss,
you will become more familiar with the different kinds of agent derivations and
their functionality. We will introduce information agents and middle agents. All of

AgentA Workspace

�# �# �# �#

these classes are based on the basic agent and you will therefore need to
understand how to develop with this class.

If you do not already have the workspace for AgentA open, open it now. Make
sure that the left pane is set to the 'files' view.

Note : All agent-related files start with 'c_'. This is done intentionally, in order to
keep native code separate from agent -based code. By “native code” we mean all
source code that ties -in with OS-specific or graphical-interface-specific
functionality.

The Agent Application Wizard created two files for you that encapsulate the
actual agent. For AgentA these should be: c_AgentA.cpp and c_AgentA.h. Open
up the file c_AgentA.cpp in the editor. You will see a large number of comments.
These comments indicate what particular part of the agent is active at any one
time.

Open the file c_AgentA.h. In th is file you will be able to see what is needed to
build an agent. For our example, we only need to add the declaration of two
variables. Add the following code to your class:

 private:

 int counter;
 int step;

The first variable keeps track of how ma ny seconds the agent is currently waiting.
The second variable indicates how many seconds the agent should wait. This
last variable is the one to which the agent will add an increment and then send to
AgentB. For our purposes here, you do not need to make any further alterations
to this file.

Open the file c_AgentA.cpp and find the constructor definition for this class.
Change the content of the constructor until it looks like this:

 CAgentA::CAgentA(char *a_name) : CBasicAgent (a_name)
 {
 counter=0;
 step =5000;
 }

What we have done is to initialize the variables. (Note, we set the step variable to
a high number. This is done to trigger the start of the dialog, which is explained
later in the manual).

AgentA’s functionality calls for a timer. The basic agent in the AFC provides a
one second timer event. In this example we will use that time event to update our
internal state. Find the method implementation that looks like:

�#¡�#¡�#¡�#¡

 void CAgentA::process_timer (void)

This method will be called every seco nd. When the Agent Application Wizard
creates your agent, this method will be empty. Change this method so that it
resembles the source listed below:

 void CAgentA::process_timer (void)
 {
 char message [512];

 counter++;

 if (counter>step)
 {
 co unter=0;
 step++;

 sprintf (message,":number %d",step);

 char *reply=Communicator - >comm_sendmessage ("tell",
 "AgentB",
 "default - language",
 "default - ontology",
 NULL,
 NULL,
 NULL,
 message,
 NULL);
 if (reply!=NULL)
 debug (reply);
 else
 debug ("Message sent to Agent");
 }
 }

Let's examine what happens in this method. We see that if our counter is greater
than the amount of seconds we should wait, the agent resets the counter and
adds 1 to the amount of seconds the receiving agent has to wait.

Next, we created a message that can be understood by AgentB, which will be
sent to it using the comm_sendmessage method from the Communicator. Some
additional code was added so as to determine whether or not the message was
actually sent. We constructed the message using the KQML Agent
Communication Language. Here we show you a bit of what the language actually
looks like. We create d a string that has a token called 'number' and a ‘contents’
of that number from the step variable. This string is then provided to the
Communicator along with a number of other parameters. The message string as
it is used here is something we call the con tent field. This is the field where you
will find most of your information. The other fields are used to route and process
message properly.

� ¢� ¢� ¢� ¢

Now that we know how to send a message to an agent, we need to be able to
receive messages. The last update we nee d to make is to add the appropriate
receiving code. Find the line in the file that says:

 BOOL CAgentB::process_message (char *data)

The basic agent calls this method when a message arrives. As you can see, it is
left empty by the Agent Application Wizar d. Add code as the content of this
method, so that the final method looks like this:

 BOOL CAgentB::process_message (char *data)
 {
 CParser *c_parser=new CParser;
 if (c_parser - >parse_message (data)==FALSE)
 {
 delete c_parser;
 debug ("<CAgentB> Unable to parse incoming message");
 return (FALSE);
 }

 char *sender =c_parser - >find_sender ();
 char *content=c_parser - >find_content ();

 if ((sender==NULL) || (content==NULL))
 {
 delete c_parser;
 debug ("<CAgentB> Either sender or content field is NULL, unable to
proceed");
 return (FALSE);
 }

 CParser *r_parser=new CParser;
 if (r_parser - >parse_message (content)==FALSE)
 {
 delete r_parser;
 delete c_parser;
 debug ("<CAgentB> Unable to parse content field");
 return (FALS E);
 }

 char *number=r_parser - >find_token ("number");
 if (number==NULL)
 {
 delete r_parser;
 delete c_parser;
 debug ("<CAgentB> Number not found in content field");
 return (FALSE);
 }

 step=atoi (number); // change the step

 delete r _parser;
 delete c_parser;

�#¤�#¤�#¤�#¤

 return (TRUE); // we processed the message so we have to indicate
this back
}

Let's examine the additions we have just made. The first thing you should notice
is that the method returns a Boolean value. This is important wh en you start to
build more complex agents or when you build agents that other people will build
upon. If your agent code returns a TRUE value to the basic agent, this indicates
that the method processed the message. In other words it tells the developer
who uses your agent class that the message was meant for this class, and not
for the derived agent class.

Next, we enable our agent to parse the message by creating a new parser object
and calling the method:

 c_parser - >parse_message (data)

If this method fails the message received was most likely corrupt. This can
happen for a variety or reasons, but most likely it is caused by a malformed,
“hand-written” message. As you can see, when the agent cannot parse the
message, it cleans up the parser and tells the basic agent that it did not consume
the message. If it was able to parse the message, it needs to find two important
fields: sender and content. The sender field will tell our agent where to send the
reply and the content will give our agent the value of the number.

(Remember that AgentA and AgentB are identical, so the code you see here is
also found in AgentB). Our agent checks to see if the sender string is not NULL
and then proceeds by parsing the content field.

One thing to remember about the A gent Communication Language is that any
field can contain a number of other fields. In this case the content field contains
the number field we created in the timer method. We create a new parser called
r_parser and we call the same parse method, with the content field now as a
parameter:

 r_parser - >parse_message (content)

If this method succeeds, we should be able to retrieve the number field from the
r_parser. Look for a line that says:

 char *number=r_parser - >find_token ("number");

This will retrieve a pointer to a string called number from the parser. If we
constructed our message properly the number string should point to a text
representation of our number. The last task we do is to convert the text
representation into our own variable 'step', usin g one of the basic string C library
functions:

� ¥� ¥� ¥� ¥

 step=atoi (number); // change the step value

We have changed the step variable and now the agent can wait the amount of
seconds this variable indicates.

You should now be able to build AgentB. The only d ifference between the two
agents is that the constructor for AgentB looks slightly different than for AgentA.
Here is the implementation, as you will find it in the actual example:

 CAgentB::CAgentB(char *a_name) : CBasicAgent (a_name)
 {
 counter=0;
 s tep =0;
 }

�#¦�#¦�#¦�#¦

Example Two: Adding an Information Agent

In Example 1 we demonstrated a basic multi -agent system consisting of two
agents, both of the same type. In the RETSINA architecture we define 4 basic
agent types:

1. Task Agents
2. Information Agents
3. Middle Agents
4. Interface Agents

The agents we used in the first example can be considered task agents.
However, since we did not need our agents to perform complicated tasks, we
used the most basic agent form from the AFC.

We will now add a new agent to the scenario that is based on the AFC
Information Agent. The agent we will add can tell us the time of the local system.
In other words, when we ask it, it will tell us the date and time of the system on
which it is running. Since we are running all the agent s on the same system, we
will be receiving the time of the local system. The agent that provides the time
and date is named the DateTimeAgent.

Note : There are four main ways of soliciting information from Information Agents
in the RETSINA agent community , each with their corresponding Information
agent behaviors:

1. Single shot query : The requesting a gent asks for information once; the
service provider implicitly de-commits to providing the service/information again
after the first reply, or upon a tim eout.

2. Active monitor query : The requesting agent asks the information agent to
actively monitor an information source and to provide information, typically on a
periodic basis (e.g. every 60 seconds). The Information Agent acknowledges the
request, informing the requester how to end the service. The service-providing
info agent continues to provide the service until it receives an explicit message
from the requester asking it not to provide the service any more.

3. Passive monitor query: The requesting agent asks that the service -providing
agent notify it of the occurrence of an event or condition, for example, a change
in stock prices; the recognition of an explosion, enemy platoon; or a stock price
change. The subscription and quit process are the s ame as with the active
monitor query.

4. Update query: Upon exporting or archiving data from the agent world, an
information agent issues an update "query" to another information agent, asking
it to update a database record or external archive.

�#§�#§�#§�#§

In this example, we use the active monitor query method.

1. Go to “Program files \RETSINA\Step 2 \Examples” and double click
AgentA to start it. (Note: Be sure to use the versions of AgentA and
AgentB as found in the Step 2 folder).

2. Start AgentB.
3. Start DateTimeAgent

AgentA sends a message to DateTimeAgent to start -up the active monitor query.
The monitor query is set at 20 second intervals, but the programmer can set the
value at any interval, to as low as 1 second. Every 20 seconds, the information
agent informs AgentA of the current time. A -B messages are interrupted by the
time monitor replies. This sets the second counter in AgentA to zero. AgentA and
B communicate as in the above example (message+1).

 #© #© #© #©

Building the Second Example Agents

First we will demonstrate how to create the new Information Agent. Then we will
show you how to integrate this new agent into the scenario.

Start by re-creating AgentA and AgentB, or copy the two projects to a new
directory.

Create a new workspace with the RETSINA Application Wizard, naming the
project DateTimeAgent. This should produce a new workspace with the files:

c_DateTimeAgent.cpp and c_DateTimeAgent.h

As in the first example, look at the header file that holds the new agent’s
(Information Agent) declaration. Open th e file called c_DateTimeAgent.h. This file
will appear to be very similar to that of the other agents you have built so far. To
make the agent an Information Agent, you need to change the base class to look
like this:

class CDateTimeAgent : public CinfoAg entBase

The new agent will have all of the normal event methods as defined by the basic
agent, and will have the additional capabilities of the Information Agent. When we
are dealing with specific agent types we do not need most of these methods. In
fact, in our example we can remove all of the methods and replace them with one
single event method. The Information Agent as defined by the RETSINA
architecture uses something termed an “external query function”. The RETSINA
planner traditionally calls this fu nction. In certain versions of our agents this might
still be the case. In our example Information Agent, the base class will call the
external query function.

Add an entry to your agent in the protected area and call it:

char *external_queryfunction (CL List *);

We need one more addition to complete the agent; add a private variable called
b_message of type string. In your code this should look something like:

private:
 char *b_message;

This string will hold the result of the query as sent in the conte nt field to the
requesting agent.

Now let's check to see whether the new agent looks like an Information Agent. If
you've made all the changes and added all the code stated above, your class
should resemble the following:

 #¨ #¨ #¨ #¨

 class CDateTimeAgent : public CInfoAgentBase {
 public:

 CDateTimeAgent(char *);
 ~CDateTimeAgent(void);

 protected:

 char *external_queryfunction (CLList *);

 private:

 char *b_message;
 };

This is all that is needed to setup the class of Information Agent.

Open up the f ile c_DateTimeAgent.cpp.

Since we are dealing with a more specialized agent here, we do not need a lot of
the overhead we used in the other agents. In fact we only need to add code to
three methods. First of all we need to initialize the string we will us e to
communicate the result of a query. Find the constructor of the agent and add the
following:

 b_message=NULL;

This will make sure the agent does not delete memory that it doesn’t use.

Next find the destructor of the agent and paste the next lines i nto the content:

 if (b_message!=NULL)
 delete [] b_message;

This code cleans up the memory that was used to create the replies.

All that is left to do now is to fill in the content of the external query function. You
will manually have to add the meth od to your file, since the Agent Application
Wizard did not add this method for us. When you are finished, your file should
have the following method:

 #� #� #� #�

char *CDateTimeAgent::external_queryfunction (CLList *request)
 {
 return (NULL);

}

Note that this met hod returns a string. This is how the agent provides the result
of the query. In the example above the query will always fail, because a NULL is
returned. Change the content of the method to reflect the following code:

debug ("<CDateTimeAgent> processing external query function ...");

 CParameter *temp=(CParameter *) request - >get_first_element ();

 while (temp!=NULL)
 {
 if (strcmp (temp - >get_name (),"primary - keys")==0)
 {
 debug ("<CDateTimeAgent> parameters found processing request ...");

 char *content=(char *) temp - >get_content ();
 if (content!=NULL)
 {
 if (strcmp (content,"time")==0)
 {
 CAFCTime *a_time=new CAFCTime;
 char *string=a_time - >create_string ();

 if (b_message!=NULL) // delete th e previous string
 delete [] b_message;

 b_message=new char [strlen ("tell :time (%s)")+1+strlen
(string)+1];
 sprintf (b_message,"tell :time (%s)",string);

 delete a_time;
 delete [] string;

 return (b_messa ge);
 }
 else
 debug ("<CDateTimeAgent> Content of parameter is not of a type
this information agent can process");
 }
 else
 debug ("<CDateTimeAgent> Content field for parameter is NULL");
 }

 if (temp!=NULL)
 temp=(C Parameter *) temp - >get_next ();
 }

 debug ("<CDateTimeAgent> parameters not found aborting request ...");

 # # # #

 return (NULL);
 }

Let's examine what this code does. First of all, we set up a loop that will go
through all of the parameters in the request l ist. In the example above this is
done with:

 CParameter *temp=(CParameter *) request - >get_first_element ();

A parameter is a class that has a name and a content field. The content is always
a string. In every query that an Information Agent receives the re will be a
parameter called "primary-keys". This is borrowed from database technologies,
and you will see that most of the queries resemble database queries. In our
example the agent code checks to see whether the current parameter that was
obtained from the list is the primary key. It accomplishes this by using the
following piece of code:

 if (strcmp (temp - >get_name (),"primary - keys")==0)
 {

 }

Once the Information Agent finds the primary key, it will need to examine its
contents, which will tell it if the query is really intended for it.

 char *content=(char *) temp - >get_content ();

We need to obtain a pointer to the content field in the parameter object.
Parameters are designed to hold a number of different data types. In our case we
use strings exclusively, so we will cast the content to a string. As the content in
this case is "time," the DateTimeAgent will process the request and send back
the current time. To enable this, we create an object of type CAFCTime:

 CAFCTime *a_time=new CAFCTime;
 c har *string=a_time - >create_string ();

 if (b_message!=NULL) // delete the previous string
 delete [] b_message;

 b_message=new char [strlen ("tell :time (%s)")+1+strlen (string)+1];
 sprintf (b_message,"tell :time (%s)",string);

 delete a_time;
 delete [] string;

 return (b_message);

Take a look at the code fragment above. It contains the heart of the external
query function. In it, a new time object is created and asked to generate a string
representation of itself by calling the 'create_string ' method. If the external query

 #¡ #¡ #¡ #¡

function was called previously, the previous query result is deleted. The next two
lines generate the reply in the form of a KQML string. Once this is done, all that
the DateTimeAgent needs to do is to cleanup its temporary variables and return
the new query result.

We have now built our first Information Agent. However, in order to make use of
it, we need to integrate it into our agent scenario. In order to do this we modify
some code in AgentA. Open up the file c_AgentA.c pp and find the method called:

 void CAgentA::process_init (void)

If you do not have this method then add it to your source file and header file as
either a protected method or a public method.

 char *reply=Communicator - >comm_sendmessage ("tell",
 "DateTimeAgent",
 "default - language",
 "default - ontology",
 NULL,
 NULL,
 NULL,
 "objective :name
\ "getInformation \ " :parameters (listof (pval \ "primary - keys \ " \ "time \ ")
(pval \ "trigger \ " \ "any - change \ ") (pva l \ "period \ " \ "10000 \ "))",
 NULL);
 if (reply!=NULL)
 debug (reply);
 else
 debug ("Message sent to Agent");

What this code does is to send a request to the Information Agent and ask it to
start a monitor query at 10-second intervals. Since this code is activated in the
process_init method it will be run once when the agent starts.

Now that we have setup the communication between AgentA and the Information
Agent we need to process what the Information Agent sends AgentA.

In this example, we will keep things simple and will only detect that the
Information Agent sends a message to AgentA.

Navigate to the process_message code and look for the line that reads:

 char *content =c_parser - >find_content ();

Below this line add:

 char *ontology=c_parser - >find_ontology ();

This will retrieve an ontology field from your message. The ontology indicates the
subject of conversation. We will use it here to see if the message is coming from

 ¢ ¢ ¢ ¢

AgentB, or from the DateTi meAgent. The code below is the only additional code
we add to our agent to have the DateTimeAgent influence the behavior of the
agent system:

 if (strcmp (ontology,"info - agent")==0) // we just received a message
from the DateTimeAgent
 {
 debug ("<CAgent A> Received a message from the DateTimeAgent,
resetting sequence ...");
 step=0;
 delete c_parser;
 return (TRUE);
 }

What we have done here is to reset the step counter (the number of seconds to
wait) to zero when a message from the DateTimeAgent arri ves. In other words,
every 10 seconds the DateTimeAgent will reset the communications sequence
between AgentA and AgentB. Below is the full code for the process_message
method in AgentA:

 BOOL CAgentA::process_message (char *data)
 {
 CParser *c_parser=n ew CParser;
 if (c_parser - >parse_message (data)==FALSE)
 {
 delete c_parser;
 debug ("<CAgentA> Unable to parse incoming message");
 return (FALSE);
 }

 char *sender =c_parser - >find_sender ();
 char *content =c_parser - >find_content ();
 char *ontology=c_parser - >find_ontology ();

 if ((sender==NULL) || (content==NULL) || (ontology==NULL))
 {
 delete c_parser;
 debug ("<CAgentA> Either sender,content or ontology field is NULL,
unable to proceed");
 return (FALSE);
 }

 if (strcmp (on tology,"info - agent")==0) // we just received a message
from the DateTimeAgent
 {
 debug ("<CAgentA> Received a message from the DateTimeAgent,
resetting sequence ...");
 step=0;
 delete c_parser;
 return (TRUE);
 }

 CParser *r_parser=new CParse r;
 if (r_parser - >parse_message (content)==FALSE)

 #¤ #¤ #¤ #¤

 {
 delete r_parser;
 delete c_parser;
 debug ("<CAgentA> Unable to parse content field");
 return (FALSE);
 }

 char *number=r_parser - >find_token ("number");
 if (number==NULL)
 {
 delete r _parser;
 delete c_parser;
 debug ("<CAgentA> Number not found in content field");
 return (FALSE);
 }

 step=atoi (number); // change the step

 delete r_parser;
 delete c_parser;

 return (TRUE); // we processed the message so we have to ind icate
this back
 }

 ¥ ¥ ¥ ¥

Example Three: Using the Matchmaker

So far, we have introduced basic task agents (A and B), and an information
agent (DateTimeAgent). We have tested and built these agents, and observed
their communications with each other. We will now introduce one of the most
important components of the RETSINA MAS, the Matchmaker. The Matchmaker
is an agent that helps make connections between agents that request services
and agents that provide services. The Matchmaker serves as a "yellow pages" of
agent capabilities, matching service providers with service requestors based on
agent capability descriptions. The Matchmaker system allows agents to find each
other by providing a mechanism for registering each agent's capabilities. An
agent's registration information is stored as an "advertisement," which provides a
short description of the agent, a sample query, input and output parameter
declarations, and other constraints.

In this example, AgentA does not know the name and location of the
DateTimeAgent, and will have to find it, using the Matchmaker. The Matchmaker
will find the DateTimeAgent in response to a request from AgentA for an agent
with date/time capabilities. It deliver the requested agent capability in a reply to
AgentA.

This example will build on the agent scenario from Step 2. In order to
demonstrate the functionality of the Matchmaker, we will have to start a different
version of the task agent, one that does not know the DateTimeAgent (i.e., does
not have hard-coded information on the Dat eTimeAgent in its cache). Be sure to
use the AgentA and AgentB versions as found in Step 3.

1. Start the ANS server.
2. Start the DemoDisplay.
3. Start the Matchmaker: Program files \RETSINA\tools\java GinMatchmaker
4. Start the DateTimeAgent. The DateTimeAgent will ad vertise its

capabilities with the Matchmaker. (This passing of this advertisement will
not be discernable on the DemoDisplay).

5. Start AgentA (from the step 3 directory). Upon initialization, AgentA will
query the Matchmaker for an agent that can provide the date and/or time,
as shown below on the DemoDisplay:

 #¦ #¦ #¦ #¦

It will receive a reply from the Matchmaker, which will return information about
the DateTimeAgent. AgentA will then query the DateTimeAgent, as shown
below:

This query starts the monitor query a s in Step 2.

6. Start AgentB (from the step 3 directory). AgentA and AgentB will
communicate as in earlier steps, interrupted by the DateTimeAgent, which
resets sequence as in step 2.

 #§ #§ #§ #§

Building the Third Example Agents

Copy the projects and files from step 2 into a new location. We will use these
projects and files to build upon and extend your agent's capabilities, so that it can
use a middle agent.

We need only make changes in order to extend our basic agent’s capabilities to
include the capability of usin g of a middle agent.

Open the file c_AgentA.cpp and find the process_init method. In step 2 the agent
used this method to initialize a monitor query with an information agent. In this
step, the agent will request that the Matchmaker deliver information abo ut any
agents that can provide the time/date.

Clean out the content of the process_init method and replace it with the following
code:

 CMatchmakerClient *mmaker=get_mm_module ();

 if (mmaker!=NULL)
 {
 CFileBuffer *file=new CFileBuffer;
 char *buffer =file - >load_a_file ("target - schema.txt");
 if (buffer!=NULL)
 {
 char *agent_monitor=new char [strlen (buffer)+1];
 strcpy (agent_monitor,buffer);

 if (mmaker!=NULL)
 mmaker - >mm_monitorAdvertisements (agent_monitor);

 delete [] agent_monitor ;
 }
 else
 debug ("<CAgentA> Unable to load the target information agent
advertisement template needed for advertisement monitoring!");

 delete file;
 }

With this code fragment, we load an advertisement into a file object. Then, we
assign the file object to the Matchmaker client. The contents of the file that was
loaded is a description of the kind of agent capabilities our agent seeks. You can
open the example file in a text editor to examine the contents and format of the
advertisement. It is a s mall advertisement that tells the Matchmaker to look for
similar capability advertisements from other agents. The actual request in the
above code consists of two lines:

 if (mmaker!=NULL)
 mmaker - >mm_monitorAdvertisements (agent_monitor);

¡#©¡#©¡#©¡#©

These lines direct a task agent client module dedicated to the Matchmaker to tell
the Matchmaker to look for the advertisement given as a file object. The
Matchmaker will tell AgentA whether or not any agents with such capabilities are
available.

In the test example, the DateTimeAgent advertised with the Matchmaker. Putting
a file named adv -schema.txt in the directory from which the information agent
starts creates this communication. The contents of this file is a capability
advertisement like the one used in the code fragment above, which told the
Matchmaker what capabilities our task agent is looking for. The content of this
advertisement is written in an advertisement language called GIN.

Now that Matchmaker is aware that an agent is available conforming to the
request sent by AgentA, it will reply to AgentA with the name and advertisement
of the DateTimeAgent. In order for AgentA to process this reply we add the
following code at the very top of the process_message method:

 CMatchmakerClient *mmaker=get_mm_module ();

 if (mmaker!=NULL)
 {
 if (mmaker - >get_updated ()==TRUE) // we received an answer from the
Matchmaker
 {
 debug ("<CAgentA> Processing change in Matchmaker module");

 if (mmaker - >get_last_operation ()==__MM_OP_NEWAD__)
 {
 CServiceInfo *service=mmaker - >get_last_service ();
 if (service!=NULL)
 {
 // next see if the advertisement is a device ontology
 CGINAdvertisement *ad=(CGINAdvertisement *)
service - >get_first_element ();
 if (ad!=NULL)
 {
 char *reply=Communicator - >comm_sendmessage ("tell",
 ad - >get_agentname (),
 "default - language",
 "default - ontology",
 NULL,
 NULL,
 NULL,
 "objective :name \ "getInformation \ "
:parameters (listof (pval \ "primary - keys \ " \ "time \ ") (pval \ "trigger \ "
\ "any - change \ ") (pval \ " period \ " \ "20000 \ "))",
 NULL);
 if (reply!=NULL)
 debug (reply);
 else
 debug ("Message sent to Agent");
 }

¡#¨¡#¨¡#¨¡#¨

 }
 else
 debug ("<CAgentA> Unable to obtain new agent info");

 // done handling message from
Matchmaker ---
 }

 mmaker - >set_updated (FALSE); // tell the Matchmaker we noticed the
change
 return (TRUE);
 }
 }

As you can see from the code above , we first obtain a pointer to the Matchmaker
client module.

CMatchmakerClient *mmaker=get_mm_module ();

This module will be able to tell us whether the Matchmaker has sent a reply to
the task agent. The following line --

 if (mmaker - >get_updated ()==TRU E)

-- indicates that a message came in and that indeed something changed within
the Matchmaker. Now AgentA need only learn whether or not the Matchmaker
has the name of an Information Agent that matches the capability requested.

First, we check to see if the client has received a new advertisement, or in other
words, news of a new agent:

 if (mmaker - >get_last_operation ()==__MM_OP_NEWAD__)

(Since we only have one Information Agent running, we know that this must
be a match for AgentA’s request. We obtai n a pointer to the service description
the Matchmaker client can provide us):

 CServiceInfo *service=mmaker - >get_last_service ();

In other words, AgentA tells the client, “give a pointer to the last service you
saw.” Upon examination, AgentA detects that the service description object
contains the advertisement and the name of the agent it seeks. Below is the code
that will extract the advertisement from the service description:

 CGINAdvertisement *ad=(CGINAdvertisement *) service - >get_first_element
();

A service might have more than one advertisement, but since we are only
looking for one capability we use the first advertisement in the list.

¡#�¡#�¡#�¡#�

Below, we show the difference between the code used by AgentA in step 2, and
that used by AgentA in step 3. The difference is that we can now obtain the name
of the DateTimeAgent without supplying it in our code. The string

 "DateTimeAgent"
from step 2 has been replaced with

 ad- >get_agentname ()
in step 3.

This example should serve to get you started with basi c Matchmaker interaction.

¡# ¡# ¡# ¡#

Example Four: Using Discovery

All of our demonstrations thus far have assumed a stable environment in which
our agents live. In this example, we demonstrate a means by which agents can
continue to funct ion, even when their environment is changing, and when key
components of the system come and go. Before testing this example, however,
we discuss the features employed to make this possible, and the reasons for
their development. You can skip to the instru ctions for testing, if you want to see
these features in action before, or in lieu of, reading about them.

As agent-based applications move beyond simple test -case scenarios, the truly
dynamic and unreliable nature of the agent world becomes apparent. Peer
agents can act erratically, middle agents and infrastructure services may become
temporarily unavailable, and various aspects of the environment that the
programmer assumed would be constant, turn out to be unpredictable. While the
robustness of the agent code handles some of these difficulties, the infrastructure
of the agent community should help with agent adaptation to ad -hoc and dynamic
environments.

As we have shown, the RETSINA MAS utilizes middle agents (especially ANS
server and Matchmaker) to fac ilitate agent interactions. In addition to providing
this middle agent infrastructure, we have provided agents with an enhanced
means of locating and gaining access to them. A key technology that allows
agents to accommodate these ad -hoc environments is ca lled “Discovery. ”

Discovery is a means by which knowledge of agents and infrastructure entities
can be propagated in networks. Using Discovery, agents and servers can
automatically maintain dynamically updated lists of available agents and servers.
As agents, ANS servers and Matchmakers come and go from the network, these
internal lists are expanded and contracted automatically. Agents can be initiated
before an ANS server is online, and instead of failing, they will register with an
ANS server when one be comes available and is discovered. ANS servers can be
updated with knowledge about agents from other servers, because these servers
were able to discover their peer ANS servers to provide redundancy.

RETSINA agent services utilize the Simple Service Discov ery Protocol (SSDP)
that was developed as part of the Universal Plug -n-Play (UPnP) consortium’s
efforts to support small/home and ad -hoc networking. This protocol is utilized at
the core services levels within the agent software libraries, to ensure that
required infrastructure services and middle -agent systems are known, and their
location information is available. While systems and agents come and go from
the network, the information available to the agent is kept up -to-date and current.
If additional servers become available, their presence is made known throughout
the community. Infrastructure services also use the Discovery protocols to
coordinate interactions between each other, to ensure that agent information is
appropriately replicated, load balanc ed, and/or accessible.

We will briefly describe the SSDP protocol, and then proceed to discuss the
specific ways in which it is utilized by various components of the RETSINA MAS

¡#¡¡#¡¡#¡¡#¡

in order to manage connectivity to infrastructure services, specifically with the
Agent Name Services (ANS) process. Then, the specific integration details of
the SSDP Discovery protocol within the Agent Foundation Classes (AFC) are
described. Finally, we demonstrate some of these features in action.

Simple Service Discovery Proto col

The Simple Service Discovery Protocol (SSDP) utilizes multicast transmissions
to allow systems to communicate with other nearby systems, without prior
knowledge of their existence or their specific locations (other than the standard
multicast group address and port as specified by the SSDP protocol.) SSDP
services (systems that provide some added utility when they are accessed) will
utilize these multicast, managed broadcast messages to tell other systems that
they are 1) alive and available, or, 2) l eaving and no longer available. SSDP
clients (systems that are seeking to find services that advertise themselves via
SSDP) will utilize multicast messages to search for providers that offer a specific
(or all) service(s). SSDP service providers that recei ve the multicast search-
request will send a unicast message (one -way, non-multicast) to the requesting
client, using the return address that the client provided in its search.

Unlike other Discovery protocols (such as SLP, Jini, etc.) the SSDP architecture
is extremely lightweight. Responses to search requests are URL -style strings.
When integrated with UPnP, this SSDP response is often the location of an XML
document that further describes the service being sought. In the RETSINA MAS,
the response contains the host address, and a port number where a TCP/IP
socket connection to the service provider can be initiated. Based on the service
type requested in the client’s search request message, it is assumed that all
systems that answer the request know how to interact with the prospective client.

A problem with multicast transmissions is that many routers and firewalls limit or
prohibit their transmission. Given this limitation, the Discovery process should be
considered as providing the ability to locate other “near-by” systems (those that
are typically on the same, or adjacent network segments). Additionally, the
RETSINA implementation of SSDP restricts SSDP packets from traveling any
more than three hops along the network. This restriction precludes problems that
may arise from systems divulging internal numbering or architecture information
to malicious packet-voyeurs on the public Internet.

RETSINA Agent Infrastructure Discovery

Agent Name Service 6

6 We consider the ANS server and ANS client as part of an Agent Name Service (ANS) package. “ANS”,
when used alone, refers to the Agent Name Service as a whole, whereas we use ANS server or ANS client
to refer to these components of ANS.

¡ ¢¡ ¢¡ ¢¡ ¢

The Agent Name Service was the first RETSINA infrastruc ture component to
support Discovery.

As we have mentioned above, the ANS servers provide a simple white pages
service for the agent community. Agent names are resolved into physical IP host
addresses, and port numbers. The ANS server maintains a registry of these
name-to-address records. ANS clients will contact an ANS server to “register”
their own information, lookup other agent locations, and eventually remove their
entry in the ANS registry (with an “unregister” command). They can also request
the server to provide a “list” of registered agent names that match some simple
string-based pattern. Agents can choose to communicate with other specific
agents on the network in many ways, but they will ultimately request that their
agent communications modules create a network link to the remote agent. In
making this request, the initiating agent provides the name of the remote agent.
The communications services of the agent architecture perform the necessary
“lookup” function with the available ANS system(s). (Agent programmers
typically aren’t concerned with the specifics of the ANS client, just that it works).

The Discovery process, as described in the previous section, is composed of
clients and service providers, and their interactions. The Agent Name Servi ce
implements various combinations of processes between the Discovery service -
providers and Discovery clients. Agents and infrastructure servers each
implement both the client and the server aspects of Discovery. Needless to say,
the ANS server will act a s a discover-able service. But it also acts as a
Discovery-client of this same service. This latter feature allows ANS servers to
discover each other in order to provide various levels of peer information sharing.
And finally, the ANS client (that is part of every Agent) acts as a Discovery client,
so that it also can discover the available ANS servers.

Agent Discovery

The ANS client also implements both service and client Discovery interfaces to
locate other agents. This was done to facilitate continued operation of agent
applications when no ANS server is available. To integrate this capability, we
added two features to the ANS client. First, the client maintains its own cache of
previous agent registrations (learned through lookup commands). Cache ent ries
have a limited lifetime and will eventually expire. Secondly, the cache is also
populated by agent Discovery messages. That is, the current ANS client software
will act like an SSDP-enabled service provider and announce its presence on the
network as a “retsina:Agent” type of service. Other ANS clients who see the
“Alive” SSDP messages will either add this client to their cache, or, if it already
exists in their cache, extend the registration lease for that agent. To reduce traffic
and loading, agents consult their cache before performing “lookup” operations
across the network. This cache can also be used for “list” operations (to retrieve
a list of known agent names), if (and only if) 1) no viable ANS server is present
on the network, and 2) the client has not disabled the Discovery process; and 3)

¡#¤¡#¤¡#¤¡#¤

the user has left the default setting to “require an ANS” set to “false,” indicating
that an ANS server need not be present.

The cache and its integration with the Discovery process helps to make agents
less susceptible to errors due to periodic outages of ANS servers, network links,
or from other routing problems. It also allows agent applications to begin
functioning without the existence of an ANS server, in case the startup procedure
sequence (start ANS server, start Matchmaker, start other middle agents, then
start agent applications) doesn’t progress as anticipated. Once an ANS server
comes online, the auto -register feature of agent’s ANS client will automatically
send the agent’s registration informat ion to the server, and the local server will
then become the registration “authority.”

In the Agent Foundation Classes, a number of Discovery -based facilities allow
agents to find each other without prior existence of desired lookup services on
the network. Each agent is fitted with an ANS client and a Discovery client that
act as part of the AFC’s lookup modules. These two lookup modules are used by
the Communicator to fill and maintain a common location lookup table. This table
reflects the agent’s view o f the network. When an agent wishes to send a
message to another agent, it will give the message to the Communicator and
indicate the target agent. The Communicator in turn will either directly send the
message, if the target’s location information is avai lable, or temporarily store the
message, and send out a request for the target’s location information. This
location request is handed to all available AFC location modules. When an
answer is obtained and the location lookup table has been updated, the ori ginal
message will be sent. Since all available lookup modules work in parallel, and
since they all use the same data -structure, the dependence on a specific lookup
client diminishes. As long as there is at least one lookup client active, the location
lookup table will be refreshed.

Disabling Discovery Modules

Discovery is an inherent component of the AFC. In some cases, however, agent
developers will want to disable Discovery modules. For example, a group may be
running sensitive experiments or demonstrations with a group of agents, and will not
want the ANS Server and/or the agents to be discoverable to outsiders. You can
configure the usage of both Discovery and ANS lookup in agents. You can also
disable Discovery in ANS Servers.

By default, both Discovery lookup and ANS lookup are enabled in the AFC agents.
But, you can override one or both of them by calling the method

set_lookup_config

and the proper parameters. The set_lookup_config overrides the defaults and
allows the developer to set the specific parameters desired for the functions. If you
want to enable Discovery lookup only, you would call the method and set the
parameter:

¡ ¥¡ ¥¡ ¥¡ ¥

 set_lookup_config (LOOKUP_DISCOVERY);

If you want to enable ANS lookup only, you would call the method as follows:

set_lo okup_config (LOOKUP_ANS);

If you want to enable both lookups, you would call the method as follows:

set_lookup_config (LOOKUP_DISCOVERY | LOOKUP_ANS);

If you want your agent to be completely standalone, you can call the method as
follows:

set_lookup_con fig (LOOKUP_NONE);

The settings for agent ANS or Discovery lookup parameters also control the
enabling/disabling of an agent’s discoverability by other agents. Thus, an agent that
has disabled Discovery lookup is also non-discoverable by other agents.

You can change the usage of lookup modules while the agent is running. Every
lookup module is based on the CLookupModule class. This class has the following
access methods:

 void enable (BOOL);
 BOOL is_enabled (void);

Use this method to enable or disable one of the lookup modules at runtime. In order
for you to call the methods on the lookup modules, you will need to obtain a pointer to
one of these lookup facilities. The following methods are available in the
Communicator to do that:

CANSClient *retrieve_ans_object (void);
CDiscovery *retrieve_dsc_object (void);

Remember that both the CANSClient and the CDiscovery classes are based
on the CLookupModule class.

To control the settings of the Discovery parameters of ANS Servers, we have
provided an alternative menu item in Start|Programs|RETSINA|Tools. The
two options are:

- Java ANS 2.7

- Java ANS 2.7 (no discovery).

The prior is the default setting. The latter will disenable Discovery of your ANS.

¡#¦¡#¦¡#¦¡#¦

Managing a RETSINA ANS Server: ANS Server GUI

Beginning with version 2.8, the ANS GUI tool is available as an alternative to the
text-mode command console for ANS servers. It can also be executed as a
standalone management tool; that is, it can be started and used without starting
a new ANS. The GUI tool allows you to examine and manage any reachable
ANS server. Even when executing as part of a specific ANS server, you can still
attach to and manage other ANS servers.

The Screen

The GUI Screen has s ix interlinked
panels as depicted in the table to the
right. When the GUI is connected to a
server, that server information will be
displayed in the “Current Server
Information” area in the upper left hand
corner of the GUI. The current
registrations (or a subset of them) can be displayed when an agent name, when
known, is typed in the field to the right of the "List" button. Wildcard specifications
can be used (e.g. brent* would list all agent whose name contains "brent") when
full agent names are unknow n, or when looking up an agent type (e.g.

Current Server
Information

New ANS
Server

Agent
Information

Known
Servers

Server Console
Command Line

Misc. Button
Interface

¡#§¡#§¡#§¡#§

"matchmaker"), for example. After typing the lookup specification desired,
clicking on the "List" button will list in the "Registered Agent Names" field all
agent names conforming to the specification. When an agen t name in this field is
clicked on once, the Agent Name field below displays that agent's name.

One way of connecting to a new ANS is by filling in the hostname and port fields
of the “New ANS Server” panel in the upper right part of the GUI, and clicki ng the
“Connect” button. Requesting to connect to a server will cleanly break any
already existing, open session with another ANS server, before initiating the new
connection.

Discovery and Lookup with the ANS GUI

Since an ANS server may know about ot her ANS servers, you can, once
connected to an ANS server, browse the lists of Discovered/Peer servers and
Hierarchy servers that any ANS knows about, by clicking the respective “Update
List” button.

The Discovery/Peer Server List and the Hierarchy Part ner List are both lists of
ANS servers maintained by an ANS server. Both lists are preloaded from static
files on server startup. The difference between them is that the Discovery/Peer
Servers List is dynamically updated by the discovery mechanism after st artup.
The Hierarchy Partner List is the permanent list maintained in the cache of the
ANS server for partners with which it regularly shares information. Entries in the
Discovery/Peer List are typically dynamic, and servers are removed if they
cannot be reached. Both are described more fully in the ANS v.8 document
entitled, "javaANS.PDF." (included on CD distribution and on -line at:
http://www.softagents.ri.cmu.edu/ans/ANSv2.9.PDF)

 Once an entry appears in one of these fields, clicking on it once will populate the
New ANS Server fields at the top of the panel. Double clicking will proceed to
connect to the new server; this is another way to connect to an ANS. Buttons to
manage (add and de lete) entries from these lists are provided, as well as to
request that the server send out a new discovery message ("ReDiscover").

The Agent Information panel allows you to lookup, register, and unregister agent
information with the attached ANS. The n ormal mode of operation of the ANS
server is to share registration information updates with peer servers, and to
propagate lookups to peers and hierarchy servers, if not resolvable locally. The
“No Push/Pull” check box will restrict the request so that it is directed to the
attached ANS server only.

As we said above, an agent listed in the "Registered Agent Names" list box,
when clicked on, will have its name displayed in the "Agent Information" field.
Double clicking on agents in the "Registered Agent Names" list will perform a
lookup operation for the selected agent name, which will fill in the rest of the

¢ ©¢ ©¢ ©¢ ©

boxes in the Agent Information panel (Hostname, Port/Socket #, Parameters).
Parameters include such agent information as the name; ttl= (Time to Li ve--the
number of seconds remaining in this registration's lease --a relative time);
expires= (the time stamp when the server will discard this registration or no
longer recognize it as valid -- in milliseconds of actual server time since a certain
starting point); type= (for agent type, such as: retsina:Matchmaker); key= (public
key of agent); cert= (PKI X.509 certificate for agent). When a lookup command
cannot be resolved locally, the entries of ANS servers in the Discovery/Peer
Servers List will be quer ied first, and then each entry in the Hierarchy Partner list
will be queried.

Messaging

As you manipulate the GUI, commands are sent to the ANS server, as if you
were typing them in the server’s text -mode console. The “Server Console
Command Line” panel will show the actual commands that are being submitted
to the ANS server, and the text box below it will show the actual server response
before it is parsed into appropriate GUI fields. You can enter any console
command manually and hit enter, and see t he results from the server. In this
way, other features (such as specifying a password) can be accommodated.

Help Buttons, Terminating GUI and ANS

Version 2.8 of the ANS server will return status and server startup help screens
to any attached user tha t requests them. Buttons to request this useful
information, as well as the current vocabulary of the console command lines, are
provided in the in the lower right hand panel. Updated versions of this section of
the manual are accessed by clicking on the “Graphical Manager HELP” button.
Buttons to break connections with the attached ANS server ("Disconnect
Server"), and to request that the ANS server shutdown and cease operations
("Shutdown Server"), are provided. The “Exit” button will terminate the GUI
(without terminating the ANS). When a new "gui" command is entered into the
ANS server console, the GUI will be reactivated if it has been closed.

Server Console vs. Stand -Alone Modes

The differences between the two modes -- attached as part of a specif ic ANS
server versus running as a stand -alone management tool -- are apparent when
moving towards a “disconnected” state. In the disconnected state, the tool is an
interface allowing you to access a number of ANS servers. In the connected
state, the tool represents the ANS server attached, and its registrations and
messaging. Clicking the “Disconnect Server” button in the lower right panel, a
server-initiated GUI will be reconnected (automatically) to the “home” server for
this ANS GUI manager (in other wo rds, the server from which the GUI was
initiated.) When, on the other hand, the ANS GUI manager is started as a stand -
alone management tool, a separate “discovery” process is initiated to populate

¢ ¨¢ ¨¢ ¨¢ ¨

the “Discovery/Peer Servers” box, in order to provide the user with connection
alternatives from the nearby network segments. Thus, when you “Disconnect”
from a specific server, you still can know what other servers are available locally.
When connected to a server, the “Update List” button will indicate what o ther
servers the attached server is aware of. Either way, the user always has the
option to manually fill in the “New Server” hostname and port fields to manually
initiate a server connection.

¢ �¢ �¢ �¢ �

Testing The Fourth Example Agents: Using Discovery

Thus far, all of our examples have depended upon the agents’ foreknowledge of
their environments—of infrastructure components and other agents. Upon
startup, the agents sought and found information regarding other agents from the
local ANS server. However, there a re cases in which agents will have to operate
without an ANS server. An agent might start up in an environment where an
ANS is not running. Or, the local ANS server might have failed before the startup.

In this example, we demonstrate Discovery; agents d iscover the DemoDisplay,
and each other, without the help of an ANS server. The use of an ANS location
module is disabled within the agents. Their ability to find each other and is made
possible by the Discovery process.

As we have mentioned, each agent i n AFC is fitted with a SSDP Discovery
module. This module lives side by side with the ANS module in the basic agent.
The Discovery and ANS modules use a common table to store location
information. When there is no ANS module, only the Discovery module will fill this
table. The Discovery client will populate the table with the replies to the look -ups
that it sent out to the ANS Service environment (received and replied to by agent
service modules). The result is that your agent will function quite happily wi thout
any lookup services on the local network.

This example is identical to the previous example except that we added a line of
code to each agent's 'Create' method, which disables the use of an ANS client
module. Use the agents from Step 3.

1. Compile the agents and start the sequence as before.

2. Start the ANS server. (The ANS server is needed for the DemoDisplay to
visualize the agents. However our agents will no longer use the ANS. No
messages will pass to and from the ANS).

3. In both AgentA a nd AgentB locate the 'Create' method. Change the content
(which should be empty) to:

void CAgentA::process_create (void)
{
 if (Communicator!=NULL)
 Communicator - >comm_disable_ans ();
}

5. Do this for DateTimeAgent. You will notice that the DateTimeAgen t does not
have a ‘Create' method defined yet. Add this to your agent using the information
we've provided before. If you get stuck, take a look at the pre -built examples on
the CDROM.

¢ ¢ ¢ ¢

Example Five: Integrating Third -Party Reasoning
Modules

The AFC provides a complete set of libraries that allow an agent to connect to
MAS infrastructure components and communicate with other agents. Through
the AFC the interaction with the infrastructure and other agents in the agent
world is highly efficient and fully au tomated. However it is up to the agent to
make decisions on whether and when to initiate a conversation with other agents.
Furthermore, the agent needs to make decisions regarding what must be
communicated to other agents. These tasks lie in the realms of the problem
solving modules of the agent. The AFC does not commit to using a specific
problem-solving engine. Our experience with AI applications has taught us that
there is no single best solution that fits all situations. The selection of the
problem-solving algorithm most applicable to the situation depends on the
problems the agent must solve and on the tasks that it must perform. Ultimately,
the task of the agent programmer is to select (or implement) a problem -solving
engine that suits the domain wit hin which the agent operates, and to use it along
with knowledge that the agent possesses, in order to be effective in its
environment.

The AFC provides facilities that allow the introduction of a problem -solving
engine in the agent code, in order to cont rol the actions of the agent in an
intelligent way. The task of the programmer is twofold:

1. To link the agent code to a problem solving engine by deriving the problem

solver module from the class CProblemSolver. This class provides some
hooks that give easy access to the internals of the agent such as the BeliefDB
and the Communicator.

2. To implement the actions that will allow the agent to operate in its

environment. The class CPSActionCodes already provides some basic agent
oriented actions. More actions can be added by deriving a new class from
CPSActionCodes.

The distinction between the problem -solver class and actions class adds
flexibility to the agent architecture, because it allows the implementation of
agents with exactly the same action code, but different problem-solving engines.
Thus these agents can act differently because they think differently, and not
because they have different capabilities. On the other hand, the AFC allows the
implementation of agents that employ the same problem -solving engine but have
different actions. These agents think in the same way, but act differently because
of the way they perform their tasks.

The CProblemSolver Class

¢ ¡¢ ¡¢ ¡¢ ¡

The class CProblemSolver provides the basic methods that have to be
overloaded to link problem solvers to AFC-based agents. This is an abstract
class that cannot be instantiated by itself. To make use of the functionality of this
class the problem-solving engine used must be in a class derived from
CProblemSolver. With the usual constructor and de structor methods that should
be implemented to provide access to the problem -solving engine,
CProblemSolver provides methods that allow access to the main facilities of the
AFC.

Specifically, the class provides the following methods:

1. BOOL GenerateSolut ion()

This is a pure virtual method that must be defined in the child class and is used
by the agent to activate the problem -solver. In a typical agent this method would
either contain the core problem -solving algorithm or make calls to it seamlessly.

2. BOOL ExecuteActions()

This is also a pure virtual method that must be defined in the child class and is
used by the agent to execute the actions selected by the problem solver. This
method basically implements an execution engine that transforms the probl em-
solver representation of the actions to the actual actions that can change the
agent’s environment when executed. Additionally, it controls the execution of the
actions so as to provide feedback to the problem -solver, based on the success or
failure of the actions.

The AFC is not committed to any particular relation between the problem solving
and the execution. This is left to the programmer who can choose to follow the
traditional sequence of first generating solutions followed by their execution, or a
more sophisticated interleaving of problem solving and execution.

3. CBelieveDB *GetBeliefDB()

This method gives the problem -solver access to the general knowledge base
used by the agent to perform tasks. See the section entitled “Examining Your
Agents” (below) for more details on its use and content.

4. SetBeliefDB(CbelieveDB *)

The internal AFC framework calls this method to set the BeliefDB in the
CproblemSolver class. The programmer can also call this method if the instance
of the beliefDB ever need s to be changed or removed.

5. CCommunicator *GetCommunicator()

¢#¢¢#¢¢#¢¢#¢

This method retrieves a reference to the AFC Communicator to allow for any
message that may need to be passed to other agents in the MAS. The AFC
framework sets the Communicator instance by cal ling the SetCommunicator
method below.

6. SetCommunicator(CCommunicator *)

The internal AFC framework calls this method to set an instance of the
communicator in the CproblemSolver class. This allows the problem -solving
engine to access the communication f acilities of the agent without the need for
saving pointers to the main agent shell. The agent programmer can also call this
method in case the instance of the Communicator needs to be changed or
removed.

7. CPSActionCodes *GetActionCodes()

This method provides access to the action codes that may be used by the agent.
This is a pointer to the CPSActionCodes class (see below).

8. SetActionCode(CPSActionCodes *)

The internal AFC framework calls this method to set the action codes that may
be used by the planner . The base class for action codes is provided
(CPSActionCodes), which has some basic actions codes that may be called by
the agent.

The CPSActionCodes Class

The class CPSActionCodes allows the programmer to implement actions that the
agent can perform. A few actions are provided that the agent can use to interact
with other agents within the MAS. More actions can easily be added by simply
deriving a new action codes class from CPSActionCodes. The basic actions
provided are:

1. char *SendMessageToAgent(char *pszAgentName, char *pszContent)

This method sends a message to another agent in the MAS. The return value is
a string that indicates the error message if there was an error in sending the
message. The first argument is the agent name and the second argum ent is the
content of the message.

2. char *CPSActionCodes::SendMessageToAgent(char *, char *, char *,

char*, char*)

This is an overloaded method that can be used to send a message to an agent
with more control over the header. The arguments are

a. Performative: This is the performative used in the header.

¢ ¤¢ ¤¢ ¤¢ ¤

b. Ontology: This is the ontology descriptor used in the message.
c. Language: This is the language descriptor used in the message.
d. AgentName: This is the name of the agent that is the recipient of the

message
e. Content: This is the content of the message.

¢#¥¢#¥¢#¥¢#¥

Example Five, Continued: Deriving an Agent that Uses
the CProblemSolver Class

This example illustrates the classes and their relationship in a simple agent that
uses the facilities provided by the CProblemSolv er class. This agent will be
called the “ReasoningAgent” and will be in a class called CReasoningAgent.
While a traditional agent class can be derived from CBasicAgent, this example
will derive the main agent class from CPlanningAgent. If the RETSINA Agent
Wizard is used to generate the agent workspace in Visual Studio, then the
inheritance will need to be changed from CBasicAgent to CPlanningAgent. The
class for our “Reasoning Agent” will look as follows

#include "c_afc.h"

/////////////////////////////// /////////////
// CReasoningAgent Class Definition file used for Agent
// ReasoningAgent

class CReasoningAgent : public CPlanningAgent
{
public:

 CReasoningAgent (char *);
 ~CReasoningAgent (void);

 BOOL process_message (char *);

protected:

 // over ridden AFC methods
 void handle_parse_args (CCommandLine *);
 void process_create (void);
 void process_init (void);
 void process_timer (void);
};

The constructor of our reasoning agent will contain the following code:

CReasoningAgent::CReasoningAgent()
{
 CMyNicePlanner *pPlanner = new CmyNicePlanner();
 SetProblemSolver(pPlanner);
}

Assuming that our agent uses a planner called MyNicePlanner, in a class derived
from CproblemSolver, the class for our planner will be as follows:

#include "c_afc.h"

// CMyNicePlanner Class Definition file

¢ ¦¢ ¦¢ ¦¢ ¦

class CMyNicePlanner : public CProblemSolver
{
public:

 CMyNicePlanner (char *);
 ~CMyNicePlanner (void);

 // Methods overridden from abstract parent class
 BOOL GenerateSolution();
 BOOL ExecuteActions();
};

The GenerateSolution() method of MyNicePlanner will be as follows:

BOOL CMyNicePlanner::GenerateSolution()
{
 //TODO: My nice planning algorithm goes here.
 //if planning succeeds then the resulting plan is
 //stored in some data structure of my choice a nd

//TRUE is returned.
//if Planning fails then FALSE is returned
//The belief DB can also be used while planning
//and that can be obtained by calling GetBeliefDB()

}

The ExecuteActions() method of MyNicePlanner will be as follows:

BOOL CMyNicePlanner: :GenerateSolution()
{
 //TODO: My Nice Execution Engine goes here.

//Use the plans generated by the GenerateSolution()
//method to execute them.
//Action can be executed by selecting appropriate
//from the set of action codes provided by the AFC.
//This ca n be obtained from the GetActionCodes() method.
//Eg. Senda message to another agent as follows
//GetActionCodes() - >SendMessageToAgent(...)

}

Deriving the Agent class from the CPlanningAgent gives the programmer the
advantage of having any incoming messa ge from the agent space passed
directly to the planner. In other words the process_message() method of
CPlanningAgent calls the GenerateSolution() method of the CProblemSolver
class every time a new message comes in from the agent space.

This allows the agent to immediately reason about any messages that arrive from
other agents in the MAS. If the main agent is not derived from CPlanningAgent
(but from CBasicAgent), then the programmer will need to add code to route the
messages to the problem -solving engine, code that calls
CProblemSolver::GenerateSolution().

¢ §¢ §¢ §¢ §

Class Hierarchy Diagram

The hierarchical relationship between the classes used is shown in the class
hierarchy diagram below.

Class Hierarchy diagram for the problem solver cl asses

CBasicAgent

CPlanningAgent

CMyAgent

AFC Classes

CProblemSolver

CMyNicePlanner

CPSActionCodes

CM yActionCodes

AFC Classes

InheritanceRelation

Usage Relation

ª#«ª#«ª#«ª#«

Example Six: Auction Demo

In the following example, we show agents interoperate and negotiate in the
process of an auction. This demo shows how developers, using the AFC toolkit,
can deploy a fairly sophisticated and user -friendly set of agents and scenarios,
as applied to a real -world market setting, without having to develop the
underlying agent architecture and infrastructure. The negotiation protocol as
demonstrated in this example is a simple one, but developers can modify the
protocol as the situation warrants it.

1. Start ANS.
2. Start Matchmaker.
3. Start DemoDisplay
4. Open Auction folder.
5. Open AuctionDemo folder

(RETSINA/Examples/Misc/Auction/AuctionDemo).
6. Click on Seller shortcut (starts Seller, registers it with an server, displays

on DemoDisplay).
7. Click on Seller1 shortcut (same as above).
8. Start two buyers via shortcuts. (Buyer and Buyer1).
9. Arrange icons on DemoDisplay so that all agents are visible.
10. Enter the item name (in “Item” field), and the minimum price that each

seller will accept (in the “Rprice”-- Reservation Price – field) of the
participating sellers.

11. Advertise participating sellers by clicking on their respective “Advertise”
buttons. This command registers sellers with the available Matchmaker. In
order to participate in the auction , a seller must be advertised with an
available Matchmaker.

12. Enter the same item name in the participating buyers’ “Item” fields, exactly
as entered in the participating sellers’ field(s). Enter the maximum price
each buyer will spend for the item in the “P rice” field.

13. Start the auction by clicking the buyers’ “Bid” buttons. All buyers who wish
to participate in the bidding process must submit their bids, via their bid
buttons.

14. Add sellers and buyers, each with different price requirements, and
observe how low bidding buyers are pushed out of the market when new
buyers are introduced. Note that market equilibrium is established via
automated negotiation.

Premises underlying the demo:

1. When an agent bids, it is assumed that the agent is committed to the bid,
which, if accepted by a seller, results in a firm deal.

2. Sellers must all be advertised with the Matchmaker before buyers start
bidding. This gives all buyers a chance to bid to all sellers of the same
items, providing the buyers seek the items being sold.

ª#¬ª#¬ª#¬ª#¬

System C

System A System B

Example Seven: Distributing Your Agents Over a
Number of Mchines.

In all the example so far, we have assumed that you have been running all of the
agents and infrastructure components on a single machine. The ANS,
DemoDisplay and agents were compiled and started in sequence on the same
CPU. However, for various reasons, including limitations of either memory or
CPU power, you may need additional resources to execute all components at
once. Since we are building multi -agent systems, we should be able to di stribute
the agents over a number of machines.

In this section we will show you how to setup a number of computers to run your
agent system. We will use three systems to distribute the agents from example 1.
Below is an overview of the intended setup:

In example 1. we use the following infrastructure components and agents:

1. Agent Name Server
2. DemoDisplay
3. AgentA
4. AgentB

ª#­ª#­ª#­ª#­

The list above also indicates the starting order for this particular example. Our
objective is to keep the ANS and DemoDisplay on System C and move Agents A
and B to systems A and B, respectively. We will not need to change the settings
for the ANS and DemoDisplay since they will connect to the machine they reside
on. However, we need to tell AgentA and AgentB to register with the ANS on
System C.

Before you can edit the configuration of those two agents, the following must be
in place:

1. The AFC must be installed on all host machines
2. You need the IP address of System C.

The first step is described at the beginni ng of this manual.

The second step will need a bit more explanation. Every machine on the network
has an IP address that uniquely identifies that system world -wide. You will need
this address to connect to an ANS on a remote system. Go to the machine tha t
you have designated System C that holds ANS. If you are running windows
NT,2000 or XP start a command shell and type: ipconfig, at the prompt:

In this case the IP address is 128.2.213.149.

If you are using the AFC under Windows 95 or Windows 98 then you will need to
type winipcfg to obtain the same information. If you do you will see a dialog box
that looks like:

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985 -2000 Microsoft Corp.

C:\>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Local Area Connection 2:

 Con nection -specific DNS Suffix . :
 IP Address. : 128.2.213.149
 Subnet Mask : 255.255.0.0
 Default Gateway : 128.2.254.36

C:\>

ª#®ª#®ª#®ª#®

As you can see from the
screenshot, the IP address for
this particular system is:
128.2.178.76.

Now that you know the address of the machine that runs the ANS, you will need
to change both AgentA and AgentB so that they use that address to connect to
the lookup service.

Navigate to the RETSINA directory (on Systems A and B, for Agents A and B,
respectively). You should find a subdirectory called:

Examples \ Steps \ Step1 \ AgentA .

In this directory you should find a .bat file called run.bat. This the generic name
for the start scripts that we use to run our agents. Open that file in a text editor
such as notepad. You do you should see the following text:

AgentA.exe - name AgentA - port 6673 - ans 127.0.0.1 - ansport 6677 - ddp
DemoDisplay

You should notice that the ans field is set to 127.0.0.1. This address is a
reserved for a local host, i.e., the machine on which the agent is currently
running. If you want to have the agent use a different ANS, you need to fill in the
IP address that we obtained from the steps listed above. Change the IP address
and save the file. Do the same for AgentB, which you should be able to find
under: Examples\Steps\Step1\AgentB\Debug. Of course, you need to edit the file
for AgentA on system A, and the file of AgentB on system B. Once all of these
files are complete, start the scenario as explained in “ Example One: Agent
Communications.”

ª#¯ª#¯ª#¯ª#¯

Each agent goes through a number of phases or lifecycles. These lifecycles are
illustrated in the code. You can use them to activate and manage your agent as it
becomes active in a multi -agent system. What you should no tice when you look
at the code is that you are given events at every point in the source. Events are
generated for incoming messages, for timers and even for certain startup
procedures. Here is a brief overview of the events you will see in your agent:

Agent construction.
This is basically your agent constructor. Use this as you would any normal
constructor. Be aware however that your agent is not network -aware yet.

 Method called: CAgentA ()

Commandline parameter handing

At this point in the agent' s lifecycle the arguments for the basic agent have
already been processed and you now have the opportunity to handle custom
parameters. You are given these parameters in the form of a list of CParameter
objects. If you want you an also retrieve the origina l argument variables by
using:

 int my_argc =a_commandline - >m_argc;
 char **my_argv =a_commandline - >m_argv;

The method implementation here will show how to use the parameters by
retrieving the arguments one by one. There is an instance of the Co mmunicator
at this point but it is in its initial stages. You can set and unset variables, but they
may be changed by the agent core at a later stage.

 Method called: void handle_parse_args (CCommandLine *a_commandline)

Agent creation

When this event is triggered, the basic agent will create a number of important
objects. For example, the Communicator object is created and initialized (but not
started). The BelieveDB (belief system) is created and filled with basic
information like agent name and locat ion. All of the core event modules have
been created and assigned to the Communicator. The main agent logfile is
created and a timestamp is set. You can find this file in the system directory
under you RETSINA path. The Communicator has been given a number of
lookup modules to assist it in finding agent locations through multiple sources.
(You will learn more about these technologies in the chapter on Discovery).

 Method called: void process_create (void)

ª#°ª#°ª#°ª#°

Agent Initialization

Now that we have all the c omponents in place internally, we can begin to start
the agent. When you have arrived at this point in the code the following events
will have taken place:

a. The Communicator was started and you are now registered with a lookup
service.

b. A number of even t modules are now active and have registered with other
agents if applicable. For example. the DemoDisplay module will have
contacted a visualization client or a logging server, depending on the
visualization setup. If a Matchmaker module was configured, i t will have
advertised the agent's capabilities with one or more Matchmakers.

 Method called: void process_init (void)

Agent message processing

Your agent is running and fully active at this point. There is no one specific event
associated with this s tage. Instead, multiple events will be recorded. Each event
indicates that either the environment changed or that a message arrived from
another agent. This is the part of the agent you will be working with most of the
time and it is therefore important th at you know how it works.

 Method called: BOOL process_message (char *data)

Agent timer events

Each agent is given a one second resolution timer. This timer is triggered for the
agent so that it can do maintenance. For example, it is used by the infor mation
agent base code to trigger monitor queries.

 Method called: void process_timer (void)

Agent shutdown

Your agent has been told to shutdown. This could have been done through a
variety of means, such the user interface, or through a message from other
agents or agent facilities. Certain emergency shutdowns will also trigger this
event. When you arrive at this point in the agent's lifecycle your agent will still
have access to other agents and agent facilities. Be careful what actions you
take when your agent is in this stage. In such a scenario you might not be able to
rely on communications. For example, your agent may not be able to inform
other agents and/or facilities that it is going to shut down.

 Method called: void process_shutdown (voi d)

ª#ªª#ªª#ªª#ª

Network BeliefDB Data Structures

All information regarding agent location, agent type and advertisements are
collected and stored in what is called the network beliefdb. The network beliefdb
is the database that represents the agent’s beliefs about it s environment. This
network beliefdb is a part of the global beliefdb as provided by the AFC.

Remember that the AFC does not place any restrictions on what a belief should
look like. As we will show in the following example, it only provides means to
maintain and manage beliefs. Understanding the structure of this dataset will
greatly enhance the capabilities of your agent.

First, let's take a look at a simple code fragment that lists all the agents that your
agent is aware of:

 // first find the netwo rk beliefdb within the total beliefdb

 CBelief *lookup=(CBelief *) BeliefDB - >find_element ("lookup");
 if (lookup!=NULL)
 {
 // we know that the lookup table is a list so we can safely convert
 CListBelief *network_lookup=(CListBelief *) lookup;
 CLL ist *services=network_lookup - >get_value ();
 CServiceInfo *info=(CServiceInfo *) services - >get_first_element ();
 while (info!=NULL)
 {
 if (info - >get_type ()==SERVICETYPE_MATCHMAKER)
 {
 AfxMessageBox (info - >get_name ());
 }

 info=(CService Info *) info - >get_next ();
 }
 }

This code will traverse the lookup table and display a dialog box with the name of
an agent or service for every entry found. As you can see, it does not merely
retrieve the name, but a full object instead. This object , called the 'CServiceInfo',
contains information regarding one particular agent. The public appearance of
this class is listed below:

class CServiceInfo : public CLList
{
 public:
 CServiceInfo (void);
 virtual ~CServiceInfo (void);

 void s et_location (char *); // url formatted
 void set_location (CURL *); // url object
 CURL *get_location (void); // pointer to internal location

ª#±ª#±ª#±ª#±

 void set_expiration (int);
 int get_expiration (void);

 void set_type (int);
 int ge t_type (void);
};

As is apparent, the ServiceInfo class is derived from the AFC -defined linked list
class. This means that the name of the agent can be obtained by calling
get_name ();, since the linked list depends on the CListElement class, whic h the
lookup modules will use to store the agent name. The reason for using a linked
list as the basis for our class is that every agent might contain one or more
advertisements. That is, we used a linked list so that the agent can retrieve all of
the advertisements for a particular agent, which are associated with its name or
unique ID.

Each advertisement is added to the list and can be retrieved by using the
standard methods for accessing an AFC linked list. You should also notice that
the CServiceInfo class uses URLs to specify the network location. You will have
to use the access methods within the URL object to obtain parameters such as
hostname and port number. (For more information on the URL object, see the
chapter on tools and utilities). Next we s ee two methods that will either set or get
an expiration time from the service information object. This expiration time is
given in seconds and is primarily used internally for leasing purposes. If you want
this entry to be persistent regardless of the act ual presence of the agent, then
use the access method to set this value to: -1. The last two methods are used to
obtain or change the infrastructure type of an entry in the network beliefdb. The
AFC uses the following defines to identify the role an agent or service has within
an MAS:

 #define SERVICETYPE_AGENT 1
 #define SERVICETYPE_MATCHMAKER 2
 #define SERVICETYPE_DHARMASERVER 3
 #define SERVICETYPE_ANS_SERVER 4
 #define SERVICETYPE_DEMODISPLAY 5
 #define SERVICETYPE_RECOMA_SERVER 6

The following code is an example of how to use the service type to find all
Matchmakers currently known to the agent:

 // first find the network beliefdb within the total beliefdb

 CBelief *lookup=(CBelief *) BeliefDB - >find_element ("lookup");
 if (lookup !=NULL)
 {
 // we know that the lookup table is a list so we can safely convert
 CListBelief *services=(CListBelief *) temp;
 CServiceInfo *info=(CServiceInfo *) services - >get_first_element ();
 while (info!=NULL)
 {

ª#²ª#²ª#²ª#²

 if (info - >get_type ()==SERVIC ETYPE_MATCHMAKER)
 {
 AfxMessageBox (info - >get_name ());
 }

 info=(CServiceInfo *) info - >get_next ();
 }
 }

As you can see, we re -used the sources from our first example and added
a simple test on the agent type. If an agent is identified as a Matchmaker, its
name will be displayed in a dialog box.

Agent Destruction

Method called: ~CAgentA ()

Processing Updates to the Agent Environment

AFC contains code for detection of newly arrived agents and detection of agent
shutdowns. In order to e nable the function, add the following method in your
main path, which will be called every time the network beliefdb is changed:

 virtual void process_environment_change (void);

In future updates you will be able to get very detailed information about an
agent's view of its environment. For now we will show you how to learn whether
an agent has been recently added to the network beliefdb, or whether it will be
removed shortly, because it is no longer present on the network.

In the AFC we represent the d escription of an external agent in a CServiceInfo
class. This class contains all information needed to use this agent. The network
beliefdb is an enumeration of CServiceInfo instances. For every agent on the
network of which your agent is aware, there will be one such service object. Each
of those objects contains a status parameter, which indicates whether it was
recently created or whether it will be destroyed. If the status flag indicates that
the object was just created, then the agent it represents jus t arrived on the
network. If the status indicates that the object will be destroyed in the next main
cycle, then you know that the remote agent either crashed or shutdown.
Remember that the removal of an agent is not synonymous with a remote agent
shutdown. Internal leases and expiration mechanisms can also trigger the
removal of a CServiceInfo instance.

Now that you have added to your agent a way of being informed of
environmental changes, you will need a bit of code to investigate what actually
happened. Below is a small example of code that will traverse the network
beliefdb and report on what changes occurred:

// --

ª#³ª#³ª#³ª#³

void CExampleAgent::process_environment_change (void)
{
 debug ("p rocess_environment_change ()"); // just so we can see where
we are

 if (state!=__AGENT_STATE_RUNNING__)
 {
 debug ("Agent not ready yet to process environment changes");
 return;
 }

 // search through the network beliefdb to see what happened

 CLList *network_db=obtain_network_db (); // this is an AFC core method
 if (network_db!=NULL)
 {
 CServiceInfo *service=(CServiceInfo *) network_db - >get_first_element
();
 while (service!=NULL)
 {
 if (service - >get_new ()==TRUE)
 {
 // this agent just a rrived
 }

 if (service - >get_gone ()==TRUE)
 {
 // this agent just left and the entry will be removed after the
 // method exists
 }

 service=(CServiceInfo *) service - >get_next ();
 }
 }
 else
 debug ("No network belief db available");
}

// --

As you can see from the code above, you can obtain the state of a service and
see if it will be removed. If you want to have a service object forcefully removed,
then call the following method:

 service - >set_gone (TRUE);

Keep in mind, however, that this is only a hint towards the management system
that maintains the internal state of the network belief db. If a remote agent
indicates that it is still alive, a new CServiceInfo instance will be created. (You
can try to change your agent’s mind about its external environment, but you
cannot get it to permanently deny the reality of other agents that actually exist).

±#«±#«±#«±#«

The addition of the 'process_environment_change' method will als o allow
you to add more refined awareness of the coming and goings of infrastructure
components in a multi -agent system. For example, your agent may want to
register with every Matchmaker that it becomes aware of. The following code
demonstrates how to lea rn whether or not a new Matchmaker has started
somewhere on your local network:

// --

void CExampleAgent::process_environment_change (void)
{
 debug ("process_environment_change ()"); // just so we can see where
we are

 if (state!=__AGENT_STATE_RUNNING__)
 {
 debug ("Agent not ready yet to process environment changes");
 return;
 }

 // search through the network beliefdb to see what happened

 CLList *network_db=obtain_network_db (); // this is an AFC core method
 if (network_db!=NULL)
 {
 CServiceInfo *service=(CServiceInfo *) network_db - >get_first_element
();
 while (service!=NULL)
 {
 if (service - >get_new ()==TRUE)
 {
 // this agent just arrived

 if (service - >get_ty pe ()==SERVICETYPE_MATCHMAKER)
 {
 // a new matchmaker just arrived
 }
 }
 service=(CServiceInfo *) service - >get_next ();
 }
 }
 else
 debug ("No network belief db available");
}

// --- -----------

The example above only demonstrates that a new infrastructure component of
the Matchmaker type was found. The following constants will allow you to check
for basic infrastructure components:

±#¬±#¬±#¬±#¬

 #define SERVICETYPE_AGENT 1
 #define SERVICETYPE_MATCHMAKER 2
 #define SERVICETYPE_DHARMASERVER 3
 #define SERVICETYPE_ANS_SERVER 4
 #define SERVICETYPE_DEMODISPLAY 5
 #define SERVICETYPE_RECOMA_SERVER 6
 #define SERVICETYPE_UNKNOWN 7

Now that you know that a new Matchmaker wa s found, you may want to register
with it. The following example uses the same code as listed above but adds the
capability to register a new client with the Communicator.

// --

void CExampleAgent::process_environment_change (void)
{
 debug ("process_environment_change ()"); // just so we can see where
we are

 if (state!=__AGENT_STATE_RUNNING__)
 {
 debug ("Agent not ready yet to process environment changes");
 return;
 }

 // searc h through the network beliefdb to see what happened

 CLList *network_db=obtain_network_db (); // this is an AFC core method
 if (network_db!=NULL)
 {
 CServiceInfo *service=(CServiceInfo *) network_db - >get_first_element
();
 while (service!=NULL)
 {
 if (service - >get_new ()==TRUE)
 {
 // this agent just arrived

 if (service - >get_type ()==SERVICETYPE_MATCHMAKER)
 {
 // a new matchmaker just arrived

 CMatchMakerClient *mm_client=new CMatchMakerClient (service -
>get_name
(),BeliefDB,C ommunicator,0);
 Communicator - >add_display (mm_client); // this will add it as a
custom
client
 mm_client - >set_logger (DemoLogger); // make sure we can log to
disk
 mm_client - >parse_args (m_argc,m_argv); // allow the client to
process
out cu stom settings

 // The following methods are normally called by the Communicator,

±#­±#­±#­±#­

so
 // be careful !! They will start the client and add it to the
agent's
internal management

 mm_client - >change_state (__CREATE__);
 mm_client - >set_register ed (FALSE);
 }
 }
 service=(CServiceInfo *) service - >get_next ();
 }
 }
 else
 debug ("No network belief db available");
}

// --

A couple of notes on the code above. First of all, you probably noticed that there
is no advertisement assigned. In this example we assume that you use the
default "adv-schema.txt" file in the agent's directory. Secondly, you can see that
there is a fair amount of additional management you need to do to actually add
the module to the agent. In future versions of the AFC, the code above will be
replaced by a single API call and the above example will be reserved for
situations in which you want to add custom clients to your agent.

Working With Top -Level Agent States

In the previous section you may have noticed a line in the example code that
looked like:

 if (state!=__AGENT_STATE_RUNNING__)
 {
 debug ("Agent not ready yet to process environment changes");
 return;
 }

Each agent will go through a n umber of states during its execution life -cycle.
These states dictate what events can occur within the agent and they also drive a
number of important events. The events currently defined within the AFC are:

#define __AGENT_STATE_CONSTRUCTOR__ 0
#defin e __AGENT_STATE_INIT__ 1
#define __AGENT_STATE_CREATE__ 2
#define __AGENT_STATE_RUNNING__ 3
#define __AGENT_STATE_SHUTDOWN__ 4
#define __AGENT_STATE_DESTRUCTOR__ 5
#define __AGENT_STATE_TOP_LEVEL_END__ 6

The current state of your agent can be obtained by examining the 'state' variable
present in every class derived from CBasicAgent. Each state is set after certain

±#®±#®±#®±#®

methods are completed. You will have seen these methods described earlier in
the manual.

The state variable is a block of memory that is protected by the agent core. You
can set the state yourself by defining a new state:

 #define __MY_AGENT_STATE_TOP_LEVEL_END__
__AGENT_STATE_TOP_LEVEL_END__ + 1

This code will define a new state, which you are free to use i f the top-level state
is in: __AGENT_STATE_RUNNING__ If the agent detects that a state is set to a custom
setting in a top-level state other than __AGENT_STATE_RUNNING__, then the agent
will forcefully change the state. It does this to protect numerous int ernal modules
that maintain your agent. For example, the garbage collector (that is responsible
for cleaning up the network belief db) will behave with slight differences in each
of the top level states.

Forcing Global Lookup Refresh

Normally you would look at the network beliefdb to get an overview of what
agents are registered on the network. Sometimes however, you may want to
forcefully refresh the lookup table to be absolutely sure that all the registrations
are valid. You can call the following meth od from within your agent:

 if (Communicator!=NULL)
 Communicator - >listall_agents ();

Remember that this method resides in the Communicator and you will therefore
have to obtain a pointer if you want to call the method outside of your main agent
class. When you call the method listed above, a number of things happen
simultaneously. One, the Communicator locks the network beliefdb. You will not
be able to directly modify any entries in that area of memory. Two, the
Communicator will iterate through all re gistered lookup modules and activate
their 'list-all' method. If you have all types of lookup mechanisms enabled and if
the agent has instantiated multiple copies of these modules (one for each active
infrastructure component e.g., multiple ANSs), then it might take quite some time
for the 'listall_agents' method to return. Also, certain lookup methods will not wait
for a direct reply but instead assume that answers to lookup requests will come in
asynchronously. This may result in environment updates being generated for
every agent that was found through this asynchronous mechanism. See Section
1 for information on how to process environment updates.

Client Module

The AFC provides a number of mechanisms do facilitate persistent connections.
This capability was previously undocumented since it had not passed tests that

±#¯±#¯±#¯±#¯

were successfully completed on the core AFC code. The persistent connection
code is stable enough to be used by outside developers. Here we will
demonstrate the steps to take to set up a per sistent connection.

The client class is one of the mechanisms available to developers to create a
persistent dialogue with other agents. This class represents the base class for all
classes involved in setting up registrations with other agents. For examp le, the
AFC uses the client class as the basis for interactions with middle -agent clients.
These clients advertise the agent's capabilities with a middle agent. First, we will
examine the basic client class and its capabilities:

class CClientBase : public CLogFacility
{
 public:

 CClientBase (char *,
 CBeliefDB *,
 CCommunicator *,
 unsigned int);

 void set_ontology (char *);
 char *get_ontology (void);

 void set_performative (char *);
 char *get_performative (void);

 void set_language (char *);
 char *get_language (void);

 void set_create_string (char *);
 char *get_create_string (void);

 void set_destroy_string (char *);
 char *get_destroy_string (v oid);
};

There are three important sections to be mentioned in the class definition above.

A. Constructor
B. Envelope Configuration
C. Event Configuration

A. Constructor

The constructor takes a number of pointers to objects it needs to function
independently in the background. The first parameter is a string that holds the
name of the agent with which you wish to have a persistent connection. Next is a
pointer to the BeliefDB, which can be obtained from within your agent code.
Then, there is a pointer t o the Communicator, which can also be obtained from
any class derived from CBasicAgent. The last parameter is a flag that is used by
the base class under certain conditions. This last parameter can be safely set to

±#°±#°±#°±#°

0.

B. Envelope configuration

When your agent uses the object that results from using the client classes, it will
ask the client to send messages at specific times. When a message is sent by
your client module it might need additional
information such as a performative and/or ontology etc. There are three methods
available to configure these message settings. By default the following methods
are called if no other preferences are specified. Every time your client module
sends out a message it will use these variables:

 set_performative ("tell");
 set_ontology ("default - ontology");
 set_language ("default - language");

C. Event Configuration

Now that you know the basic functionality, we need to use it and assign it to an
agent. All events are handled by the basic agent code. This means t hat at certain
times, in response to external events or internal signals, the basic agent will
generate events. All clients must be able to respond appropriately to these
events to ensure proper functionality at all times. As we have written above, there
are a fair number of events that can be generated at any time during an agent's
execution lifecycle. It is important to recall the basic events, since you will see
them occur when you start to build your own derived client classes or log
modules:

 #define __IDLE__ 0
 #define __PLANNING__ 1
 #define __ADVERTISE__ 2
 #define __CREATE__ 3
 #define __DESTROY__ 4

There are a number of additional methods that you will need to know if you want
to add more detailed interaction between the agent and your client module:

 public:
 virtual BOOL change_state (unsigned int);
 virtual void process_timer (void);
 virtual void process_message (char *,int);
 virtual void process_create (void);

These methods are actually d erived from the CLogFacility class and are used
within your client for maintenance and connection management. When the basic
agent generates a __CREATE__ event, the method 'change_state' is called in
your client module to indicate that it will need to regi ster with the server (middle

±#ª±#ª±#ª±#ª

agent for example). If a __DESTROY__ event is detected, the client module will be
notified again using the 'change_state' method, but this time it will trigger the
unregister method.

At this point, we advise against overloadin g the four methods listed above, at
least until you are familiar with the workings of the CLogFacility class. We've
included the detailed information here to give you better insight into the inner
workings, in case things go wrong in your agent. You should be able to
determine from the logfile the state that the agent is in and how your client is
responding to those events.

Below is sample code that demonstrates how a client module can be assigned to
an agent. We advise that you do this in the 'process_cre ate' method, but it can
be added at any point if the agent is in either the '__AGENT_STATE_CREATE__'

state or the '__AGENT_STATE_RUNNING__' state.

void CExampleAgent::process_create (void)
{
 CClientBase *client=new CClientBase
("Server",BeliefDB,Communic ator,0);

 client - >set_create_string ("(register)");
 client - >set_destroy_string ("(unregister)");

 client - >set_logger (DemoLogger);
 client - >parse_args (m_argc,m_argv);

 Communicator - >add_display (client);
}

The following steps were taken in the code a bove:

1.

 CClientBase *client=new CClientBase ("Server",BeliefDB,Communicator,0);

Create a new client and provide it with the proper parameters. In this case the
client will try to connect to an agent called 'Server'. The BeliefDB and
Communicator pointers were obtained from the basic agent and the last
parameter was set to 0.

2.

 client - >set_create_string ("(register)");
 client - >set_destroy_string ("(unregister)");

We now configure the subscription and unsubscription behavior by providing a
registration string and unregistration string. These two strings will be sent within
the content field of the actual messages. The client will trigger subscription and

±#±±#±±#±±#±

unsubscription events when it detects that its agent either shuts down, crashes or
boots.

3.

If you want your client to log messages to the global logfile then you may want to
add the following line of code to the agent:

 client - >set_logger (DemoLogger);

This code will allow you to call the 'debug' method if you decide to overload the
base client to build more refined classes.

4.

 client - >parse_args (m_argc,m_argv);

If you want to process command line arguments within your class, or if you know
that the client class takes specific command line parameters, then you will need
to call this method in the client. This method is a virtual method and can be used
in your own overloaded classes to process specific parameters for your class.

5.

 Communicator - >add_display (client);

This code will tell the Communicator that there is a new client module t hat needs
to be added to the total list of background client modules. In doing this, you make
sure that your client's background management code is called at appropriate
times.

From this point, you do not have to manage the client; the basic agent will do this
for you. The agent's core code also takes care of deleting the object when your
agent shuts down; you should not do so.

±#²±#²±#²±#²

Agent User Behavior, Agent Naming Convention

Open-network MASs face security threats from malicious agents. These agents
may try to unregister their competitors from Agent Name Servers and
Matchmakers, eavesdrop on supposedly private communications, and spoof
other agents and agents and the humans who deploy them. System integrity
demands that agent users be held accountable for p roblems caused by
misbehaving agents.

While in a future release of our ANS, the security architecture we are developing
will counteract these threats by binding each agent to a unique Agent ID (or AID)
(see JavaANS), in the current release of the AFC age nts and ANS, we rely on
the integrity of the agent users in the community to prevent such malfeasance.

To prevent agent spoofing or masquerading, we require that agent users adhere
to a strict naming convention that links their agents to themselves and t he
originating domain of their agents. For example, for an agent deployed by Mike
R. on the machine “areolis,” from the “cimds” center of the Robotics Institute at
Carnegie Mellon University, the agent name would be

miker.areolis.ri.cimds.cmu.edu

Note that the agent need not be running at this location. The agent name is
merely used to signify that the agent user’s name and originating domain, not the
location at which the agent is running. The user might start the above -named
agent on a different computer , in a different center or department, or at another
university, for example. As long as the user remains primarily connected with the
referenced domain, the agent name should be the same. Additional agents would
be named “mike2,” “mike3,” etc. The agent name is thus more like a “birth
certificate” than it is an address.

In order to ensure the unique identity of agents before a security system is
accepted and fully integrated into the agent communities, it is necessary that all
agent users adhere to the a bove-referenced naming convention. This is
especially the case for those users/agents enabling Discovery of/by other agents
and agent systems. (See section on Discovery for enabling/disenabling
Discovery).

The other users of the agent community will regar d users who choose to ignore
or subvert the agent naming convention as hostile and will treat them
accordingly. Users who purposefully unregister or register agents not belonging
to them will also be regarded as hostile to the agent community.

We have added an additional command li ne parameter to the BasicAgent, which
will allow you to make your agent name unique. If you start your agent the normal
way then the name you specify on the command line or hardcode in your agent

±#³±#³±#³±#³

will be used in registrations 'as is'. However, if you specify the following
parameter:

 - unique yes

then the agent will append a global ly unique ID to your agent name and use that
during it's execution life-cycle.

²#«²#«²#«²#«

Using The KQML MESSAGE Sender

Introduction

No development environment or toolkit is complete without its set of testing
utilities. The RETSINA architecture has its own set of tools, one of which is the
KQML message-sending tool. This tool allows you to send customized messages
to an agent and to examine the responses. Besides the basic message sending
and receiving functionality, the tool offers testing sets to test the RETSINA
visualization system and Agent Name Servers.

Main Wind ow

Open the KQML Message GUI Sender (RETSINA/tools/…). When starting the
tool you will see one window appear (Figure 1). This window represents the main
functionality of every agent in your system.

The window is divided into three main areas dedicated t o specific agent tasks.
The top portion is dedicated to message generation and message inspection. In
the middle you can see the controls available to manage and work with an Agent
Name Server. Finally there is the visualization tool set at the bottom. Eac h of

²#¬²#¬²#¬²#¬

Figure 2

those areas will be discussed in detail in the following sections.

Before you can use any of the other tools you will need to register the application
with an Agent Name Server. You will not be able to use the message tools or
visualization tools before the application has successfully registered itself with
one of the ANS servers. (See the documentation of “ANS Version 2.7” in:
RETSINA/documentation/Java ANS Manual for more information about ANS).

In the next 5 steps we will demonstrate how to configure the message sender to
represent an agent and register it with an ANS.

First of all we need to give the application a unique identity. This identity
is composed of a unique name and a local listening port number. (Note:

See previous section, “Agent User Behavior and Agent Naming Conventions,” to
name agents for other than local use. The following example is of an agent for
local use only). The listening port does not have to be globally unique, but you
cannot use the same port as other applic ations on your machine. By default the
port is set to 6678.

Figure 1

Figure 3

²#­²#­²#­²#­

In this example we set our agent name to AgentA, as shown in Figure 3.

Next we select an Agent Name Server from the dropdown menu in the
ANS part of the window. In the following figure w e set our ANS to
‘kriton.cimds.ri.cmu.edu.’ If all the parameters are properly set the

application should be able to register. Click the “Register” button in the ANS pane
to activate the registration process. If the action is successful, you will see that
the certain fields will be grayed out.

If an error occurs you will see a message in the status bar at the bottom of the
window and a dialog box will appear
informing you of the specifics of the
failure.

Most failures in registration occ ur
because the listening port that was
specified is already in use by another
agent. Simply change the port number
and try again.

Once you are registered with an
ANS, you can retrieve a list of all
the agents registered. Click on
the “List All” button to start the action. Successful retrieval allows you to

see a list of agents in the drop down box on the right side of the ANS pane.
Figure 5 shows an example list retrieved from kriton.cimds.ri.cmu.edu. A shortcut
is provided to choose a receiving agent f rom the agent list. Select one of the
agents from the drop -down menu and click “Make Receiver”. This puts the name
of the agent in the receiver slot in the message pane.

Figure 4

Figure 5

²#®²#®²#®²#®

Message Management

In this section we will demonstrate how to send messages to other agents. As we
have mentioned above, the top part of the application’s window is dedicated to
message sending and receiving. On the left are controls to create the messages
and on the right are two message boxes that will show different views of the
messages coming in.

Parsing Messages

In the instructions that follow we assume that you have registered at least two
agents with an Agent Name Server, and that you have launched at least two
Win32KQMLCenter programs. You will have at least two Win32KQMLCen ter
windows open and operating, in order to send and receive messages from one
agent to another. See the previous section on registering agents for more
information.

Choose one Win32KQMLCenter window to send a message to another
agent.

Configure the "KQML" Section to send a message to another agent. The
"KQML" Section consists of the following fields as shown in Table 1:

Performative The set of permissible operations that agents may attempt on

Figure 6

²#¯²#¯²#¯²#¯

each other's knowledge and goal stores. Examples inclu de:
"tell," "send" and "insert."

Receiver The name of the agent that will receive the message.

Content The content of the message.

Reply -with
A string of automatically generated characters. Each message
generates a unique identifier. Pressing "generate d string" will
generate a different message ID.

In-reply -to A blank field for entering a message's unique identifier. This
field can be used to reply to specific messages.

Ontology The ontology that the agents will use to communicate.
Examples include: "satellites" and "stocks."

Language The type of parsing language (e.g. gin 1.0) that the agents will
use.

blank
template

A menu for selecting different kinds of generic messages
(e.g., advertisements). This menu item is not implemented.

send
message

The button that sends the message to the agent specified in
the "Receiver" field.

Table 1
The required fields are: Performative, Receiver, and Content. The optional
fields are Reply-with, In-reply-to, Ontology, Language and blank template. The
default settings for the optional fields are sufficient to test message formats to
agents.

At this point you can click the “ Change
State ” button. This will transmit the
state-change to the visualizer. Keep in
mind that the Win32KQMLCenter does
not keep track of what state you sent
previously. So it is possible to send two
CREATE states in a row. Two buttons
are included as shortcuts to quickly
send those states without having to
select a state from the drop -down list.

Figure 10

²#°²#°²#°²#°

Miscellaneous Tools

Scattered across the application’s window are a number of small tools that can
give you information about the environment and the internals of the application.
Figure 11 shows three buttons that are used to display system information about
the software that was used to build t he message tool. It is available in every
agent and was designed to obtain low -level information about an agent’s state
and condition.

Figure 12 is the Communicator info window. It can be used to quickly obtain your
network settings like IP address and local listening port. When reporting a bug
within the Agent Foundation Classes or Communicator code, please provide the
version number listed in this dialog box.

Figure 11

Figure 12

²#ª²#ª²#ª²#ª

Data Structures

The Agent Foundation Classes support all basic concepts of software
engineering. A variety of well -known structures and concepts are provided with
agent development in mind. In this section, we will introduce each of the provided
data structures and demonstra te how to use them. We will also show how they fit
into the agent paradigm and what other important tools within the AFC depend
on them.

First of all, we need to describe and explain a basic concept of the AFC, known
as the CListElement. The name is dece iving; the CListElement is not an element
designed to be used in a list. In fact, it is used as the basis of virtually every class
within the AFC. While there are a number of other classes beneath the
CListElement class, they are designed to support proper ties such as Agent DNA
and introspection, or properties considered to be the in the “future” of agent
“functioning.” You might encounter some of these classes, but at this point in
time, you can safely substitute CListElement for their class names. The
CListElement supports a number of elementary methods used by all classes
derived from it. These methods are:

 CListElement *get_parent (void);
 void set_parent (CListElement *);
 CListElement *get_next (void);
 vi rtual void set_next (CListElement *);
 CListElement *get_last (void);
 void set_last (CListElement *);

 void *get_content (void);
 virtual void set_content (void *);

 virtual BOOL from_string (char *);
 virtual char *to_string (void);

Most of the methods are pure virtual functions and are only useful when called
from derived objects. As you can see, the first six methods within the class
provide access to pointers of other objects of type CListElement. In total, the
class supports three pointers:

• A parent
• A pointer to a following element

²#±²#±²#±²#±

• A pointer to a preceding element

These pointers are private and can only be obtained and changed through the
access methods. All point to objects of the same CListElement type.

Following the access methods are two methods to manage a content pointer.
The actual content is not stored in the object but rather a pointer to the location of
the content. This means that when a CListE lement object is destroyed the
memory that the object points to will not be freed -up. You will have to manage
this memory yourself. However, certain classes derived from CListElement cast
this pointer to specific data types that are destroyed when the dest ructor is
called. The CParameter class, for example, assumes the content pointer points
to a string.

The last two methods are the basis of what we call Collapsible Data Structures.
These methods enable an object to collapse itself into an ACL -formatted string.
The methods can also be used for recreating the object itself from a string. For
now it is important to know that every class derived from a CListElement has this
behavior.

There are two more important methods that define the basic behavior of the
CListElement. These methods are not listed above because they are inherited
from the CDNA class. However for all intents and purposes they are part of the
CListElement. The declaration of the methods is as follows:

void set_name (char *);
char *get_name (void);

Every class has a label that can be accessed by these methods. It is not always
necessary to give an object a label and omitting one will not interfere with the
functioning of the object. The label/name is stored as a private string and cannot
be accessed directly. Certain derived objects will not allow you to change the
label once it has been set by the constructor. This characteristic protects the
persistence of certain objects.

There is one final method that can be used to obtain certain low -level information
about the object. If you decide to construct your own basic types then you will
have to become familiar with the other methods that related to this set of
functions:

int get_btype (void);

Every object in the AFC has a base type. This is e ither a namespace string or a
numerical ID. In the cases of the most fundamental types, a number expresses
the type. The method above can be used to obtain this type. There is a finite set
of types defined by the AFC, which lists the most basic types of da ta-structures.
These are:

²#²²#²²#²²#²

#define __DATA_ELEMENT__ 0
 #define __DATA_TREEELEMENT__ 1
 #define __DATA_LIST__ 2
 #define __DATA_QUEUE__ 3
 #define __DATA_STACK__ 4
 #define __DATA_TREE__ 5
 #define __DATA_TREELIST__ 6
 #define __DATA_HASH__ 7
 #define __DATA_TOKEN__ 8
 #define __DATA_PARAMETER__ 9

Now that you have some familiarity with most basic component of the AFC, we
can continue with the first composed data stru cture: the linked list. The AFC
provides a linked list called CLList, which is specifically designed for agent
technology. Let’s take a look at the public methods of this class:

 CListElement *add_element (CListElement *);
 CListElement *fi nd_element (char *);
 CListElement *get_element (int);

 void delete_element (CListElement *);
 void delete_element_by_name (char *);
 void remove_element (CListElement *);
 void remove_element_by_name (char *);
 void delete_list (void);

 CListElement *get_last_element (void);
 CListElement *get_first_element (void);
 CListElement *get_previous_element (void);
 CListElement *get_nex t_element (void);

 int get_nr_elements (void);

 virtual void insert_element (CListElement *,unsigned int);
 virtual void insert_element_after (CListElement *,CListElement
*);
 virtual void insert_element_before (CListElement *,CListElement
*);
 void dump_list (void);
 void tokenize (char *,char);

The constructor for the CLList class is of the same nature as the CListElement. In
fact, the linked list is derived fr om the CListElement. The benefit of this derivation
is that you will be able to insert lists into lists, etc.

 BOOL has_children (void);
 void set_children (CLList *);
 CLList *get_children (void);
 void set_parent (CLList *);
 CLList *get_parent (void);

²#³²#³²#³²#³

Another component similar to the CListElement is the CTreeElement. This
element can be used in binary trees, but also in combination with other
structures, to mix and match into a final custom data representation.

CTreeElement *get_parent (void);
 void set_parent (CTreeElement *);
 CTreeElement *get_left (void);
 void set_left (CTreeElement *);
 CTreeElement *get_right (void);
 void set_right (CTreeElement *);

 CTreeEleme nt *find_element (char *);

As can be seen from the listing above, the tree element is designed to be used in
a binary tree. (We do not provide more complex trees and tree representation,
since we do not want to dictate to developers what these structures s hould look
like).

Every tree element contains three nodes of a similar type, to represent the tree.
These are:

- A parent node
- A left leaf node
- A right leaf node

Each of these nodes can be individually assigned and retrieved. Under most
circumstances, however, the tree classes will take care of assignments. Of
course, all the methods available in the CListElement class are available in this
class. The ‘find_element’ method can be used stand -alone (if no tree structure is
used), but is designed to be calle d by the CTreeList and Ctree, since they offer
fully implemented search mechanism.

 void set_root (CTreeElement *);
 CTreeElement *get_root (void);
 CTreeElement *find_element (char *,int);

Finally there is the CTree class, which rep resents the actual implementation of a
binary tree. The CTree class is derived from the CTreeElement class, and as can
be seen from the figure above, there are only three public methods. First of all,
there is a method that can be used to set a pointer to the root element within the
tree. This root element is of type CTreeElement. Next, an access method can be
seen to obtain the current root. Last, we have the method that can be used to
search the tree for an element with a certain label. The tree class can use two
search mechanisms: breadth first and depth first. The ‘find_element’ method
takes two parameters, a string containing the label which will be searched for and
a flag indicating the search mechanism. Please use one of the two flags to
indicate which search algorithm is to be used:

 #define __TREE_BREADTH_FIRST__ 0

³#«³#«³#«³#«

 #define __TREE_DEPTH_FIRST__ 1

Two other commonly used datastructures are available, the queue and the stack.
Each of these classes are based on the CLList class and will therefor e have all
the functionality of that class. First let’s take a look at the queue termed CQueue
in the AFC. Only four methods are needed to turn an AFC list into a queue. We
need a way of fixing the size of the queue and we need to add and remove
elements from the queue. The figure below shows all four methods and their
declaration.

void set_size (int);
 int get_size (void);
 BOOL enqueue (CListElement *);
 CListElement *dequeue (void);

Be aware that changing the s ize of an existing queue containing a number of
elements might produce unwanted effects, if the size of the new queue is smaller
than the number of elements currently present in the queue. By default, the
queue size is set to 100 from with the CQueue const ructor.

An interface similar to the queue is used for the stack. Different methods define
the behavior of this datastructure, although common methods include the
‘get_size’ and ‘get_size’ access functions. The figure below shows the methods
within the CStack class, and their interfaces.

 void set_size (int);
 int get_size (void);
 CListElement *pop (void);
 BOOL push (CListElement *);

Characteristic for this class are the pop and push methods, which add and
remove elements from the stack. The CStack class uses the same size concept
to determine the maximum size of this object. For this class, the same size
default is used and set to 100 within the constructor.

³#¬³#¬³#¬³#¬

Tools and Utilities

In this section, we will discuss a number of tools available within the AFC
libraries that considerably facilitate agent -based development.

Generating and using GUIDs

The Agent Foundation classes fully support the generation of Globally Unique
Identifiers (GUIDs). When you created you r agent with the AFC Wizard, the AFC
headers were incorporated in your agent, which automatically gave your agent
GUID capability. Here is an example on how to generate a GUID:

#include "c_afc.h"

CGUID *uuid=new CGUID;
printf ("Newly generated ID: [%s] \ n",uuid - >get_guid ());
delete uuid;

You can use an object instantiated from the CGUID class as a placeholder for
one ID, or you can use the object to keep generating new ones. In the following
example, we show how to generate 10 IDs:

#include "c_afc.h"

CGUID *uuid=new CGUID;

for (unsigned int i=0;i<10;i++)
 printf ("Newly generated ID: [%d][%s] \ n",i,uuid - >generate_guid ());

delete uuid;

While it is not useful from a developer’s perspective, the class also contains a
method to set the internal uuid to a specific string. This was implemented for
internal use only. You can set the internal string by calling:

 set_guid (char *);

When using the class you will notice that the id's the objects generate are like
Windows registry keys. This was done intentio nally because it is much easier for
a developer to strip the outer parenthesis than it is to add them after the string
has been created. Let's take a look at an example on how to convert a GUID to a
general uuid string:

#include "c_afc.h"

CUtils utils;
CGUID *uuid=new CGUID;
printf ("Newly generated ID: [%s] \ n",uuid - >get_guid ());
char *stripped=uuid - >get_guid ();

³#­³#­³#­³#­

printf ("Stripped ID: [%s] \ n",utils.remove_curly_brackets (stripped));
delete uuid;

The output of this code should look something like this:

Newly generated ID: [{8D831E25_1DEE_11D5_A944_F95168027CA4}]
Stripped ID: [8D831E25_1DEE_11D5_A944_F95168027CA4]

An agent is an abstract concept. However, it will have to be written using
concrete programming structures, and will have to live in a n operating system.
Making an agent OS-survivable can present a number of problems, most of
which can likely handled by the AFC utilities. The AFC includes some low -level
tools to allow agents to work within their environment. These will also compile
under Unix. Here are a couple of examples of what is available.

Note: Make sure you include the following statements in your code:

#include "c_afc.h"
CUtils utils;

Obtaining the RETSINA variable and home directory of the agents

As you may have noticed, the RETSINA agents depend on an environment
variable called RETSINA. This variable points to a directory where agents will
find crucial information. At times, an agent might want to “manually” find certain
resources from a directory below the RETSINA path. The code fragment below
demonstrates how to obtain the total path from the RETINSA variable.

char *home=utils.get_home ();
if (home==NULL)
 printf ("The RETSINA variable was not set \ n");
else
 printf ("The location of the RETSINA path is: [%s] \ n",home);

File and directory access tools

In the AFC, we provide a number of tools to work with files and directories. From
low-level support to virtual file -system layer classes, the AFC should enable you
to develop agents that do not depend on low -level external classes and libraries.

A basic operation could be to list the files of a directory. Below we give an
example of how this can be done using the AFC.

CLList *filelist=utils.file_list (".","*.txt");
if (filelist==NULL)
{
 printf ("Unable to find any files in specified directory");
 return;

³#®³#®³#®³#®

}

CListElement *temp=filelist - >get_first_element ();
while (temp!=NULL)
{
 printf ("file: [%s] \ n",temp - >get_name ());
 temp=temp - >get_next ();
}
delete filelist;

The benefit here is that the files are stored within a CLLi st as CListElements. You
can use the tools that operate on these objects to accomplish more complex
tasks.

We’ve separated the listing of files from the listing of directories to rule out any
confusion about what is maintained in the listing. Also, the A FC has to compile
on a variety of platforms, and not all platforms support a physical file -system; a
directory listing may mean something completely different on a mobile phone.
The example below demonstrates how to obtain a listing of all sub -directories in
the current directory.

CLList *dirlist=utils.dir_list (".");
 if (dirlist==NULL)
 {
 printf ("Unable to find any files in specified directory");
 return;
 }
 CListElement *temp=dirlist - >get_first_element ();
 while (temp!=NULL)
 {
 printf ("file: [%s] \ n",temp - >get_name ());

 temp=temp - >get_next ();
 }
 delete dirlist;

Now that we can find out what files and directories are located in a certain path,
we might want to open and load a file. The code below demonstrates how you
can use a CFileBuffer class to read in a text file, after which you can access the
individual characters:

CFileBuffer filebuffer;
 char *buffer=filebuffer.load_a_file ("data.txt");
 if (buffer!=NULL)
 {
 printf ("Contents of file is [%s] \ n",buffer);
 }
 else
 printf ("Unabl e to open file");
 delete filebuffer; // this will also delete the contents of buffer

³#¯³#¯³#¯³#¯

The CFileBuffer class (shown above) may seem a bit strange at first. It is the first
version of a class that will be managed by something called CIOBuffer. This
class will present a virtual io layer to the agent, which allows it to load resources
using URL's. The CIOBuffer will then instantiate the appropriate base class to do
the actual work.

Database File Access

The AFC contains tools and utilities that are not neces sarily designed for agents
but will nonetheless assist and expedite development and research. In this
section we will explain how to use the CDBFileIO class, with the accompanying
class: CDBRecord. These tools were initially designed to give agents quick
access to flat text -based database files. One of the later versions of the C++
used these classes to maintain a permanent cache file of known agent
registrations for persistence purposes. Later, when the AFC started adopting the
'to_string' and 'from_string' technologies, another capability was added. Every
database record and every database using those records can be collapsed into
an ACL formatted string, which can be sent to another agent and expanded into
an internal data-structure.

Before we explain how the database class works, we need to demonstrate how a
record is defined and used within the AFC. The public appearance of this class
is:

class CDBRecord : public CLList
{
 public:
 CDBRecord (void);
 virtual ~CDBRecord (void);

 BOOL from _string (char *);
 char *to_string (void);
};

As you can see, the basic record class does not contain any specific references
to data types held within the record. It does not contain an index either. The class
listed above was designed to allow develo pers to construct their own records.
Currently, the record assumes that its contents are a list of CListElement objects
(See documentation on the CListElement class, above). The record uses the
'name' variable to store the content of a record field. No tra nslation or casting is
done on the data and the developer is responsible for refining this behavior. As
you can see we have two ACL management methods defined in the record class:

 BOOL from_string (char *);
 char *to_string (void);

You can use the 'f rom_string' method to fill a new record with data from an ACL
formatted string. Any existing data within the record will be deleted. Here is an

³#°³#°³#°³#°

example of what this might look like:

 CDBRecord *record=new CDBRercord ();
 BOOL ret=record - >from_string ("(re cord :element (first) :element
(second))");
 if (ret==FALSE)
 printf ("Error expanding ACL string");
 else
 printf ("Successfully filled record");

After the operations listed above the contents of the record would be:

 "first"
 "second"

When you want to send the contents of a record to another agent, you can use
the code below to collapse the data in the record into an ACL formatted string:

 char *string=record - >to_string ();
 if (string==NULL)
 printf ("Unable to collapse data into ACL string");
 el se
 printf ("Collapsed data into: %s",string);

Now that we have described how a record is defined, we can proceed with the
documentation of the database class. The public face of this class is defined as:

class CDBFileIO : public CFileBuffer
{
 public:

 CDBFileIO (void);
 virtual ~CDBFileIO (void);

 BOOL load_records (char *);
 BOOL save_records (char *);

 BOOL from_string (char *);
 char *to_string (void);

 int get_nr_columns (void);
 int get_nr_rows (void) ;

 BOOL add_record (CDBRecord *);

 void reset_db (void);
};

As you can see, the constructor does not take any parameters. Creating an
object of this class will create an empty database. You can either start adding
records by hand or load t hem from a file. Keep in mind that this particular class is
the base class for all databases in the AFC. As such it represents a flat view of a
database. Records are organized in a matrix representation whereby the first

³#ª³#ª³#ª³#ª

record contains the keys for the da tabase. To clarify further how this flat
database view works, let's look at an example:

 // create empty database
 CDBFileIO *database=new CDBFileIO ();

 // create the first record that will hold the list of keys
 CDBRecord *record=new CDBRecord ();

 // add a number of keys to the record ...
 CListElement *key1=new CListElement ();
 key1 - >set_name ("SSNR");

 CListElement *key2=new CListElement ();
 key2 - >set_name ("First Name");

 CListElement *key3=new CListElement ();
 key3 - >set_name ("Last Name");

 record - >add_element (key1);
 record - >add_element (key2);
 record - >add_element (key3);

 if database - >add_record (record)==FALSE)
 printf ("Unable to add record to database");

The code shown above sets up a new database using code. Now that you have a
formatted database, you can start adding fields. This works exactly the same way
as adding the keys to the database. Below is a small fragment that demonstrates
this:

 // create the first record that will hold the list of keys
 CDBRecord *record=new CDBRecor d ();

 // add a number of keys to the record ...
 CListElement *field1=new CListElement ();
 field1 - >set_name ("123455652");

 CListElement *field2=new CListElement ();
 field2 - >set_name ("Martin");

 CListElement *field3=new CListElement ();
 field3 - >set _name ("van Velsen");

 record - >add_element (field1);
 record - >add_element (field2);
 record - >add_element (field3);

 if database - >add_record (record)==FALSE)
 printf ("Unable to add record to database");

The database base class as described here was des igned to give agent
researchers a quick and easy tool to take their experimental results and stream

³#±³#±³#±³#±

them to a database file for future examination. Interaction with the actual files is
achieved through two methods:

 BOOL load_records (char *);
 BOOL s ave_records (char *);

We assume here that your files will be dos or unix text formatted files with TAB
separations between columns. Use the 'load_records' method to fill a newly
created database object with the contents of a file. The parameter that this
method takes is the name of a file that holds the database. Subsequently you
can save a database by calling the method 'save_records ()' with the name of a
file to be saved as a parameter. In the case you want to flush databases using
the last used filenam e, you can use the method 'save_records' with no file
parameter. This will call 'save_records (char *)' internally with the name of the
last file you saved or opened.

As with most classes in the AFC, you can call 'from_string' and 'to_string' on any
database object. Doing so will either collapse the entire database into an ACL
string ('to_string') or will expand a given string into a filled database
(‘from_string’). The declarations of these methods is:

 BOOL from_string (char *);
 char *to_string (void);

(Note: If you want to store your database as a KQML string on disk, you will have
to maintain your own file pointers).

After you have loaded or filled a database you can obtain some basic information
from it by using:

 int get_nr_columns (void);
 int get_nr_rows (void);

These methods ultimately calculate the extend of the database matrix and return
the result.

In case you want to completely clear an existing database object, you can call:

 void reset_db (void);

This will:

• Remove all records
• Reset the keys
• Set the number of columns and rows to 0

³#²³#²³#²³#²

Wildcard Matching Support

The purpose of this class is to store and manage a number of wildcard
descriptions. Matching methods can be used to match a string to a set of
wildcards. The wildcard class does not assume a file system model, although it
can be used for that. Below is the public part of the wildcard class:

class CWildCard : public CLList
{
 public:

 CWildCard (void);
 ~CWildCard (void);

 BOOL add_wildcard (char *) ;

 BOOL match (char *);
 BOOL match_nocase (char *);

 BOOL from_string (char *);
 char *to_string (void);
};

As you can see, the class is derived from a linked list. This allows a wildcard
object to store multiple variations of the wil dcard. No additional initialization is
needed. Once the object is created, you can add one or more wildcard
definitions. For example:

 CWildCard *wildcards=new CWildCard ();
 wildcards - >add_wildcard ("infoagent*");
 wildcards - >add_wildcard ("infoentity *");
 wildcards - >add_wildcard ("info*");

After you have configured the object with a number of examples, you can give it
a string to examine. There are two methods available to inspect a sample string:

 BOOL match (char *);
 BOOL match_nocase (char *);

Either method will return TRUE if the string matches any of the patterns and
FALSE if it matches none. Use the second method to disregard any case
matching between wildcards and input string.

As with most AFC classes, you can use the 'from_strin g' and 'to_string' methods
to collapse the data into an ACL formatted string. In the CWildCard class, these
methods are declared as:

 BOOL from_string (char *);
 char *to_string (void);

³#³³#³³#³³#³

The resulting ACL string describes the list of wildcard patte rns stored in that
particular object.

Adding Custom Sockets to Your Agent

It is possible to add your own socket to an AFC agent. This might be useful in
cases where the traffic going through the socket is of a type not supported by any
existing AFC socket. What follows are instructions for adding a custom socket to
your agent.

You will need to create a new socket class based on one of the pre -defined AFC
sockets. The possible socket base types are:

CSocketBase // basic TCP/IP socket
CDataGramSocke t // modification on the previous one that supports UDP
CMulticastSocket // multicast implementation of CDataGramSocket

The CSocketBase and CDataGramSocket behave identically and support the
same API. For the third type, you need to add two more methods to configure it:

 void set_group_ip (char *);
 char *get_group_ip (void);

 void set_group_port (int);
 int get_group_port (void);

These methods allow you to configure the multicast group and port. The AFC
already supports multicast, but this socket is pre -configured to use the UPnP
group. In an example below we will demonstrate how to properly use these
methods. But first, there is one more method that is crucial for a custom socket:

 set_sockettype (__MY_SOCKET__);

This method will identify your socket instance as a custom socket. Whenever
data arrives on this channel, your agent will be informed through the
CBasicAgent method:

 virtual void process_custom (CSocketBase *);

When this method is called for your agent, you will be given a pointer to a socket base class. This is in actuality a pointer to an instance of your

socket type, which you will have to cast to the proper type. Below is a full example of an agent that incorporates a custom multicast socket.

#i fndef __CUSTOM_SOCKET__
#define __CUSTOM_SOCKET__

#include "c_afc.h"

#define __MY_SOCKET__ _USER_+1

¬#«#«¬#«#«¬#«#«¬#«#«

class CMySocket : public CMulticastSocket
{
 public:

 CMySocket (CWnd *);
 ~CMySocket (void);
};

#endif // __CUSTOM_SOCKET__

Below is the implementation of our new socket. We only call three methods to

configure our instance. The third one is mandatory, since this will properly identify our socket as a new type:

/* --
----------- */
CMySocket::CMySocket (CWnd *a_wnd) : CMulticastSocket (a_wnd)
{
 set_group_ip ("239.192.0.14");
 set_group_port (1900);
 set_sockettype (__MY_SOCKET__);
}
/* --
----------- */
CMySocket::~CMySocket (void)
{

}
/* --
----------- */

Now that we have the layout of our custom socket, we can add it at runtime
to our agent. Make sure you add the socket at the appropriat e time in your
agent. We need a running Communicator, which limits the place to insert our
socket to either the 'process_create' method or one of the event methods that can
occur when the agent is in the __AGENT_STATE_RUNNING__ state.

/* ------------------ --
----------- */
void CExampleAgent::process_create (void)
{
 // create new socket and give a pointer to our message handler 'handler'

 CMySocket *simcast=new CMySocket (handler);

 // add the socket t o our agent ...

 add_alternative_socket (simcast);

 // since this socket is a multicast socket, we need to join the multicast
group

 int ret=simcast - >JoinGroup (get_group_ip (),get_group_port (),3,FALSE);

¬#«#¬¬#«#¬¬#«#¬¬#«#¬

 // see what happened ...

 if (ret==TRUE)
 de bug ("<CExampleAgent> Sucessfully initialized custom socket");
 else
 debug ("<CExampleAgent> Error initializing custom socket");
}
/* --
----------- */

We now have a new socket type r unning in our agent. Remember that sockets in
the AFC are always fully duplex. The Communicator assumes that it will only use
one socket to send and receive to an agent. There is no little amount of code
present to guarantee that no more sockets than neces sary are used to talk to an
agent. You can freely send data over this socket using the 'mfc_send' method.
When data arrives on the custom channel your agent will be notified using the:

virtual void process_custom (CSocketBase *);

method. If you override this method you will need to implement the necessary
code to handle the data ready in the socket. Below is an example of how this can
be done using our custom socket from the previous code fragments:

/* -- ----------------------
----------- */
void CExampleAgent::process_custom (CSocketBase *a_socket)
{
 char message [1024];

 if (a_socket==NULL)
 {
 debug ("<CExampleAgent> Empty socket");
 return;
 }

 CMySocket *target=(CMySocket *) a_socket;

 AfxMessageBox (target - >get_data (1));
}
/* --
----------- */

Miscellaneous Utilities

Again, make sure you include the Agent Foundation Classes header and add an
object of type CUtils:

 # include "c_afc.h"

 CUtils utils;

¬#«#­¬#«#­¬#«#­¬#«#­

Since MASs are largely characterized by the use of messages being exchanged
between agents in text format, we provide a number of tools to make
development easier. The following tools demonstrate utilities to manipulate
strings.

White Space

When working with KQM L or XML messages, it is useful to know whether or not
the content of a field contains readable characters. You can use the code shown
below to determine whether a string contains white space only.

Tokenizing

In the AFC the parser, classes will use str ing tools to create strings from lists and
lists from strings. Any CLList object containing objects derived from CListElement
can be expressed in a string, and any string containing elements separated by a
specific character can be expressed in a CLList ob ject. When creating a string
from a list, only the ‘name’ variable within the CListElement object will be added.
Optionally, you can specify a character to be used to separate the list elements.
The code below demonstrates the creation of a list from a str ing of elements
separated by a ‘.’.

CLList *result=new CLList;

 utils.tokenize ("retsina.agent.middleagent.matchmaker",".",result);

 CListElement *temp=result - >get_first_element ();
 while (temp!=NULL)
 {
 printf ("Element: [%s] \ n",temp - >get_name ());
 temp=temp - >get_next ();
 }

 delete result;

Tokenating

“Tokenating” is the term used in the AFC to indicate the inverse of tokenizing.
This functionality will generate a string from a pre -filled CLList object.

CListElement *temp=NULL;
 CLList *list=new CLList;

 temp=new CListElement ("retsina");
 temp=new CListElement ("agent");

 BOOL empty=utils.is_empty_space ("hello world"); // empty is FALSE

 BOOL empty=utils.is_empty_space (" "); // empty is TRUE

¬¬ ¬¬�«#®«#®«#®«#®

 temp=new CListElement ("middleagent");
 temp=new CListElement ("matchmaker");

 char *result=utils.tokenator ('.',list);

 printf ("Resulting string is: [%s] \ n",resul t);

 delete list; // this will delete all elements and the 'result' buffer

An ACL-formatted string encodes assumptions about the contents of the field
stored in the string. Let us assume that it does not matter whether or not the
fields are stored as up percase or lowercase, but that the internal matching does
depend on uppercase. It may then useful to convert an entire list to uppercase.
The following code fragment demonstrates how this can be achieved. The
resulting labels of the elements in the list wi ll all be in uppercase .

CListElement *temp=NULL;
 CLList *list=new CLList;

 temp=new CListElement ("retsina");
 temp=new CListElement ("agent");
 temp=new CListElement ("middleagent");
 temp=new CListElement ("matchmaker");

 char *result=utils.tok enator ('.',list);

 printf ("Resulting string is: [%s] \ n",result);

 delete list; // this will delete all elements and the 'result' buffer

Below is a fragment of code you can use to display the contents of the labels of a
list:

CListElement *temp=resu lt - >get_first_element ();
 while (temp!=NULL)
 {
 printf ("Element: [%s] \ n",temp - >get_name ());
 temp=temp - >get_next ();
 }

 delete list;

Creating unique ‘reply -with’ fields

Depending on the situation, you might want to create a reply_with field. This is a
unique string that can be used to uniquely identify an ongoing dialog with another
agent. You can create one such string with the following code:

char *reply_with=utils.create_reply_with ();
 printf (":reply_with %s \ n",reply_with);
 delete [] repl y_with; // this is not deleted by the object

¬#«#¯¬#«#¯¬#«#¯¬#«#¯

Normally, you would use the UUID classes to create this field. However, this
method was kept since it is considerably smaller than the UUID equivalent. The
Communicator will dynamically switch between the two d epending on the
platform.

String Manipulation

Since most agents communicate by exchanging strings, we provide a number of
tools to manipulate and manage agent -specific strings. Most of the tools were
developed to accommodate the easy development of code dealing with ACL
fragments. The following related operations are available:

 char *remove_parenthesis (char *);
 char *remove_brackets (char *);
 char *remove_angle_brackets (char *);
 char *remove_square_brackets (char *);
 char *re move_curly_brackets (char *);
 char *remove_quotes (char *);

Each method behaves similarly, but triggers on a different character. The
following example demonstrates how to remove parentheses. The same code
can similarly be used to remove othe r characters.

IMPORTANT! The methods listed above work directly on the strings you provide.
This means you cannot use statically declared strings as parameters. Be careful
with these methods

URLs and Web Development

The AFC contains two main classes to facilitate web-related development: the
URL class and a web -socket class. First, we will show the URL class. Then we
move to a web-socket class that can be used to obtain the contents of a URL or
URI. Let us first look at an example of a simple URL operat ion:

 char *string=new char [strlen ("(hel lo world)")+1];
 strcpy (string,"(hello world)");

 char *formatted=utils.remove_parenthesis (string);

 printf ("Formatted string: [%s] \ n",formatted);

¬#«#°¬#«#°¬#«#°¬#«#°

 char formatted_url []="http://www.softagents.org:80/index.html";

 CURL *url=new CURL;
 if (url - >pars e_url (formatted_url)==TRUE)
 {
 printf ("url: [%s] \ n",url - >get_name ());
 printf (" --- \ n");
 printf ("protcol: [%s] \ n",url - >get_proto ());
 printf ("host: [%s] \ n",url - >get_host ());
 printf ("p ort: [%d] \ n",url - >get_port ());
 printf ("page: [%s] \ n",url - >get_webpage ());
 printf ("cgi: [%s] \ n",url - >get_cgi ());

 // let's change the hostname and see what the new url is

 url - >set_host ("www.excite.com");

 printf ("url: [%s] \ n",url - >get_name ());
 printf (" --- \ n");
 printf ("protcol: [%s] \ n",url - >get_proto ());
 printf ("host: [%s] \ n",url - >get_host ());
 printf ("port: [%d] \ n",url - >get_port ());
 printf ("page: [%s] \ n",url - >get_webpage ());
 printf ("cgi: [%s] \ n",url - >get_cgi ());
 }
 else
 printf ("Unable to parser url");

 delete url;

As you can see, the name of the URL object always contains the completely
formatted URL. You can access the different fields and change them to point the
URL to a different location. Be aware, however, that some of the fields can be set
to NULL. For example, if the URL does not contain a reference to a CGI script,
then you will get a NULL back when you attempt to access that field.

The CURL class is based on an unfinished CURI class, which is more generic
than the URL and does not understand concept s such as port number and CGI
scripts. Now that we have an object we can use to represent the location of
resources on the web, we can start to use the CHTTPSocket class to retrieve this
data. You can provide a pointer to either a CURL object, or to a stri ng containing
the formatted URL.

 CURL *url=new CURL ("http://www.softagents.org");
 CHTTPSocket *socket=new CHTTPSocket;

 char *webpage=socket - >retrieve_page (url);
 if (webpage!=NULL)
 {
 printf ("Contents of [%s] \ n",url - >get_name ());
 printf (web page);
 }
 else
 printf ("Unable to retrieve webpage");

 delete [] webpage;
 delete socket;
 delete url;

¬#«#ª¬#«#ª¬#«#ª¬#«#ª

Appendix A: RETSINA Software License

RETSINA Software License

CARNEGIE MELLON UNIVERSITY NON-EXCLUSIVE END-USER SOFTWARE
LICENSE AGREEMENT

RETSINA™
Reusable Environment for Task Structured Intelligent Network Agents(tm)
RETSINA AFC™
RETSINA Agent Foundation Classes™

IMPORTANT: PLEASE READ THIS SOFTWARE LICENSE AGREEMENT
("AGREEMENT") CAREFULLY.
 Unpacking, examining, or using RETSINA software and documentation
constitutes acceptance of this license agreement.

 LICENSE

The CMU Software and Documentation, together with any fonts accompanying this
Agreement, whether from a network accessible site (via ftp, http, etc.), on a disk or CD-
ROM, in read-only memory or any other media or in any other form (collectively, the
"CMU Software") is never sold. It is non-exclusively licensed by Carnegie Mellon
University ("CMU") to you solely for your own internal, non-commercial research and
evaluation purposes on the terms of this Agreement. CMU retains the ownership of the
CMU Software and any subsequent copies and modifications of the CMU Software. The
CMU Software and any copies made under this Agreement are subject to this Agreement.

 YOU MAY:

 1. USE the CMU Software solely for the purposes of personal, academic, and non-
commercial purposes.

 2. COPY the CMU Software only to one other computer owned by you or under your
administrative control if owned by your employer, for the purposes outlined in paragraph
(1), above.

 3. BACK-UP the CMU Software for safety purposes only. You may make one (1) copy
of the CMU Software in machine-readable form for back-up purposes. The back-up
copy must contain all copyright notices contained in the original CMU Software.

 4. TERMINATE this Agreement by destroying the original and all copies of the CMU
Software in whatever form.

¬#«#±¬#«#±¬#«#±¬#«#±

YOU MAY NOT:

5. Assign, delegate or otherwise transfer the CMU Software, the license (including this
Agreement), or any rights or obligations hereunder or thereunder, to another person or
entity. Any purported assignment, delegation or transfer in violation of this provision
shall be void.

6. Loan, distribute, rent, lease, give, sublicense or otherwise transfer the CMU Software
(or any copy of the CMU Software), in whole or in part, to any other person or entity.

7. Alter, translate, decompile, disassemble, reverse engineer or create derivative works
from the CMU Software, including but not limited to, modifying the CMU Software to
make it operate on non-compatible hardware.

8. Remove, alter or cause not to be displayed, any copyright notices or startup messages
contained in the CMU Software.

9. Export the CMU Software or the product components in violation of any United States
export laws.

Title to the CMU Software, including the ownership of all copyrights, patents,
trademarks and all other intellectual property rights subsisting in the foregoing, and all
adaptations to and modifications of the foregoing shall at all times remain with CMU.
CMU retains all rights not expressly licensed under this Agreement.

The CMU Software, including any images, graphics, photographs, animation, video,
audio, music and text incorporated therein is owned by CMU or its suppliers and is
protected by United States copyright laws and international treaty provisions. Except as
otherwise expressly provided in this Agreement, the copying, reproduction, distribution
or preparation of derivative works of the CMU Software is strictly prohibited by such
laws and treaty provisions. Nothing in this Agreement constitutes a waiver of CMU's
rights under United States copyright law.

This Agreement and your rights are governed by the laws of the Commonwealth of
Pennsylvania. If for any reason a court of competent jurisdiction finds any provision of
this Agreement, or portion thereof, to be unenforceable, the remainder of this
Agreement shall continue in full force and effect.

THIS LICENSE SHALL TERMINATE AUTOMATICALLY if you fail to comply with
the terms of this Agreement.

 PROVISION OF EVALUATION

You expressly agree to provide feedback as to the usefulness, performance, applicability,
and any perceived benefits or drawbacks of the CMU Software, while evaluating the

¬#«#²¬#«#²¬#«#²¬#«#²

CMU Software for the purposes of paragraph (1), above. You expressly acknowledge
and agree that providing such feedback will not obligate CMU to respond, provide
features, updates, or new releases, as a consequence.

 PROVISION OF EXPERIMENTAL PARTICIPATION

The CMU Software is being provided to you free of charge in the interests of advancing
the state of the art in network-based distributed information technologies. On occasion,
and throughout the duration of this license, you acknowledge and agree that you may be
requested to load and run CMU Software for the purposes of executing network-based
experiments.

 DISCLAIMER OF WARRANTY ON CMU SOFTWARE

You expressly acknowledge and agree that your use of the CMU Software is at
your sole risk.

THE CMU SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF
ANY KIND, AND CMU EXPRESSLY DISCLAIMS ALL WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE CMU
SOFTWARE IS BORNE BY YOU. THIS DISCLAIMER OF WARRANTIES,
REMEDIES AND LIABILITY ARE FUNDAMENTAL ELEMENTS OF THE BASIS
OF THE AGREEMENT BETWEEN CMU AND YOU. CMU WOULD NOT BE ABLE
TO PROVIDE THE CMU SOFTWARE WITHOUT SUCH LIMITATIONS.

 LIMITATION OF LIABILITY

THE CMU SOFTWARE IS BEING PROVIDED TO YOU FREE OF CHARGE.
UNDER NO CIRCUMSTANCES, INCLUDING NEGLIGENCE, SHALL CMU BE
LIABLE UNDER ANY THEORY OR FOR ANY DAMAGES INCLUDING
WITHOUT LIMITATION, DIRECT, INDIRECT, GENERAL, SPECIAL,
CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR OTHER DAMAGES
ARISING OUT OF THE USE OF OR INABILITY TO USE THE CMU SOFTWARE
OR OTHERWISE RELATING TO THIS AGREEMENT (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION OR ANY OTHER
PECUNIARY LOSS), EVEN IF CMU HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL
DAMAGES SO THIS LIMITATION MAY NOT APPLY TO YOU.

¬#«#³¬#«#³¬#«#³¬#«#³

ADDITIONAL PROVISIONS YOU SHOULD BE AWARE OF

This Agreement constitutes the entire agreement between you and CMU regarding the
CMU Software and supersedes any prior representations, understandings and agreements,
either oral or written. No amendment to or modification of this Agreement will be
binding unless in writing and signed by CMU.

 U.S. GOVERNMENT RESTRICTED RIGHTS

If the CMU Software or any accompanying documentation is used or acquired by or on
behalf of any unit, division or agency of the United States Government, this provision
applies. The CMU Software and any accompanying documentation is provided with
RESTRICTED RIGHTS. The use, modification, reproduction, release, display,
duplication or disclosure thereof by or on behalf of any unit, division or agency of the
Government is subject to the restrictions set forth in subdivision (c)(1) of the Commercial
Computer Software-Restricted Rights clause at 48 CFR 52.227-19 and the restrictions set
forth in the Rights in Technical Data-Non-Commercial Items clause set forth in 48 CFR
252.227-7013. The contractor/manufacturer of the CMU Software and accompanying
documentation is Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
Pennsylvania 15213, U.S.A.

