
JOURNAL OF ALGORITHMS 11, 208-230 (1990)

Competitive Algorithms for Server Problems
MARK S. MANASSE

DEC Svstems Reseurch Center, 130 Lvtton Avenue, Pulo Alto, Culiforniu 94301

LYLE A. MCGEOCH*

Depurtment of Muthemutics und Computer Science, Amherst College, Amhers!,
Mussuchmetts 01002

AND

DANIEL D. SLEATOR~

School of Computer Science, Curnegie Mellon University, Pittsburgh,
Pennsylvuniu 1521 3

Received December 2,1988; accepted April 13,1989

The k-server problem is that of planning the motion of k mobile servers on the
vertices of a graph under a sequence of requests for service. Each request consists of
the name of a vertex, and is satisfied by placing a server at the requested vertex. The
requests must be satisfied in their order of occurrence. The cost of satisfying a
sequence of requests is the distance moved by the servers. In this paper we study
on-line algorithms for this problem from the competitive point of view. That is, we
seek to develop on-line algorithms whose performance on any sequence of requests
is as close as possible to the performance of the optimum off-line algorithm. We
obtain optimally competitive algorithms for several important cases. Because of the
flexibility in choosing the distances in the graph and the number of servers, the
k-server problem can be used to model a number of important paging and caching
problems. It can also be used as a building block for solving more general problems.
We show how server algorithms can be used to solve a seemingly more general class
of problems known as tusk systems. Q 1990 A ~ & C h, Inc.

*Part of the work of the second author was done at Carnegie-Mellon University and was
supported by an NSF Graduate Fellowship and by NSF Grants DCR-8352081 and MCS-
8308805.

+Partial support provided by DARPA, ARPA order 4976, Amendment 20, monitored by the
Air Force Avionics Laboratory under Contract F33615-87-C-1499, and by the National
Science Foundation under Grant CCR-8658139.

208
0196-6774/90 $3.00
Copyri@t 0 1990 by Academic Press. Inc.
AU rights of reproduction in aay form reserved.

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 209

1. INTRODUCTION

Let G be an n-vertex graph with positive edge lengths obeying the
triangle inequality, and let k mobile servers occupy vertices of G. Given a
sequence of requests, each of which specifies a vertex that requires service,
the k-server problem is to decide how to move the servers in response to
each request. The initial locations of the servers are specified. If a requested
vertex is unoccupied, then some server must be moved there. The requests
must be satisfied in order of their occurrence in the request sequence. The
cost of handling a sequence of requests is equal to the total distance moved
by the servers. A server problem is symmetric if, for all vertices i and j , the
distance from i to j equals that from j to i , and is asymmetric otherwise.

An on-line algorithm for solving the k-server problem operates under the
additional constraint that it must decide which server to move to satisfy a
given request without knowing what the future requests will be.

As we shall see later, the flexibility in choosing the distances between
vertices and the number of servers allows us to use the k-server problem as
a building block for solving other on-line problems. Furthermore, the
k-server problem is a generalization of several important scheduling and
caching problems. Here we mention three examples.

Pugingproblems. In a two-level memory system there are k pages of
fast memory and a total of n pages of memory. A page fault occurs when a
page which is not in fast memory is needed there. The paging problem is
that of deciding which page to take out of fast memory when a page fault
occurs. The goal is to minimize the number of page faults. This problem is a
thinly disguised instance of the k-server problem in which all distances are
one. The n nodes of the graph correspond to the n pages of address space,
and the k servers occupy the nodes corresponding to the pages currently in
fast memory.

Caching problems. These are similar to paging problems, except that
the costs of moving different items into the cache differ. An example is the
caching of fonts in a printer or in the memory of a bitmap display. The
parameter to be minimized is the transmission time. The display or printer
can store the bitmaps of a fixed number of characters in its font memory.
The number of bits required to transmit the bitmap of a character varies
according to its complexity. These problems are instances of the asymmet-
ric k-server problem where all move costs into a vertex are equal. Raghavan
and Snir [lo] note that they can be converted to instances of the symmetric
k-server problem (see Section 8).

Two-headed disks. This is the problem of planning the motion of the
heads of a two-headed disk drive along a linear track. Each request requires

210 MANASSE, MCGEOCH, AND SLEATOR

that one of the heads be moved to a particular point along the line. The
problem is to decide which head to move so that the total head movement is
small. This is a 2-server problem in which the distance matrix is that of a
set of points arranged in a line. This problem, as well as variants in which
the servers are in a circle or on the surface of a sphere were considered by
Calderbank, Coffman, and Flatto [3, 41. All of these problems are instances
of the 2-server problem.

We shall examine the k-server problem using an approach to on-line
algorithms that was pioneered by Sleator and Tarjan [ll]. They compared
the move-to-front heuristic (MTF) for maintaining a linear search list to
other list-maintenance heuristics. They showed that on any sequence of
requests the performance of MTF is within a factor of four of the perfor-
mance of any algorithm, even an off-line algorithm that can see all future
requests.

Karlin, Manasse, Rudolph, and Sleator [6] applied this approach to
multiprocessor caching problems, and Borodin, Linial, and Saks [2] applied
it to a more general class of problems called task systems. The former group
used the term c-competitive to refer to an on-line algorithm with perfor-
mance that is within a factor of c (plus a constant) of optimum on any
sequence of requests. More formally, let C,(u) denote the cost incurred by
an algorithm A in satisfying a request sequence (I. Algorithm B is c-compe-
titive if it is on-line and if there is a constant a such that

forallAandu, C,(u) sc-C’(u) + a . (1.1)

An algorithm is competitive if it is c-competitive for some constant c. We
will say that a competitive algorithm is efficient if the constant c is small.
The constant c is called the competitive factor. An algorithm is strongly
competitive if it achieves the smallest possible competitive factor.

In this paper we present efficient competitive algorithms for several
classes of symmetric server problems. We also show how the server prob-
lems that we solve can be used as building blocks to obtain competitive
algorithms for other problems. In Sections 3 and 4 we describe an (n - 1)-
competitive algorithm for the symmetric (n - 1)-server problem and a
2-competitive algorithm for the symmetric 2-server problem, respectively.
In Section 5 we show that the competitive factor of any algorithm for the
symmetric k-server problem is at least k. Thus our algorithms for the
(n - 1)-server problem and the 2-server problem have the best possible
competitive factors.

In Section 6 we introduce the problem of servers with excursions. This
problem differs from the original server problem in that the algorithm has
the option of moving a server to the requested vertex, but is not forced to.

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 211

It has the choice of making a less expensive “excursion” to the vertex, and
returning home. We show how our competitive (n - 1)-server algorithm
can be used to develop a (2n - 1)-competitive algorithm for the (n - 1)-
server problem with excursions.

There is a close relationship between our work on server problems and
the work of Borodin, Linial, and Saks [2] on task systems. This connection
is elucidated in Section 7. We show how our competitive algorithm for the
(n - 1)-server problem with excursions can be used to obtain a (2n - 1)-
competitive algorithm for a class of task systems that is almost (but not
quite) as general as the class of Borodin et al. We also give an (n - 1)-
competitive algorithm for a slightly more restricted, but very natural, class
of task systems called forced task systems.

Section 8 collects a number of open problems related to this work. The
conjectures that we believe far outnumber the theorems that we have
proven.

2. PRELIMINARIES

We let d,, denote the length of edge (u, u) in the graph G. We assume
that the triangle inequality holds (for any three vertices u, u, and w,
d,, I d,, + d,,) and that the lengths are symmetric (d , , = d, , for all u
and u).

An algorithm B is called lazy if it moves a single server to handle each
request at an unoccupied vertex, but does not move servers otherwise. The
following lemma shows that we may restrict our attention to lazy algo-
rithms.

LEMMA 1. For any algorithm B, there is a modified algorithm B‘ that is
lazy, does not cost more, and is on-line if B is.

Proof: This follows from the fact that the triangle inequality holds on
edge lengths and is proven by induction. Suppose that on request sequence
u, B is lazy until the ith request. We show that B’s response to that request
can be changed to be lazy, without increasing its cost on u.

Suppose B moves a server s from vertex u to vertex u on the ith request,
but that the move is unnecessary because some other server is handling the
request. Suppose that the next request that s handles alone is at vertex w.
Algorithm B’s cost for moving to u and then to w is d,, + d,,. If the
unnecessary move is deleted, s would eventually move directly from u to w
at cost d,,. By the triangle inequality d,, s d,, + d,,. No other moves
change, so the modified algorithm does not cost more. 0

212 MANASSE, MCGEOCH, AND SLEATOR

The algorithms described in this work will all be lazy. In order to prove
that an algorithm is competitive within a certain factor, it will be sufficient
to compare it to other lazy algorithms, since they outperform all others.

The on-line algorithms we describe have another property: they com-
pletely ignore requests for service at vertices that are already covered. These
requests do not affect later decisions. It is easy to show that we only need to
consider such algorithms.

Call a request sequence u hard for algorithm B if B must move some
server in response to every request in u. Algorithm B is said to be
c-competitive on all of its hard request sequences if there exists a constant a
such that C,(u) s c . C’(u) + a for all hard u and all algorithms A.

LEMMA 2. If B is a server algorithm that ignores all requests to covered
vertices and is c-competitive on all of its hard request sequences, then B is
c-competitive.

Proof Let B be such an algorithm and let u be a sequence of requests.
When algorithm B is run on u, some of the requests force a server to move,
and some do not. Let u’ be the subsequence of u consisting of requests on
which B must move a server. Because B ignores all requests in u to covered
vertices, we know that C,(u) = C,(u’).

Let OPT be an off-line algorithm that handles every request sequence
optimally. (It is obvious that such an algorithm exists because there are only
a finite number of ways of handling each request sequence.) Clearly
Corn(a’) I Corn(a) because it is impossible, by the triangle inequality,
that the extra requests in u lead to a lower cost. Combining these bounds
with the fact that B is c-competitive on u’, we get:

C,(u) = C,(0’) I c * Corn(a‘) + a I c * corn(u) + a.

This proves that B is c-competitive on any sequence u. 0

Lemmas 1 and 2 together show that in order to prove that our algorithms
are competitive, it is sufficient to compare them to lazy algorithms on hard
sequences.

2.1. An Optimal Off-line Algorithm

Let Corn(a, S) be a function whose value is the cost of a minimum-cost
algorithm (making lazy moves only) that handles request sequence u and
ends up in state S (covering a particular set of vertices). We can compute
this function recursively as follows, assuming that the servers are initially

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 21 3

covering a set of vertices So:

if S = So
otherwise Con(E’ ’) = { !:defined,

min, Corn(u, T) + d(T , S) ,
undefined, otherwise,

if u is covered in S
Co,(au,S) =

where d(T, S) is the cost of a transition (by a lazy move) from state T to
state S. This is a correct method to compute the function because the
minimum-cost algorithm for reaching state S at time i must have been in
some state T at time i - 1.

A dynamic programming procedure can be used to compute the cost of
an optimal algorithm handling request sequence u. Build a table with
la1 + 1 rows (one for each prefix of a) and (2) columns (one for each
possible state). The entry in row i and column j is Co,(ui, S,), where a, is
the prefix of u of length i . Each row of the table can be built from the
previous one within time proportional to (i) . Upon completion, the
smallest entry in the last row is the cost of a minimum-cost algorithm that
processes sequence u. Furthermore, the table-building procedure can be
modified to actually produce an optimal sequence of moves. Every entry in
the table equals some entry on the previous row plus (perhaps) the cost of a
move. By saving this information, it is easy to follow pointers back from
any minimum entry on the last row and determine a sequence of moves that
achieves that cost. It is possible for an on-line algorithm to maintain the
current row of this table.

2

2.2. Residues

Based on CO,(u, S) we can now define a new function which measures
how well an on-line algorithm B is doing compared to the optimal. Call
R ,(u, S) the c-residue function and define it as

R,((I, S) = c * Corn((I, S) - CB(u). (2.1)

This function has a number of useful properties. First, it is easy to compute.
Call (R,(u, Sl), R,(u, S2), . . .) (for some enumeration of states) the c-
residue vector for sequence u. Because of the dynamic programming method
of computing Con, any on-line algorithm can compute its current vector of
residues. The time required for this is bounded by a small polynomial if the
number of servers is small.

Residues are also useful because they can be used to prove that algo-
rithms are competitive. The minimal cost of handling sequence u, as noted

214 MANASSE, MCGEOCH, AND SLEATOR

before, is min,{ CopT(u, S)}. Therefore for any algorithm A ,

c C,(u) - C,(u) 2 min { R,(u, S)} .
S

By Eq. (l.l), B is then a c-competitive algorithm if there is some constant a
such that R,(u, S) 2 - a for any u and S. Our proofs of competitiveness
will use this approach.

The correctness of proofs using residues does not depend on the starting
residues, which can be set to arbitrary constants. Suppose that, for some set
of initial residues, there is a constant lower bound on all residues. That
bound will hold (or be improved) by raising the initial residues for non-
starting states to 00, effectively making them impossible. Furthermore, the
bound will vary by at most a constant if the residue for the starting state is
set to any constant.

It should be noted that the definition of residues used here differs slightly
from the definition appearing in [8]. The proofs in this paper are greatly
simplified by allowing some freedom in the initial residue values and by
defining Com(u, S) in terms of opposing algorithms that make only lazy
moves.

3. AN (n - l)-COMPETITIVE ALGORITHM FOR n - 1 SERVERS

The balance algorithm (BAL) for the k-server problem works as follows.
For each server, the algorithm maintains the total distance it has moved
since the start of the request sequence. If the server is currently at vertex i ,
this cumulative distance is denoted by Di. Now consider a request at a
vertex j. If j is already covered by a server, then BAL does nothing. If j is
not covered, then BAL moves the server on vertex i to vertex j , where i is
chosen to minimize the expression Di + d i j . In other words, BAL moves
any server that would have the smallest cumulative cost after moving.

As indicated by its name, the balance algorithm tends to use all of its
servers equally. The following lemma makes this precise.

LEMMA 3. Let 1 be the most recently covered vertex, n be the uncovered
vertex, and i be any vertex occupied by a server. The bound

-dii I Di - D, I din - d,,

holh for any i, at any time after the first move of BAL.

Prook We shall prove by induction that at any time and for all i and j
Di - D. c d i j . This claim is clearly true initially. Suppose it is true up to
some point and that a new request arrives for vertex n. Suppose BAL J r

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 215

moves from vertex k in response to the request, implying that D, + d,, I
Di + din for all i . Vertex n becomes the new “most recently covered”
vertex, and we therefore refer to it as 1’. Vertex k is the new vacant vertex,
which we call n’. The new cumulative distance for the server at l’, denoted
D,,, equals D, + d,,. The other cumulative distances are unchanged. Only
two cases need to be considered to prove that the claim holds inductively.
First, for any i ,

(The inequality here follows from the decision rule.) Further,

0,’ - 0;. = Di - D, - d,, I dik - d,, = din, - dlrnr S dlPi. (3.1)

(The inequalities here follow from the inductive hypothesis and the triangle
inequality.) This completes the inductive proof of the claim. The claim
directly implies the left-side inequality of the lemma. The right-side inequal-
ity is proven in eq. 3.1. 0

We can now prove the following theorem.

THEOREM 4. Algorithm BAL is an (n - 1)-competitive algorithm for the
symmetric (n - 1)-server problem on an n-vertex graph.

Proof. We consider a vector of residues that compares BAL‘s cost to
(n - 1) times the cost of an optimal algorithm. We show that there is a
constant lower bound on these residues, proving the theorem.

There are n - 1 ways an algorithm can use n - 1 servers to simultane-
ously cover a requested vertex and n - 2 other vertices. This means there
are n - 1 non-infinite residues at any step. Let R i denote a residue that
compares BAL‘s cost to (n - 1) times the cost of an algorithm that leaves
vertex i uncovered. Let 1 be the most-recently requested vertex, let n be the
vertex BAL is not covering, and let 2,. . . , n - 1 be the other vertices. Let
the initial R, equal -(n - l)dln, and let Ri (1 < i < n) equal 0. R, is
undefined because vertex 1 must be covered by any algorithm.

As shown in Lemma 2, it is only necessary to consider the request
sequence that always hits n, BAL‘s vacant vertex. For this sequence, we
show that the following invariant holds:

(n - 1)(Dl - d,,) - Z k D k , if j =: n
(3 4 otherwise. R . = {

J (n - l) D j - Z,D,

In conjunction with Lemma 3 (which bounds the difference between Di and
Dj for all i and j) this implies a constant lower bound on the residues. The

216 MANASSE, MCGEOCH, AND SLEATOR

lemma also implies that

for all i and j , Ri s R j + (n - 1) d i j . (3 . 3)

The inductive step requires us to prove that if the invariants hold, then
they will hold after a request at vertex n. If i minimizes the expression
Di + din, then BAL handles the request by moving from i to n. Vertex n
becomes vertex l’, and vertex i becomes vertex n’. The new cumulative
distance for the server now at l’ , denoted Dip, equals Di + din. For every
other server, the cumulative distance is unchanged.

The new residues are described by the equation

R, + (n - l) d i n - din,

min{ R j , R , + (n - 1) d in} - d i n ,

i f j = 1

otherwise.
Rj =

Using inequality (3.3), we obtain

R , + (n - l) d l n - din
R j - din otherwise.

if j = 1
Rj =

Using invariant (3.2), we obtain

Finally, using the update rule for cumulative distances, we obtain

This completes the inductive step. 0

4. A 2-COMPETITIVE ALGORITHM FOR 2 SERVERS

Unfortunately, the balance algorithm described in Section 3 is not
k-competitive when the number of servers is less than n - 1. In attempting
to find a 2-competitive algorithm for the 2-server problem, we ruled out
BAL as well as many other simple approaches. We have obtained an
algorithm RES that maintains certain invariants on its residues and chooses
which server to move by comparing the residues.

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 217

Algorithm RES always keeps its two servers on two different vertices. Let
vertex 1 be the vertex that was last requested, and let vertex 2 be the other
covered vertex. An off-line algorithm must also cover vertex 1, but its other
server could be anywhere. This means there are again (n - 1) non-infihite
residues. Algorithm RES maintains residues that compare the cost incurred
by RES to twice the cost of an optimal algorithm. Let Rli denote the
residue that compares RES to an off-line algorithm occupying vertices 1
and i .

Algorithm RES begins with R,, = d,, + 2d:, for each i . In response to a
request at vertex i, RES moves from vertex 1 if

-

and from vertex 2 otherwise.
To prove that RES is 2-competitive, we need the function,

This function has two important properties. First, its value does not change
if its arguments are permuted. Second, the triangle inequality ensures that

Y(11, u , w , x) + 2d,, 2 Y (Y , 0, w , x) . (4 .2)

THEOREM 5. Algorithm RES is a 2-competitive algorithm for the symmet-
ric 2-server problem.

Proof: Induction and a case analysis suffice to prove that RES main-
tains the following bound for every pair of vertices i and j (where possibly
i = j):

R,, + Rlj 2 y (1 , 2 , i , j) . (4 .3)

These bounds guarantee the 2-competitiveness of the algorithm.
Initially, R,, = d,, + 2d2,. For any i and j,

R,, + RIj = 2(d,, + d,, + d 2 j) .

By the triangle inequality, this is at least 2(d,, + d,,), 2(dli + d,,), and
2 (d l j + d,,), and therefore is at least y (l , 2 , i , j).

We now inductively assume that the invariant holds after some number
of requests and that a new request arrives for an unoccupied vertex i . There
are two cases. Suppose that mink{ R,, - 2dki) 2 2 4 , + d,, and that RES

218 MANASSE, MCGEOCH, AND SLEATOR

therefore moves from 1. By the naming convention, i becomes the new
vertex 1, denoted 1’. The location of RES’s other server, 2, is unchanged.
The updated residues are

Illh,{ R,, + 2dki} - dli if j = 1
otherwise. Ritj =

The following cases show that bound (4.3) holds after RES moves. Let k be
such that mink{ R1, + 2dki) is minimized:

Alternatively if mink{ R,, + 2dki} < 2dli + d12, algorithm RES moves
from 2. Again, i becomes 1’. In this case 1 also becomes 2’. The new
residues are:

A case analysis shows that bound (4.3) holds when RES moves. Again, let k
be such that mink{ R,, + 2dki} is minimized. The first two cases are

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 219

straightforward:

Ri,,, + Rip,, = 2(Rlk 2dki - d2i)

2 2(dlk + d2, 4- 2dki - dZi)

2 2(dli + dzi - dz i)
= 2dli
= 2d1,,,

(4.3)
triangle inequality

= y(l ’ , T, 2’, 2’)

(j # 2‘) Rit, + Rig, = R1k + 2dki + R1j + 2d1i - 2d2i

2 y (1 ,2 , j , k) + 2dki + 2dlj - 2dzi (4.3)

2 y (1 ,2 , j , i) + 2dli - 2d2,
2 2d,, + 2dlj + 2dli - 2d2,

= y (i , 1 , 1 , j)
= y(1’,2’,T, j)

(4.2)

(4.1)
= 2dlj + 2dl j

In order to prove the final case, RiPj + Ri,, 2 y(l’,2’, j , I) , for j , I Z T, it
is necessary to compare the sum of residues to each of the three terms in y:

Ri,, + Ri,, = Rl j + RII + 4dli - 2dzi

= (R l j + R1k) + (R11+ R1k) - 2R1k + 4d1i - 2d2i

2 y (1 ,2 , j , k) + y (1 ,2 , k , I) - 2R1k + 4dli - 2d2i (4.3)

2 2 (d I j + d2, + dl2 + dk, - R,k + 2 4 , - dzi) (4.1)

> 2 (d l j i- d,, + d12 + dkl - (2 4 + dl2 - 2dki)

+2dli - d,i) decision rule

2 2(d I j + d,)
= 2 (~ f , , ~ + d,,,)

Ri,j + Ri,, > 2(d,,, + dl, j)

triangle inequality

symmetric to first case

Ritj + Rip1 = Rlj + R11 + 4d1i - 2dzi

2 y (1 ,2 , j , I) + 4dl, - 2dZi

2 2(dlZ + djl + 2 4 - d2i)

2 2(dli + dj ,)
= 2(dltZt + d j l)

(4.3)

(4.1)

triangle inequality.

220 MANASSE, MCGEOCH, AND SLEATOR

This completes the proof that the bounds hold inductively and that Theo-
rem 5 holds. 0

5. A LOWER BOUND

In this section we prove that any general algorithm for the symmetric
k-server problem must have a competitive factor of at least k. This implies
that algorithms BAL and RES have the best possible competitive factors for
the symmetric (n - 1)-server and 2-server problems, respectively.

We have actually proven a slightly more general lower bound on the
competitive factor. Suppose we wish to compare an on-line algorithm with
k servers to off-line algorithms with h I k servers. Naturally, giving the
on-line algorithm more servers than the off-line algorithm decreases the
“competitive factor.” We prove a lower bound of k / (k - h + 1) on this
factor. A similar approach was taken in [ll], where this lower bound and a
matching upper bound are given for the paging problem.

THEOREM 6. Let A be an on-line algorithm for the symmetric k-server
problem on a graph G with at least k + 1 nodes. Then, for any 1 I h I k,
there exist request sequences ul, u2,. . . such that:

1. For all i , ui is an initial subsequence of oi+l, and cA(ui) < cA(q+l) .

2. There exists an h-server algorithm B (which may start with its servers
anywhere) such that for all i ,

Proof. Without loss of generality, assume A is lazy and that the k
servers start out at different nodes. Let H be a subgraph of G of size k + 1
induced by the k initial positions of A’s servers and one other vertex.

Define (I, A’s nemesis sequence on H, such that o (i) is the unique vertex
in H not covered byA at time i , for all i 2 1. Then

because at each step (I requests the node just vacated by A.
Let S be any h-element subset of H containing o(1). We can define an

off-line h-server algorithm A (S) as follows: The servers initially occupy the

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 221

vertices in the set S. To process a request a(i), the following rule is
applied:

If S contains a(i) do nothing. Otherwise, move the server at node
a(i - 1) to a(i), and update S to reflect this change.

It is easy to see that for all i > 1, the set S contains a(i - 1) when step i
begins.

The following observation is the key to the rest of the proof: if we run the
above algorithm starting with distinct equal-sized sets S and T, then S and
T never become equal, for the reason described in the following paragraph.

Suppose that S and T differ before a(i) is processed. We shall show that
the versions of S and T created by processing a(i) as described above also
differ. If both S and T contain a(i), neither is changed, and there is
nothing more to prove. Otherwise, we are not processing a(l), so both S
and T contain o(i - 1). If exactly one of S or T contains a(i), then after
the request exactly one of them contains a(i - l), so they still differ. If
neither of them contains a(i), then both change by dropping a(i - 1) and
adding a(i), so the symmetric difference of S and T remains the same
(non-empty).

Let us consider simultaneously running an ensemble of algorithms A(S),
starting from each h-element subset S of H containing a(1). There are
(1 1) such sets. Since no two sets ever become equal, the number of sets
remains constant. After processing a(i), the collection of subsets consists of
all the h element subsets of H which contain a(i).

By our choice of starting configuration, step 1 never costs anything. At
step i + 1 (for i 2 l), each of these algorithms either does nothing (at no
cost) or it moves a server from a(i) to a(i -k l), at cost du(i)u(i+l). Of the
(f 1) algorithms being run, (i I i) of them (the ones which contain o(i)
but do not contain a(i - 1)) incur this cost, and the rest incur no cost. So

du(i)u(i+l) . The total cost of running all of these algorithms up to and
including a(t) is

for step i + 1 the total cost incurred by all of the algorithms is (:I:)

Thus the expected cost of one of these algorithms chosen at random is

222 MANASSE, MCGEOCH, AND SLEATOR

Recall that the cost to A for the same steps was

i do(i+l)a(i)*
i - 1

Because the distances are symmetric, the two summations are identical,
except that the second one includes one extra term.

By expanding the binomial coefficients we see that

k - 1
(A - 1) - - k - h + l

(h 1)
k

Finally, there must be some initial set that has the property that infinitely
often its performance is no worse than the average of the costs. Let S be
this set, and A (S) be the algorithm starting from this set. Let a, be all the
initial subsequences of u for which A (S) does no worse than average. 0

This theorem gives a lower bound of k / (k - h + 1) on the competitive
factor, for even if we require our off-line algorithm to start with its servers
in particular locations, we can move the servers wherever we choose at the
cost of an additive constant.

For any symmetric k-server problem, there is no c-compe-
titive algorithm for c < k .

BAL is a strongly competitive algorithm for the symmetric
(n - 1)-server problem.

COROLLARY 9. RES is a strongly competitive algorithm for the symmetric
2-server problem.

COROLLARY 7.

COROLLARY 8.

6. SERVER PROBLEMS WITH EXCURSIONS

Suppose we allow the servers to satisfy a request without actually moving
to the requested vertex. We call this type of response an excursion because
it is natural to think of the server sending off an assistant to make an
excursion to the requested vertex. The assistant satisfies the request, then
returns to the starting point. Let r,, be the cost for a server at vertex i to
make an excursion to vertex j.

A natural example of a server problem with excursions is that of where to
locate k firehouses. In this case d,, is the cost of moving the firehouse from
i to j, and rij is the cost for the firehouse at i to put out a fire at location j.
In order to obtain a competitive algorithm for this problem, it is clear that

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 223

if there are many fires at a particular location, then it will be necessary to
move a firehouse there, even if moving a firehouse is very expensive.

Very little is known about the general problem of servers with excursions.
Special cases that have been considered are 1-server on a graph that is a
tree [l] , and one server on a real line.' The first result assumes that the cost
of an excursion between vertices i and j is proportional to the distance
between them and obtains a competitive factor of three (the best possible).
The second result assumes that the excursion cost is the move cost and
obtains a competitive factor of f (the best possible).

In this section we address the problem of (n - 1) servers with excursions
on a graph of n vertices. As shown in Section 7, the task systems of
Borodin, Linial, and Saks [2] are essentially equivalent to these server
problems. A lower bound on the competitive factor for the (n - 1)-server
problem with excursions gives a lower bound on the competitive factor for
task systems. Similarly, a c-competitive algorithm for the (n - 1)-server
problem with excursions gives a c-competitive algorithm for task systems.
(The latter statement actually only applies to a slightly restricted form of
task systems, those with discrete tasks.) Furthermore, the (2 n - 1)-
competitive algorithm of Borodin et al. for task systems can be adapted to
give a (2n - 1)-competitive algorithm for the (n - 1)-server problem with
excursions.

For a particular problem, let ru be the ratio of the largest excursion cost
to the smallest move cost, and let rl be the ratio of the smallest excursion
cost to the largest move cost. As a corollary of the lower bound theorem of
[2] , the competitive factor of 2n - 1 is the best possible as ru goes to zero.
As rl goes to two, the problem is reduced to an ordinary server problem,
because it is no longer ever useful to do an excursion. As we have shown, in
this case we can obtain a competitive factor of n - 1. For problems in
which the values of rl and r,, are not so extreme, no exact results are known
except that the competitive factor lies between n - 1 and 2n - 1. Perhaps
in these cases the competitive factor actually depends on the distances and
excursion costs.

We have developed a construction that allows us to apply our results on
the (n - 1)-server problem to the (n - 1)-server problem with excursions.
Using this technique and the ideas of the proof of Theorem 6 we have
obtained a lower bound of (2n - 1)(1 + r,,)/(l + 2rJ (assuming ru I 2)
on the competitive factor for the (n - 1)-server problem with excursions.
This slightly improves the lower bound of (2 n - 1)/(1 + r,,) of Borodin
et al. [2] .

This construction allows us to apply algorithm BAL to give a new
(2n - 1)-competitive algorithm for the (n - 1)-server problem with excur-

'Unpublished notes by L. McGeoch.

224 MANASSE, MCGEOCH, AND SLEATOR

sions. The remainder of this section is devoted to describing and analyzing
this algorithm.

In the (n - 1)-server problem with excursions, all vertices but one are
covered by a server, so an excursion to a particular vertex always costs the
same amount. Let the excursion cost for vertex i be ri, where ri = mini ‘ii.

Our algorithm for ‘the (n - 1)-server problem with excursions is called
BALE. It works by mapping the (n - 1)-server problem on a graph G of n
vertices onto a (2n - 1)-server problem (without excursions) in a graph G’
of 2n vertices. It then applies algorithm BAL to the 2n-vertex problem and
maps the resulting moves back to the n-vertex problem.

We obtain G’ from G by making two copies of each vertex of G. The
distances in G’ are defined as follows: If i and j are two vertices of G’ that
came from the same vertex of G (namely k), then the distance between
them is rk. If i and j came from different vertices of G, then the distance
between them in G’ is the same as the corresponding distance in G. Two
vertices of G’ that come from the same vertex of G will be called siblings.
(If rk is more than twice the distance between k and some other vertex,
then G’ will violate the triangle inequality. In this case, the excursion is so
expensive that it will never be used, and we can replace rk by twice the
distance to the nearest neighbor of k without changing the problem.)

Algorithm BALE maintains the following server invariant:

If vertex i of G is the one not occupied by a server, then one of the
vertices of G’ corresponding to i is not occupied by a server.

If the requested vertex i is already covered, then BALE does nothing. If the
requested vertex is unoccupied, then BALE issues a request for the uncov-
ered vertex of G’ in its simulation of BAL. If BAL responds to the request
by moving the server from a vertex to its sibling, then BALE satisfies its
request by doing an excursion. If BAL responds to the request by moving a
server from some other vertex, then BALE responds by moving a server
from the corresponding vertex in G. The cost incurred by BALE is exactly
that incurred by BAL in the simulation.

Algorithm BALE is a (2n - 1)-competitive algorithm for
the symmetric (n - 1)-server problem with excursions.

Let u be the sequence of requests in the (n - 1)-server problem
with excursions. Let u‘ be the sequence of requests issued by BALE to its
simulation of BAL. Given any algorithm A for satisfying u with (n - 1)
servers in G there is an algorithm A’ for satisfying u’ in the (2n - 1)-server
problem in G‘ such that A and A’ maintain the server invariant. The cost
incurred by algorithm A’ is at most that incurred by A for the following
reason: if the request is to a covered vertex in G, then it also to a covered

THEOREM 10.

Proof.

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 225

vertex in G‘, if the request is processed by an excursion in G, then it is
either free in G’ or costs as much as a move from one vertex to its sibling, if
the request is processed by moving a vertex in G, then the corresponding
move can be made in G’ at the same cost. That is, for any algorithm A
there is an algorithm A’ such that

C,*(a’) I C“(.) .

Because BAL is (2n - 1)-competitive (for 2n - 1 servers on 2n vertices),
we know that for any algorithm A’,

Furthermore from the definition of BALE it follows that

These three inequalities show that BALE is (2n - 1)-competitive. 0

7. TASK SYSTEMS

In [2], Borodin, Linial, and Saks considered task systems, a class of
on-line problems more general than server problems. They proved upper
and lower bounds on the best competitive factors that can be achieved for
these problems. There is a very close relationship between their work and
server problems. In this section we describe this relationship and extend
their results.

A task system is specified by an integer n, and an n by n positive real
matrix D satisfying the triangle inequality. The system has n states, labeled
1,2,. . . , n. The entry of d i j of D is the cost of changing from state i to
state j . A sequence of tasks T(l), T(2), . . . , T (N) is to be accomplished in
order by an on-line algorithm. Each task is an n-dimensional vector of
non-negative real numbers which specify the cost of doing this task in each
of the n states. As each task is received, the on-line algorithm has the
option of changing from its current state i to any other state j at a cost of
d i j . It then does the required task in the new state at a cost specified in the
task vector. Of course, the algorithm is not allowed to see the future tasks
while it is making its decision about how to process the current task.

A symmetric, or metrical, task system is one in which the matrix D is
symmetric. Borodin et al. [2] give an on-line algorithm that is (2n - 1)-
competitive for any metrical task system of n states. They also show that

226 MANASSE, MCGEOCH, AND SLEATOR

for any task system and on-line algorithm there are sequences of tasks
which force the algorithm to reach a competitive factor of at least 2 n - 1.

Here we give a different algorithm which obtains the same competitive
factor of 2 n - 1 for almost arbitrary sequences of tasks. Our algorithm
works as long as each task is an integer combination of a set of n basis
vectors b,, . . . , b,, where vector b, is zero in all components except the ith.
The basis set is fixed and known in advance. (For example, if all the task
vectors are known to have integral costs, then we let b, to be the unit vector
with a one in position i and zeros elsewhere.) A set of tasks having this
structure will be called discrete tasks.

Our (2 n - 1)-competitive algorithm for discrete tasks is called GBALE,
because it is a generalized form of the BALE algorithm given in Section 6 .
Our algorithm will use a simulation of an instance of BALE running on an
(n - 1)-server problem with excursions. The size of the server problem is
the same as the number of states of the task system, and the distance matrix
for the server problem, D, is the same as the distance matrix for the task
system. Furthermore, the cost of an excursion for vertex i, r, will be the
non-zero component of b,, the ith basis vector for the discrete tasks.

To process a sequence of tasks T = T(1), T(2) , . . . algorithm GBALE
simulates algorithm BALE, on a new sequence of requests u =
u(l), u(2), For each task T(i), a sequence of zero or more requests of u
are generated. Before each task is processed (as well as after) the following
invariant is maintained relating the state of BALE and GBALE.

The vertex that BALE has decided not to occupy with a server is the
same as the state of the task system chosen by GBALE.

It remains to describe the sequence of requests corresponding to a task
T(i) . First expand T (i) into a non-negative integer combination of the
basis vectors as follows:

T(i) = m,b, + m2b, + * * +m,b,.

The requests generated are m, requests to vertex 1, m , requests to vertex 2,
and so on, ending with m, requests to vertex n. We shall let .(i) denote
this subsequence of u.

In order to process T(i) , algorithm GBALE gives T (i) to BALE. The
state reached by BALE at the end of T (i) is the state chosen by GBALE to
process request T(i) . The invariant is thus maintained.

THEOREM 11. Algorithm GBALE is an (2n - 1)-competitive algorithm
for any metrical task system with discrete tasks.

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 227

Proof. First we shall prove the claim

Observe that the move cost incurred by GBALE is at most that of BALE.
This is because GBALE and BALE start and end in the same state. By the
triangle inequality, the cheapest way to effect this change is to move there
directly, which is what GBALE does.

Let j be the state (the vertex that is unoccupied by a server) in which
BALE chooses to process the last request of T (i) . (This is the state chosen
by GBALE to process T(i).) The task cost incurred by GBALE in process-
ing T(i) is mjrj. The excursion costs incurred by BALE are at least this
much for the following reason. We know that during the last request to
vertex j in T(i), algorithm BALE is in state j . This is because BALE will
never change its state in response to a free request, such as those after the
last request to j . Furthermore, BALE must have been in state j during all of
the requests to j , because BALE will never move into state j in response to
a request to j . Therefore, BALE must have been in state j during all of the
requests to j , and therefore incurs a cost of at least mjrj. This completes the
proof of the claim.

Next, we shall relate the costs of the optimal algorithms for processing T
and (I. Given an off-line algorithm A for processing T there is an off-line
algorithm A’ for processing u at exactly the same cost. Algorithm A’ stays
in the same state during all of the requests of 7(i), and this is the state used
by A to process T(i) . From this, we can conclude:

CoFr(4 2 COPAT).

Combining the above two inequalities with the fact that BALE is (2n -
1)-competitive proves the theorem. 0

There is a natural class of tasks which was not considered by Borodin
et al. [2], for which we have obtained an algorithm with a better competitive
factor. This is the case where each component of each task vector is either 0
or 00. (This means that to process a task, the algorithm must change to a
state in which the task cost is 0.) We call such a task a forcing tusk. In this
case we obtain an (n - 1)-competitive algorithm.

Given a forcing task system S in which there are state transition costs
that are zero, we can transform it to an equivalent task system S’ in which
there are no such zero-cost transitions. We do this by dividing the states of
S into equivalence classes, where two states are equivalent if and only if the
transition cost between them is zero. We define S’ to have one state for
each of these equivalence classes. It is easy to see that any competitive
on-line algorithm for S‘ gives one with the same competitive factor for S. A

228 MANASSE, MCGEOCH, AND SLEATOR

task t given to S is translated into t’, a task for S’ as follows: A component
of t’ is co if all the states in the equivalence class of that component are co
in t , and 0 otherwise.

Our algorithm, GBAL, is built upon BAL, the (n - 1)-competitive algo-
rithm for the (n - 1)-server problem. The construction is very similar (but
not identical) to that used above in constructing GBALE.

For a task sequence T, GBAL generates a request sequence u which it
applies to BAL. For task T (i) in T there is a subsequence T (i) in u. The
invariant is maintained that before and each after T (i) , the state of GBAL
and BAL are the same. (The state of BAL is the name of the vertex not
covered by a server.)

The subsequence T (i) is generated as follows. Let S be the set of states
for which the task component in T (i) is infinite. Let s be the current state
of BAL. As long as s E S, a request to s is generated. Eventually, since
BAL is competitive, and there are no zero-cost transitions, a point must be
reached where s @ S. This marks the end of T (i) . Algorithm GBAL can
now use this state s to process the task T(i) , since it is one of the zero-cost
states of T(i) .

,

,

THEOREM 12. Algorithm GBAL is an (n - 1)-competitive algorithm for
any metrical task system with forcing tasks.

Proot We have CGw(T(i)) I CBAL(T(i)) , because of the triangle in-
equality, and the fact that BAL and GBAL start and end in the same state.

Furthermore, any off-line algorithm A for T gives an off-line algorithm
A’ for (I which costs no more. Algorithm A’ stays in the same state during
all of the requests of T (i) , and this is the state used by A to process T(i) .
From this, we can conclude that C,,(u) I Co,(T). Combining these
inequalities with the fact that BAL is (n - 1)-competitive proves the
theorem. 0

8. OPEN PROBLEMS

The most obvious open problem is to devise a k-competitive algorithm
for the symmetric k-server problem. We conjecture that such an algorithm
exists, but have been unable even to extend our solution to the 2-server
problem to three or more servers. A computer search has revealed that there
are 3-competitive algorithms for certain instances of the 3-server problem.
Further evidence for this conjecture was supplied by Chrobak, Karloff,
Payne, and Vishwanathan,’ who have recently devised a simple k-competi-

*~ersonal communication.

COMPETITIVE ALGORITHMS FOR SERVER PROBLEMS 229

tive algorithm for k servers on a line (a graph in which the distances are
consistent with the Euclidean distances between points on a line).

We do know that there is an algorithm for the symmetric k-server
problem in which the competitive factor depends only on k and n. Because
the k-server problem is a forced task system with (5) states, there is an

((l) - 1)-competitive algorithm. Although this result is very weak, it is the
best bound we know which is independent of the distances.

An even more difficult problem is to find an algorithm for the k-server
problem that matches the lower bound of Theorem 6 when compared to an
optimal h-server algorithm. It would be particularly interesting if there was
a single algorithm (independent of h) that achieved this bound for every h.
The LRU algorithm for the uniform server problem (where all move costs
equal one) has this property [ll].

Nothing is known about server problems with excursions beyond the
results described in Section 6. We conjecture that there is a 3-competitive
algorithm for any one-server problem with excursions when the cost to
move from i to j is a constant times the excursion cost. In [8], a procedure
is described that will compute (in principle) the minimum competitive
factor for any instance of a server problem. We have used this procedure to
verify this conjecture in several small special cases.

The definition of competitiveness carries over in a natural way to
randomized on-line algorithms [7]. In this case we want the expected cost of
the randomized on-line algorithm (taken over all possible outcomes of its
coin flips) to be within a constant factor of the optimum off-line algorithm
on any sequence of requests. In [5], a randomized algorithm for the uniform
k-server problem (the paging problem) is given. This algorithm is roughly
2 In(k). In [9], the competitive factor is reduced to In(k), which is optimal.
A natural problem is to consider the non-uniform case.

In [lo], Raghavan and Snir describe an even more restricted class of
randomized on-line algorithms for server problems. These algorithms are
memoryless in the sense that the only state information they maintain from
one request to the next is the current arrangement of the servers. They show
that their harmonic algorithm is k-competitive for the uniform problem, as
well as the caching problem (all moves into a vertex have the same cost).
They leave as an open problem that of finding a memoryless algorithm that
is k-competitive for any k-server problem.

We know very little about asymmetric server problems. For a particular
asymmetric k-server problem, let A be the maximum over all cycles in the
graph of the ratio of the cost of moving around the cycle in one direction to
that in the other direction. Any c-competitive algorithm for a symmetric
server problem can be used to give a cbcompetitive algorithm for the
asymmetric problem. This is done by letting d,'i = $ (d i j + dj i) , and run-

230 MANASSE, MCGEOCH, AND SLEATOR

ning the c-competitive algorithm on the new problem. Similarly, a lower
bound of c on the competitive factor in the symmetric problem gives a
lower bound of c/A in the asymmetric problem.

REFERENCES

1.

2.

3.

4.

5 .

6.

7.

8.

9.

10.

11.

D. BLACK AND D. D. SLEATOR, Algorithms for the 1-server problem with excursions, in
preparation.
A. BORODIN, N. LINIAL, AND M. SAKS, An optimal online algorithm for metrical task
systems, in “Proceedings, 19th Annual ACM Symposium on Theory of Computing, New
York, 1987,” pp. 373-382.
A. R. CALDERBANK, E. G. COFFMAN, JR., AND L. FLATTO, Sequencing problems in
two-server systems, Math. Oper. Res. 10, No. 4 (1985), 585-598.
A. R. CALDERBANK, E. G. COFFMAN, JR., AND L. FLATTO, Sequencing two servers on a
sphere, Commun. Statist.-Stochastic Models 1, No. 1 (1985), 17-28.
A. FIAT, R. M. KARP, M. LUBY, L. A. MCGEOCH, D. D. SLEATOR, AND N. E. YOUNG,
“Competitive Paging Algorithms,” Carnegie Mellon University Computer Science techni-
cal report CMU-CS-88-196, 1988.
A. R. KARLIN, M. S. MANASSE, L. RUDOLPH, AND D. D. SLEATOR, Competitive snoopy
caching, Algorithmica 3, No. 1 (1988), 79-119.
M. S. MANASSE, L. A. MCGEOCH, AND D. D. SLEATOR, Competitive algorithms for on-line
problems, in “Proceedings, 20th Annual ACM Symposium on Theory of Computing,
Chicago, 1988,” pp. 322-333.
L. A. MCGEOCH, D. D. SLEATOR, AND c . TOMASI, Decision procedures for competitive
algorithms, in preparation.
L. A. MCGEOCH AND D. D. SLEATOR, “A Strongly Competitive Randomized Paging
Algorithm,” Carnegie Mellon University Computer Science technical report CMU-CS-89-
122, 1989; Algorithmica, in press.
P. RAGHAVAN AND M. SNIR, Memory versus randomization in on-line algorithms, in
“Automata, Languages, and Programming, Lecture Notes in Computer Science,” Vol. 372,
pp. 687-703, Springer-Verlag, New York, 1988.
D. D. SLEATOR AND R. E. TARTAN, Amortized efficiency of list update and paging rules,
Comm. ACM 28, No. 2 (1985). 202-208.

