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Abstract

Managing remote network connections can be very intimidating for computer users who

lack a technical background, especially when security is a concern. Users are confronted

with a variety of applications and service configurations that change with domain,

location, and with changing security policy demands. Different configurations lead to

different levels of security and may or may not satisfy security policies even if the

applications still work. Network administrators usually end up configuring computers

manually or posting instructions and FAQs online to solve common problems. These

documents are useful for expert users, but still require time to read and implement.

However for novice users, these documents are often too technical or they are ignored

because of the time spent trying to find them. The information is freely available but it is

not being used. Remote services still fail leading to frustrated users and lost time for the

administrators who then have to diagnose user settings and solve help requests for

common problems. Ignoring security policies may also lead to damaging breaches to

security as unencrypted traffic is passed through public networks.

In an effort to solve these remote network issues and improve the current state of service

interoperability, this thesis presents a novel multi-agent system that uses domain

knowledge to manage user applications. By capturing the security policies, application

profiles, and connection processes as computer readable domain knowledge, the agent

based system can present the current security states of the system to the user with easily

understood icons, discover policy violations before they cause errors, and suggest

solutions. While the software agents are still not able to replace the problem solving

capabilities of the system administrator, the multi-agent system is able to enhance the

user experience by understanding and quickly disseminating knowledge.
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1 Introduction

The purpose of an information system is to provide people with the knowledge they

desire while relieving them from the burden of collecting and extracting that knowledge

from the available data. Current information systems like the Internet, company intranets,

and the databases or file systems that store their content are very good at sharing

information, but they often require too much technical or domain knowledge to be

practical for ordinary users. Help documents, FAQs, APIs, and manuals may be readily

available, but either the time required to search and read through the appropriate

documents is prohibitive or a person may not have the technical expertise or domain

knowledge to use the documents. The information is freely available but is not being used

because it is too difficult to find in the system.

In the domain of remote network access, this lack of timely information exchange often

frustrates network users and burdens network administrators with redundant help

requests. The types of remote access applications and their configurations change from

network to network and there are usually many different ways to connect between the

local and remote networks. People who wish to access the networks remotely must

understand these different modes of connection as well as all of the security and quality

of services implications that accompany the network path they choose to use. Even

correctly configured applications may then have to be adapted to network outages or

undocumented changes. Information about a specific network policy, modem model, or

application is usually available online, but choosing the best application and diagnosing

any problems that occur requires knowledge of the complete network connection. People

often do not have the time or technical understanding of the network to read all the

necessary documents, so they either don't use services or they use the default settings

until an error occurs and then send help requests to the network administrators. The

network administrators then have to take time to respond to each help request. This often

requires multiple message exchanges as the administrators try to understand the current

state of the remote computer and network so they can offer suggestions for interacting
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with the SCS network. Even though the problems are often very similar, it still takes time

to understand what the situation is for each help request and then to help the person

correctly configure their application. This is time the user spends without a working

service and time the administrator has to use to solve a problem that should already be

solved when the network information is posted.

Clearly the problem with the remote network access domain is that although information

is available, the appropriate knowledge is not effectively available when and where it is

needed. When users attempt to access the network remotely from different locations they

often do not know the current state of the local network, their applications, or the possible

paths to the remote network. When a problem occurs and technical help is called upon to

diagnose a problem, that person often does not know the local state of the computer,

application, network or user so time is lost negotiating a common vocabulary to

understand these states.

The THISTLE multi-agent system solves these problems by using intelligent software

agents with a formal knowledge representation to verify remote access connections.

Security, Application, and Policy ontologies written in the Web Ontology Language

(OWL) are used to define the concepts and relationships in the remote network access

domain. Using these semantics, information agents embedded in network applications

can correctly represent the state of the connections in a consistent and well defined

language, thus eliminating the normal ambiguities in help requests. With the aide of a

formal policy verifier written in Maude, an intelligent task agent then uses this state and

the network policies to automatically diagnose network problems and offer possible

options to the user. Remote access users are also presented with a graphical view of their

current connections and properties.

By imbuing the software agents with the appropriate domain knowledge and giving them

control of the network applications, THISTLE is able to effectively transform solitary

user driven applications into a single virtual network of semantic services. The task agent

is then able to view this network in terms of the domain ontology and intelligently
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compose connections that satisfy high level properties about the entire connection instead

of the individual applications. These intelligent services alleviate the user from manually

monitoring and diagnosing the underlying remote applications. The automated nature of

the agents also allows network administrators to effectively update users on new policies

or network services by publishing policies that all THISTLE systems can read and

enforce without any added effort on the users part, thus effectively transferring the

appropriate knowledge from the administrators to the remote users.

The rest of this thesis will discuss the previous work that lead to the development of the

THISTLE prototype, review the emerging technologies that made it possible, detail the

THISTLE Architecture, and describe future research for the project.

2 Background

2.1 Identifying the Problem

While there are continuous efforts to improve the effectiveness of university help

desks[1], most have taken network errors for granted and focused on the management of

24/7 help desks for thousands of users [2]. Some of the larger public universities like the

University of Pittsburgh have turned to knowledge management solutions [3] in an

attempt to improve knowledge reuse. Corporations such as Serviceware [4], Primus [5],

and Parature [6] all integrate common help desk databases and provide sophisticated self-

help web portals for users. Decision trees, collaboration tools, document classification,

and even a Cognitive Processor are used to help manage knowledge created by help desk

administrators, but all of these tools only manage knowledge for distribution between

human users. Even the best of portals take time to search and require users to set up their

own applications. Nothing is done to facilitate the automatic prevention, identification, or

resolution of networking errors.

To discover exactly what could be done to help automate help desks from the client

perspective, in 2003, Sanghi and Steinfeld [7] conducted an extensive survey of remote

access trouble ticket data from the School of Computer  Science  (SCS) Computing

Facilities to determine the specific problems in this domain. Two and a half years of
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tickets were  codified  and then categorized for statistical comparison. The study found

that the majority (47%) of requests were simple phone number queries for modem users

and single configuration changes due to shifting network policies. These are problems

where users either didn’t understand or were not aware of configuration values. Security

problems were also frequent, especially with regards to VPN usage, as over half of end

user problems were related to obtaining necessary user rights. Problems with third party

networks had the highest mean time until resolution. Administrators and non-technical

users often have very different mental models of remote access so extra communications

were required  to determine exactly what people were asking and how their computers

were configured.  It was also noted that administrators made very little use of the “Root

Cause” and “Solutions” fields in the database.

2.2 Problem Resolution Model

Based on these observations, it was determined that the majority of user errors could be

solved locally with the aide of an automated problem resolution system.

Figure 1: Interoperability Problem Resolution Model

Identify Problems:  Remote access users needed a better way to understand the state of

their remote connections and identify when errors have occurred. Programs usually

provide logs or alert messages for errors, but many errors go undetected. A person may

not want information they send to their corporate network to be transmitted in plain text

across public domains, but sending unencrypted messages rarely causes errors. Also the

system needs to discover configuration or connection errors before they cause

applications to violate policies.
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Collect State:  Once problems have been identified, it is important to collect the current

state of the system in a formal language. If users don’t understand the terminology used

in error messages then they can’t effectively communicate what their specific problems

are. Even users who do understand the domain usually do not want to take the time to

search separate logs and run third party diagnostics to determine the current state of their

connections, they just want their applications to run. The system needs a precise model of

remote connections that allows applications, users, and administrators to share a common

mental model of the system and eliminate any of the ambiguities that administrators

usually have to deal with when diagnosing a problem.

Solve Problem: With all the information collected, solving known problems then comes

down to effectively modeling all the requirements and effects of the applications used in

remote connections and matching them to the relevant policies. Problems result from

errors in required components or violations of network policies. Problems can be

corrected by finding new connection options with the same services that meet the

requirements of the policies. When there are multiple solutions, users can be informed of

the consequences of those choices and then use their own personal preferences to decide

which connections to use.

Learn: As problems are identified, diagnosed, and solved the system is creating new

knowledge. If all the steps that lead up to a correct solution are saved in a format that is

flexible enough to compare to future errors, then by saving this state the system can learn.

Learning is inherently dependent on the generality and accuracy of the knowledge used to

model the states of the system.

Re-Use Knowledge:  As was noted in the case study, network administrators currently do

not reuse knowledge. The “Root Cause” and “Solutions” are communicated to other

administrators as needed, but there is no efficient way to inform non-technical users of

ways to resolve common problems. To bridge this gap, once solutions are found, they

need to be learned by the system and automatically distributed to other users.
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2.3 Software Agents

While network administrators and technical end users can solve remote network access

problems easily, the problem resolution model outlined above is ideally suited for

software agents. Agents can react to events at the speed of processors and can perform

tedious policy verification tasks without complaints. As previous work at CMU [8,9] and

elsewhere [10] has shown, systems of software agents are very effective at collecting

domain information and aiding humans in making decisions. These  automated systems

could learn to eliminate errors at the source and thus avoid the entire help desk scenario

by delivering domain knowledge directly to the application. Human intervention would

only be necessary to solve initial problems or resolve hardware failures.

But what exactly is a software agent? The distinction between a control system and a

software agent is sometimes blurred, but it is generally accepted that a software agent is

“an autonomous, (preferably) intelligent, collaborative, adaptive computational entity”.

Very sophisticated programs do often seem intelligent, but in fact have very rigidly

defined controls. For instance a spell checker may seem to understand language, but it

can only compare tokenized strings to a dictionary. Agents are situated in a software

environment and not only react to it, but have the ability to change it based on their goals

[12]. Agents communicate with other agents to share knowledge and collaborate on tasks

[11] which require diverse specialties, something applications never do. They are also

usually characterized by their ability to make choices based on their perceptions, which

requires the ability to infer and execute needed actions in pursuit of their goals.
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Figure 2: Retsina Multiagent System and Individual Agent infrastructures.

Building on many years of experience with multiagent systems (MAS), the Retsina [14]

architecture was developed at CMU as flexible infrastructure to provide the components

common to most agent systems. The MAS infrastructure provides the communication,

security, translation, and discovery mechanisms which agents need to collaborate

effectively. The management services also provide convenient resources for testing and

deploying MAS. The individual agents utilize four generic modules for interfacing with

the MAS infrastructure and carrying out their own tasks. Each agent has a

communication module, a task planner, scheduler, and an execution monitor. The types

of tasks, objectives, and beliefs an agent may have give it its unique domain specific

abilities, but collaboration, planning, and execution are common to all agents.
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Figure 3: Retsina Individual Agent Architecture

Agents interacting in MAS can generally be categorized into four different types –

information, task, middle, and interface agents. Information agents provide intelligent

access to information in the system. They are responsible for creating a specific instance

of knowledge other agents need to use but either can’t or don’t want to find. Task Agents

aide users in a specific service which requires problem solving, adaptation, and an

integration of the domain knowledge found by the information agents. Task agents need

to collaborate with other agents to illicit information or aide with their plans. Middle

agents act as matchmakers and use their knowledge to redirect requests from task and

information agents requesting services to those offering services.
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Figure 4: Basic Retsina Agent Types and Interactions

There have been many studies of autonomous agent architectures, agent description

languages, and multi-agent systems. There have also been many attempts to use agent

based systems in controls, robotics, e-Commerce, and scientific studies and there have

even been some commercial implementations. However, as a technology, software agents

are still evolving. Many agent implementations are focused on simple reactive behaviors

or rule based expert systems with limited ability to reason over a domain or adapt to

changes outside of the rule base. The current THISTLE research efforts hope to improve

these efforts by developing a practical application that incorporates new trends in

knowledge representation and formal methods.

2.4 Reflective Programming in Maude

Maude[15] is a fully reflective programming language and development environment that

utilizes rewriting logic and its equational logic sublanguage to specify formal executable

environments [16, 17, 18]. The reflective nature of rewriting logic allows Maude



10

programs to specify not only the data structures and algorithms common to C or Java, but

to create the actual algebra that defines the programmer’s specific application. Programs

are able to define their own syntax, operations, and data types to model the behavior of

concurrent systems. While a full theoretical explanation of rewriting logic and the

implementation of Maude are beyond the scope of this thesis, the rest of this section will

give an overview of the Maude concepts needed to understand policy verification in

THISTLE.

2.4.1 Functional Modules

Maude is a declarative language based on a sound logical system. Indeed it was designed

as a metalanguage to define formal systems. Every program is built from logic theories

that are expressed as programming modules. Computation is equivalent to logical

deduction based on the rules defined by the logic in the programs. Functional modules

form the foundation of that logic. They create the data types and operations used in the

equational theories. Data types are specified in terms of sorts and subsorts. The keyword

sort is used to define any type in the system and subsorts are used to define more

specific types within a sort. The following example creates Positive and Negative

sorts as specific subsorts of the Rational sort.

subsorts Positive Negative < Integer .

Operations define the syntax used to create sorts. Maude allows both prefix and mixfix

operators to be defined using the op or ops commands. An operation consists of the

op keyword followed by the operator symbols, a colon, then a list of sorts for the

arguments, a right arrow, the sorts for the results, and then any operator attributes.

Underscores are used to specify where mixfix arguments are placed.

op OpName : Sort0 … Sortk -> Sort [OperatorAttributes] .
--- Examples
op + : Integer Integer -> Integer .
op _+_ : Integer Integer -> Integer .

The possible operator attributes include associative, commutative, identity, precedence

levels, and constructor. Constructors are operations that take no arguments but have
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syntax and produce a sort. Identity operators do not affect the sort if included (like adding

0 or a null set). Operators can also be overloaded using different sort types.

To give these operational definitions meaning, equations are used. Equations define the

rules for determining equivalence and serve to simplify the operation. When operators are

used in expressions, Maude will evaluate the equations defined for each operator to

determine what expressions evaluate to. Equations must be confluent and deterministic

(Church-Rosser [18]) so they can always be reduced to a single sort. Variables are simple

placeholders for sort types used to help define equations. The syntax and examples for

both are given in the module below [17].

eq Term-1  = Term-2  [StatementAttributes] .
var name : sort .

--- Example functional module

fmod CARD-DECK is
sorts Number Suit Card .
ops A 2 3 4 5 6 7 8 9 10 J Q K : -> Number [ctor] .
ops Clubs Diamonds Hearts Spades : -> Suit [ctor] .
op _of_ : Number Suit -> Card [ctor] .
op CardNum : Card -> Number .
op CardSuit : Card -> Suit .
var N : Number . var S : Suit .
eq CardNum( N of S ) = N .
eq CardSuit( N of S ) = S .
endfm

Equations can be further refined using conditions. Module defined Boolean operations,

membership axioms, patterns, and equations using the built-in Bool module can all be

used to determine when an equation applies.

2.4.2 System Modules

The system modules build on this equational logic by adding rewrite rules which

transition a system from one state to another. This forms a full 4-tuple rewrite theory ℜ =

(∑, E∪A, φ, R) [16] where ∑ is the signature of the type definitions, E is the set of

equations, A is the set of attributes, R are the rewrite rules, and φ is the frozen set of

arguments to ∑. While equations specified simplifications in the system, rewrite theories

in general define one-way transitions between states. Function modules can be thought of
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as the basic data types of a system, defining structures and their operations, and rewrite

rules are all the possible methods to apply to those structures. However, unlike functional

programming languages, rewrite rules already have a defined set of predicates that must

exist before they can be called. Each rewrite rule consists of the rewrite operator rl, a

label enclosed in square braces followed by a colon, a required term followed by an =>,

and the resulting term with any statement attributes following in square braces. The

required term is like a set of arguments that must be present, but in Full Maude, those

arguments can include conditions on attributes as well.

rl [Label] : Term-1 => Term-2 [StatementAttributes] .

Both terms must be of the same kind [16]. Just as with equations, rewrite laws may have

conditions that can be any Maude expression that evaluates to a Bool sort, membership

axiom, or pattern to search. The conditional equations can even contain additional rewrite

laws. These conditions are much like the formal preconditions defined in languages such

as Z [19] that are used to define formal semantics for functional programs. The difference

is that the conditions in Maude are part of its logical foundation and specifically defined

in the module logic, not a layer of abstraction forced onto the functional code. The

tradeoff is that programmers have to define a formal system and this can be far more

challenging then using functional code to solve tasks. More concrete examples of rewrite

laws will follow in the Full Maude description.

2.4.3 Full Maude

Full Maude is an object-oriented extension of the Core Maude modules written in Maude

using an interactive loop mode. Full Maude defines a generic syntax for objects, classes,

messages, and configurations to aide in the programming of event based systems. A class

defines the structure of an object, just as in Java, and objects are specific instances of a

class. A class can also be thought of as a high level sort, defining the possible object

signatures. A class consists of a class identifier (Cid), which is a sort, and a list of

attributes that are sorts, including class or object identifiers. Classes also support multiple

inheritance with subclasses that inherit all the attributes of parent classes.

class C | attribute1: Sort1, … , attributen: Sortn .
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< Oid_Name : C | attribute1: variable1, … , attributen:
variablen >
msg syntax : Oid Sort1 Sortn -> Msg .

Each object has an object identifier (Oid), a class identifier, and a list of the instances of

its attributes. Objects serve as variables in rewrite rules but actual instances are also

returned as Maude programs are run. Messages are assumed to be “sent” to objects to

convey information, but are mostly left to the design of the programmer. They are

analogous to operators but at the object level. Each message type has a name and a list of

arguments that starts with a destination Oid  and results in a Msg . The Msg  and

Configuration sorts are used as placeholders for groups of msg and Oid sorts.

Configurations are used to express the sort needed for the results of rewrite laws and

equations that have many objects and messages that are not directly part of the rule. It is

like a general state of the overall system.  The following is an example object module that

specifies a 3x3 sliding puzzle game from the Maude Primer [17].

8 3 2 1 2 3
5   6 4   5
4 1 7 6 7 8
Mixed Up Solved

(omod TILE-PUZZLE is
sorts Value Coord .
ops One Two Three Four Five Six Seven Eight : -> Value .
op empty : -> Value [ctor] .
ops 0 1 2 : -> Coord [ctor] .
op s_ p_ : Coord -> Coord .
op `(_`,_`) : Coord Coord -> Oid [ctor] . 
eq s 0 = 1 .
eq s 1 = 2 .
eq p 1 = 0 .
eq p 2 = 1 .
class Tile | val : Value .
msg move : Oid Oid -> Msg .
vars R1 R2 C1 C2 : Coord . var V : Value .
crl [l] : move((R1, C1), (R1, C2))
< (R1, C1) | val : V > < (R1 , C2) | val : empty >

=> < (R1 , C2) | val : V > < (R1 , C1) | val : empty >
if C2 == p C1 .
crl [r] : move((R1, C1), (R1, C2))
< (R1, C1) | val : V > < (R1, C2) | val : empty >

     => < (R1, C2) | val : V > < (R1, C1) | val : empty >
if C2 == s C1 .
crl [u] : move((R1, C1), (R2, C1))
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< (R1, C1) | val : V > < (R2, C1) | val : empty >
     => < (R2, C1) | val : V > < (R1, C1) | val : empty >

if R2 == p R1 .
crl [d] : move((R1, C1), (R2, C1))
< (R1, C1) | val : V > < (R2, C1) | val : empty >

     => < (R2, C1) | val : V > < (R1, C1) | val : empty >
if R2 == s R1 .

endom)

Rewrite rules in Full Maude transition the system from a configuration of objects and

messages to a new configuration of objects and messages. As messages are sent from

object to object, new messages are fired and objects may be created, destroyed, or

updated. As was mentioned before, rewrite rules define all the possible transitions for a

concurrent system. Just as functional methods they do not in themselves have any

specific ordering other then the preconditions specified in the rule and possible

conditional arguments. Concurrent systems are tested by loading the initial object

oriented modules into Maude and then running rewrite and search commands to change

the state or to view all the possible states a system can reach with a bounded number of

rewrites. Maude provides very fine grained control over the different types of searches

and strategies that are employed when choosing which available rewrite rules to execute,

which is necessary when verifying properties of the system, but simple modules can be

run using the basic rewrite or frewrite commands with a number of rewrites to

execute. Maude then returns the resulting configuration of objects and messages after the

rewrite rules have been executed.

3 Emerging Technologies

This is an exciting time for research in software agents. The current research in mobile

computing, pervasive information systems [21], the semantic web[20], and the ever

increasing complexity and demand of large scale commercial distributed software

systems [22] has created a great interest in technologies related to software agents. With

millions of lines of code tied up in legacy projects and project lifecycles decreasing,

companies are looking for better ways to develop and integrate their systems [23].

Although projects dealing with high-level artificial intelligence are still met with much

deserved apprehension, the software industry is beginning to realize the benefits of

adaptable, autonomous, and preferably intelligent software components with formal
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properties. The current web services and service oriented architecture movement has

grown out of this need for autonomy on the internet and has increased the attention of

industry on defining standards for interoperability and information exchange. These

standards are starting to merge with research  efforts typically left to DARPA and

universities.  The following section will detail the emerging technologies that are

changing the way services interoperate and show how research in software agents and

web services are beginning to merge.

3.1 Service Oriented World

Computers and the internet have become an integral part of the daily lives of most

businesses and the growing digital generation [25]. As information becomes more

accessible more people come to rely on it and the demand to improve accessibility

increases. While originally the internet was designed to provide human readable content,

the idea of clicking through different static web pages has become mundane and

inefficient. Online businesses can’t wait for orders to be processed manually or for calls

to be sent to business partners. Internet users don’t want to click through multiple pages

to find information. The same can also be said for desktop applications and operating

systems. As the amount of information sources and the complexity of networks increases,

users are becoming inundated with the task of handling all their separate applications and

migrating the information to PDA’s, cell phones, and laptops. Applications that were

suppose to eliminate paper and increase efficiency seem to only be producing more paper

and less free time. This demand for better more integrated services has been at the heart

of AI and software agent research  since its inception, but now the internet and software

industry are beginning to lay the framework for these composable services to become

common place.

3.1.1 Web Services

Although many .com companies in the late 1990’s promised online services that would

change the way people use the internet, web service technologies are only now maturing

into real usable standards. Web services leveraging the internet and XML [26] are set to
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provide the basic independent components needed to create composable services. XML

has become the industry standard for data interoperability. Unlike DCOM or CORBA,

which use binary interchange formats, XML data is text based with a single standard all

parsers adhere to. While this requires every service to translate data from binary to text

and back, it also does make the data interoperable. Data from any service with a

published schema can easily be parsed by another service. All the current web service

standards build on XML to provide service discovery, data transparency, and even

security. Data transparency is achieved using the Simple Object Access Protocol (SOAP)

[28]. SOAP is a W3C standard for exchanging XML messages. The protocol defines a

simple XML envelope with a header and a body. The header contains domain specific

metadata about the message and the body contains the actual data being transmitted

between SOAP nodes. To discover what XML should be in the SOAP messages, the Web

Service Discovery Language (WSDL) [29] provides an XML language for describing the

abstract functionality and concrete details of a service method. A WSDL description

provides the exact data types and names of all the methods available in a web service and

the sequence of message exchange. A WSDL can be created automatically from the

interface definition of a web service, and the SOAP messages can then be generated from

the WSDL. Universal Description, Discovery, and Integration (UDDI) [30] servers then

allow web services to advertise their WSDL definitions. More complicated business

processes may also be defined using WSCI[31] or BPEL4WS[32] which again combine

the XML definitions of service interfaces to ensure interoperable calls between

components.

3.1.2 Service Oriented Architectures

Service Oriented Architectures are more then just systems using web services. Ideally an

architecture is independent of the underlying components and instead abstracts the types

of components and connection properties that are needed to design a successful system. A

service oriented architecture is a recognition at the architectural level that services are

composed of disparate components that must be able to interact seamlessly with each

other. While objects inside the components may rely on specific interfaces with known

data structures and methods, each component operates as a black box and only provides
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abstract interfaces for other components to communicate with. Functionality in the

system is a matter of composing services from the available components. The component

connections must be designed to support both location and data transparency so they are

not tied to a specific component or platform, but can interoperate with any new

components that may be added later. Achieving this flexibility is difficult.

Interoperability requires added layers of communication and abstraction and an

infrastructure to make these changes transparent to developers. More computation is

needed as information is translated between component and communication layers

instead of direct native function calls. But as the transitions from assembly to functional

to object oriented and even interpreted or platform independent languages have shown,

programmers are more then willing to trade performance for reduced complexity and

added functionality.

3.2 Knowledge Representation

For services that are willing to make the performance tradeoff, XML serves as a very

flexible interchange language. However, XML and the current web service standards

only provide syntactic interoperability [34,35,36]. A SOAP message is known to contain

XML data, and, based on a WSDL, a service can determine what XML data type an

element contains, but XML and XML-Schema provide no way of determining what the

data represents. A web service must know a priori that the message it receives contains a

certain XML element from a previously arranged standard so it can be parsed and turned

into the correct internal data structure for the application. The UDDI servers also can’t

offer any way to search based on the capabilities of a service because WSDL only defines

data types. The best UDDI can do is check to make sure what types you wish to pass

match up exactly with what a service offers. So after all that effort, these XML interfaces

only really provide a standard web interface with data transparency and support for static

compositions of services.

Much of the difficulty with designing more intelligent software agents is also due to the

difficulty in expressing knowledge in syntax software algorithms can interpret. To this
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end, there has been much ongoing research in the area of formal knowledge

representation languages. These languages provide rules for expressing information in a

structured manner that allows software to make implicit and mathematically verifiable

inferences on the explicit knowledge of a given domain. Just as a person inherently

knows that an employee is a person with certain properties, software agents need some

way to understand how person data in XML is related to instances of employee data. This

research builds upon the formal mathematical rules of First Order Logic (FOL), Model

Theory (MT), and their derivatives to create languages that have provably searchable

expressions for knowledge representations. While many of these languages have been

proposed, the computational requirements of reasoning over domains using these

languages have been shown to be NP complete and therefore not practical for software

reasoning. Further research is being done to make these languages more tractable by

removing some of their expressiveness to limit the types of relationships allowable and

therefore improve performance.

3.2.1 Resource Description Framework

In order to make truly dynamic service compositions, web services need some way to

represent the knowledge contained in the XML data so services can adjust to differences

in structure, and matchmaking servers can search for services based on capability instead

of interfaces. The semantic web languages are an attempt to do exactly that. The

Resource Description Framework (RDF) [37, 38] gives XML a standard concept of

classes and properties. Classes are not just XML elements but domain terms and may

have subclasses. Classes and subclasses create a domain taxonomy of possible types.

Properties are relations between classes. Each property has a domain and range of

possible classes, and like classes, properties may have subproperties. Together classes

and properties define all the metadata in RDF. Resources are then described using triples

– statements containing a resource, a property it has, and the value of that property. These

statements are unambiguous because all classes and properties use universal resource

identifiers (URI) – their names are linked to the ontology they are defined in.
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<?XML version=“1.0”?>
<element attribute=“stuff”>
    <childElement>
          <value type=“&xsd:string”>

foo
         </value>
    </childElement>
</element>

<rdf:Property rdf:ID="registeredTo">
  <rdfs:domain rdf:resource="#MotorVehicle"/>
  <rdfs:range rdf:resource="#Person"/>
</rdf:Property>

<rdf:Property rdf:ID="rearSeatLegRoom">
  <rdfs:domain rdf:resource="#PassengerVehicle"/>
  <rdfs:range rdf:resource="&xsd;integer"/>
</rdf:Property>

<rdfs:Class rdf:ID="Person"/>

Code Sample 1: XML and RDF Examples

3.2.2 Web Ontology Language

RDF is fairly powerful. It gives XML resources specific meaning and properties so they

can be more easily searched and compared by software. Class and property hierarchies

provide a basis for semantic matching with exact, general, and more specific matches.

What RDF does not provide is any kind of logic to provide further reasoning. If resource

Bob has the parentOf relation to Bobby, it might be convenient for the system to know

that x parentOf y implies y childOf x, without having to specifically write the second

statement. A knowledge representation is useful precisely because it allows the program

to understand relationships and infer properties that are not directly specified in the data.

Using RDF instead of plain XML allows programs to infer that different structures of

XML elements are actually related based on the class and property hierarchies. The Web

Ontology Language (OWL) [20] is an RDF standard which adds logical properties to the

base RDF taxonomies.
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Table 1: OWL Lite key word Summary

RDF Schema Features:
•  Class (Thing, Nothing)
•  rdfs:subClassOf
•  rdf:Property
•  rdfs:subPropertyOf
•  rdfs:domain
•  rdfs:range
•  Individual

Property Restrictions:
•  Restriction
•  onProperty
•  allValuesFrom
•  someValuesFrom

Class Intersection:
•  intersectionOf

Datatypes
 •    xsd datatypes

(In)Equality:
•  equivalentClass
•  equivalentProperty
•  sameAs
•  differentFrom
•  AllDifferent
•  distinctMembers

Restricted Cardinality:
 •   minCardinality (0 or 1)
 •   maxCardinality (0 or 1)
 •   cardinality (0 or 1)

Versioning:
•  versionInfo
•  priorVersion
•  backwardCompatibleWith
•  incompatibleWith
•  DeprecatedClass
 •    DeprecatedProperty

Property Characteristics:
•  ObjectProperty
•  DatatypeProperty
•  inverseOf
•  TransitiveProperty
•  SymmetricProperty
•  FunctionalProperty
•  InverseFunctionalProperty

Header Information:
•  Ontology
•  imports

Annotation Properties:
•  rdfs:label
•  rdfs:comment
•  rdfs:seeAlso
•  rdfs:isDefinedBy
•  AnnotationProperty
 •    OntologyProperty

3.2.3 Inference

The logics of OWL are based on description logic [39]. Description logic is a knowledge

representation formalism closely related to propositional modal logics. The system is

based on concepts and roles. Concepts make up a set of objects and roles are binary

relations between the objects. Concept and role axioms create the terminology box

(TBox) which is separate from the asserted instances in the Assertion Box (ABox). The

inference system is used to create new assertions from the current ABox and the

relationships defined in the TBox. These assertions are found using an optimized

tableaux calculus[40]. There has been extensive research by Ian Horrocks [40]  and

others to ensure that the axioms contained in OWL are sound and tractable. This has lead

to the three separate OWL specifications – OWL Lite, DL, and Full. The key words for

OWL Lite are given in Table 1. The mathematical syntax for most of the axioms are

given in the table below.
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Table 2: OWL Axioms in Descriptive Logic

4 THISTLE Multi-Agent System

With all these great emerging technologies one might be tempted to ask why aren’t there

more semantic web applications? Where are the composable services to improve

applications? While part of the problem is that the inference engines are still immature,

another problem is that there have not been many practical applications of these emerging

technologies. While the developers are waiting on the inference engines and knowledge

representations, the industrial backers are still waiting on the proven applications. After

all, a sound or complete logic is only a mathematical construct. Semantic applications

will help demonstrate exactly how semantics can be applied and help focus the current

efforts on practical endeavors. The THISTLE project at CMU is a prototype system that

was implemented to help test the feasibility of these emerging technologies and give

direction to further interoperability research in practical semantic applications.
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4.1 Overview

THISTLE is a novel multi-agent system designed to solve remote network domain issues

by facilitating the Problem Resolution Model set forth in [41]. THISTLE identifies

network errors, collects local state, and solves policy violations using a formal knowledge

representation of the current state and network policies. A concise graphical interface

keeps users informed of the current encryption levels and user rights for each monitored

application and displays meaningful alert messages whenever errors occur or decisions

need to be made. The multi-agent system design is based on the Retsina multi-agent

architecture and the individual software agents are compatible with other Retsina agents.

4.2 Knowledge Models

Software agents are “autonomous, (preferably) intelligent, collaborative, adaptive

computational entities” that have the ability to affect their environment. The THISTLE

agents reside on a user’s computer, so their environment is the operating system and

applications that create remote access connections. The software agents affect this

environment by running applications and system tools as a user would. However, in order

to use these tools intelligently to aide users in solving networking problems, the agents

need a way to represent the knowledge a person uses to choose remote network access

connections. For the THISTLE domain, this requires a model of security terms, their

application to remote network access protocols, and a formal way to describe what

behaviors are acceptable. The next sections will detail the development of the Security

Model, Application Profiles, and Network Policies.

4.3 Security Model

The primary goal of the THISTLE system was to make users aware of the security

properties of their connections. Though many users have some notion that connections

should be secured, most do not have the technical expertise to determine exactly what

levels of protection they have and when security is in place. Just as web browsers add

lock icons for SSL connections, the THISTLE system needed some graphical way to
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express current security properties of connections that would give users some sense of

how they had violated security policies. After reviewing the results of the help desk

study, it was decided that the most intuitive approach would be to provide three coarse

levels of granularity for user rights and encryption, as shown in Table 3. Aaron Steinfeld

then designed the accompanying icons. The user rights allow a person to visualize

whether they are currently connected as a public user, a trusted user, or a full member of

the network realm. The encryption icon then informs them if their data is being fully

encrypted, only partially encrypted, or if there is no encryption at all. Instead of worrying

users with the details associated with different types of encryption or authentication

schemes, the icons assume that the administrators creating the security ontology have

already done the worrying and mapped the protocols to the appropriate security levels.

Applications that provide compromised encryption schemes or flawed authentication

should be given their appropriate security levels in the ontology. Technical users may be

interested in seeing more details, but the prototype system is geared toward non-technical

users so more detailed semantics will be left for future work.

Table 3: Simplified Security Parameters

The THISTLE agents needed a formal way to determine what security level should be

applied to all the remote network access services. The model needed to separate the

security concepts from the instances and be flexible enough to support many different
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services. Since this was exactly the goal of the semantic web for web services, OWL was

the perfect fit. There were (and still are) many industrial groups attempting to define

XML web service security standards[42,43] and researchers have also adapted those to

DAML-S. The THISTLE Security ontology is an extension of Denker’s previous

credential and security ontologies [44]. The security ontology was updated from DAML

syntax to OWL syntax and new Authentication and Encryption classes were added as

subclasses of SecurityMechanism.  The SecurityMechanism was then made a subclass of

the OWL-S [45] ServiceParameter so that any SecurityMechanisms could be used in an

OWL-S Profile. OWL-S Profiles were used in order to be interoperable with other web

service technologies and the OWL-S Matchmaker project underway at CMU[35].

Figure 5: Denker's original Security Ontology.

--> denotes Daml subClassOf relations

The original security ontology defined an open interface for describing security

credentials in DAML-S. A security mechanism could have properties related to the type

of syntax, security notation, protocol, encryption, signature, or authentication it had.

Instances were created for many of the current standards and previsions were made to

simplify the addition of new standards that will inevitably become available. A separate

credential ontology created links to XML standards and basic forms of authentication.

For the THISTLE Security ontology, the Data Transfer Protocol was made a Service
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Parameter so more general transfer protocols could be used outside of the security

domain. A RemoteAccessProtocol class was also added to define remote access services

as searchable OWL-S parameters. These changes are highlighted in Figure 6.

Figure 6: Additions to the security ontology mapped to OWL-S ServiceParameter
Blue color indicates new terms.

4.4 Application Profiles

In the THISTLE knowledge model, applications provide services and services are defined

by their ServiceParameters. In the Security ontology, all of the security mechanisms used

in remote access connections were given their respective levels of user rights and

encryption based on the previous technical report and Aaron Steinfeld’s classifications.

The simplified security levels were sometimes difficult to decide in cases like VPN

encryption where traffic is encrypted over the public networks, but not encrypted inside

the SCS domain.

Tool # Tool Rights Encryption
1 SCS   

1.1 mail client public none
1.2 news client public none
1.3 web browser public none
1.4 ISP access tool public none
1.5 Chat client public none
1.6 VPN realm partial
1.7 SSH realm full
1.8 SSH tunnel realm full
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1.9 kerberized telnet trusted partial
1.10 SCP trusted full
1.11 samba trusted none
1.12 Windows neighborhood trusted none
1.13 kerberos trusted partial
1.14 authentication trusted partial

2 Other Domains (including Andrew)   

2.1 SSL-mail trusted full
2.2 SSL-web trusted full
2.3 telnet trusted none
2.4 SFTP trusted Full
2.5 FTP trusted None

Table 4: Service Security Rights and Encryption Mappings

The Application Profiles ontology defines the service class hierarchy and relates all of

these security mechanisms to the service classes. Each service is given an OWL-S

serviceParameterName, authentication and encryption properties based on the simplified

security ontology, and possible port and server properties used by the PortScan agent to

test connections. Every application is given a ServiceProfile as defined in the OWL-S

specification. The profile consists of the name and the service parameters of service

defined by the profile. Thistle applications are given the security policy, which is a

subclass of securityMechanism, and will be described in the next section.

<profile:Profile rdf:ID="MailProf">
        <profile:serviceName rdf:parseType="Resource">
            <rdf:value rdf:datatype="&xsd;string">E-Mail</rdf:value>
        </profile:serviceName>
        <profile:serviceParameter rdf:parseType="Literal">
            <Policy>
                <wsp:Policy>
                <wsp:All>
                    <wsp:ExactlyOne>         <!--  add categories -->
                        <profile:serviceCapability rdf:resource="#IMAP"/>
                        <profile:serviceCapability rdf:resource="#POP"/>
                        <profile:serviceCapability rdf:resource="#SMTP"/>
                    </wsp:ExactlyOne>



27

                    <wsp:ExactlyOne>
                        <profile:serviceCapability rdf:resource="#SSL"/>
                        <profile:serviceCapability rdf:resource="#Login"/>
                    </wsp:ExactlyOne>
                </wsp:All>
                </wsp:Policy>
            </Policy>
        </profile:serviceParameter>
    </profile:Profile>

Code Sample 2: Application Profile in OWL

4.5 Security Policies

While OWL-S provides a framework for defining service parameters, it does not have

any current support for policies that use those parameters. For the actual policy syntax,

THISTLE uses another web service working draft, the WS-Policy specification [46].

Although WS-Policy is only an XML standard, it provides a convenient syntax that is

domain independent and has industrial support. WS-Policy was designed with some of

the other WS-Security standards in mind, so it is a natural fit for the THISTLE Security

Ontology.

The WS-Policy specification is fairly simple. Each Policy consists of a <ws:policy>
element in which policy instances may define Assertions <ws:assertions>. Each

assertion has a specific usage attribute and contains as its value some domain specific

XML elements that can be used to determine if the assertion is valid. Assertions can be

grouped together using <wsp:All>, <wsp:ExactlyOne>, or <wsp:Any>, creating

logical sets of assertions.

<profile:Profile rdf:ID="E-MailPolicy"> <rdf:Property rdf:ID="registeredTo">
        <profile:serviceName>
            <xsd:String>
                <rdf:value>Send-E-Mail</rdf:value>
            </xsd:String>
        </profile:serviceName>
        <profile:serviceParameter rdf:parseType="Literal">
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            <Policy>
                <Service>Send-E-Mail</Service>
                <Condition>
                    <state entity="Host" property="HostDomain" value="NonCMU"/>
                 </Condition>
                <wsp:Policy>
                    <wsp:Assertion wsp:Usage="Required">
                        <AuthenticationLevel rdf:resource="&security;#Realm"/>
                    </wsp:Assertion>
                </wsp:Policy>

   <Message>
Rights too low for Sending Mail. Select Option or only read mail.

                </Message>
            </Policy>
        </profile:serviceParameter>
    </profile:Profile>

Code Sample 3: E-Mail Policy

THISTLE policies are OWL-S service parameters with a WS-Policy element embedded

in a custom <Policy> element. The policy element provides the logical preconditions for

the <wsp:Policy>. Policies are applied to a specific service type and have optional

conditions. Conditions consist of a single statement triple specifying the resource,

property, and value which enables the policy. In the example above, the Send-E-Mail

service (which is the super class of SMTP) requires Realm authentication when the local

host is not on the CMU network.
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4.6 THISTLE Architecture

THISTLE divides the remote network access application into different types of agents

with different roles and varying levels of sophistication.

Figure 7: THISTLE Architecture

Information about the current state of the system is gathered from the Application,

Service, and Policy Agents. The Application Agents are currently simple Information

Agents[14] that monitor the state of an application and expose the services it can provide.

In a similar manner, Service Agents wrap services that the operating system or

networking tools provide. The local Policy Agent stores and parses all the network

policies and is responsible for communicating with any external policy sources. All user

interaction with the system is coordinated through the Interface Agent. Application

planning is done in the Task Agent. It collects all of the state information from the

Application Agents, checks the system state using the Service Agents, and then uses the

policies from the Policy Agent to verify that there are no policy violations. When errors
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occur, the Task Agent determines all the possible correct network options and sends the

choices to the Interface Agent.

Each agent is a separate executable application with its own Retsina Communicator [48]

and knowledge model. All the information exchanged by the agents is modeled using

OWL ontologies and transmitted in KQML [49]. The next section will go into detail

about the purpose of each agent, their knowledge representations, and what design

choices were made in their development.

4.7 Application Agents

Application Agents serve as the virtual body of the THISTLE system, allowing agents to

affect the remote network access connections. Every application that a person ordinarily

uses to connect to a remote network (email, VPN, iPass, Web Browser, etc) is exposed as

an Application Agent. The Task Agent sends Application Agents commands and they

interpret and execute them, starting up applications and configuring settings. While the

applications are running, the Application Agents monitor their status and update the task

agent with the current state. In order to coordinate their activities, both the Application

and Task agents have to share a common knowledge representation or have some

interpreter between the two layers. The Task Agent needs to know not only what services

are available, but also how those services can be composed into remote network

connections and how each service will affect the user rights and encryption of the

connections. To provide this flexibility, the Application Agent provides THISTLE with

an OWL-S service profile for the application and the methods to call to execute those

services. The profiles are also stored on the Policy Agent reflecting the idea that vendors

might provide default profiles while administrators may need to set their own custom

profiles for their domains.

Using the OWL-S service profile gives THISTLE an understanding of not only what

services an application provides, but also how those services affect the security of remote

connections. OWL-S provides a standard framework for defining properties of services in



31

a way that distinguishes them from other services that may offer similar functions. OWL-

S builds on the simple type definitions given in WSDL to provide semantically

meaningful inputs, outputs, preconditions, and effects (IOPE) for the services. The

standard framework allows generic semantic service matchmaker applications to be

written, such as the DAML-S Matchmaker at CMU [35]. The service vendors then fill in

their own properties based on service specific ontologies. In the case of THISTLE, the

service properties are based on the modified Security Ontology of Denker, using the

newly defined Encryption and Authentication rights as derived properties of the services.

Ideally Application Agents would incorporate the application code as their own services,

or call well defined API’s exposed by proprietary applications to make access to each

application’s internal events and methods as seamless as possible. It would also be

possible to create a standard logging interface that output directly to Application Agents

using well defined terminology (perhaps an apache logging appender with OWL

messages). While this can be done with some effort on open source projects, most

commercial applications are designed for human users and provide only error logs or

visual alert messages.

Due to time constraints, THISTLE currently has only two Application Agents, a VPN

Agent and a simple Application Agent stub that calls executables. The VPN Agent is a

full-featured wrapper for Cisco’s VPNClient application. After starting the VPNClient,

the agent parses the VPN log file and checks for errors, warnings, new connections, or

the heartbeat messages to determine the state of the connection. The agent still requires

manual user interaction to connect, sign on, and disconnect from the network, but all the

states are determined automatically. The Mail Agent currently just uses the stub to start

up the Mail application.

4.8 Service Agents

The Service Agents provide the Task Agent with access to the current state of the local

machine. These are custom functions that the Task Agent can use to test and diagnose the

states returned by the Application Agent. For instance, when the VPN fails to establish a
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secure tunnel to the gateway, there may be a local or server side firewall blocking

connections. By checking the networking settings and using a port scan of the server, the

Task Agent can isolate possible errors that the application would have no way to

determine.

THISTLE currently has two Service Agents that were adapted from code initially written

by Rahul Singh. The PortScan Agent has a list of known ports and protocols and is used

to verify the connection to any remote server that a service needs (IMAP port, Kerberos

Authentication Server, VPN Gateway).  The IPRealm Agent is used to determine the type

of the current network domain. Different policies apply to public, trusted, or local

domains and these IP ranges need to be set by the network administrator. As the project

progresses, more networking services will be added to provide knowledge about packets

and routes through the network.

4.9 Policy Agent

The local Policy Agent acts as a link to the knowledge created by the network

administrators. In the absence of any network connection, it allows the Task Agent to

retrieve the current application profiles, network policies, and security ontology. The

Policy Agent also contains convenience methods for parsing and retrieving information

contained in the ontologies. This helped to keep the OWL syntax and Inference

mechanisms confined to a single object.

4.10 Task Agent

The Task Agent is responsible for monitoring and verifying the remote access

connections in THISTLE. Task Agents task the information agents and maintain a high

level view the system in terms of the Security, Application, and Policy ontologies. The

application agents monitor their given applications and update the Task Agent when

services are started, running, or have errors.  The service agents provide further updates

on operating system and network level actions for determining the current state of the

local system. Based on these updates, the Task Agent creates an internal model of the

current running connections and uses the Security and Application ontologies to
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determine the user rights and encryption levels each of the composed services should

have. Connections are checked for policy violations using the Maude Agent whenever

any states change in the system.

4.10.1 Policy Verification in Maude

All connections are verified using a RemoteAccess program written in Full Maude to

search for any violations. The Maude module defines connections as a list of running

processes which have composed properties. Each process contains an application and a

service. Applications have a list of available services and their own properties. The

application names and service types are taken directly from the Service Ontology.

--- CLASSES ---
 class PROPERTY    | name : Qid, value : Qid .
 class SERVICE  | name : Qid, type : Oid, properties : OidList .
 class APPLICATION | name : Qid, services : OidList,
                     properties : OidList .
 class PROCESS     | application : ApplicationID, service : ServiceID .
 class CONNECTION  | properties : OidList, processes : OidList .
 class OWL-CLASS   | subClasses : OidList .

 --- POLICY SPECIFICATION ---
 class CONDITION | instance : Oid, predicate : String,

 property : PropertyID .
 class POLICY    | usage : String, servicetype : Oid, condition : Oid,
    requirements : OidList .

Code Sample 4: RemoteAccess Full Maude Classes

Policy objects are composed of a condition, requirements list, OWL service type, and a

usage. This is basically a direct translation of the policy element used in the Policy

Ontology. To determine if a condition has been violated, a checkPolicy message is sent

with the connection identifier and the current Configuration of the system. A search

command is then issued to see if the conditional rewrite rule fires. If the connection has a

process with the service type or subclass specified in the policy,  and is in the domain

specified by the condition, then the conditional checks will verify that the connection has

achieved any required properties of the policy. If not, then APolicyViolation() message is

returned.

crl [policy_checker] : checkPolicy( CID )
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    < Host     : APPLICATION | name : hostName,
                               services : hostServices,
                               properties : hostProps >
    < conProp  : PROPERTY    | name : conpname, value : conpvalue >
    < reqProp  : PROPERTY    | name : reqpname, value : reqpval >
    < Cond     : CONDITION   | instance : Host, predicate : any:String,
                               property : conProp >
    < Pol      : POLICY      | usage : pusage, servicetype : OwlClass,
                               condition : Cond,
                               requirements : reqProp reqs >
    < OwlClass : OWL-CLASS   | subClasses : subClss >
    < ServID   : SERVICE     | name : servName, type : ServType ,
                               properties : servProps >
    < AppID    : APPLICATION | name : appName, services : ServID
                               appServices, properties : appProps >
    < PID      : PROCESS     | application : AppID, service : ServID >
    < CID      : CONNECTION  | properties : connProps,
                               processes : PID connservices >
 => APolicyViolation( CID, Pol, pusage, reqProp  )
 if  ServType in subClss /\ conProp in hostProps
                         /\ not ( reqProp in connProps )
 .

Code Sample 5: Policy Verification in Full Maude

When the Task Agent needs to verify a connection, all the internal knowledge about the

current state of the system is translated into the Maude syntax defined in the

RemoteAccess module. The Maude Agent then invokes the Maude environment from

inside java and then passes each connection with a checkPolicy() message to Maude. If a

policy violation is found then the Task Agent sends Maude a new configuration which

includes all the possible applications, the violated policy, and a FindOptions() message.

crl [options] : FindOptions( servProps , CID )
    < AppID  : APPLICATION | name : appName, services : ServID
                             appServices, properties : appProps >
    < ServID : SERVICE     | name : servName,
                             properties : reqProp props >
    < CID    : CONNECTION  | properties : connProps,
                             processes : connservices >
 => < CID    : CONNECTION  | properties :  reqProp props connProps,
               processes : < "Process: " + string( appName ) + ":"
                             + string( servName  ) >
      connservices >
    < < "Process: " + string( appName ) + ":" + string( servName  ) >
                  : PROCESS | application : AppID, service : ServID >
    < ServID : SERVICE     | properties : props >
    < AppID  : APPLICATION | name : appName, services : appServices,
                             properties : appProps >
    Option( AppID, ServID, CID )
 if Composable in props /\ reqProp in servProps .

Code Sample 6: Find Options conditional rewrite rule
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The options rewrite law will create Option messages containing the application, service,

and the connection the service needs to be composed with to satisfy the given policy

violation. These Options are then translated back into the Task Agent, which sends the

options to the Interface agent for the user to choose.

4.11 THISTLE User Interface

The Interface Agent is responsible for all the interactions the remote network user has

with the THISTLE system. The user interface was designed by Aaron Steinfeld to

provide non-technical users with a simple and appealing graphical representation of their

current connection properties while being as minimally intrusive as possible. Each

monitored application is given a single collapsible security panel in the application

window. The security panel then contains an alert pane for messages, an option pane for

displaying service options, and a status pane with the current connection status. When

messages arrive from the Task Agent, the appropriate panes slide down and display the

new information.

The key to the Thistle interface is the security abstraction provided by the user rights and

encryption icons. The Security Ontology defines three instances of the Authentication

class – Realm, Trusted, Public, and three instances of the encryption class – Full, Partial,

None. The Service Ontology then defines every protocol in terms of these instances. Each

remote access service utilizes some security or protocol and so inherits their rights and

encryption levels. When connections are composed with VPN, SSH, or a similar service,

the connection inherits the higher rights and encryption levels granted by the tunnels.

4.11.1 Email Scenario

To demonstrate the capabilities of THISTLE, this section will step through a typical

policy verification scenario in which a user starts the system and attempts to send email

through the SCS from outside the network.

1. The Agent Name Server (ANS) is initialized. The ANS can be local or on another

server.
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2. THISTLE system is initialized.

a. The Policy Agent, IPRealm Agent, PortScan Agent, and User Interface

Agents are started.

b. Each agent registers with the ANS and waits for messages.

3. Task Agent is started.

a. The Maude Agent is initialized loading Full Maude and the RemoteAccess

program.

b. The ontologies are requested from the Policy Agent.

c. The IPRealm Agent is told to monitor the Realm at 5 second intervals.

4. Task Agent receives the current Realm and sends an update to the User Interface.
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Figure 8: User Interface after initial network discovery

5. User starts the agentified Mail application.

a. Actual Mail application is launched.

b. Task Agent informs the port scan agent to begin scanning the ports listed

for all the services Mail offers. SMTP, IMAP, POP

Figure 9: Mail Application started

6. Policy Violation Found. The SCS domain allows users to check their email

remotely without realm rights, but to send mail a user must achieve realm status.

The standard Mail login only achieves trusted user rights.
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Figure 10: User Interface with E-Mail Policy Violation

7. Service options and security models are given. To gain realm rights the user can

start up VPN, open an SSH-Client, or use Kerberos with the K-Client.

Figure 11: User Interface with Options for E-Mail Policy Violation
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8. The user elects to start up the Cisco VPN client. Clicking on the VPN icons

launches the VPN Agent and removes the options.

Figure 12: User Interface after VPN is started

9. The VPN starts up and the VPN Agent begins monitoring the VPN logs to

determine if there are any errors. The VPN rights and encryption aren’t applied to

the email connection until VPN actually connects.

Figure 13: VPN Agent waits for the user to connect the VPN
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10. User connects through the VPN. A secure tunnel is established and the VPN

Agent informs the Task Agent of the running ssl-tunnel. The Interface Agent is

updated to reflect this change.

Figure 14: User Interface with VPN service composed

Figure 15: VPN Client has connected.

11. An error occurs at the VPN gateway (port is blocked by an intervening firewall).

VPN rights and encryption are removed, and the new options are given.
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Figure 16: VPN Application blocked, new rights needed
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5 Discussion

The THISTLE system was designed with three main objectives. The first objective was to

make users more aware of the security properties of their remote access connections. To

this end, the user Interface Agent was designed around a simplified security model with

easily understood icons. The second objective was to improve help desk systems by

automating the problem resolution model and proactively solving errors without the

intervention of the help desk. THISTLE solves this objective by using a multiagent

system with agentified applications to monitor connection states and verify network

policies. THISTLE’s third objective was to develop a practical application to demonstrate

the benefits of using a formal knowledge representation language. All the domain

knowledge in THISTLE is modeled using OWL and policies are verified using Maude.

This section will evaluate the current system’s ability to meet these objectives by

discussing its achievements and pointing out its weaknesses.

5.1 Achievements

While the THISTLE system is still a prototype, it has already achieved many of project

objectives. The user interface is very intuitive and, although THISTLE has not been

rigorously tested with non-technical users, the simplified security model does seem to

adequately and succinctly define the properties of remote network access connections.

The rights and encryption icons are easy to recognize and they are color coded with

additional tool tips to aide new users. The first three steps of the automated Problem

Resolution Model have been implemented. Application Agents and Service Agents are

able to autonomously monitor the state of remote access connections and identify when

errors occur. The Task Agent has demonstrated the ability to identify network policy

violations based on connection, allowing the system to determine if errors should occur

without waiting for services to fail. The Task Agent has also demonstrated the ability to

solve network issues by using its knowledge base to offer options with the same services

and improved security properties. Many new technologies have been tested and

integrated into the THISTLE system. Three OWL ontologies were created extending

existing research ontologies and incorporating recommended industry standards such as
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WS-Policy. All the agents make use of OWL for their knowledge representations and use

the open source Jena system to parse and make inferences on the ontologies. The Task

Agent employs a policy verification program in Full Maude to test the abilities of a

formal reflective programming language and experience was gained in modeling systems

using a logical formalism. The autonomous agents are able to each perform their own

tasks and simplify the tasks of others by sharing domain knowledge. The Task Agent was

able to dynamically compose simple virtual services by using the Application Agents to

run applications. Communication between agents has been achieved using both the

Retsina infrastructure with KQML and web service communications using SOAP

messages sent with the open source Axis package.

5.2 Difficulties

5.2.1 Emergent Technologies and Architectural Changes

This project had to deal with many difficulties due to the nature of the emerging

technologies being integrated and its research focus. Changing standards, beta releases of

research tools, the steep learning curves for the technologies, and changes in the system

specifications all slowed the development of the THISTLE system. Developing

ontologies seemed easy enough, but the effectiveness of the ontologies was dependent on

the abilities of the logical layer, the inference engines, which used the ontologies to

produce the resulting agent behavior. After researching JTP [50], RACER [51], and

custom inference engines, HP Lab’s Jena package [52] was chosen to parse and provide

simple inferences. Though easy to configure and integrate, the original Jena 2.0 system

proved to be very slow with only rudimentary access to OWL axioms and incomplete

inferences. After parsing and retrieving class and property definitions, much of the

inferencing had to be moved away from Jena. The system was then designed to leverage

the ongoing research with the DAML-S and now OWL-S matchmaker, using the virtual

machines to find service options and Maude to verify that a chosen option was secure. All

the communications were converted from Retsina KQML messages to SOAP calls and

the agents were given web service interfaces. However, as the original project deadline

approached, the matchmaker was still under development and had not yet been separated

from the UDDI server. Integrating the matchmaker would have required a UDDI server,
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full web server with Axis, Agent Name Server, Maude, and all the agents to be running in

the background of a user’s remote system to aide with connections. Integration with the

matchmaker was left for future work, and the system was reduced to the running agents

and Maude with a local or remote Agent Name Server. This simplified the system, but

put more emphasis on the Maude application that now had to handle diagnosis,

verification, and composition of services. This created multiple internal views of

ontologies, with Jena having its own internal ontology structure, Maude needing to

support reasoning to perform the policy verifications, and the java Task Agent having

another view of the knowledge to translate between the two systems. Adding features

required changes to all three models and the increased complexity introduced both

inefficiencies and errors into the system.

5.2.2 Developing a Reflective Logical Formalism

While the logical formalism of the remote access domain in Maude is now one of

THISTLE’s best features, the reflective programming language was the most challenging

technology to learn and integrate. The Maude system is designed from a formal methods

perspective, which is very unique. Maude provides a logical foundation and

metalanguage for defining syntax instead of keywords and familiar operators. Maude

programs create a domain algebra of sorts and equations instead of objects with an API.

Maude uses rewrite rules with local logical transitions to create concurrent systems

instead of interwoven loops and method calls. As with all new perspectives, this required

some effort to get comfortable with. This effort was further increased by the limited

debugging capabilities of the Maude runtime environment. Maude is a semi-compiled

language and Full Maude is written entirely in Maude. When tracing is enabled in the

system Full Maude runs through tens of thousands of rewrite rules to parse and run a

search theory. Without knowing what is important and being familiar with how to filter

the output, the trace is useless. When traces are disabled, Maude simply returns. A failed

search will return nothing but the number of rewrite rules executed, and improper

searches can cause Maude to fail with no errors given. Modules have to be tested line by

line to find parse errors which get increasingly difficult to find as new syntax is created.

Maude has extensive documentation (260 pages) on its logical foundations and another
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173-page primer written for new users, but many examples from these documents need to

be modified to run correctly (causing much confusion) and they do not focus on the

actual errors that can occur when attempting to learn the system. The system is fine for

experienced users, but required painstaking trial and error testing to learn.

Since the start of the THISTLE prototype in August, many of these technologies have

made significant improvement. The W3C has improved the OWL status to an official

recommendation. Maude 2.1 has been released and Mobile Maude is developing direct

socket communication with external programs. The DAML-S matchmaker has been

greatly improved and the W3C and Oasis groups have made significant progress towards

standardizing the other web services technologies, including security, UDDI, and process

specifications. Also more commercial semantic applications are also making their way to

market, further validating the usefulness of semantics.

5.3 Future Work

5.3.1 More, Smarter Agents

The THISTLE MAS is still a prototype that requires more work and new features before

the system can be deployed across SCS. More Application Agents with better access to

application methods are needed to proactively change settings not available in

configuration or log files. For instance, a Mail Agent running an open source mail

application could set preferences while the application runs and read incoming mail to

check for relay errors and bounced messages. It would also be notified of new states by

application events instead of having to constantly poll a log file as the VPN agent does.

The basic system also still needs to learn and reuse knowledge derived from the solution

of policy violations. The current system is event driven and has an understanding of

policies and current connections, but does not have a process model for service operation.

While it is helpful to know that services have failed and find solutions, it would be better

to learn where errors occur in the connection process and match these errors to different

solutions. This would allow the Application Agents to model the operation of each

application’s services and map errors at any step to diagnostic and recovery methods. If a
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new error occurred at any step in the process, or the application did not follow the given

process model, administrators could be automatically informed of the error and given the

process with the current system wide states at each step and the diagnostics performed.

The Task Agent would carry out the same process verification using the high level view

of the system and reporting in terms of ontology classes. When the administrators

diagnose the error, their solution would be added to the process models and then

distributed to all the agents in the system. The process models and current ontologies

would allow the agents to be more proactive in solving issues before they arise and serve

to quickly learn all the errors common to the system. This work could be done in parallel

with the efforts of the OWL-S group or utilize the BPELWS or WSCI proposed industry

standards.

5.3.2 Improved Architecture

To facilitate the addition of the process model and multiagent learning, the current

architecture needs to be streamlined by either embracing Maude or a new java based

semantic reasoner and eliminating the different ontology representations. All the thinking

should be done using one internal model and one inference engine and this should

probably also be linked with the planning and scheduling components of the system. If

Maude is going to be used then the manual java translation of ontologies and connection

states should be changed to an XSLT script and the java Task Agent should only be used

for communication and scheduling. The RemoteAccess program in Maude would also

have to be upgraded to provide nearly full OWL compatibility and add new modules for

the process specification being used. This would require a new algebra and use of more

of Maude’s advanced features. If it were decided that Maude is too difficult to use, then a

pure java agent would need to have its own internal ontology representation and

inference mechanism. A new OWL compatible knowledge base and process planner

should be added to the general agent classes.

5.3.3 Knowledge Representation

The current agents make use of OWL ontologies and a custom Maude application to

understand remote access connections and communicate knowledge. However, due to the
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limited capabilities of the inference mechanisms in Jena and the custom Maude code,

knowledge that should be in the internal semantic knowledge base is still being processed

in java. The Task Agent has its own data structures for modeling connections that rely on

the semantics, but also extend them. To gain the full advantage of having a semantic

knowledge base, the agents need to only “think” in OWL. All the internal state should be

represented as instances of OWL classes. The difficulty with this approach is that the

logics of OWL are limited. The OWL axioms are useful for describing classes, but can’t

replace programmatic rules that are needed to execute based on the instance knowledge.

While one could develop a policy violation class in OWL, inferring that a policy is in

violation and then that an action must be taken, requires a very adept interpreter for the

inference engine. However, once an application asks for a specific class name to perform

processing on its properties, the application is again dependent on the ontology. Changing

the name of a class will cause errors and adding new properties or classes will not

provide the agent with any new features until it is coded to use them. This dependency is

fine for static domains such as the THISTLE system, where class structures are constant

and operations on the instances are also set, but research should be done to determine

how these dependencies could be avoided.

5.3.4 Extras

There are a few other features that were not mentioned in the project goals that would be

useful for future systems. Agent communications could be optimized by having different

protocols for communicating locally versus over the network. Security in the agents has

also not been addressed. The Task Agent has control of many applications so its actions

need to be monitored and malicious users must be prevented from altering ontologies or

sending faulty requests to agents and administrators. Machine learning techniques such as

Bayesian networks might be explored to model user preferences and execute choices

without waiting for user intervention.
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6 Conclusion

Thistle has demonstrated that a multiagent system utilizing formal knowledge

representations of the remote access domain is able to greatly improve the effectiveness

of the help desk system. By automating the problem resolution model with software

agents Thistle is able to proactively solve networking errors on the local computers. A

simplified security model and well-designed graphical user interface make users aware of

the present security state of their connections. The prototype system has also tested the

viability of emerging technologies in the areas of knowledge representation and service

oriented architectures, and shown how future work could apply these results to deploy

Thistle to SCS remote access users. The Thistle system was a successful prototype, but

much work still needs to be done to make semantic applications commercially viable.
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