
SIAM J. DISC. MATH.
Vol. 5, No. 3, pp. 428-450, August 1992

@ 1992 Society for Induotrial and Applied Mathematics
012

SHORT ENCODINGS OF EVOLVING STRUCTURES*

DANIEL D. SLEATORtq, ROBERT E. TARJAN#q, AND WILLIAM P. THURSTON5

Abstract. A derivation in a transformational system such as a graph grammar may be redundant
in the sense that the exact order of the transformations may not &ed the final outcome; all that
matters is that each transformation, when applied, is applied to the correct substructure. By taking
advantage of this redundancy, we can develop an efficient encoding scheme for such derivations. This
encoding scheme has a number of diverse applications. It can be used in efficient enumeration of
combinatorial objeds or for compact representation of program and data structure transformations.
It can also be used to derive lower bounds on lengths of derivations. It is shown, for example,
that n(n1ogn) applications of the associative and commutative laws are required in the worst case
to transform an n-variable expression over a binary associative, commutative operation into some
other equivalent expression. Similarly, it is shown that n(n1ogn) “diagonal flips” are required in
the worst case to transform one n-vertex numbered triangulated planar graph into some other one.
Both of these lower bounds have matching upper bounds. An O(n log n) upper bound for associative,
commutative operations was known previously, whereas here an O(n log n) upper bound for diagonal
flips is obtained.

Key words. graph grammar, graph transformations, associativity, commutativity, diagonal
flips, triangulations

AMS(M0S) subject classifications. 05, 68

1. Introduction. The object of this paper is to study succinct representations
of derivations in transformational systems. To model transformational systems, we
use graph grammars [2]. Rmghly speaking, a graph grammar consists of a finite set
of productions {L, --+ R,}. (Section 2 gives a precise definition of the form of graph
grammar that we use.) Each production Li --+ R, consists of a connected graph
L,, called the left side of the production, and a graph R,, called the right side of the
production. A production Li + R, is applicable to a graph G if G contains a subgraph
isomorphic to L,. The production is applied to G by replacing an occurrence of Li in
G by a copy of R,. (There may be more than one way of applying a production to G,
since G may contain more than one copy of the left side.) A derivation is a sequence
of graphs G = Go, GI, Gz, - - - , G, = GI such that each Gi is obtained from Gi-1 by
applying one production once. The derivation trawfonns graph G into graph GI. A
particular application of a production during a derivation is called an action.

Let r be a fixed graph grammar, and let G be a fixed starting graph of size n.
Consider the collection R(G,I’,m) of all graphs obtainable from G by derivations

* Received by the editors June 12, 1990; accepted for publication (in revised form) August 7,
1991.

t School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. This
research was supported in part by National Science Foundation grant CCR8658139 and by the
Defense Advanced FLesearch Projects Agency, monitored by the Space and Naval Warfare Systems
Command under contract N00039-87-C0251.

Computer Science Department, Princeton University, Princeton, New Jersey 08544 and NEC
Research Institute, Princeton, New Jersey 08540. This author’s research at Princeton University
was partially supported by National Science Foundation grant CCR-8920505 and Office of Naval
Research contract N00014-91-J-1463.

8 Department of Mathematics, University of California at Berkeley, Berkeley, California 94720.
This author’s research was done while at the Department of Mathematics, Princeton University,
Princeton, New Jersey 08544 and was partially supported by National Science Foundation grant
DMS-8806067.01.

7 This author’s research was partially supported by DIMACS (Center for Discrete Mathematics
and Theoretical Computer Science), a National Science Foundation Science and Technology Center,

428

grant NSF-STC8E-09648.

SHORT ENCODINGS OF EVOLVING STRUCTURES 429

of length m or less. Our main result is an efficient method of encoding any graph
in R(G, I?, m). To encode any such graph, use O(m + log (2)) bits. (In most cases
of interest, m > n , and the second term in this bound is zero.) This bound is an
improvement by a logarithmic factor over the obvious bound of O(mlogs), where
s 2 n is the size of the largest graph occurring in the derivation [9]. This logarithmic
improvement is crucial in obtaining the tight lower bounds discussed below.

Our encoding represents an equivalence class of derivations obtained by permuting
commutative applications of the productions. The efficiency of such an encoding arises
from the fact that there may be many derivations equivalent to any given one, a fact
that follows from the localized nature of applications of the production rules. For
simplicity, we formulate our result in the setting of labeled undirected graphs; it
holds for more general combinatorial structures such as hypergraphs and simplicial
complexes, however.

Our result has a number of general and specific applications, both theoretical and
practical. Our main theoretical application is in demonstrating the existence of pairs
of graphs that are far apart, in the sense that any derivation of one graph of the pair
from the other must take many actions. If N(G) is a lower bound on the number of
graphs derivable from a graph G of size n, then there is a graph GI such that any
derivation of G' from G has length SZ(logN(G) - n). This is because our encoding
scheme implies that the number of graphs derivable from GI by derivations of length
m or less is at most c"+"', for some constant c that depends only on the grammar
and not on m and n.

Our first application involves transformations of arithmetic expressions. Consider
the collection of fully parenthesized expressions of n variables over an associative, com-
mutative binary operation. A move consists of applying either the commutative law
(exchanging two subexpressions that are combined by the operation) or the assoch
tive law (erasing a pair of matching parentheses to put three expressions at the same
level, and adding a new pair of parentheses to alternatively regroup this triple). We
show that, given any n-variable expression E, there is an equivalent expression whose
distance from E in this metric is fl(n log n). This solves an open problem of Culik and
Wood [l], who obtained a matching upper bound. Thus the worst-case distance be-
tween two equivalent expressions is e(n log n). This contrasts with the corresponding
bound of 2n - 0(1) if commutativity is not allowed [6].

As a second application of our lower bound, we consider the collection of num-
bered triangulations of the plane, transformed by the "flip" operation. This operation
removes an edge, thereby creating a quadrilateral face, and replaces it with the other
diagonal of the face. A flip is only allowed if it does not create a multiple edge.
Our encoding method proves that there exist pairs of n-vertex triangulations that are
S2(nlogn) flips apart. We show, furthermore, that this bound is tight by giving a
method for converting any n-vertex triangulation into any other in O(n log n) flips.
This improves the previous O(n2) upper bound of Wagner [8].

We envision several other applications of our technique. First, it can be used
to efficiently encode graphs or other combinatorial structures that are close to a
given one (in the sense of being obtainable by a small number of transformations).
Such encodings may be useful in situations that require the representation of multiple
versions of a structure, as in program transformation systems and other applications of
persistent data structures [3]. Second, it provides a way to enumerate graphs of various
kinds that are generated by graph grammars or other such transformational systems.
By enumerating our encodings rather than enumerating sequences of productions, all

430 D. D. SLEATOR, R. E. TAFUAN, AND W. P. THURSTON

of the desired graphs are generated, but with far fewer redundant copies of isomorphic

The remainder of this paper consists of five sections. In 52 we give a precise
formulation of graph grammars and graph grammar derivations, describe our encoding
scheme for derivations, and use this to prove upper bounds on the number of graphs
obtainable by short derivations. Section 3 gives several refinements and improvements
of our method. Sections 4 and 5 show how the encoding scheme applies to prove our
lower bound results for expressions and plane triangulations. Section 6 contains our
upper bound on the distance between plane triangulations; it is independent of the
rest of the paper.

2. Encoding graph derivations. We are concerned with graphs that are undi-
rected and of degree at most b (a fixed constant independent of n). Each end of each
edge is labeled with an integer called an edge-end label. The edge-end labels incident
on a vertex are distinct and between 1 and b inclusive. It is useful to be able to refer
to half of an edge. Each such half-edge has one end vertex from the original edge,
and one edge-end label. We allow the graph to have multiple edges between the same
pair of vertices, and even to have self-loops. (It is easy to modify our construction to
disallow such structures, although doing so would only weaken our lower bounds.)

A graph grammar (usually denoted by I') is a finite set of productions
(L, +i &li = 1 , 2 , - . a } . The ith production is comprised of three parts: L,, the left
side of the production; &, the right side of the production; and d i , the corre-
spondence of the production. The three parts of a production have the following
characteristics:

graphs.

Li: This is a connected, undirected, edge-end labeled graph, with degree bounded
by b. Strictly speaking, Li is not a graph, because it has a set of half-edges
that have only one end vertex. The one end vertex of each half-edge that
is attached to a vertex of L, has an edge-end label.

&: This is also a graph with edge-end labels, and half-edges, of which it has
the same number as Li.

-+i: This is a oneteone map between the half-edges of Li and those of &.
The production Li +i & applies to a graph G if G contains a set of vertices S

such that G(S) (the subgraph induced by S in G) is isomorphic (including edge-end
labels) to Li. The induced subgraph G(S) is most simply defined by retaining half of
every edge incident to a vertex in S. The half-edges of G(S) come from the edges of
G with one endpoint in S and one not in S. The production is applied by replacing
this occurrence of Li in G by a, where each half-edge of & is attached to a half-edge
of G - G(S) just as the corresponding half-edge of Li was attached. Sections 3 and 4
give examples of specific graph grammars.

Each vertex occurring in an Li has a unique position number from the set
{ 1 , 2 , . - . , c } , where c is the total number of vertices in all left sides. The position
numbers are used to uniquely specify a vertex in a production. The vertices of each
& are also numbered 1 , 2 , -. - within each production. These numbers are the right
position numbers.

A derivation is a sequence of graphs G = Go, GI, . - , G, = G' such that each
G, is obtained from Gi-1 by applying one production once. An action is a particular
application of a production during the derivation. The derivation tmnsfonns G into
G'. The length of such a derivation is rn, the number of actions in it.

We construct a pair of functions ENCODEc,r and DECODEG,r. The function
ENC0DEG.r takes a derivation D that transforms G into some other graph G' and

SHORT ENCODINGS OF EVOLVING STRUCTURES 431

returns a string of symbols from the alphabet C = {0,1,2, - +, c} of length n + r . m.
Here n is the number of vertices of G, m is the length of the derivation D, c is the
number of vertices in left sides of r, and r is the number of vertices in the largest
right side of r. This sequence is called the encoding of the derivation. The function
DECODEG,r takea as input such an encoding and returns the graph G'. That is,
DECODEG,r(ENCODEG,r(D)) = G'.

For our purposes, it is useful to think of the process of applying a production
as destroying vertices (the ones that are matched to the vertices of L;) and creczting
new and different ones (the ones introduced by a). The actions of a derivation D of
length m are numbered 1,2, . - , rn in the order in which they occur. Each vertex that
is created during the derivation can be identified uniquely by specifying the number of
the action that created it and the position number of the vertex in R, that created it.
This is the name of the vertex. The required vertices of an action are the vertices that
are destroyed by it. An action is said to be ready at some time during a derivation if
all of its required vertices exist at that time. Readiness implies that the entire copy of
L; that is to be replaced (including all of its edges and half-edges) is present as well.

LEMMA 2.1. Consider a derivation D that transforms G into G'. If the actions
of D are reordered in any way so that each production is ready when it b applied, then
the new derivation also transforms G into G'.

Proof. By induction, it is suflicient to prove that, if at and at+l (two consecutive
actions of D) are such that none of the required vertices of action at+l is created by
a, then, if these actions are swapped, the resulting derivation also transforms G into
G'. Since either order is allowed, we know that those vertices created by at are not
used by at+l and those created by at+l are not used by at . It follows that the actions
commute, since they do not involve any of the same vertices.

We can now give an explicit algorithm for computing the encoding of a derivation
D. First, the actions of D are numbered, the vertices of the derivation are named,
and the required vertices of each action are computed.

Our encoding algorithm assigns to each vertex of the derivation a unique number.
First, the vertices of G are numbered {1,2, - . - , n} in an arbitrary order. (The same
ordering must be used by the decoding procedure described below.) The remaining
vertices are numbered in conjunction with the construction of a canonical derivation
D', which is a reordering of the actions of D.

The actions of the canonical derivation D' are computed one at a time. At any
time, it is easy to determine which actions are ready; these are the ones whose required
vertices exist. Let q be the ready action that destroys the lowest-numbered vertex
among all ready actions. This action is the one chosen to be the next action of D'.
This action is applied to the graph, and the vertices created by it are now numbered
consecutively starting after the largest vertex number used thus far. (If several vertices
are created by q, they are numbered in the order of the right position numbers in the
right side of the production that created them.)

After computing the canonical derivation D', the algorithm proceeds to compute
a label for every vertex that occurs in the derivation. The label of a vertex v is zero if v
is not destroyed by any action in the derivation. Otherwise, it is the position number
of the role played by v in the production that destroys it. The desired encoding is a
lit of, at most, n + r . m labels of all the vertices in increasing order by vertex number.

We can now describe the decoding procedure. This algorithm takes the graph G
(with vertex numbers that agree with those of the encoding procedure), the grammar
r, and the encoding (the list of labels), and determines G'. The procedure works

0

432 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON

by constructing the canonical derivation D‘, from which it is easy to get G’. As in
most data compression/decompression methods, the decoding algorithm mimics the
behavior of the encoding algorithm step by step.

The crucial fact concerning the labels of the vertices existing at any time dur-
ing the canonical derivation is that from these it is possible to determine exactly
which actions were ready at the corresponding stage of the encoding process. This is
accomplished by the following matching procedure.

If a vertex v has a nonzero label, the label determines i , the production that
eventually destroys v, and also the role v plays in this production. For each such
vertex, check its neighborhood to see if it is isomorphic to Lj (including edge-end
labels). This check is easy, since we know which vertex of L, must match v, Lj is
connected, and that there are edge-end labels to follow. (Recall that the edge-end
labels incident to a vertex are disjoint.) If such a subgraph is found, then the labels
of these vertices are checked to see if they match the position numbers of the roles
that they are supposed to play in the proposed action. If all of these tests are passed,
then the action is ready.

LEMMA 2.2. The matching procedure detenines the ready productions that ex-
isted at the corresponding stage of the encoding process.

Proof. If an action is ready, then the matching procedure certainly finds it because
the vertices corresponding to the left side of the ready action will exist and are labeled
in a way consistent with all the conditions checked above.

On the other hand, suppose that the above check is satisfied starting from some
vertex v. Let i, be the production indicated by the label of v, and let S be the set of
vertices that form the subgraph isomorphic to Li. We claim that, in any continuation
of this derivation, all vertices of S must be destroyed simultaneously by a single action.
Since all these vertices are destroyed by one action, this action must now be ready.

It remains to show that all vertices of S must be destroyed simultaneously. Con-
sider the first action a in some continuation of the derivation that destroys some
vertex w of S. Since a is the first action involving the vertices of S, at the moment
action a is applied, all of the vertices of S exist (and have the same labels). F’rom the
vertex w, the matching algorithm described above constructs the set S. There is no
other possible matching pattern involving w. Therefore the action a destroys all the
vertices of S simultaneously. 0

Now, given that we know the ready productions and the numbering of the vertices
of the current graph, it is easy to find q (the next production of 0’) because it is the
ready action that destroys the lowest-numbered vertex. This action is applied to
the graph. The vertices created by it are numbered sequentially (as in the encoding
procedure) and are labeled as specified by the encoding. This step is repeated to
determine all of the productions of D’. The process terminates when there are no
ready productions.

The following theorem, which bounds the number of graphs obtainable from a
given one as a function of the length of a derivation, is a consequence of our encoding
scheme.

THEOREM 2.3. Let G be a graph of n vertices, I? be a graph grammar, c be the
number of vertices in left sides of I?, and r be the maximum number of vertices in any
right side of a pduc t ion of I?. Let R(G, I’, m) be the set of graphs obtainable from G
by derivations in I? of length at most rn. Then IR(G, r, m)l 5 (c + l)n+r.m,

Proof. Encode the derivation using the scheme described above. The length of
the encoding is, at most, n + r - m symbols. This encoding can be padded with zeros

SHORT ENCODINGS OF EVOLVING STRUCTURES 433

so that its length is exactly n + r - m. (This does not interfere with the decoding
process, since it is self-terminating.) The alphabet is of size c + 1, so the number of
such encodings is (c + l)n+r*m. Each graph reachable by m or fewer actions is the
outcome of applying the decoding procedure to one of these encodings. Therefore the
number of such graphs is, at most, the number of such encodings.

3. Generalizations and improvements. This section describes various exten-
sions and improvements to our encoding scheme, most of which are used later in this
paper.

3.1. Encoding short derivations. Our encoding scheme can be modified to
make it more efficient when the length of the derivation is short compared to the size
of the starting graph. In this case, most of the labels of the vertices of the initial
graph are zero. The more efIicient encoding specifies which vertex labels are nonzero
and only includes labels for these in the vertex label list. Let k be the number of
vertices that have nonzero label in the initial labeling of G, and let m, n, T , and c be
defined as above. Then the size of this encoding (in bits) is

0

The first term is for bits to encode k , and the second term encodes the subset of
vertices with nonzero labels.

THEOREM 3.1. It holds that

log IR(G,r,m)l = O(h3 (1) +m),

where R(G, I?, m) is the number of graphs obtainable by derivations of length at most
m in grammar r starting from a graph G of n vertices. (If m > n, then log (2) is
interpreted as zero.)

Proof. Theorem 2.3 shows that log JR(G, I?, m)l = O(n + ma). If T - m > in , then
O(n + m) = O(m) = O(1og (2) + m). If r - m 5 in, then we use the above encoding
scheme. Since each action causes, at most, T vertices of G to have nonzero labels, we
know that

It follows that

(k + mr) rlog,(c + 1)1 = O(m)

and that

Finally, we know that log, n I log, (1). The theorem follows from these inequalities
and the bound on the number of bits used by the efficient encoding scheme.

3.2. Leaders and followers. The labels on the set of vertices destroyed by an
action contain redundant information. For example, each label of this set has sufEcient
information to determine which production is the one that destroys all of them. There

0

434 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON

is a way to eliminate this redundancy and thereby reduce the size of the encoding in
most cases.

The new encoding algorithm begins by computing the standard encoding de-
scribed above. It then applies a map f to each symbol of the encoded string, giving
the new encoding. It remains to define the map f .

Let one vertex of each Li be chosen to be the leader, and let all the other vertices
be followers. For each Li, choose a spanning tree. (This can be done, since each left
side is connected.) For each follower vertex v , let DIR(v) be the value of the edge-end
label of the v end of the first edge on the path (in the spanning tree) from v to the
leader of Li. (In other words, starting from any vertex in Li, following the DIR(.)
direction repeatedly leads to the leader.)

The map f is defined as follows (IF1 is the number of productions of r, and v (z)
is the vertex of a left side with position number x):

if x = 0,
f(z) = i if v(z) is the leader of Li, (" Irl+ DIR(v(z)) if v (z) is a follower.

The decoding algorithm must be modified to accommodate this new encoding.
The only difference is in the matching step, which is revised as follows. For each
vertex v that is a leader, check its neighborhood to see if it is isomorphic to Lj. If
such an isomorphic subgraph is found, then the labels of these vertices are checked
to see if they are all followers, and, if a directed edge is drawn from each follower w
in the direction of DIR(w) (which is the label of w minus IF/), then the result is a
directed spanning tree rooted at v. If all of these tests are passed, then the action is
ready.

We now must verify that Lemma 2.2 still holds, that is, that the sets of vertices
satisfying the new matching procedure above exactly correspond to the ready actions.
The first part of the proof remains easy; any ready action of the original derivation
results in a match in the above procedure. On the other hand, a match also indicates
that the corresponding action is ready. Let S be the set of matched vertices. Starting
from any follower vertex w E S, the entire set S can be constructed uniquely. Simi-
larly, from the leader vertex v of S, the set S can be uniquely constructed. This is a
sufficient condition to guarantee that all vertices of S are destroyed simultaneously,
which (as shown above) is the condition that we need to prove that the action is ready.

It may be possible to further reduce the alphabet size by making use of the
flexibility that exists in choosing which spanning tree to use on each left side. The
number of labels can be reduced from Irl+ b+ 1 to Irl+ d + 1, where d is the number
of different directions used in the directed spanning trees of the left sides.

The leader-follower technique applies in any situation in which there is a produc-
tion with more than one vertex on the left side. It may decrease the size of the label
alphabet, but it can never increase it. If the technique applies, then it can be used in
conjunction with the next technique to further reduce the alphabet size.

3.3. Eliminating the zero label. Suppose that, for any graph occurring in a
derivation using r, there exists a way of labeling it with nonzero labels, so that no
production is ready. Then the zero label can be eliminated. The encoding procedure
must be modified slightly to eliminate the zero labels, while the decoding procedure
remains the same.

We now describe how the encoding procedure is revised. First, compute the label-
ing of all the vertices as before. The vertices with zero labels are exactly those that are

SHORT ENCODINGS OF EVOLVING STRUCTURES 435

eventually in GI, the final graph of the derivation. These are called the terminal ver-
tices. Compute the labeling of GI with nonzero labels, so that no production is ready.
For each terminal vertex, replace its label with that terminal label just computed in
GI.

It is easy to see that this works by reviewing the proof of Lemma 2.2. The proof
only differs at the point where it is shown that if the labels match the pattern of
some left side Li, then the production i applied to that set of vertices S is ready. The
crucial statement is that, if this situation occurs, then all the vertices of S must be
destroyed simultaneously. This is still true. All of the vertices cannot be terminal
ones, since their labels admit the application of a production. The set cannot be
comprised of both nonterminals and terminals because then the nonterminals would
never be allowed to change. Therefore all the vertices of S must be nonterminals, and
the previous argument shows that the production is ready.

Note that in any situation in which the leader-follower technique applies, we can
eliminate the zero label. This is done by labeling all the terminal vertices as followers.

3.4. Tags. It is sometimes useful to carry extra information along during a
derivation. (Sections 4 and 5 give examples of this.) To accommodate this, we
allow each vertex to have a tag associated with it. Each production also supplies an
arbitrary function that is used to define the values of the tags of the vertices created
in terms of the tags of the vertices destroyed. Because the tags are computed locally
(as a function only of tags of the vertices on the left side of the production), the
commutativity that we have exploited in constructing our encoding is still present.
Therefore our encoding method and theorems apply to tagged graphs without any

4. Expressions over an associative, commutative operation. Let X =
{zy ,z2, . - . , zn} be a fixed set of variables, let 6 j be a binary operation, and let En
be the set of fully parenthesized expressions over 6 j in which each variable z, occurs
exactly once. We consider the problem of estimating how many applications of the
associative and commutative laws are required to transform any expression in En into
any other.

To make this problem somewhat more concrete, we restate it as a problem on
binary trees. Our binary tree terminology is that of Knuth [5]. Let T, be the set
of full binary trees with n external nodes, numbered 1,2, - - a , n. Any permutation of
1 , 2 , - . . , n is allowed; thus ITn[= n!(: I t) i = (n - 1)!(:1;) [4]. We permit two
transformations of a tree T E Tn: a twist, in which the left and right subtrees of
a specified internal node are exchanged, and a mtation, in which an internal node
changes places with one of its children while symmetric order in the tree is preserved.
(See Fig. 4.1.) The problem is to estimate the minimum number of twists and rotations
needed to transform any tree in Tn into any other. We denote this number by &.

This problem is equivalent to the expression transformation problem. The is*
morphism (also shown in Fig. 4.1) between expressions and trees is the standard
one-an external node labeled i corresponds to the expression “zi”; an internal node
corresponds to the expression (EL 6 j ET), where El and E, are the expressions cor-
responding to the left and right children of the node. A twist corresponds to the
application of the commutative law; a rotation, to an application of the associative
law.

Cdik and Wood [l] derived an O(n1ogn) bound on &. We derive a matching
Q(n1ogn) bound. (Culik and Wood actually worked with a slightly different trans-
formational system, but their result applies to our system, and vice versa.)

changes.

436 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON

twist

FIG. 4.1. filustmting a twiat and a rotation.

These transformations can be represented as productions in a graph grammar.
The graphs that we consider differ slightly from the above binary trees. To transform
a tree into the corresponding graph, add an extra node of degree one, called the
supemt, and connect it to the root of the tree. The edge-end labels of the three
edges incident to an internal node are 1, 2, and 3, for the edges connecting the node
to its left child, right child, and parent, respectively. (The superroot is the parent
of the root.) The n + 1 edge-ends that are incident on vertices of degree one are
irrelevant, since t h e are never involved in any production. The vertices of degree
one are tagged with a name that is carried along during the derivation. Figure 4.2
shows an expression tree and the corresponding graph.

superroot

FIG. 4.2. A tn?e and its wrrespondang gmph.

SHOW ENCODINGS OF EVOLVING STRUCTURES 437

The grammar to represent this process has three productions: one for a twist,
one for a left rotation, and one for a right rotation. These productions are shown in
Fig. 4.3.

FIG. 4.3. The productions for a twist and rotations. The correspondence between the half-edges
is obtained by pairing the topmost edges and walking clockwise simultaneously around the left and
right diagmms.

From Theorem 2.3, it immediately follows that, starting from a tree with n ex-
ternal nodes, the number of trees reachable in m or fewer twists and rotations is, at
most, 62n+2m+1. The leader-follower technique can be used to prove a tighter bound.
By choosing the upper vertex of the left side of each rotation to be the leader, and
the other to be the follower, the label alphabet size is reduced to 5. The zero elimi-
nation technique now applies. This reduces the alphabet size to 4, and the bound to
42n+2m+1. This can be further improved by specializing the encoding and decoding
procedures for this application. We do not need to encode the labels for the n leaves
or the superroot because these are not involved in any actions. This improves the
bound to 4n+2m-1. The total number of bits needed to encode any tree derivable in
m or fewer moves is, at most, 2n + 4 m - 2.

We summarize this result in the following theorem.
THEOREM 4.1. For any expression E of n variables:

1. The number of different arithmetic expressions obtainable by m applications
of the commutative and associative laws starting from E is, at most, 22n+4m-2;

2. There exists an eqression E' such that the number of opemtions required to
transform E into E' is fl(n1ogn).

Pmf. Part 1 follows from the prior discussion. Part 2 follows from the fact that
there are (n - l)! (2';) expressions obtainable starting from E. To obtain all of them
in m moves, we must have that

2n - 2
22n+4m-2 - = Q(n!),

438 D. D. SLEATOR, R. E. TAFLIAN, AND W. P. THURSTON

2n + 4m - 2 = R(nlogn),

m = n(n1ogn). 0

5. Numbered plane triangulations: A lower bound. A numbered plane
triangulation (henceforth, just called a triangulation) is an undirected graph embed-
ded in the plane, all of whose faces are triangles and whose vertices are numbered
sequentially from 1. We denote by Pn the set of all n-vertex triangulations. A flip
of an edge in a triangulation is the operation of removing an edge, thereby forming a
quadrilateral face, and adding the other diagonal of the face. (See Fig. 5.1.) A flip is
allowed only if it does not introduce a multiple edge.

--
, /-- - - -- --. --

8

\
t
\
$
I
I
I
I

I
8

FIG. 5.1. A fl ip in a triangulated graph and the corresponding opemtion in the dual graph.

Let Fn be the minimum number of flips needed to convert any n-vertex trian-
gulation into any other. We wish to estimate F,. It is easy to establish that Fn is
O(n2); Wagner [8] gave a construction. We show in 56 that Fn is O(n1ogn); in this
section, we use our succinct encoding approach to prove that F, is n(n1ogn).

There is no upper bound on the degree of a vertex in a plane triangulation.
Therefore, to apply our technique, we work in the space of planar graphs that are
dual to plane triangulations. In such a graph, every vertex has degree 3. (Each
vertex of the dual graph (a face in the original graph) maintains as a tag the set of
vertex numbers of the vertices in the original graph to which it is incident. These
tags along with the dual graph are sufficient to reconstruct the original numbered
plane triangulation. This observation is required to get a reliable upper bound on
the number of reachable numbered plane triangulations.) The edge-end labels of the
initial graph are chosen arbitrarily, subject to the constraint that walking one step
clockwise around a vertex increases the label by 1 (modulo 3). This ordering of the
edge-end labels encodes the embedding of the plane triangulation.

There are several different ways to represent sequences of diagonal flips as derim
tions in a graph grammar. One way is shown in Fig. 5.2.

This method uses two productions: one for doing the flip, and the other for
preparing the edge-end labels to allow the flip. Each flip in the original derivation
may correspond to as many as five actions: two to cycle the edge-end labels on one
end, two for the other end, and one for the actual flip. A sequence of m flips becomes

SHORT ENCODINGS OF EVOLVING STRUCTURES 439

FIG. 5.2 . Two pductaons for representing frip sequences as gmph gmmmar derivations.

a sequence of as many as 5m actions. A plane triangulation of n vertices has 2n - 4
faces. Therefore the dual graphs in which the derivations take place have 2n - 4
vertices. The number of vertices in left sides of productions (c) is 3, and the number
of vertices in the largest right side (T) is 2.

We can now apply Theorem 2.3 to bound the number of n node numbered plane
triangulations reachable in m flips by 42n+10m-4. This implies that, for any triangu-
lation P, at most 42n+10m-4 distinct triangulations can be obtained by doing m or
fewer flips. Since P, contains at least (n - 3)! triangulations (there are this many
different sorted wheels; see SS), there must be at least two triangulations, and indeed
many pairs of triangulations, that are R(n1ogn) flips apart; that is, F, = R(n1ogn).

The bound on the number of reachable configurations can be tightened signifi-
cantly by the use of a different graph grammar. This grammar is shown in Fig. 5.3.

Because this grammar includes each of the six ways that the ends of the edge to be
flipped can be labeled, there is a one-bone correspondence between diagonal flips in
the plane triangulation and applications of one of the productions to the dual graph.
Using the leader-follower trick and eliminating the zero label reduces the number
of Werent labels to 9. Each production creates two new labels, so our improved
encoding scheme proves that the number of graphs reachable in m moves is at most

Leader vertices can be avoided entirely. An encoding without leaders can be made
to work by using the convention that a production involving a pair of adjacent vertices
is ready if and only if their labels mutually point at each other. (That is, following
the DIR(v) edge from v leads to w, and following the DIR(w) edge from w leads
to v .) To verify that the zero label (indicating a terminal vertex) is not necessary, we
must show that there exists a labeling of any planar graph of degree 3 with follower
labels such that no pair of adjacent vertices point to each other. This can be done as
follows. If the graph is a tree, choose a place in the middle of some edge, and make
all the vertices point away from this. If the graph has a cycle, choose the labels of
the vertices on the cycle to point consistently around it. Now choose a subset of the
remaining edges, so that these edges plus the cycle form a subgraph with all of the
vertices and exactly one cycle. (This is a spanning tree with one extra edge.) The

g2n+2m-4.

440 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON

FIG. 5.3. Six productions give a tighter bound on flip distance.

follower label on a noncycle vertex points toward the cycle along the path in the tree.
This gim the required match-free labeling. This argument bounds the number of
reachable configurations by 32n+2m-4.

The set of configurations reachable in rn or fewer &ips is not changed i f we do not
allow a sequence to make a flip, then immediately make another flip that cancels it
out. This observation means that of the nine possible labelings of the pair of vertices
resulting after a move, we can restrict our attention to eight of them. This improves
the bound to 32n-48m.

We summarize the results of this section in the following theorem.
THEOREM 5.1. For any plane triangulation T of n vertices, the following hold:

1. The number of different plane triangulations obtainable by m or fewer flips

2. There &ts a plane triangulation T' such that the number of flips r eqv id
starting from T is, at most, 32n-48m;

to tmwform T into TI is fl(n log n).

6. Numbered plane triangulations: An upper bound.
THEOREM 6.1. Let GI and GO be two n-vertex numbed plane triangulations

(with no multiple edges). If n 2 5, then there is a sequence of O(n1ogn) diagonal
flips that t m w f o m GI into G2 in such a way that there are no multiple edges in any

SHOEtT ENCODINGS OF EVOLVING STRUCTURES 441

intermediate state.
Proof. We show that any such triangulation G can be transformed into a par-

ticular canonical form called a sorted wheel in O(n1ogn) diagonal flips. Using this
transformation, we can transform GI into the sorted wheel, then transform the sorted
wheel into Gz (using the transformation in reverse).

A wheel of n 2 5 vertices is a planar graph that has two special vertices called
hubs and n - 2 other vertices called rim vertices. There is an edge from each hub to
each rim vertex (these are the spokes). There are n - 2 other edges in the graph, and
these form a simple cycle through all of the rim vertices. There is a unique way of
embedding the wheel in a sphere.

A sorted wheel of n vertices is a wheel with labeled vertices embedded in the
sphere. The hubs are labeled 1 and n, and the vertices of the rim are labeled
2,3,

We first consider the special case of n = 5. Any graph G of five vertices satisfying
the hypotheses of the theorem is a wheel. We show this by first applying Euler’s
formula, which implies that G must have six triangular faces and nine edges, and
that the s u m of the degrees of the vertices is 18. No vertex can have degree two,
because then its two neighbors would be connected by two different edges, which
violates the assumption that G has no multiple edges. Furthermore, no vertex can
have degree greater than four. It follows that the multiset of the degrees of the vertices
is {3,3,4,4,4}. The three vertices of degree four must be attached to all the other
vertices in the graph. This accounts for all of the edges incident on the vertices of
degree three, which therefore must not be neighbors. It follows that the graph is a
wheel in which the vertices of degree three are the hubs, and the vertices of degree
four are the rim.

We finish the proof for n = 5 in two stages. First, we show that we can make
vertices 1 and 5 the hubs of the wheel. Second, we show that if the resulting structure
is not the sorted wheel (it must be its mirror image), then it can be transformed into
the sorted wheel.

If vertices 1 and 5 are on the rim, then a diagonal flip of the edge between them
makes them the two hubs. If 1 is a hub and 5 is on the rim, then we flip the edge
between the other two rim vertices creating a configuration where both 1 and 5 are
on the rim, which we handle as above. A similar technique suffices if 5 is a hub and
1 is on the rim.

Figure 6.1 shows how the mirror image of the sorted wheel of five vertices is
transformed into the sorted wheel by the application of five diagonal flips.

We are now ready to consider the case where n 2 6. The transformation of the
graph G into a sorted wheel is broken up into three phases: constructing a Hamiltonian
circuit, transforming the Hamiltonian circuit into a wheel with hubs 1 and n, and
sorting the rim of the wheel. These three steps are described in the following three
sections.

6.1. Constructing a Hamiltonian circuit. By Tutte’s theorem on planar
graphs [7] (and by a theorem of Whitney [lo]), any Cconnected planar graph has
a Hamiltonian circuit. The graph G under consideration is 3-connected, since it is
planar, triangulated, and has no multiple edges. Unfortunately, it may not be 4
connected. If it is not Cconnected, then it must have a separating triangle; that is,
a triangle whose removal separates the graph. We show how to transform the given
graph G into one that has no separating triangles by making O(n) diagonal flips. This
completes our construction of the Hamiltonian circuit.

- , n - 1 in clockwise order when viewed from hub 1.

442 D. D. SLEATOR, R. E. TAFUAN, AND W. P. THURSTON

FIG. 6.1

The graph G is given to us embedded on a sphere. We choose a face arbitrarily
and map the embedding on the sphere to an embedding on the plane such that the
chosen face is infinite. Each separating triangle of G partitions the faces and remaining
vertices of G into two components. The interior component is the one not containing
the infinite face. Let 11 be the set of faces interior to a separating triangle 7'1, and let
12 be the set of faces interior to a separating triangle Tz. Either 11 and 1 2 are disjoint,
or satisfy 11 c 12 or 12 C 11. It follows from these relations that there must always
be a set of innermost separating triangles, i.e., those that do not contain another
separating triangle in their interior.

Our algorithm for eliminating separating triangles works from innermost separat-
ing triangles outward. A diagonal flip operation is applied to an edge of one of the
innermost separating triangles. The chosen edge is any one that does not introduce
a new separating triangle. We prove below that there always exists such an edge. It
follows immediately that this algorithm eliminates all of the separating triangles in
O(n) diagonal flips because each flip reduces by at least one the number of edges that
are in separating triangles.

It remains to show that there is always an edge of an innermost separating triangle
such that if that edge is flipped then no new separating triangle is created. The
following case analysis shows this. Consider an innermost separating triangle with
vertices a, b, and c. Let d be the vertex inside the triangle such that triangle (a, b, d)
is empty. (There must be such a vertex since triangle (a, b, c) is a separating triangle,
and there must be something inside of it.) Similarly, there must be a vertex e outside of
triangle (a, b, c) such that (a, b, e) is an empty triangle. Figure 6.2 shows the situation.

We assume that flipping edge (a,b) creates a new separating triangle and show
that flipping one of the other edges does not create one. We know that the separat-
ing triangle that was created by flipping (a, b) must be (d, c, e), and that (d, c) and
(c, e) are edges of the original graph. Triangles (a, d, c) and (b, d, c) must be empty;

SHORT ENCODINGS OF EVOLVING STRUCTURES 443

e

a b

c
FIG. 6.2

otherwise, (a, b, c) would not be an innermost separating triangle. We now know that
the structure of the graph near triangle (a, b, c) is as shown in Fig. 6.3.

e

C
FIG. 6.3

Since the graph has at least six vertices, we know that there must be another
vertex f outside of triangle (e, b, c) such that (b, f, c) is an empty triangle. Now it is
clear that flipping edge (b, c) cannot create a separating triangle. This completes our
construction of a Hamiltonian circuit.

0.2. lkansforming the Hamiltonian circuit into a wheel with hubs 1 and
n. Given that there is a Hamiltonian circuit, we can regard the graph as consisting
of a cycle and two triangulations of an n-gon, one on each side of the cycle. By
definition, a triangulation of a polygon has no interior vertices. A coning triangulation

444 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON

of a polygon is one in which all of the interior edges of the polygon are incident to
the same vertex. We use several facts about diagonal flips in triangulations of a

FACT 1. Any triangulation of an n-gon can be transformed into the coning trian-
gulation with all edges incident on a vertex v b y making at most n - 2 diagonal flips,
each of which increases the degree of v by one.

FACT 2. Any triangulation of an n-gon can be transformed into any other in at
most 2n - 4 diagonal flips.

FACT 3. In any triangulation of an n-gon, there is a vertex v such that v is
incident to only two edges, and those are the boundary edges that connect v to its two
neighbors around the polygon.

Call the two triangulations of the n-gon that comprise the current version of G
the top triangulation and the bottom triangulation. Let v be a vertex such that Fact
3 holds for v in the top triangulation. Now we can apply Fact 1 to vertex v in the
bottom triangulation to transform that triangulation into a coning triangulation to
vertex v . This process will never introduce multiple edge because all the new edges
added to the bottom side of the triangulation are incident to vertex v , which has no
edges on the top side. The situation is depicted in Fig. 6.4.

polygon 161.

FIG. 6.4

We now change our definition of the top and bottom sides. We view vertex v
as belonging to the interior of the bottom side, which is a hub with n - 1 spokes
connecting v to all other vertices. The top side becomes a triangulation of an (n - 1)-
gon. At least one of vertices 1 or n is on this (n - 1)-gon. Without loss of generality,
assume that 1 is on this (n - 1)-gon. (If 1 is not on this polygon, then the following
construction can be fixed by swapping the roles of n and 1.) Now we transform the
triangulation of the (n - 1)-gon (the top side) into a coning triangulation to vertex 1.
The result is shown in Fig. 6.5.

We now flip edge (v, 1) and move 1 into the top side. The result is a wheel with
hubs 1 and v, as shown in Fig. 6.6.

It remains to transform this wheel into one with vertices 1 and n as the hubs.
If v = n, then we are done; otherwise, it only remains to replace v by n. We begin
by flipping any edge around the rim of the wheel, resulting in the situation shown in
Fig. 6.7.

Now we retriangulate the bottom (n - 1)-gon, so that it is a coning to n. Then
we flip edge (n, 1) and move n into the bottom half to give the triangulation shown

SHOElT ENCODINGS OF EVOLVING STRUCTURES 445

v
FIG. 6.5

FIG. 6.6

in Fig. 6.8.
This construction works without creating multiple edges, as long as the rim of

the wheel is always at least of size four. This is certainly the case, since n 2 6.

6.3. Sorting the rim of the wheel. We fmt give a sequence of four flips that
can exchange any pair of adjacent vertices around the rim of the wheel. Figure 6.9
shows this sequence. This work8 as long as the number of vertices on the rim is at
least 4.

If 6 5 n 5 15, we can use repeated transpositions to sort the wheel. We henceforth
assume that n 2 16. A double wheel is a wheel with two rims, as shown in Fig. 6.10.

The number of vertices in the top rim differs from the number in the bottom rim
by at most one. Furthermore, all the edges in the region bounded by the two rims
cross from one rim to the other.

We now show how to use O(n) diagonal aps to transform a double wheel into a
single wheel. We call this transformation a merge step. The merge allows us to form

446 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON

FIG. 6.7

n

FIG. 6.8

any ordering of the vertices around the rim of the wheel subject to the constraint
that the order is consistent with that debed by the orderings on the two rims of the
double wheel. That is, if we traverse the rim of the wheel in clockwise order (from
the point of view of, say, vertex l), then the traversal encounters all the vertices that
came from the bottom rim (top rim) of the double wheel in the same cyclic order
in which they occurred in the bottom rim (top rim) of the double wheel. A more
intuitive way to think of this process is to imagine two decks of cards (the double
wheel) that are s h d e d into one (the rim of the wheel). This is also analogous to the
way a merge-sorting algorithm combines two sorted subfiles into a sorted file.

We can also apply the merge step in reverse (an unmerge) to split a wheel into a
double wheel. A wheel can be sorted by applying a sequence of [log, (n - 2)1 unmerge-
merge pairs. (Observe that a merge sort can be implemented using these primitives.
Each pass of the sorting algorithm through all of the data corresponds to one of the
unmerge-merge pairs.)

It remains to show how to implement the merge step (never introducing multiple
edges) in O(n) diagonal flips. An edge (i ,j) is called an amicable edge if (1) i is on

SHOW ENCODINGS OF EVOLVING STRUCTURES

2 flips I

2 flips I

FIG. 6.9

n

447

FIG. 6.10

448 D. D. SLEATOR, R. E. TAMAN, AND W. P. THURSTON

n

FIG. 6.11

one side of the rim of a double wheel and j is on the other side, (2) the quadrilateral
obtained by removing edge (i , j) has one edge on each rim of the wheel and two
edges crossing from one side of the rim to the other, and (3) the other vertex of the
quadrilateral on the same side of the rim as i is counterclockwise from i (with respect
to 1). Figure 6.11 shows an amicable edge (i , j) .

In any double wheel there must be an amicable edge. By flipping three edges in
the vicinity of an amicable edge, we can create an (n - 2)-gon such that the edges on
the outside of the polygon do not connect any pair of vertices of the polygon. When
this operation is applied to the above diagram, the result is shown in Fig. 6.12.

It is now the case that we can apply any algorithm for retriangulating the (n - 2)-
gon between the two rims without fear of creating multiple edges.

We can apply this technique three times to transform a double wheel with one
triangulation between the rims into a double wheel with any other triangulation be-
tween the two rims. Let (i , j) be an amicable edge of the initial double wheel. Let
(k, I) be an amicable edge of the desired final triangulation. (These pairs of vertices
may or may not be disjoint.) Let z and zc be two neighbors on the top rim of the
wheel such that zc is a counterclockwise neighbor of z, and neither z nor zc is a, or
k, or a counterclockwise neighbor of either i or j . Since the length of the rim is at
least 7, there must be such a pair. Define y and yc similarly on the bottom rim.

To transform the triangulation between the rims from any one to any other,'we
first cut the double rim at amicable edge (i , j) , as shown in Fig. 6.12. We then
retriangulate the region between the two rims such that (z,y) is an amicable edge.
Then we close up the cut of amicable pair (i , j) and open up the one for amicable
edge (z,y). We then retriangulate the polygon between the rims, so that the pair
(k,I) becomes an amicable edge. We then close up the cut at amicable edge (z,y)
and open up the cut at pair (k, I). Now we triangulate the (n - 2)-gon as specified by
the desired final triangulation between the rims. Closing up the cut at amicable pair
(k, 1) completes the construction of the desired triangulation between the rims. This

SHORT ENCODINGS OF EVOLVING STRUCTURES 449

n

FIG. 6.12

FIG. 6.13

process can never introduce any multiple edges, and it uses O(n) diagonal flips.
As the desired triangulation between the rims, we choose any one such that there

is an edge joining each pair of vertices that are adjacent on the rim of the desired
wheel. It is easy to see that there must be such a triangulation between the rims.

The last step of the process is to convert such a double wheel into a single wheel.
Figure 6.13 illustrates how this is done. The highlighted edges are those of the rim of
the wheel.

450 D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON

This step does at most one flip for each vertex of the rim of the wheel and
completes the merging process. This also completes the proof of the theorem. 0

COROLLARY 6.2. Let G1 and G2 be two n-vertex numbered plane triangulations
(possibly 4th multiple edges). There &ts a sequence of O(n log n) diagonal jlips that
t m n s f o m GI into G2 in such a way that no flip ever cmtes a self-loop.

Proof An easy case analysis proves the result for n = 4. We show that multiple
edges can be eliminated by flipping them one at a time. This takes only a linear
number of flips, since each edge is flipped at most once. The corollary result follows
by applying Theorem 6.1 to the graphs obtained by eliminating the multiple edges
from G1 and G2.

We now prove our claim that if any multiple edge in a plane triangulation is
flipped, the number of multiple edges is reduced. Let el and e2 be a pair of edges
between vertices and w in a plane triangulation. The cycle (e1,ez) divides the
vertices (except v and w) into two disjoint sets: those on one side of the cycle and
those on the other side. Neither of these two sets can be empty, since every face of
the graph is a triangle. If either edge el or e2 is flipped, it is replaced by an edge that
connects a vertex on one side of the cycle to one on the other side. Since before the
flip there were no edges between vertices in these two sets (they are separated by a
cycle), the edge created by the flip cannot be a multiple edge. 0

REFERENCES

[I] K . CULIK AND D. WOOD, A note on some tree similarity measures, Inform. Process. Lett., 15
(1982), pp. 39-42.

[2] H. EHRIG, M. NAGL, G . ROZENBERG, AND A. ROSENFELD, EDS., Graph-Gmmmars and Their
Application to Computer Science, Lecture Notes in Computer Science, 291, Springer-Verlag,
Berlin, New York, 1987.

[3] J. R. DRISCOLL, N. SARNAK, D. D. SLEATOR, AND R. E. TARJAN, Moking data structures
perktent, J. Comput. System Sci., 38 (1989), pp. 86-124.

[4] D. E. KNUTH, The Art of Computer Progmmming, Vol 1: findamental Algorithms, Addison-
Wesley, Fleading, MA, 1968.

[51 - , The Art of Computer Progmmming, Vol 3: Sorting and Searching, Addison-Wesley,
Fleading, MA, 1973.

[6] D. D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON, Rotation distance, triangulations, and
hyperbolic geometry, J. Amer. Math. SOC., 1 (1988), pp. 647-681.

[I W. T. TUTTE, A theorem on planar gmphs, mans. Amer. Math. SOC., 82 (1956), pp. 99-116.
[S] K . WAGNER, Bemedungen zum Vierfarknproblem, J. Deutschen Math.-Verein., 46 (1936),

pp. 26-32.
[9] E. WELZL, E n d i n g gmph derivations and implications for the theory of gmph gmm-

mars, Lecture Notes in Computer Science, 172, Springer-Verlag, Berlin, New York, 1984,
pp. 503-513.

(10) H. WHITNEY, A theorem on gmphs, AM. Math., 32 (1931), pp. 378-390.

