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1. INTRODUCTION 

Let G be an n-vertex graph with positive edge lengths obeying the 
triangle inequality, and let k mobile servers occupy vertices of G. Given a 
sequence of requests, each of which specifies a vertex that requires service, 
the k-server problem is to decide how to move the servers in response to 
each request. The initial locations of the servers are specified. If a requested 
vertex is unoccupied, then some server must be moved there. The requests 
must be satisfied in order of their occurrence in the request sequence. The 
cost of handling a sequence of requests is equal to the total distance moved 
by the servers. A server problem is symmetric if, for all vertices i and j ,  the 
distance from i to j equals that from j to i ,  and is asymmetric otherwise. 

An on-line algorithm for solving the k-server problem operates under the 
additional constraint that it must decide which server to move to satisfy a 
given request without knowing what the future requests will be. 

As we shall see later, the flexibility in choosing the distances between 
vertices and the number of servers allows us to use the k-server problem as 
a building block for solving other on-line problems. Furthermore, the 
k-server problem is a generalization of several important scheduling and 
caching problems. Here we mention three examples. 

Pugingproblems. In a two-level memory system there are k pages of 
fast memory and a total of n pages of memory. A page fault occurs when a 
page which is not in fast memory is needed there. The paging problem is 
that of deciding which page to take out of fast memory when a page fault 
occurs. The goal is to minimize the number of page faults. This problem is a 
thinly disguised instance of the k-server problem in which all distances are 
one. The n nodes of the graph correspond to the n pages of address space, 
and the k servers occupy the nodes corresponding to the pages currently in 
fast memory. 

Caching problems. These are similar to paging problems, except that 
the costs of moving different items into the cache differ. An example is the 
caching of fonts in a printer or in the memory of a bitmap display. The 
parameter to be minimized is the transmission time. The display or printer 
can store the bitmaps of a fixed number of characters in its font memory. 
The number of bits required to transmit the bitmap of a character varies 
according to its complexity. These problems are instances of the asymmet- 
ric k-server problem where all move costs into a vertex are equal. Raghavan 
and Snir [lo] note that they can be converted to instances of the symmetric 
k-server problem (see Section 8). 

Two-headed disks. This is the problem of planning the motion of the 
heads of a two-headed disk drive along a linear track. Each request requires 
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that one of the heads be moved to a particular point along the line. The 
problem is to decide which head to move so that the total head movement is 
small. This is a 2-server problem in which the distance matrix is that of a 
set of points arranged in a line. This problem, as well as variants in which 
the servers are in a circle or on the surface of a sphere were considered by 
Calderbank, Coffman, and Flatto [3, 41. All of these problems are instances 
of the 2-server problem. 

We shall examine the k-server problem using an approach to on-line 
algorithms that was pioneered by Sleator and Tarjan [ll]. They compared 
the move-to-front heuristic (MTF) for maintaining a linear search list to 
other list-maintenance heuristics. They showed that on any sequence of 
requests the performance of MTF is within a factor of four of the perfor- 
mance of any algorithm, even an off-line algorithm that can see all future 
requests. 

Karlin, Manasse, Rudolph, and Sleator [6]  applied this approach to 
multiprocessor caching problems, and Borodin, Linial, and Saks [2]  applied 
it to a more general class of problems called task systems. The former group 
used the term c-competitive to refer to an on-line algorithm with perfor- 
mance that is within a factor of c (plus a constant) of optimum on any 
sequence of requests. More formally, let C,(u) denote the cost incurred by 
an algorithm A in satisfying a request sequence (I. Algorithm B is c-compe- 
titive if it is on-line and if there is a constant a such that 

forallAandu, C,(u) sc-C’(u)  + a .  (1.1) 

An algorithm is competitive if it is c-competitive for some constant c. We 
will say that a competitive algorithm is efficient if the constant c is small. 
The constant c is called the competitive factor. An algorithm is strongly 
competitive if it achieves the smallest possible competitive factor. 

In this paper we present efficient competitive algorithms for several 
classes of symmetric server problems. We also show how the server prob- 
lems that we solve can be used as building blocks to obtain competitive 
algorithms for other problems. In Sections 3 and 4 we describe an ( n  - 1)- 
competitive algorithm for the symmetric ( n  - 1)-server problem and a 
2-competitive algorithm for the symmetric 2-server problem, respectively. 
In Section 5 we show that the competitive factor of any algorithm for the 
symmetric k-server problem is at least k. Thus our algorithms for the 
( n  - 1)-server problem and the 2-server problem have the best possible 
competitive factors. 

In Section 6 we introduce the problem of servers with excursions. This 
problem differs from the original server problem in that the algorithm has 
the option of moving a server to the requested vertex, but is not forced to. 
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It has the choice of making a less expensive “excursion” to the vertex, and 
returning home. We show how our competitive ( n  - 1)-server algorithm 
can be used to develop a (2n - 1)-competitive algorithm for the ( n  - 1)- 
server problem with excursions. 

There is a close relationship between our work on server problems and 
the work of Borodin, Linial, and Saks [2] on task systems. This connection 
is elucidated in Section 7. We show how our competitive algorithm for the 
( n  - 1)-server problem with excursions can be used to obtain a (2n - 1)- 
competitive algorithm for a class of task systems that is almost (but not 
quite) as general as the class of Borodin et al. We also give an ( n  - 1)- 
competitive algorithm for a slightly more restricted, but very natural, class 
of task systems called forced task systems. 

Section 8 collects a number of open problems related to this work. The 
conjectures that we believe far outnumber the theorems that we have 
proven. 

2. PRELIMINARIES 

We let d,,  denote the length of edge (u,  u )  in the graph G. We assume 
that the triangle inequality holds (for any three vertices u, u, and w, 
d,,  I d,, + d,,) and that the lengths are symmetric ( d , ,  = d, ,  for all u 
and u). 

An algorithm B is called lazy if it moves a single server to handle each 
request at an unoccupied vertex, but does not move servers otherwise. The 
following lemma shows that we may restrict our attention to lazy algo- 
rithms. 

LEMMA 1. For any algorithm B,  there is a modified algorithm B‘ that is 
lazy, does not cost more, and is on-line if B is. 

Proof: This follows from the fact that the triangle inequality holds on 
edge lengths and is proven by induction. Suppose that on request sequence 
u, B is lazy until the ith request. We show that B’s response to that request 
can be changed to be lazy, without increasing its cost on u. 

Suppose B moves a server s from vertex u to vertex u on the ith request, 
but that the move is unnecessary because some other server is handling the 
request. Suppose that the next request that s handles alone is at vertex w. 
Algorithm B’s cost for moving to u and then to w is d,, + d,,. If the 
unnecessary move is deleted, s would eventually move directly from u to w 
at cost d,,. By the triangle inequality d,,  s d,, + d,,. No other moves 
change, so the modified algorithm does not cost more. 0 
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The algorithms described in this work will all be lazy. In order to prove 
that an algorithm is competitive within a certain factor, it will be sufficient 
to compare it to other lazy algorithms, since they outperform all others. 

The on-line algorithms we describe have another property: they com- 
pletely ignore requests for service at vertices that are already covered. These 
requests do not affect later decisions. It is easy to show that we only need to 
consider such algorithms. 

Call a request sequence u hard for algorithm B if B must move some 
server in response to every request in u. Algorithm B is said to be 
c-competitive on all of its hard request sequences if there exists a constant a 
such that C,(u) s c . C’(u) + a for all hard u and all algorithms A. 

LEMMA 2. If B is a server algorithm that ignores all requests to covered 
vertices and is c-competitive on all of its hard request sequences, then B is 
c-competitive. 

Proof Let B be such an algorithm and let u be a sequence of requests. 
When algorithm B is run on u, some of the requests force a server to move, 
and some do not. Let u’ be the subsequence of u consisting of requests on 
which B must move a server. Because B ignores all requests in u to covered 
vertices, we know that C,(u) = C,(u’). 

Let OPT be an off-line algorithm that handles every request sequence 
optimally. (It is obvious that such an algorithm exists because there are only 
a finite number of ways of handling each request sequence.) Clearly 
Corn( a’) I Corn( a) because it is impossible, by the triangle inequality, 
that the extra requests in u lead to a lower cost. Combining these bounds 
with the fact that B is c-competitive on u’, we get: 

C,( u) = C,( 0’)  I c * Corn( a‘) + a I c * corn( u) + a.  

This proves that B is c-competitive on any sequence u. 0 

Lemmas 1 and 2 together show that in order to prove that our algorithms 
are competitive, it is sufficient to compare them to lazy algorithms on hard 
sequences. 

2.1. An Optimal Off-line Algorithm 

Let Corn(a, S) be a function whose value is the cost of a minimum-cost 
algorithm (making lazy moves only) that handles request sequence u and 
ends up in state S (covering a particular set of vertices). We can compute 
this function recursively as follows, assuming that the servers are initially 
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covering a set of vertices So: 

if S = So 
otherwise Con(E’ ’) = { !:defined, 

min, Corn( u, T )  + d(  T ,  S ) ,  
undefined, otherwise, 

if u is covered in S 
Co,(au,S) = 

where d(T, S) is the cost of a transition (by a lazy move) from state T to 
state S. This is a correct method to compute the function because the 
minimum-cost algorithm for reaching state S at time i must have been in 
some state T at time i - 1. 

A dynamic programming procedure can be used to compute the cost of 
an optimal algorithm handling request sequence u. Build a table with 
la1 + 1 rows (one for each prefix of a) and ( 2 )  columns (one for each 
possible state). The entry in row i and column j is Co,(ui, S,), where a, is 
the prefix of u of length i .  Each row of the table can be built from the 
previous one within time proportional to (i) . Upon completion, the 
smallest entry in the last row is the cost of a minimum-cost algorithm that 
processes sequence u. Furthermore, the table-building procedure can be 
modified to actually produce an optimal sequence of moves. Every entry in 
the table equals some entry on the previous row plus (perhaps) the cost of a 
move. By saving this information, it is easy to follow pointers back from 
any minimum entry on the last row and determine a sequence of moves that 
achieves that cost. It is possible for an on-line algorithm to maintain the 
current row of this table. 

2 

2.2. Residues 

Based on CO,(u, S) we can now define a new function which measures 
how well an on-line algorithm B is doing compared to the optimal. Call 
R ,( u, S )  the c-residue function and define it as 

R,( (I, S )  = c * Corn( (I, S )  - CB( u). (2.1) 

This function has a number of useful properties. First, it is easy to compute. 
Call (R,(  u, Sl), R,( u, S2), . . . ) (for some enumeration of states) the c- 
residue vector for sequence u. Because of the dynamic programming method 
of computing Con, any on-line algorithm can compute its current vector of 
residues. The time required for this is bounded by a small polynomial if the 
number of servers is small. 

Residues are also useful because they can be used to prove that algo- 
rithms are competitive. The minimal cost of handling sequence u, as noted 
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before, is min,{ CopT(u, S)}. Therefore for any algorithm A ,  

c C,( u)  - C,( u )  2 min { R,( u, S)}  . 
S 

By Eq. (l.l), B is then a c-competitive algorithm if there is some constant a 
such that R,( u, S )  2 - a  for any u and S. Our proofs of competitiveness 
will use this approach. 

The correctness of proofs using residues does not depend on the starting 
residues, which can be set to arbitrary constants. Suppose that, for some set 
of initial residues, there is a constant lower bound on all residues. That 
bound will hold (or be improved) by raising the initial residues for non- 
starting states to 00, effectively making them impossible. Furthermore, the 
bound will vary by at most a constant if the residue for the starting state is 
set to any constant. 

It should be noted that the definition of residues used here differs slightly 
from the definition appearing in [8]. The proofs in this paper are greatly 
simplified by allowing some freedom in the initial residue values and by 
defining Com(u, S) in terms of opposing algorithms that make only lazy 
moves. 

3. AN ( n  - l)-COMPETITIVE ALGORITHM FOR n - 1 SERVERS 

The balance algorithm (BAL) for the k-server problem works as follows. 
For each server, the algorithm maintains the total distance it has moved 
since the start of the request sequence. If the server is currently at vertex i ,  
this cumulative distance is denoted by Di. Now consider a request at a 
vertex j. If j is already covered by a server, then BAL does nothing. If j is 
not covered, then BAL moves the server on vertex i to vertex j ,  where i is 
chosen to minimize the expression Di + d i j .  In other words, BAL moves 
any server that would have the smallest cumulative cost after moving. 

As indicated by its name, the balance algorithm tends to use all of its 
servers equally. The following lemma makes this precise. 

LEMMA 3. Let 1 be the most recently covered vertex, n be the uncovered 
vertex, and i be any vertex occupied by a server. The bound 

-dii I Di - D, I din - d,, 

holh for any i, at any time after the first move of BAL. 

Prook We shall prove by induction that at any time and for all i and j 
Di - D. c d i j .  This claim is clearly true initially. Suppose it is true up to 
some point and that a new request arrives for vertex n. Suppose BAL J r  
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moves from vertex k in response to the request, implying that D, + d,, I 
Di + din for all i .  Vertex n becomes the new “most recently covered” 
vertex, and we therefore refer to it as 1’. Vertex k is the new vacant vertex, 
which we call n’. The new cumulative distance for the server at l’, denoted 
D,,, equals D, + d,,. The other cumulative distances are unchanged. Only 
two cases need to be considered to prove that the claim holds inductively. 
First, for any i ,  

(The inequality here follows from the decision rule.) Further, 

0,’ - 0;. = Di - D, - d,, I dik - d,, = din, - dlrnr S dlPi.  (3.1) 

(The inequalities here follow from the inductive hypothesis and the triangle 
inequality.) This completes the inductive proof of the claim. The claim 
directly implies the left-side inequality of the lemma. The right-side inequal- 
ity is proven in eq. 3.1. 0 

We can now prove the following theorem. 

THEOREM 4. Algorithm BAL is an ( n  - 1)-competitive algorithm for the 
symmetric ( n  - 1)-server problem on an n-vertex graph. 

Proof. We consider a vector of residues that compares BAL‘s cost to 
( n  - 1)  times the cost of an optimal algorithm. We show that there is a 
constant lower bound on these residues, proving the theorem. 

There are n - 1 ways an algorithm can use n - 1 servers to simultane- 
ously cover a requested vertex and n - 2 other vertices. This means there 
are n - 1 non-infinite residues at any step. Let R i  denote a residue that 
compares BAL‘s cost to ( n  - 1)  times the cost of an algorithm that leaves 
vertex i uncovered. Let 1 be the most-recently requested vertex, let n be the 
vertex BAL is not covering, and let 2,. . . , n - 1 be the other vertices. Let 
the initial R, equal -(n - l)dln, and let Ri  (1 < i < n )  equal 0. R, is 
undefined because vertex 1 must be covered by any algorithm. 

As shown in Lemma 2, it is only necessary to consider the request 
sequence that always hits n, BAL‘s vacant vertex. For this sequence, we 
show that the following invariant holds: 

( n  - 1)( Dl - d,,) - Z k D k ,  if j =: n 
( 3  4 otherwise. R . =  { 

J ( n  - l ) D j  - Z,D, 

In conjunction with Lemma 3 (which bounds the difference between Di and 
Dj for all i and j )  this implies a constant lower bound on the residues. The 
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lemma also implies that 

for all i and j ,  Ri  s R j  + ( n  - 1 )  d i j .  ( 3 . 3 )  

The inductive step requires us to prove that if the invariants hold, then 
they will hold after a request at vertex n. If i minimizes the expression 
Di + din, then BAL handles the request by moving from i to n. Vertex n 
becomes vertex l’, and vertex i becomes vertex n’. The new cumulative 
distance for the server now at l’ ,  denoted Dip,  equals Di + din. For every 
other server, the cumulative distance is unchanged. 

The new residues are described by the equation 

R, + ( n  - l ) d i n  - din, 

min{ R j ,  R ,  + ( n  - 1)  d in}  - d i n ,  

i f j = 1  

otherwise. 
Rj  = 

Using inequality (3.3), we obtain 

R ,  + ( n  - l ) d l n  - din 
R j  - din otherwise. 

if j = 1 
Rj  = 

Using invariant (3.2), we obtain 

Finally, using the update rule for cumulative distances, we obtain 

This completes the inductive step. 0 

4. A 2-COMPETITIVE ALGORITHM FOR 2 SERVERS 

Unfortunately, the balance algorithm described in Section 3 is not 
k-competitive when the number of servers is less than n - 1. In attempting 
to find a 2-competitive algorithm for the 2-server problem, we ruled out 
BAL as well as many other simple approaches. We have obtained an 
algorithm RES that maintains certain invariants on its residues and chooses 
which server to move by comparing the residues. 
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Algorithm RES always keeps its two servers on two different vertices. Let 
vertex 1 be the vertex that was last requested, and let vertex 2 be the other 
covered vertex. An off-line algorithm must also cover vertex 1, but its other 
server could be anywhere. This means there are again ( n  - 1) non-infihite 
residues. Algorithm RES maintains residues that compare the cost incurred 
by RES to twice the cost of an optimal algorithm. Let Rli denote the 
residue that compares RES to an off-line algorithm occupying vertices 1 
and i .  

Algorithm RES begins with R,, = d,, + 2d:, for each i .  In response to a 
request at vertex i, RES moves from vertex 1 if 

- 

and from vertex 2 otherwise. 
To prove that RES is 2-competitive, we need the function, 

This function has two important properties. First, its value does not change 
if its arguments are permuted. Second, the triangle inequality ensures that 

Y( 11, u ,  w ,  x )  + 2d,, 2 Y ( Y ,  0, w ,  x ) .  (4 .2)  

THEOREM 5. Algorithm RES is a 2-competitive algorithm for the symmet- 
ric 2-server problem. 

Proof: Induction and a case analysis suffice to prove that RES main- 
tains the following bound for every pair of vertices i and j (where possibly 
i = j): 

R,, + Rlj 2 y ( 1 , 2 ,  i ,  j ) .  (4 .3)  

These bounds guarantee the 2-competitiveness of the algorithm. 
Initially, R,, = d,, + 2d2,. For any i and j, 

R,, + RIj = 2( d,, + d,, + d 2 j ) .  

By the triangle inequality, this is at least 2(d,, + d,,), 2(dli + d,,), and 
2 ( d l j  + d,,), and therefore is at least y ( l , 2 ,  i ,  j). 

We now inductively assume that the invariant holds after some number 
of requests and that a new request arrives for an unoccupied vertex i .  There 
are two cases. Suppose that mink{ R,, - 2dki) 2 2 4 ,  + d,, and that RES 



218 MANASSE, MCGEOCH, AND SLEATOR 

therefore moves from 1. By the naming convention, i becomes the new 
vertex 1, denoted 1’. The location of RES’s other server, 2, is unchanged. 
The updated residues are 

Illh,{ R,, + 2dki}  - dli if j = 1 
otherwise. Ritj = 

The following cases show that bound (4.3) holds after RES moves. Let k be 
such that mink{ R1, + 2dki) is minimized: 

Alternatively if mink{ R,, + 2dki}  < 2dli + d12, algorithm RES moves 
from 2. Again, i becomes 1’. In this case 1 also becomes 2’. The new 
residues are: 

A case analysis shows that bound (4.3) holds when RES moves. Again, let k 
be such that mink{ R,, + 2dki}  is minimized. The first two cases are 
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straightforward: 

Ri,,, + Rip,, = 2( Rlk 2dki - d2i )  

2 2( dlk + d2,  4- 2dki - dZi) 

2 2( dli + dzi - dz i )  
= 2dli 
= 2d1,,, 

(4.3) 
triangle inequality 

= y( l ’ ,  T, 2’, 2’) 

( j # 2‘) Rit, + Rig, = R1k + 2dki + R1j + 2d1i - 2d2i 

2 y (1 ,2 ,  j ,  k )  + 2dki + 2dlj  - 2dzi (4.3) 

2 y (1 ,2 ,  j ,  i )  + 2dli - 2d2, 
2 2d,, + 2dlj  + 2dli - 2d2, 

= y ( i , 1 , 1 ,  j )  
= y(1’,2’,T, j )  

(4.2) 

(4.1) 
= 2dlj + 2dl j  

In order to prove the final case, RiPj + Ri,, 2 y(l’,2’, j ,  I ) ,  for j ,  I Z T, it 
is necessary to compare the sum of residues to each of the three terms in y: 

Ri,, + Ri,, = Rl j  + RII + 4dli - 2dzi 

= (R l j  + R1k) + (R11+ R1k) - 2R1k + 4d1i - 2d2i 

2 y (1 ,2 ,  j ,  k )  + y (1 ,2 ,  k ,  I) - 2R1k + 4dli - 2d2i (4.3) 

2 2 ( d I j  + d2, + dl2 + dk, - R,k + 2 4 ,  - dzi) (4.1) 

> 2 ( d l j  i- d,, + d12 + dkl - ( 2 4  + dl2 - 2dki) 

+2dli - d,i) decision rule 

2 2( d I j  + d,) 
= 2 ( ~ f , , ~  + d,,,) 

Ri,j + Ri,, > 2( d,,, + dl, j)  

triangle inequality 

symmetric to first case 

Ritj + Rip1 = Rlj  + R11 + 4d1i - 2dzi 

2 y (1 ,2 ,  j ,  I )  + 4dl, - 2dZi 

2 2(dlZ + djl  + 2 4  - d2i) 

2 2(dli  + dj , )  
= 2(dltZt + d j l )  

(4.3) 

(4.1) 

triangle inequality. 
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This completes the proof that the bounds hold inductively and that Theo- 
rem 5 holds. 0 

5. A LOWER BOUND 

In this section we prove that any general algorithm for the symmetric 
k-server problem must have a competitive factor of at least k. This implies 
that algorithms BAL and RES have the best possible competitive factors for 
the symmetric (n - 1)-server and 2-server problems, respectively. 

We have actually proven a slightly more general lower bound on the 
competitive factor. Suppose we wish to compare an on-line algorithm with 
k servers to off-line algorithms with h I k servers. Naturally, giving the 
on-line algorithm more servers than the off-line algorithm decreases the 
“competitive factor.” We prove a lower bound of k / ( k  - h + 1) on this 
factor. A similar approach was taken in [ll], where this lower bound and a 
matching upper bound are given for the paging problem. 

THEOREM 6. Let A be an on-line algorithm for the symmetric k-server 
problem on a graph G with at least k + 1 nodes. Then, for any 1 I h I k, 
there exist request sequences ul, u2,. . . such that: 

1. For all i ,  ui is an initial subsequence of oi+l, and cA(ui)  < cA(q+l ) .  

2. There exists an h-server algorithm B (which may start with its servers 
anywhere) such that for all i ,  

Proof. Without loss of generality, assume A is lazy and that the k 
servers start out at different nodes. Let H be a subgraph of G of size k + 1 
induced by the k initial positions of A’s servers and one other vertex. 

Define (I, A’s nemesis sequence on H, such that o ( i )  is the unique vertex 
in H not covered byA at time i ,  for all i 2 1. Then 

because at each step (I requests the node just vacated by A. 
Let S be any h-element subset of H containing o(1). We can define an 

off-line h-server algorithm A ( S )  as follows: The servers initially occupy the 
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vertices in the set S. To process a request a(i), the following rule is 
applied: 

If S contains a(i) do nothing. Otherwise, move the server at node 
a(i - 1) to a(i), and update S to reflect this change. 

It is easy to see that for all i > 1, the set S contains a(i - 1) when step i 
begins. 

The following observation is the key to the rest of the proof: if we run the 
above algorithm starting with distinct equal-sized sets S and T,  then S and 
T never become equal, for the reason described in the following paragraph. 

Suppose that S and T differ before a(i) is processed. We shall show that 
the versions of S and T created by processing a(i) as described above also 
differ. If both S and T contain a(i), neither is changed, and there is 
nothing more to prove. Otherwise, we are not processing a(l), so both S 
and T contain o(i - 1). If exactly one of S or T contains a(i), then after 
the request exactly one of them contains a(i - l), so they still differ. If 
neither of them contains a(i), then both change by dropping a(i - 1) and 
adding a(i), so the symmetric difference of S and T remains the same 
(non-empty). 

Let us consider simultaneously running an ensemble of algorithms A( S), 
starting from each h-element subset S of H containing a(1). There are 
( 1 1) such sets. Since no two sets ever become equal, the number of sets 
remains constant. After processing a( i), the collection of subsets consists of 
all the h element subsets of H which contain a(i). 

By our choice of starting configuration, step 1 never costs anything. At 
step i + 1 (for i 2 l), each of these algorithms either does nothing (at no 
cost) or it moves a server from a(i) to a(i -k l), at cost du(i)u(i+l). Of the 
( f 1) algorithms being run, ( i I i )  of them (the ones which contain o(i) 
but do not contain a(i - 1)) incur this cost, and the rest incur no cost. So 

du(i)u(i+l) .  The total cost of running all of these algorithms up to and 
including a( t ) is 

for step i + 1 the total cost incurred by all of the algorithms is (:I:) 

Thus the expected cost of one of these algorithms chosen at random is 
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Recall that the cost to A for the same steps was 

i do(i+l)a(i)* 
i - 1  

Because the distances are symmetric, the two summations are identical, 
except that the second one includes one extra term. 

By expanding the binomial coefficients we see that 

k - 1  
( A - 1 )  - - k - h + l  

( h  1 )  
k 

Finally, there must be some initial set that has the property that infinitely 
often its performance is no worse than the average of the costs. Let S be 
this set, and A ( S )  be the algorithm starting from this set. Let a, be all the 
initial subsequences of u for which A ( S )  does no worse than average. 0 

This theorem gives a lower bound of k / (  k - h + 1) on the competitive 
factor, for even if we require our off-line algorithm to start with its servers 
in particular locations, we can move the servers wherever we choose at the 
cost of an additive constant. 

For any symmetric k-server problem, there is no c-compe- 
titive algorithm for c < k .  

BAL is a strongly competitive algorithm for the symmetric 
( n  - 1)-server problem. 

COROLLARY 9. RES is a strongly competitive algorithm for the symmetric 
2-server problem. 

COROLLARY 7. 

COROLLARY 8. 

6. SERVER PROBLEMS WITH EXCURSIONS 

Suppose we allow the servers to satisfy a request without actually moving 
to the requested vertex. We call this type of response an excursion because 
it is natural to think of the server sending off an assistant to make an 
excursion to the requested vertex. The assistant satisfies the request, then 
returns to the starting point. Let r,, be the cost for a server at vertex i to 
make an excursion to vertex j. 

A natural example of a server problem with excursions is that of where to 
locate k firehouses. In this case d,, is the cost of moving the firehouse from 
i to j, and rij is the cost for the firehouse at i to put out a fire at location j. 
In order to obtain a competitive algorithm for this problem, it is clear that 
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if there are many fires at a particular location, then it will be necessary to 
move a firehouse there, even if moving a firehouse is very expensive. 

Very little is known about the general problem of servers with excursions. 
Special cases that have been considered are 1-server on a graph that is a 
tree [ l ] ,  and one server on a real line.' The first result assumes that the cost 
of an excursion between vertices i and j is proportional to the distance 
between them and obtains a competitive factor of three (the best possible). 
The second result assumes that the excursion cost is the move cost and 
obtains a competitive factor of f (the best possible). 

In this section we address the problem of ( n  - 1) servers with excursions 
on a graph of n vertices. As shown in Section 7, the task systems of 
Borodin, Linial, and Saks [2]  are essentially equivalent to these server 
problems. A lower bound on the competitive factor for the ( n  - 1)-server 
problem with excursions gives a lower bound on the competitive factor for 
task systems. Similarly, a c-competitive algorithm for the ( n  - 1)-server 
problem with excursions gives a c-competitive algorithm for task systems. 
(The latter statement actually only applies to a slightly restricted form of 
task systems, those with discrete tasks.) Furthermore, the ( 2 n  - 1)- 
competitive algorithm of Borodin et al. for task systems can be adapted to 
give a (2n  - 1)-competitive algorithm for the ( n  - 1)-server problem with 
excursions. 

For a particular problem, let ru be the ratio of the largest excursion cost 
to the smallest move cost, and let rl be the ratio of the smallest excursion 
cost to the largest move cost. As a corollary of the lower bound theorem of 
[2 ] ,  the competitive factor of 2n - 1 is the best possible as ru goes to zero. 
As rl goes to two, the problem is reduced to an ordinary server problem, 
because it is no longer ever useful to do an excursion. As we have shown, in 
this case we can obtain a competitive factor of n - 1. For problems in 
which the values of rl and r,, are not so extreme, no exact results are known 
except that the competitive factor lies between n - 1 and 2n - 1. Perhaps 
in these cases the competitive factor actually depends on the distances and 
excursion costs. 

We have developed a construction that allows us to apply our results on 
the ( n  - 1)-server problem to the ( n  - 1)-server problem with excursions. 
Using this technique and the ideas of the proof of Theorem 6 we have 
obtained a lower bound of (2n  - 1)(1 + r,,)/(l + 2rJ (assuming ru I 2 )  
on the competitive factor for the ( n  - 1)-server problem with excursions. 
This slightly improves the lower bound of ( 2 n  - 1)/(1 + r,,) of Borodin 
et al. [2] .  

This construction allows us to apply algorithm BAL to give a new 
(2n  - 1)-competitive algorithm for the ( n  - 1)-server problem with excur- 

'Unpublished notes by L. McGeoch. 
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sions. The remainder of this section is devoted to describing and analyzing 
this algorithm. 

In the ( n  - 1)-server problem with excursions, all vertices but one are 
covered by a server, so an excursion to a particular vertex always costs the 
same amount. Let the excursion cost for vertex i be ri, where ri = mini ‘ii. 

Our algorithm for ‘the ( n  - 1)-server problem with excursions is called 
BALE. It works by mapping the ( n  - 1)-server problem on a graph G of n 
vertices onto a (2n - 1)-server problem (without excursions) in a graph G’ 
of 2n  vertices. It then applies algorithm BAL to the 2n-vertex problem and 
maps the resulting moves back to the n-vertex problem. 

We obtain G’ from G by making two copies of each vertex of G. The 
distances in G’ are defined as follows: If i and j are two vertices of G’ that 
came from the same vertex of G (namely k), then the distance between 
them is rk. If i and j came from different vertices of G, then the distance 
between them in G’ is the same as the corresponding distance in G. Two 
vertices of G’ that come from the same vertex of G will be called siblings. 
(If rk is more than twice the distance between k and some other vertex, 
then G’ will violate the triangle inequality. In this case, the excursion is so 
expensive that it will never be used, and we can replace rk by twice the 
distance to the nearest neighbor of k without changing the problem.) 

Algorithm BALE maintains the following server invariant: 

If vertex i of G is the one not occupied by a server, then one of the 
vertices of G’ corresponding to i is not occupied by a server. 

If the requested vertex i is already covered, then BALE does nothing. If the 
requested vertex is unoccupied, then BALE issues a request for the uncov- 
ered vertex of G’ in its simulation of BAL. If BAL responds to the request 
by moving the server from a vertex to its sibling, then BALE satisfies its 
request by doing an excursion. If BAL responds to the request by moving a 
server from some other vertex, then BALE responds by moving a server 
from the corresponding vertex in G. The cost incurred by BALE is exactly 
that incurred by BAL in the simulation. 

Algorithm BALE is a (2n - 1)-competitive algorithm for 
the symmetric (n - 1)-server problem with excursions. 

Let u be the sequence of requests in the (n - 1)-server problem 
with excursions. Let u‘ be the sequence of requests issued by BALE to its 
simulation of BAL. Given any algorithm A for satisfying u with (n - 1) 
servers in G there is an algorithm A’ for satisfying u’ in the (2n - 1)-server 
problem in G‘ such that A and A’ maintain the server invariant. The cost 
incurred by algorithm A’ is at most that incurred by A for the following 
reason: if the request is to a covered vertex in G, then it also to a covered 

THEOREM 10. 

Proof. 
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vertex in G‘, if the request is processed by an excursion in G, then it is 
either free in G’ or costs as much as a move from one vertex to its sibling, if 
the request is processed by moving a vertex in G, then the corresponding 
move can be made in G’ at the same cost. That is, for any algorithm A 
there is an algorithm A’ such that 

C,*(a’) I C“(.) .  

Because BAL is (2n - 1)-competitive (for 2n - 1 servers on 2n vertices), 
we know that for any algorithm A’, 

Furthermore from the definition of BALE it follows that 

These three inequalities show that BALE is (2n - 1)-competitive. 0 

7. TASK SYSTEMS 

In [2], Borodin, Linial, and Saks considered task systems, a class of 
on-line problems more general than server problems. They proved upper 
and lower bounds on the best competitive factors that can be achieved for 
these problems. There is a very close relationship between their work and 
server problems. In this section we describe this relationship and extend 
their results. 

A task system is specified by an integer n, and an n by n positive real 
matrix D satisfying the triangle inequality. The system has n states, labeled 
1,2,. . . , n. The entry of d i j  of D is the cost of changing from state i to 
state j .  A sequence of tasks T(l), T(2), . . . , T ( N )  is to be accomplished in 
order by an on-line algorithm. Each task is an n-dimensional vector of 
non-negative real numbers which specify the cost of doing this task in each 
of the n states. As each task is received, the on-line algorithm has the 
option of changing from its current state i to any other state j at a cost of 
d i j .  It then does the required task in the new state at a cost specified in the 
task vector. Of course, the algorithm is not allowed to see the future tasks 
while it is making its decision about how to process the current task. 

A symmetric, or metrical, task system is one in which the matrix D is 
symmetric. Borodin et al. [2] give an on-line algorithm that is (2n - 1)- 
competitive for any metrical task system of n states. They also show that 
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for any task system and on-line algorithm there are sequences of tasks 
which force the algorithm to reach a competitive factor of at least 2 n  - 1. 

Here we give a different algorithm which obtains the same competitive 
factor of 2 n  - 1 for almost arbitrary sequences of tasks. Our algorithm 
works as long as each task is an integer combination of a set of n basis 
vectors b,, . . . , b,, where vector b, is zero in all components except the ith. 
The basis set is fixed and known in advance. (For example, if all the task 
vectors are known to have integral costs, then we let b, to be the unit vector 
with a one in position i and zeros elsewhere.) A set of tasks having this 
structure will be called discrete tasks. 

Our ( 2 n  - 1)-competitive algorithm for discrete tasks is called GBALE, 
because it is a generalized form of the BALE algorithm given in Section 6 .  
Our algorithm will use a simulation of an instance of BALE running on an 
( n  - 1)-server problem with excursions. The size of the server problem is 
the same as the number of states of the task system, and the distance matrix 
for the server problem, D, is the same as the distance matrix for the task 
system. Furthermore, the cost of an excursion for vertex i, r, will be the 
non-zero component of b,, the ith basis vector for the discrete tasks. 

To process a sequence of tasks T = T(1), T(2) ,  . . . algorithm GBALE 
simulates algorithm BALE, on a new sequence of requests u = 
u(l), u(2), . . . . For each task T(i), a sequence of zero or more requests of u 
are generated. Before each task is processed (as well as after) the following 
invariant is maintained relating the state of BALE and GBALE. 

The vertex that BALE has decided not to occupy with a server is the 
same as the state of the task system chosen by GBALE. 

It remains to describe the sequence of requests corresponding to a task 
T(i) .  First expand T ( i )  into a non-negative integer combination of the 
basis vectors as follows: 

T( i )  = m,b, + m2b, + * * +m,b,. 

The requests generated are m, requests to vertex 1, m ,  requests to vertex 2,  
and so on, ending with m,  requests to vertex n.  We shall let .(i) denote 
this subsequence of u. 

In order to process T( i ) ,  algorithm GBALE gives T ( i )  to BALE. The 
state reached by BALE at the end of T ( i )  is the state chosen by GBALE to 
process request T( i ) .  The invariant is thus maintained. 

THEOREM 11. Algorithm GBALE is an (2n  - 1)-competitive algorithm 
for any metrical task system with discrete tasks. 
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Proof. First we shall prove the claim 

Observe that the move cost incurred by GBALE is at most that of BALE. 
This is because GBALE and BALE start and end in the same state. By the 
triangle inequality, the cheapest way to effect this change is to move there 
directly, which is what GBALE does. 

Let j be the state (the vertex that is unoccupied by a server) in which 
BALE chooses to process the last request of T ( i ) .  (This is the state chosen 
by GBALE to process T(i).) The task cost incurred by GBALE in process- 
ing T(i) is mjrj. The excursion costs incurred by BALE are at least this 
much for the following reason. We know that during the last request to 
vertex j in T(i), algorithm BALE is in state j .  This is because BALE will 
never change its state in response to a free request, such as those after the 
last request to j .  Furthermore, BALE must have been in state j during all of 
the requests to j ,  because BALE will never move into state j in response to 
a request to j .  Therefore, BALE must have been in state j during all of the 
requests to j ,  and therefore incurs a cost of at least mjrj. This completes the 
proof of the claim. 

Next, we shall relate the costs of the optimal algorithms for processing T 
and (I. Given an off-line algorithm A for processing T there is an off-line 
algorithm A’ for processing u at exactly the same cost. Algorithm A’ stays 
in the same state during all of the requests of 7(i), and this is the state used 
by A to process T(i ) .  From this, we can conclude: 

CoFr(4 2 COPAT).  

Combining the above two inequalities with the fact that BALE is (2n - 
1)-competitive proves the theorem. 0 

There is a natural class of tasks which was not considered by Borodin 
et al. [2], for which we have obtained an algorithm with a better competitive 
factor. This is the case where each component of each task vector is either 0 
or 00. (This means that to process a task, the algorithm must change to a 
state in which the task cost is 0.) We call such a task a forcing tusk. In this 
case we obtain an (n - 1)-competitive algorithm. 

Given a forcing task system S in which there are state transition costs 
that are zero, we can transform it to an equivalent task system S’ in which 
there are no such zero-cost transitions. We do this by dividing the states of 
S into equivalence classes, where two states are equivalent if and only if the 
transition cost between them is zero. We define S’ to have one state for 
each of these equivalence classes. It is easy to see that any competitive 
on-line algorithm for S‘ gives one with the same competitive factor for S. A 
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task t given to S is translated into t’,  a task for S’ as follows: A component 
of t’ is co if all the states in the equivalence class of that component are co 
in t ,  and 0 otherwise. 

Our algorithm, GBAL, is built upon BAL, the (n  - 1)-competitive algo- 
rithm for the (n - 1)-server problem. The construction is very similar (but 
not identical) to that used above in constructing GBALE. 

For a task sequence T, GBAL generates a request sequence u which it 
applies to BAL. For task T ( i )  in T there is a subsequence T ( i )  in u. The 
invariant is maintained that before and each after T ( i ) ,  the state of GBAL 
and BAL are the same. (The state of BAL is the name of the vertex not 
covered by a server.) 

The subsequence T ( i )  is generated as follows. Let S be the set of states 
for which the task component in T ( i )  is infinite. Let s be the current state 
of BAL. As long as s E S, a request to s is generated. Eventually, since 
BAL is competitive, and there are no zero-cost transitions, a point must be 
reached where s @ S. This marks the end of T ( i ) .  Algorithm GBAL can 
now use this state s to process the task T(i ) ,  since it is one of the zero-cost 
states of T( i ) .  

, 

, 

THEOREM 12. Algorithm GBAL is an ( n  - 1)-competitive algorithm for 
any metrical task system with forcing tasks. 

Proot We have CGw(T(i)) I CBAL(T(i)) ,  because of the triangle in- 
equality, and the fact that BAL and GBAL start and end in the same state. 

Furthermore, any off-line algorithm A for T gives an off-line algorithm 
A’ for (I which costs no more. Algorithm A’ stays in the same state during 
all of the requests of T ( i ) ,  and this is the state used by A to process T( i ) .  
From this, we can conclude that C,,(u) I Co,(T). Combining these 
inequalities with the fact that BAL is ( n  - 1)-competitive proves the 
theorem. 0 

8. OPEN PROBLEMS 

The most obvious open problem is to devise a k-competitive algorithm 
for the symmetric k-server problem. We conjecture that such an algorithm 
exists, but have been unable even to extend our solution to the 2-server 
problem to three or more servers. A computer search has revealed that there 
are 3-competitive algorithms for certain instances of the 3-server problem. 
Further evidence for this conjecture was supplied by Chrobak, Karloff, 
Payne, and Vishwanathan,’ who have recently devised a simple k-competi- 

*~ersonal communication. 
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tive algorithm for k servers on a line (a graph in which the distances are 
consistent with the Euclidean distances between points on a line). 

We do know that there is an algorithm for the symmetric k-server 
problem in which the competitive factor depends only on k and n. Because 
the k-server problem is a forced task system with ( 5 )  states, there is an 

(( l) - 1)-competitive algorithm. Although this result is very weak, it is the 
best bound we know which is independent of the distances. 

An even more difficult problem is to find an algorithm for the k-server 
problem that matches the lower bound of Theorem 6 when compared to an 
optimal h-server algorithm. It would be particularly interesting if there was 
a single algorithm (independent of h) that achieved this bound for every h. 
The LRU algorithm for the uniform server problem (where all move costs 
equal one) has this property [ll]. 

Nothing is known about server problems with excursions beyond the 
results described in Section 6. We conjecture that there is a 3-competitive 
algorithm for any one-server problem with excursions when the cost to 
move from i to j is a constant times the excursion cost. In [8], a procedure 
is described that will compute (in principle) the minimum competitive 
factor for any instance of a server problem. We have used this procedure to 
verify this conjecture in several small special cases. 

The definition of competitiveness carries over in a natural way to 
randomized on-line algorithms [7]. In this case we want the expected cost of 
the randomized on-line algorithm (taken over all possible outcomes of its 
coin flips) to be within a constant factor of the optimum off-line algorithm 
on any sequence of requests. In [5], a randomized algorithm for the uniform 
k-server problem (the paging problem) is given. This algorithm is roughly 
2 In( k). In [9], the competitive factor is reduced to In( k), which is optimal. 
A natural problem is to consider the non-uniform case. 

In [lo], Raghavan and Snir describe an even more restricted class of 
randomized on-line algorithms for server problems. These algorithms are 
memoryless in the sense that the only state information they maintain from 
one request to the next is the current arrangement of the servers. They show 
that their harmonic algorithm is k-competitive for the uniform problem, as 
well as the caching problem (all moves into a vertex have the same cost). 
They leave as an open problem that of finding a memoryless algorithm that 
is k-competitive for any k-server problem. 

We know very little about asymmetric server problems. For a particular 
asymmetric k-server problem, let A be the maximum over all cycles in the 
graph of the ratio of the cost of moving around the cycle in one direction to 
that in the other direction. Any c-competitive algorithm for a symmetric 
server problem can be used to give a cbcompetitive algorithm for the 
asymmetric problem. This is done by letting d,'i = $ ( d i j  + dj i ) ,  and run- 
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ning the c-competitive algorithm on the new problem. Similarly, a lower 
bound of c on the competitive factor in the symmetric problem gives a 
lower bound of c/A in the asymmetric problem. 
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