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SHORT ENCODINGS OF EVOLVING STRUCTURES* 

DANIEL D. SLEATORtq, ROBERT E. TARJAN#q, AND WILLIAM P. THURSTON5 

Abstract. A derivation in a transformational system such as a graph grammar may be redundant 
in the sense that the exact order of the transformations may not &ed the final outcome; all that 
matters is that each transformation, when applied, is applied to the correct substructure. By taking 
advantage of this redundancy, we can develop an efficient encoding scheme for such derivations. This 
encoding scheme has a number of diverse applications. It can be used in efficient enumeration of 
combinatorial objeds or for compact representation of program and data structure transformations. 
It can also be used to derive lower bounds on lengths of derivations. It is shown, for example, 
that n(n1ogn) applications of the associative and commutative laws are required in the worst case 
to transform an n-variable expression over a binary associative, commutative operation into some 
other equivalent expression. Similarly, it is shown that n(n1ogn) “diagonal flips” are required in 
the worst case to transform one n-vertex numbered triangulated planar graph into some other one. 
Both of these lower bounds have matching upper bounds. An O(n log n) upper bound for associative, 
commutative operations was known previously, whereas here an O(n log n) upper bound for diagonal 
flips is obtained. 

Key words. graph grammar, graph transformations, associativity, commutativity, diagonal 
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1. Introduction. The object of this paper is to study succinct representations 
of derivations in transformational systems. To model transformational systems, we 
use graph grammars [2]. Rmghly speaking, a graph grammar consists of a finite set 
of productions {L, --+ R,}.  (Section 2 gives a precise definition of the form of graph 
grammar that we use.) Each production Li --+ R, consists of a connected graph 
L,, called the left side of the production, and a graph R,, called the right side of the 
production. A production Li + R, is applicable to a graph G if G contains a subgraph 
isomorphic to L,. The production is applied to G by replacing an occurrence of Li in 
G by a copy of R,. (There may be more than one way of applying a production to G, 
since G may contain more than one copy of the left side.) A derivation is a sequence 
of graphs G = Go, GI, Gz, - - - ,  G, = GI such that each Gi is obtained from Gi-1 by 
applying one production once. The derivation trawfonns graph G into graph GI. A 
particular application of a production during a derivation is called an action. 

Let r be a fixed graph grammar, and let G be a fixed starting graph of size n. 
Consider the collection R(G,I’,m) of all graphs obtainable from G by derivations 
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of length m or less. Our main result is an efficient method of encoding any graph 
in R(G, I?, m). To encode any such graph, use O(m + log (2)) bits. (In most cases 
of interest, m > n ,  and the second term in this bound is zero.) This bound is an 
improvement by a logarithmic factor over the obvious bound of O(mlogs), where 
s 2 n is the size of the largest graph occurring in the derivation [9]. This logarithmic 
improvement is crucial in obtaining the tight lower bounds discussed below. 

Our encoding represents an equivalence class of derivations obtained by permuting 
commutative applications of the productions. The efficiency of such an encoding arises 
from the fact that there may be many derivations equivalent to any given one, a fact 
that follows from the localized nature of applications of the production rules. For 
simplicity, we formulate our result in the setting of labeled undirected graphs; it 
holds for more general combinatorial structures such as hypergraphs and simplicial 
complexes, however. 

Our result has a number of general and specific applications, both theoretical and 
practical. Our main theoretical application is in demonstrating the existence of pairs 
of graphs that are far apart, in the sense that any derivation of one graph of the pair 
from the other must take many actions. If N(G) is a lower bound on the number of 
graphs derivable from a graph G of size n, then there is a graph GI such that any 
derivation of G' from G has length SZ(logN(G) - n). This is because our encoding 
scheme implies that the number of graphs derivable from GI by derivations of length 
m or less is at most c"+"', for some constant c that depends only on the grammar 
and not on m and n. 

Our first application involves transformations of arithmetic expressions. Consider 
the collection of fully parenthesized expressions of n variables over an associative, com- 
mutative binary operation. A move consists of applying either the commutative law 
(exchanging two subexpressions that are combined by the operation) or the assoch 
tive law (erasing a pair of matching parentheses to put three expressions at the same 
level, and adding a new pair of parentheses to alternatively regroup this triple). We 
show that, given any n-variable expression E, there is an equivalent expression whose 
distance from E in this metric is fl(n log n). This solves an open problem of Culik and 
Wood [l], who obtained a matching upper bound. Thus the worst-case distance be- 
tween two equivalent expressions is e(n log n). This contrasts with the corresponding 
bound of 2n - 0(1) if commutativity is not allowed [6]. 

As a second application of our lower bound, we consider the collection of num- 
bered triangulations of the plane, transformed by the "flip" operation. This operation 
removes an edge, thereby creating a quadrilateral face, and replaces it with the other 
diagonal of the face. A flip is only allowed if it does not create a multiple edge. 
Our encoding method proves that there exist pairs of n-vertex triangulations that are 
S2(nlogn) flips apart. We show, furthermore, that this bound is tight by giving a 
method for converting any n-vertex triangulation into any other in O(n log n) flips. 
This improves the previous O(n2) upper bound of Wagner [8]. 

We envision several other applications of our technique. First, it can be used 
to efficiently encode graphs or other combinatorial structures that are close to a 
given one (in the sense of being obtainable by a small number of transformations). 
Such encodings may be useful in situations that require the representation of multiple 
versions of a structure, as in program transformation systems and other applications of 
persistent data structures [3]. Second, it provides a way to enumerate graphs of various 
kinds that are generated by graph grammars or other such transformational systems. 
By enumerating our encodings rather than enumerating sequences of productions, all 
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of the desired graphs are generated, but with far fewer redundant copies of isomorphic 

The remainder of this paper consists of five sections. In 52 we give a precise 
formulation of graph grammars and graph grammar derivations, describe our encoding 
scheme for derivations, and use this to prove upper bounds on the number of graphs 
obtainable by short derivations. Section 3 gives several refinements and improvements 
of our method. Sections 4 and 5 show how the encoding scheme applies to prove our 
lower bound results for expressions and plane triangulations. Section 6 contains our 
upper bound on the distance between plane triangulations; it is independent of the 
rest of the paper. 

2. Encoding graph derivations. We are concerned with graphs that are undi- 
rected and of degree at most b (a fixed constant independent of n). Each end of each 
edge is labeled with an integer called an edge-end label. The edge-end labels incident 
on a vertex are distinct and between 1 and b inclusive. It is useful to be able to refer 
to half of an edge. Each such half-edge has one end vertex from the original edge, 
and one edge-end label. We allow the graph to have multiple edges between the same 
pair of vertices, and even to have self-loops. (It is easy to modify our construction to 
disallow such structures, although doing so would only weaken our lower bounds.) 

A graph grammar (usually denoted by I') is a finite set of productions 
(L, +i &li = 1 , 2 ,  - .  a } .  The ith production is comprised of three parts: L,, the left 
side of the production; &, the right side of the production; and d i ,  the corre- 
spondence of the production. The three parts of a production have the following 
characteristics: 

graphs. 

Li: This is a connected, undirected, edge-end labeled graph, with degree bounded 
by b. Strictly speaking, Li is not a graph, because it has a set of half-edges 
that have only one end vertex. The one end vertex of each half-edge that 
is attached to a vertex of L, has an edge-end label. 

&: This is also a graph with edge-end labels, and half-edges, of which it has 
the same number as Li. 

-+i: This is a oneteone map between the half-edges of Li and those of &. 
The production Li +i & applies to a graph G if G contains a set of vertices S 

such that G(S) (the subgraph induced by S in G) is isomorphic (including edge-end 
labels) to Li. The induced subgraph G(S) is most simply defined by retaining half of 
every edge incident to a vertex in S. The half-edges of G(S) come from the edges of 
G with one endpoint in S and one not in S. The production is applied by replacing 
this occurrence of Li in G by a, where each half-edge of & is attached to a half-edge 
of G - G(S) just as the corresponding half-edge of Li was attached. Sections 3 and 4 
give examples of specific graph grammars. 

Each vertex occurring in an Li has a unique position number from the set 
{ 1 , 2 , . - . , c } ,  where c is the total number of vertices in all left sides. The position 
numbers are used to uniquely specify a vertex in a production. The vertices of each 
& are also numbered 1 , 2 ,  -.  - within each production. These numbers are the right 
position numbers. 

A derivation is a sequence of graphs G = Go, GI, . - , G, = G' such that each 
G, is obtained from Gi-1 by applying one production once. An action is a particular 
application of a production during the derivation. The derivation tmnsfonns G into 
G'. The length of such a derivation is rn, the number of actions in it. 

We construct a pair of functions ENCODEc,r and DECODEG,r. The function 
ENC0DEG.r takes a derivation D that transforms G into some other graph G' and 
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returns a string of symbols from the alphabet C = {0,1,2, - +, c} of length n + r . m. 
Here n is the number of vertices of G, m is the length of the derivation D, c is the 
number of vertices in left sides of r, and r is the number of vertices in the largest 
right side of r. This sequence is called the encoding of the derivation. The function 
DECODEG,r takea as input such an encoding and returns the graph G'. That is, 
DECODEG,r(ENCODEG,r(D)) = G'. 

For our purposes, it is useful to think of the process of applying a production 
as destroying vertices (the ones that are matched to the vertices of L;) and creczting 
new and different ones (the ones introduced by a). The actions of a derivation D of 
length m are numbered 1,2, .  - , rn  in the order in which they occur. Each vertex that 
is created during the derivation can be identified uniquely by specifying the number of 
the action that created it and the position number of the vertex in R, that created it. 
This is the name of the vertex. The required vertices of an action are the vertices that 
are destroyed by it. An action is said to be ready at some time during a derivation if 
all of its required vertices exist at that time. Readiness implies that the entire copy of 
L; that is to be replaced (including all of its edges and half-edges) is present as well. 

LEMMA 2.1. Consider a derivation D that transforms G into G'. If the actions 
of D are reordered in any way so that each production is ready when it b applied, then 
the new derivation also transforms G into G'. 

Proof. By induction, it is suflicient to prove that, if at and at+l (two consecutive 
actions of D) are such that none of the required vertices of action at+l is created by 
a, then, if these actions are swapped, the resulting derivation also transforms G into 
G'. Since either order is allowed, we know that those vertices created by at are not 
used by at+l and those created by at+l are not used by at .  It follows that the actions 
commute, since they do not involve any of the same vertices. 

We can now give an explicit algorithm for computing the encoding of a derivation 
D. First, the actions of D are numbered, the vertices of the derivation are named, 
and the required vertices of each action are computed. 

Our encoding algorithm assigns to each vertex of the derivation a unique number. 
First, the vertices of G are numbered {1,2, - .  - , n} in an arbitrary order. (The same 
ordering must be used by the decoding procedure described below.) The remaining 
vertices are numbered in conjunction with the construction of a canonical derivation 
D', which is a reordering of the actions of D. 

The actions of the canonical derivation D' are computed one at a time. At any 
time, it is easy to determine which actions are ready; these are the ones whose required 
vertices exist. Let q be the ready action that destroys the lowest-numbered vertex 
among all ready actions. This action is the one chosen to be the next action of D'. 
This action is applied to the graph, and the vertices created by it are now numbered 
consecutively starting after the largest vertex number used thus far. (If several vertices 
are created by q, they are numbered in the order of the right position numbers in the 
right side of the production that created them.) 

After computing the canonical derivation D', the algorithm proceeds to compute 
a label for every vertex that occurs in the derivation. The label of a vertex v is zero if v 
is not destroyed by any action in the derivation. Otherwise, it is the position number 
of the role played by v in the production that destroys it. The desired encoding is a 
lit  of, at most, n + r . m  labels of all the vertices in increasing order by vertex number. 

We can now describe the decoding procedure. This algorithm takes the graph G 
(with vertex numbers that agree with those of the encoding procedure), the grammar 
r, and the encoding (the list of labels), and determines G'. The procedure works 

0 
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by constructing the canonical derivation D‘, from which it is easy to get G’. As in 
most data compression/decompression methods, the decoding algorithm mimics the 
behavior of the encoding algorithm step by step. 

The crucial fact concerning the labels of the vertices existing at any time dur- 
ing the canonical derivation is that from these it is possible to determine exactly 
which actions were ready at the corresponding stage of the encoding process. This is 
accomplished by the following matching procedure. 

If a vertex v has a nonzero label, the label determines i ,  the production that 
eventually destroys v, and also the role v plays in this production. For each such 
vertex, check its neighborhood to see if it is isomorphic to Lj (including edge-end 
labels). This check is easy, since we know which vertex of L, must match v, Lj is 
connected, and that there are edge-end labels to follow. (Recall that the edge-end 
labels incident to a vertex are disjoint.) If such a subgraph is found, then the labels 
of these vertices are checked to see if they match the position numbers of the roles 
that they are supposed to play in the proposed action. If all of these tests are passed, 
then the action is ready. 

LEMMA 2.2. The matching procedure detenines the ready productions that ex- 
isted at the corresponding stage of the encoding process. 

Proof. If an action is ready, then the matching procedure certainly finds it because 
the vertices corresponding to the left side of the ready action will exist and are labeled 
in a way consistent with all the conditions checked above. 

On the other hand, suppose that the above check is satisfied starting from some 
vertex v. Let i, be the production indicated by the label of v, and let S be the set of 
vertices that form the subgraph isomorphic to Li. We claim that, in any continuation 
of this derivation, all vertices of S must be destroyed simultaneously by a single action. 
Since all these vertices are destroyed by one action, this action must now be ready. 

It remains to show that all vertices of S must be destroyed simultaneously. Con- 
sider the first action a in some continuation of the derivation that destroys some 
vertex w of S. Since a is the first action involving the vertices of S, at the moment 
action a is applied, all of the vertices of S exist (and have the same labels). F’rom the 
vertex w, the matching algorithm described above constructs the set S. There is no 
other possible matching pattern involving w. Therefore the action a destroys all the 
vertices of S simultaneously. 0 

Now, given that we know the ready productions and the numbering of the vertices 
of the current graph, it is easy to find q (the next production of 0’) because it is the 
ready action that destroys the lowest-numbered vertex. This action is applied to 
the graph. The vertices created by it are numbered sequentially (as in the encoding 
procedure) and are labeled as specified by the encoding. This step is repeated to 
determine all of the productions of D’. The process terminates when there are no 
ready productions. 

The following theorem, which bounds the number of graphs obtainable from a 
given one as a function of the length of a derivation, is a consequence of our encoding 
scheme. 

THEOREM 2.3. Let G be a graph of n vertices, I? be a graph grammar, c be the 
number of vertices in left sides of I?, and r be the maximum number of vertices in any 
right side of a pduc t ion  of I?. Let R(G, I’, m) be the set of graphs obtainable from G 
by derivations in I? of length at most rn. Then IR(G, r, m)l 5 (c + l)n+r.m, 

Proof. Encode the derivation using the scheme described above. The length of 
the encoding is, at most, n + r - m symbols. This encoding can be padded with zeros 
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so that its length is exactly n + r - m. (This does not interfere with the decoding 
process, since it is self-terminating.) The alphabet is of size c + 1, so the number of 
such encodings is (c + l)n+r*m. Each graph reachable by m or fewer actions is the 
outcome of applying the decoding procedure to one of these encodings. Therefore the 
number of such graphs is, at most, the number of such encodings. 

3. Generalizations and improvements. This section describes various exten- 
sions and improvements to our encoding scheme, most of which are used later in this 
paper. 

3.1. Encoding short derivations. Our encoding scheme can be modified to 
make it more efficient when the length of the derivation is short compared to the size 
of the starting graph. In this case, most of the labels of the vertices of the initial 
graph are zero. The more efIicient encoding specifies which vertex labels are nonzero 
and only includes labels for these in the vertex label list. Let k be the number of 
vertices that have nonzero label in the initial labeling of G, and let m, n, T ,  and c be 
defined as above. Then the size of this encoding (in bits) is 

0 

The first term is for bits to encode k ,  and the second term encodes the subset of 
vertices with nonzero labels. 

THEOREM 3.1. It holds that 

log IR(G,r,m)l = O(h3 (1) +m),  

where R(G, I?, m) is the number of graphs obtainable by derivations of length at most 
m in grammar r starting from a graph G of n vertices. (If m > n, then log (2) is 
interpreted as zero.) 

Proof. Theorem 2.3 shows that log JR(G, I?, m)l = O(n + ma). If T - m > in ,  then 
O(n + m) = O(m) = O(1og (2) + m). If r - m 5 in, then we use the above encoding 
scheme. Since each action causes, at most, T vertices of G to have nonzero labels, we 
know that 

It follows that 

(k  + mr) rlog,(c + 1)1 = O(m) 

and that 

Finally, we know that log, n I log, (1). The theorem follows from these inequalities 
and the bound on the number of bits used by the efficient encoding scheme. 

3.2. Leaders and followers. The labels on the set of vertices destroyed by an 
action contain redundant information. For example, each label of this set has sufEcient 
information to determine which production is the one that destroys all of them. There 

0 
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is a way to eliminate this redundancy and thereby reduce the size of the encoding in 
most cases. 

The new encoding algorithm begins by computing the standard encoding de- 
scribed above. It then applies a map f to each symbol of the encoded string, giving 
the new encoding. It remains to define the map f .  

Let one vertex of each Li be chosen to be the leader, and let all the other vertices 
be followers. For each Li, choose a spanning tree. (This can be done, since each left 
side is connected.) For each follower vertex v ,  let DIR(v) be the value of the edge-end 
label of the v end of the first edge on the path (in the spanning tree) from v to the 
leader of Li. (In other words, starting from any vertex in Li, following the DIR(.) 
direction repeatedly leads to the leader.) 

The map f is defined as follows (IF1 is the number of productions of r, and v ( z )  
is the vertex of a left side with position number x): 

if x = 0, 
f(z) = i if v(z )  is the leader of Li, (" Irl+ DIR(v(z)) if v ( z )  is a follower. 

The decoding algorithm must be modified to accommodate this new encoding. 
The only difference is in the matching step, which is revised as follows. For each 
vertex v that is a leader, check its neighborhood to see if it is isomorphic to Lj. If 
such an isomorphic subgraph is found, then the labels of these vertices are checked 
to see if they are all followers, and, if a directed edge is drawn from each follower w 
in the direction of DIR(w) (which is the label of w minus IF/), then the result is a 
directed spanning tree rooted at v.  If all of these tests are passed, then the action is 
ready. 

We now must verify that Lemma 2.2 still holds, that is, that the sets of vertices 
satisfying the new matching procedure above exactly correspond to the ready actions. 
The first part of the proof remains easy; any ready action of the original derivation 
results in a match in the above procedure. On the other hand, a match also indicates 
that the corresponding action is ready. Let S be the set of matched vertices. Starting 
from any follower vertex w E S, the entire set S can be constructed uniquely. Simi- 
larly, from the leader vertex v of S, the set S can be uniquely constructed. This is a 
sufficient condition to guarantee that all vertices of S are destroyed simultaneously, 
which (as shown above) is the condition that we need to prove that the action is ready. 

It may be possible to further reduce the alphabet size by making use of the 
flexibility that exists in choosing which spanning tree to use on each left side. The 
number of labels can be reduced from Irl+ b+ 1 to Irl+ d + 1, where d is the number 
of different directions used in the directed spanning trees of the left sides. 

The leader-follower technique applies in any situation in which there is a produc- 
tion with more than one vertex on the left side. It may decrease the size of the label 
alphabet, but it can never increase it. If the technique applies, then it can be used in 
conjunction with the next technique to further reduce the alphabet size. 

3.3. Eliminating the zero label. Suppose that, for any graph occurring in a 
derivation using r, there exists a way of labeling it with nonzero labels, so that no 
production is ready. Then the zero label can be eliminated. The encoding procedure 
must be modified slightly to eliminate the zero labels, while the decoding procedure 
remains the same. 

We now describe how the encoding procedure is revised. First, compute the label- 
ing of all the vertices as before. The vertices with zero labels are exactly those that are 
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eventually in GI, the final graph of the derivation. These are called the terminal ver- 
tices. Compute the labeling of GI with nonzero labels, so that no production is ready. 
For each terminal vertex, replace its label with that terminal label just computed in 
GI. 

It is easy to see that this works by reviewing the proof of Lemma 2.2. The proof 
only differs at the point where it is shown that if the labels match the pattern of 
some left side Li, then the production i applied to that set of vertices S is ready. The 
crucial statement is that, if this situation occurs, then all the vertices of S must be 
destroyed simultaneously. This is still true. All of the vertices cannot be terminal 
ones, since their labels admit the application of a production. The set cannot be 
comprised of both nonterminals and terminals because then the nonterminals would 
never be allowed to change. Therefore all the vertices of S must be nonterminals, and 
the previous argument shows that the production is ready. 

Note that in any situation in which the leader-follower technique applies, we can 
eliminate the zero label. This is done by labeling all the terminal vertices as followers. 

3.4. Tags. It is sometimes useful to carry extra information along during a 
derivation. (Sections 4 and 5 give examples of this.) To accommodate this, we 
allow each vertex to have a tag associated with it. Each production also supplies an 
arbitrary function that is used to define the values of the tags of the vertices created 
in terms of the tags of the vertices destroyed. Because the tags are computed locally 
(as a function only of tags of the vertices on the left side of the production), the 
commutativity that we have exploited in constructing our encoding is still present. 
Therefore our encoding method and theorems apply to tagged graphs without any 

4. Expressions over an associative, commutative operation. Let X = 
{zy ,z2, . - . , zn} be a fixed set of variables, let 6 j  be a binary operation, and let En 
be the set of fully parenthesized expressions over 6 j  in which each variable z, occurs 
exactly once. We consider the problem of estimating how many applications of the 
associative and commutative laws are required to transform any expression in En into 
any other. 

To make this problem somewhat more concrete, we restate it as a problem on 
binary trees. Our binary tree terminology is that of Knuth [5]. Let T, be the set 
of full binary trees with n external nodes, numbered 1,2, - - a  , n. Any permutation of 
1 , 2 , - . .  , n  is allowed; thus ITn[ = n!( : I t ) i  = (n - 1)!(:1;) [4]. We permit two 
transformations of a tree T E Tn: a twist, in which the left and right subtrees of 
a specified internal node are exchanged, and a mtation, in which an internal node 
changes places with one of its children while symmetric order in the tree is preserved. 
(See Fig. 4.1.) The problem is to estimate the minimum number of twists and rotations 
needed to transform any tree in Tn into any other. We denote this number by &. 

This problem is equivalent to the expression transformation problem. The is* 
morphism (also shown in Fig. 4.1) between expressions and trees is the standard 
one-an external node labeled i corresponds to the expression “zi”; an internal node 
corresponds to the expression (EL 6 j  ET), where El and E, are the expressions cor- 
responding to the left and right children of the node. A twist corresponds to the 
application of the commutative law; a rotation, to an application of the associative 
law. 

Cdik and Wood [l] derived an O(n1ogn) bound on &. We derive a matching 
Q(n1ogn) bound. (Culik and Wood actually worked with a slightly different trans- 
formational system, but their result applies to our system, and vice versa.) 

changes. 
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twist 

FIG. 4.1. filustmting a twiat and a rotation. 

These transformations can be represented as productions in a graph grammar. 
The graphs that we consider differ slightly from the above binary trees. To transform 
a tree into the corresponding graph, add an extra node of degree one, called the 
supemt, and connect it to the root of the tree. The edge-end labels of the three 
edges incident to an internal node are 1, 2, and 3, for the edges connecting the node 
to its left child, right child, and parent, respectively. (The superroot is the parent 
of the root.) The n + 1 edge-ends that are incident on vertices of degree one are 
irrelevant, since t h e  are never involved in any production. The vertices of degree 
one are tagged with a name that is carried along during the derivation. Figure 4.2 
shows an expression tree and the corresponding graph. 

superroot 

FIG. 4.2. A tn?e and its wrrespondang gmph. 
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The grammar to represent this process has three productions: one for a twist, 
one for a left rotation, and one for a right rotation. These productions are shown in 
Fig. 4.3. 

FIG. 4.3. The productions for a twist and rotations. The correspondence between the half-edges 
is obtained by pairing the topmost edges and walking clockwise simultaneously around the left and 
right diagmms. 

From Theorem 2.3, it immediately follows that, starting from a tree with n ex- 
ternal nodes, the number of trees reachable in m or fewer twists and rotations is, at 
most, 62n+2m+1. The leader-follower technique can be used to prove a tighter bound. 
By choosing the upper vertex of the left side of each rotation to be the leader, and 
the other to be the follower, the label alphabet size is reduced to 5. The zero elimi- 
nation technique now applies. This reduces the alphabet size to 4, and the bound to 
42n+2m+1. This can be further improved by specializing the encoding and decoding 
procedures for this application. We do not need to encode the labels for the n leaves 
or the superroot because these are not involved in any actions. This improves the 
bound to 4n+2m-1. The total number of bits needed to encode any tree derivable in 
m or fewer moves is, at most, 2n + 4 m  - 2. 

We summarize this result in the following theorem. 
THEOREM 4.1. For any expression E of n variables: 

1. The number of different arithmetic expressions obtainable by m applications 
of the commutative and associative laws starting from E is, at most, 22n+4m-2; 

2. There exists an eqression E' such that the number of opemtions required to 
transform E into E' is fl(n1ogn). 

Pmf. Part 1 follows from the prior discussion. Part 2 follows from the fact that 
there are (n - l)! (2';) expressions obtainable starting from E. To obtain all of them 
in m moves, we must have that 

2n - 2 
22n+4m-2 - = Q(n!),  
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2n + 4m - 2 = R(nlogn), 

m = n(n1ogn). 0 

5. Numbered plane triangulations: A lower bound. A numbered plane 
triangulation (henceforth, just called a triangulation) is an undirected graph embed- 
ded in the plane, all of whose faces are triangles and whose vertices are numbered 
sequentially from 1. We denote by Pn the set of all n-vertex triangulations. A flip 
of an edge in a triangulation is the operation of removing an edge, thereby forming a 
quadrilateral face, and adding the other diagonal of the face. (See Fig. 5.1.) A flip is 
allowed only if it does not introduce a multiple edge. 

-- 
, /-- - - -- --. -- 

8 

\ 
t 
\ 
$ 
I 
I 
I 
I 

I 
8 

FIG. 5.1. A fl ip in a triangulated graph and the corresponding opemtion in the dual graph. 

Let Fn be the minimum number of flips needed to convert any n-vertex trian- 
gulation into any other. We wish to estimate F,. It is easy to establish that Fn is 
O(n2); Wagner [8] gave a construction. We show in 56 that Fn is O(n1ogn); in this 
section, we use our succinct encoding approach to prove that F, is n(n1ogn). 

There is no upper bound on the degree of a vertex in a plane triangulation. 
Therefore, to apply our technique, we work in the space of planar graphs that are 
dual to plane triangulations. In such a graph, every vertex has degree 3. (Each 
vertex of the dual graph (a face in the original graph) maintains as a tag the set of 
vertex numbers of the vertices in the original graph to which it is incident. These 
tags along with the dual graph are sufficient to reconstruct the original numbered 
plane triangulation. This observation is required to get a reliable upper bound on 
the number of reachable numbered plane triangulations.) The edge-end labels of the 
initial graph are chosen arbitrarily, subject to the constraint that walking one step 
clockwise around a vertex increases the label by 1 (modulo 3). This ordering of the 
edge-end labels encodes the embedding of the plane triangulation. 

There are several different ways to represent sequences of diagonal flips as derim 
tions in a graph grammar. One way is shown in Fig. 5.2. 

This method uses two productions: one for doing the flip, and the other for 
preparing the edge-end labels to allow the flip. Each flip in the original derivation 
may correspond to as many as five actions: two to cycle the edge-end labels on one 
end, two for the other end, and one for the actual flip. A sequence of m flips becomes 
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FIG. 5.2 .  Two pductaons for representing frip sequences as gmph gmmmar derivations. 

a sequence of as many as 5m actions. A plane triangulation of n vertices has 2n - 4 
faces. Therefore the dual graphs in which the derivations take place have 2n - 4 
vertices. The number of vertices in left sides of productions (c) is 3, and the number 
of vertices in the largest right side ( T )  is 2. 

We can now apply Theorem 2.3 to bound the number of n node numbered plane 
triangulations reachable in m flips by 42n+10m-4. This implies that, for any triangu- 
lation P, at most 42n+10m-4 distinct triangulations can be obtained by doing m or 
fewer flips. Since P, contains at least (n - 3)! triangulations (there are this many 
different sorted wheels; see SS), there must be at least two triangulations, and indeed 
many pairs of triangulations, that are R(n1ogn) flips apart; that is, F, = R(n1ogn). 

The bound on the number of reachable configurations can be tightened signifi- 
cantly by the use of a different graph grammar. This grammar is shown in Fig. 5.3. 

Because this grammar includes each of the six ways that the ends of the edge to be 
flipped can be labeled, there is a one-bone correspondence between diagonal flips in 
the plane triangulation and applications of one of the productions to the dual graph. 
Using the leader-follower trick and eliminating the zero label reduces the number 
of Werent labels to 9. Each production creates two new labels, so our improved 
encoding scheme proves that the number of graphs reachable in m moves is at most 

Leader vertices can be avoided entirely. An encoding without leaders can be made 
to work by using the convention that a production involving a pair of adjacent vertices 
is ready if and only if their labels mutually point at each other. (That is, following 
the DIR(v) edge from v leads to w, and following the DIR(w) edge from w leads 
to v . )  To verify that the zero label (indicating a terminal vertex) is not necessary, we 
must show that there exists a labeling of any planar graph of degree 3 with follower 
labels such that no pair of adjacent vertices point to each other. This can be done as 
follows. If the graph is a tree, choose a place in the middle of some edge, and make 
all the vertices point away from this. If the graph has a cycle, choose the labels of 
the vertices on the cycle to point consistently around it. Now choose a subset of the 
remaining edges, so that these edges plus the cycle form a subgraph with all of the 
vertices and exactly one cycle. (This is a spanning tree with one extra edge.) The 

g2n+2m-4. 
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FIG. 5.3. Six productions give a tighter bound on flip distance. 

follower label on a noncycle vertex points toward the cycle along the path in the tree. 
This gim the required match-free labeling. This argument bounds the number of 
reachable configurations by 32n+2m-4. 

The set of configurations reachable in rn or fewer &ips is not changed i f  we do not 
allow a sequence to make a flip, then immediately make another flip that cancels it 
out. This observation means that of the nine possible labelings of the pair of vertices 
resulting after a move, we can restrict our attention to eight of them. This improves 
the bound to 32n-48m. 

We summarize the results of this section in the following theorem. 
THEOREM 5.1. For any plane triangulation T of n vertices, the following hold: 

1. The number of different plane triangulations obtainable by m or fewer flips 

2. There &ts a plane triangulation T' such that the number of flips r eqv id  
starting from T is, at most, 32n-48m; 

to tmwform T into TI is fl(n log n). 

6. Numbered plane triangulations: An upper bound. 
THEOREM 6.1. Let GI and GO be two n-vertex numbed  plane triangulations 

(with no multiple edges). If n 2 5,  then there is a sequence of O(n1ogn) diagonal 
flips that t m w f o m  GI into G2 in such a way that there are no multiple edges in any 
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intermediate state. 
Proof. We show that any such triangulation G can be transformed into a par- 

ticular canonical form called a sorted wheel in O(n1ogn) diagonal flips. Using this 
transformation, we can transform GI into the sorted wheel, then transform the sorted 
wheel into Gz (using the transformation in reverse). 

A wheel of n 2 5 vertices is a planar graph that has two special vertices called 
hubs and n - 2 other vertices called rim vertices. There is an edge from each hub to 
each rim vertex (these are the spokes). There are n - 2 other edges in the graph, and 
these form a simple cycle through all of the rim vertices. There is a unique way of 
embedding the wheel in a sphere. 

A sorted wheel of n vertices is a wheel with labeled vertices embedded in the 
sphere. The hubs are labeled 1 and n, and the vertices of the rim are labeled 
2,3, 

We first consider the special case of n = 5.  Any graph G of five vertices satisfying 
the hypotheses of the theorem is a wheel. We show this by first applying Euler’s 
formula, which implies that G must have six triangular faces and nine edges, and 
that the s u m  of the degrees of the vertices is 18. No vertex can have degree two, 
because then its two neighbors would be connected by two different edges, which 
violates the assumption that G has no multiple edges. Furthermore, no vertex can 
have degree greater than four. It follows that the multiset of the degrees of the vertices 
is {3,3,4,4,4}. The three vertices of degree four must be attached to all the other 
vertices in the graph. This accounts for all of the edges incident on the vertices of 
degree three, which therefore must not be neighbors. It follows that the graph is a 
wheel in which the vertices of degree three are the hubs, and the vertices of degree 
four are the rim. 

We finish the proof for n = 5 in two stages. First, we show that we can make 
vertices 1 and 5 the hubs of the wheel. Second, we show that if the resulting structure 
is not the sorted wheel (it must be its mirror image), then it can be transformed into 
the sorted wheel. 

If vertices 1 and 5 are on the rim, then a diagonal flip of the edge between them 
makes them the two hubs. If 1 is a hub and 5 is on the rim, then we flip the edge 
between the other two rim vertices creating a configuration where both 1 and 5 are 
on the rim, which we handle as above. A similar technique suffices if 5 is a hub and 
1 is on the rim. 

Figure 6.1 shows how the mirror image of the sorted wheel of five vertices is 
transformed into the sorted wheel by the application of five diagonal flips. 

We are now ready to consider the case where n 2 6. The transformation of the 
graph G into a sorted wheel is broken up into three phases: constructing a Hamiltonian 
circuit, transforming the Hamiltonian circuit into a wheel with hubs 1 and n, and 
sorting the rim of the wheel. These three steps are described in the following three 
sections. 

6.1. Constructing a Hamiltonian circuit. By Tutte’s theorem on planar 
graphs [7] (and by a theorem of Whitney [lo]), any Cconnected planar graph has 
a Hamiltonian circuit. The graph G under consideration is 3-connected, since it is 
planar, triangulated, and has no multiple edges. Unfortunately, it may not be 4 
connected. If it is not Cconnected, then it must have a separating triangle; that is, 
a triangle whose removal separates the graph. We show how to transform the given 
graph G into one that has no separating triangles by making O(n) diagonal flips. This 
completes our construction of the Hamiltonian circuit. 

- , n - 1 in clockwise order when viewed from hub 1. 
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FIG. 6.1 

The graph G is given to us embedded on a sphere. We choose a face arbitrarily 
and map the embedding on the sphere to an embedding on the plane such that the 
chosen face is infinite. Each separating triangle of G partitions the faces and remaining 
vertices of G into two components. The interior component is the one not containing 
the infinite face. Let 11 be the set of faces interior to a separating triangle 7'1, and let 
12  be the set of faces interior to a separating triangle Tz. Either 11 and 1 2  are disjoint, 
or satisfy 11 c 12 or 12 C 11. It follows from these relations that there must always 
be a set of innermost separating triangles, i.e., those that do not contain another 
separating triangle in their interior. 

Our algorithm for eliminating separating triangles works from innermost separat- 
ing triangles outward. A diagonal flip operation is applied to an edge of one of the 
innermost separating triangles. The chosen edge is any one that does not introduce 
a new separating triangle. We prove below that there always exists such an edge. It 
follows immediately that this algorithm eliminates all of the separating triangles in 
O(n) diagonal flips because each flip reduces by at least one the number of edges that 
are in separating triangles. 

It remains to show that there is always an edge of an innermost separating triangle 
such that if that edge is flipped then no new separating triangle is created. The 
following case analysis shows this. Consider an innermost separating triangle with 
vertices a, b, and c. Let d be the vertex inside the triangle such that triangle (a, b, d) 
is empty. (There must be such a vertex since triangle (a, b, c) is a separating triangle, 
and there must be something inside of it.) Similarly, there must be a vertex e outside of 
triangle (a, b, c) such that (a, b, e) is an empty triangle. Figure 6.2 shows the situation. 

We assume that flipping edge (a,b) creates a new separating triangle and show 
that flipping one of the other edges does not create one. We know that the separat- 
ing triangle that was created by flipping (a, b) must be (d, c, e), and that (d, c) and 
(c, e) are edges of the original graph. Triangles (a, d, c) and (b, d, c) must be empty; 
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c 
FIG. 6.2 

otherwise, (a, b, c) would not be an innermost separating triangle. We now know that 
the structure of the graph near triangle (a, b, c)  is as shown in Fig. 6.3. 

e 

C 
FIG. 6.3 

Since the graph has at least six vertices, we know that there must be another 
vertex f outside of triangle (e, b, c)  such that (b, f, c) is an empty triangle. Now it is 
clear that flipping edge (b, c) cannot create a separating triangle. This completes our 
construction of a Hamiltonian circuit. 

0.2. lkansforming the Hamiltonian circuit into a wheel with hubs 1 and 
n. Given that there is a Hamiltonian circuit, we can regard the graph as consisting 
of a cycle and two triangulations of an n-gon, one on each side of the cycle. By 
definition, a triangulation of a polygon has no interior vertices. A coning triangulation 
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of a polygon is one in which all of the interior edges of the polygon are incident to 
the same vertex. We use several facts about diagonal flips in triangulations of a 

FACT 1. Any triangulation of an n-gon can be transformed into the coning trian- 
gulation with all edges incident on a vertex v b y  making at most n - 2 diagonal flips, 
each of which increases the degree of v by one. 

FACT 2. Any triangulation of an n-gon can be transformed into any other in at 
most 2n - 4 diagonal flips. 

FACT 3. In any triangulation of an n-gon, there is a vertex v such that v is 
incident to only two edges, and those are the boundary edges that connect v to its two 
neighbors around the polygon. 

Call the two triangulations of the n-gon that comprise the current version of G 
the top triangulation and the bottom triangulation. Let v be a vertex such that Fact 
3 holds for v in the top triangulation. Now we can apply Fact 1 to vertex v in the 
bottom triangulation to transform that triangulation into a coning triangulation to 
vertex v .  This process will never introduce multiple edge because all the new edges 
added to the bottom side of the triangulation are incident to vertex v ,  which has no 
edges on the top side. The situation is depicted in Fig. 6.4. 

polygon 161. 

FIG. 6.4 

We now change our definition of the top and bottom sides. We view vertex v 
as belonging to the interior of the bottom side, which is a hub with n - 1 spokes 
connecting v to all other vertices. The top side becomes a triangulation of an (n  - 1)- 
gon. At least one of vertices 1 or n is on this (n - 1)-gon. Without loss of generality, 
assume that 1 is on this (n  - 1)-gon. (If 1 is not on this polygon, then the following 
construction can be fixed by swapping the roles of n and 1.) Now we transform the 
triangulation of the (n - 1)-gon (the top side) into a coning triangulation to vertex 1. 
The result is shown in Fig. 6.5. 

We now flip edge (v, 1) and move 1 into the top side. The result is a wheel with 
hubs 1 and v,  as shown in Fig. 6.6. 

It remains to transform this wheel into one with vertices 1 and n as the hubs. 
If v = n, then we are done; otherwise, it only remains to replace v by n. We begin 
by flipping any edge around the rim of the wheel, resulting in the situation shown in 
Fig. 6.7. 

Now we retriangulate the bottom (n - 1)-gon, so that it is a coning to n. Then 
we flip edge (n, 1) and move n into the bottom half to give the triangulation shown 
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v 
FIG. 6.5 

FIG. 6.6 

in Fig. 6.8. 
This construction works without creating multiple edges, as long as the rim of 

the wheel is always at least of size four. This is certainly the case, since n 2 6. 

6.3. Sorting the rim of the wheel. We fmt give a sequence of four flips that 
can exchange any pair of adjacent vertices around the rim of the wheel. Figure 6.9 
shows this sequence. This work8 as long as the number of vertices on the rim is at 
least 4. 

If 6 5 n 5 15, we can use repeated transpositions to sort the wheel. We henceforth 
assume that n 2 16. A double wheel is a wheel with two rims, as shown in Fig. 6.10. 

The number of vertices in the top rim differs from the number in the bottom rim 
by at most one. Furthermore, all the edges in the region bounded by the two rims 
cross from one rim to the other. 

We now show how to use O(n) diagonal aps to transform a double wheel into a 
single wheel. We call this transformation a merge step. The merge allows us to form 
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FIG. 6.7 

n 

FIG. 6.8 

any ordering of the vertices around the rim of the wheel subject to the constraint 
that the order is consistent with that debed by the orderings on the two rims of the 
double wheel. That is, if we traverse the rim of the wheel in clockwise order (from 
the point of view of, say, vertex l), then the traversal encounters all the vertices that 
came from the bottom rim (top rim) of the double wheel in the same cyclic order 
in which they occurred in the bottom rim (top rim) of the double wheel. A more 
intuitive way to think of this process is to imagine two decks of cards (the double 
wheel) that are s h d e d  into one (the rim of the wheel). This is also analogous to the 
way a merge-sorting algorithm combines two sorted subfiles into a sorted file. 

We can also apply the merge step in reverse (an unmerge) to split a wheel into a 
double wheel. A wheel can be sorted by applying a sequence of [log, (n - 2)1 unmerge- 
merge pairs. (Observe that a merge sort can be implemented using these primitives. 
Each pass of the sorting algorithm through all of the data corresponds to one of the 
unmerge-merge pairs.) 

It remains to show how to implement the merge step (never introducing multiple 
edges) in O(n) diagonal flips. An edge (i ,j)  is called an amicable edge if (1) i is on 
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n 

FIG. 6.11 

one side of the rim of a double wheel and j is on the other side, (2) the quadrilateral 
obtained by removing edge ( i , j )  has one edge on each rim of the wheel and two 
edges crossing from one side of the rim to the other, and (3) the other vertex of the 
quadrilateral on the same side of the rim as i is counterclockwise from i (with respect 
to 1). Figure 6.11 shows an amicable edge ( i , j ) .  

In any double wheel there must be an amicable edge. By flipping three edges in 
the vicinity of an amicable edge, we can create an (n - 2)-gon such that the edges on 
the outside of the polygon do not connect any pair of vertices of the polygon. When 
this operation is applied to the above diagram, the result is shown in Fig. 6.12. 

It is now the case that we can apply any algorithm for retriangulating the (n - 2)- 
gon between the two rims without fear of creating multiple edges. 

We can apply this technique three times to transform a double wheel with one 
triangulation between the rims into a double wheel with any other triangulation be- 
tween the two rims. Let ( i , j )  be an amicable edge of the initial double wheel. Let 
(k, I) be an amicable edge of the desired final triangulation. (These pairs of vertices 
may or may not be disjoint.) Let z and zc be two neighbors on the top rim of the 
wheel such that zc is a counterclockwise neighbor of z, and neither z nor zc is a, or 
k, or a counterclockwise neighbor of either i or j .  Since the length of the rim is at 
least 7, there must be such a pair. Define y and yc similarly on the bottom rim. 

To transform the triangulation between the rims from any one to any other,'we 
first cut the double rim at amicable edge ( i , j ) ,  as shown in Fig. 6.12. We then 
retriangulate the region between the two rims such that (z,y) is an amicable edge. 
Then we close up the cut of amicable pair ( i , j )  and open up the one for amicable 
edge (z,y). We then retriangulate the polygon between the rims, so that the pair 
(k,I) becomes an amicable edge. We then close up the cut at amicable edge (z,y) 
and open up the cut at pair (k, I). Now we triangulate the (n - 2)-gon as specified by 
the desired final triangulation between the rims. Closing up the cut at amicable pair 
(k, 1 )  completes the construction of the desired triangulation between the rims. This 
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n 

FIG. 6.12 

FIG. 6.13 

process can never introduce any multiple edges, and it uses O(n) diagonal flips. 
As the desired triangulation between the rims, we choose any one such that there 

is an edge joining each pair of vertices that are adjacent on the rim of the desired 
wheel. It is easy to see that there must be such a triangulation between the rims. 

The last step of the process is to convert such a double wheel into a single wheel. 
Figure 6.13 illustrates how this is done. The highlighted edges are those of the rim of 
the wheel. 
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This step does at most one flip for each vertex of the rim of the wheel and 
completes the merging process. This also completes the proof of the theorem. 0 

COROLLARY 6.2. Let G1 and G2 be two n-vertex numbered plane triangulations 
(possibly 4th multiple edges). There &ts a sequence of O(n log n) diagonal jlips that 
t m n s f o m  GI into G2 in such a way that no flip ever cmtes  a self-loop. 

Proof An easy case analysis proves the result for n = 4. We show that multiple 
edges can be eliminated by flipping them one at a time. This takes only a linear 
number of flips, since each edge is flipped at most once. The corollary result follows 
by applying Theorem 6.1 to the graphs obtained by eliminating the multiple edges 
from G1 and G2. 

We now prove our claim that if any multiple edge in a plane triangulation is 
flipped, the number of multiple edges is reduced. Let el and e2 be a pair of edges 
between vertices and w in a plane triangulation. The cycle (e1,ez) divides the 
vertices (except v and w) into two disjoint sets: those on one side of the cycle and 
those on the other side. Neither of these two sets can be empty, since every face of 
the graph is a triangle. If either edge el or e2 is flipped, it is replaced by an edge that 
connects a vertex on one side of the cycle to one on the other side. Since before the 
flip there were no edges between vertices in these two sets (they are separated by a 
cycle), the edge created by the flip cannot be a multiple edge. 0 
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