RESEARCH CONTRIBUTIONS

Programming
Techniques and
Data Structures

Ian Munro
Editor

A Locally Adaptive Data
Compression Scheme

JON LOUIS BENTLEY, DANIEL D. SLEATOR, ROBERT E. TARJAN,

and VICTOR K. WEI

ABSTRACT: A data compression scheme that exploits
locality of reference, such as occurs when words are used
frequently over short intervals and then fall into long
periods of disuse, is described. The scheme is based on a
simple heuristic for self-organizing sequential search and
on variable-length encodings of integers. We prove that it
never performs much worse than Huffman coding and
can perform substantially better; experiments on real files
show that its performance is usually quite close to that of
Huffman coding. Our scheme has many implementation
advantages: it is simple, allows fast encoding and decod-
ing, and requires only one pass over the data to be com-
pressed (static Huffman coding takes two passes).

1. INTRODUCTION
Data compression schemes can be categorized by the
unit of data they transmit. Huffman [14] codes are
typical of “defined-word” schemes: the context de-
fines sequences of input symbols (which we shall
call words) that are transmitted by a variable-length
code. At the other extreme, Ziv-Lempel [26] codes
transmit variable-length sequences of input symbols,
often using a fixed-length code.

In this article we describe a defined-word scheme
that uses a technique from another domain that
© 1986 ACM 0001-0782/86,/0400-0320 75¢

Communications of the ACM

deals with defined words: self-organizing sequential
search, in which we wish to maintain a sequential
list of words so that frequently accessed words are
near the front. Our data compression scheme uses a
self-organizing list as an auxiliary data structure,
and employs short encodings to transmit words near
the front of the list. The scheme never performs
much worse than Huffman coding. If the message to
be transmitted exhibits locality of reference (i.e., if
the local frequency of words changes dramatically
within the message), the scheme performs better
than Huffman coding because a word will have a
short encoding when it is used frequently and a long
encoding when it is used rarely.

Section 2 describes the basic scheme and several
dimensions along which it may vary. Mathematical
analyses of the performance of the scheme are given
in Section 3 and in the Appendix. Experimental evi-
dence is presented in Section 4. Section 5 discusses
implementation considerations, and Section 6 con-
tains concluding remarks. A preliminary version of
our results appeared as a conference paper [2].

2, THE THEME AND SOME VARIATIONS

We shall illustrate our scheme by compressing sim-
ple “telegraph” messages of words consisting of up-

April 1986 Volume 29 Number 4

per case letters separated by single spaces and termi-
nated by a final “@”. For concreteness, we will trans-
mit the message

THE CAR ON THE LEFT HIT THE CARILEFT @

Sender and receiver maintain identical word lists
using the “move-to-front” heuristic: after a word is
used it is deleted from its current position and
moved to the front of the list. This attempts to en-
sure that frequently used words appear near the
front of the list.

The list is initially empty. To transmit the word W,
the sender looks it up in the list. If it is present in
position I, the sender transmits I, which the receiver
decodes by writing the Ith element in the list; both
then move W to the front of their respective lists,
shifting the words in positions 1..I — 1 to positions
2..I. If W is not in the list of N words, the sender
reacts as though it were in the N + 1st position and
sends the integer N + 1 followed by the word W
(which the receiver expects because N + 1 is greater
than the size of the current list); both sender and
receiver then move W to the front of their lists. For
example, after transmitting the first three words of
the above message, both parties have identical lists

ON CAR THE

The next word, THE, is encoded by the integer 3.
The entire message is encoded as

1THE2CAR3ON34LEFT5HIT35615@

Each word is transmitted as a string of letters just
once; subsequent occurrences are encoded by inte-
gers. The integer encoding a word is one greater
than the total number of different words that have
occurred since its last previous appearance [20, 21].

This trivial example illustrates the most important
property of our scheme: if a word has been recently
used then it will be near the front of the list and
therefore have a short decimal encoding. Because
the integer I requires roughly log,o I characters to
encode, frequent words are transmitted with few
characters. There are, however, many variations on
the basic idea.

Lexical Analysis. English text may be divided into
“words” in many ways. A simple scheme might clas-
sify each character as a word, while a more complex
scheme could find true English words, together with
capitalization information. Transmitting program
text, executable object cade, or digitally encoded
pictures demands a more subtle definition of words.

List Organization Discipline. Bentley and McGeoch
[1] and Sleator and Tarjan {20, 21] refer to many

self-organization heuristics other than move-to-front.

The transpose rule, for instance, moves the accessed

April 1986 Volume 29 Number 4

Research Contributions

element one closer to the front; it is an instance of
the move-ahead-k heuristic with k = 1.

List Length. The above example assumed an infi-
nite list; the scheme may also be implemented with
fixed-size lists. The move-to-front scheme with a fi-
nite list induces a least-recently-used discipline of
discarding words from the list (which, in this con-
text, may be viewed as a word cache).

Encoding List Position. Position in a finite list can
be encoded with a fixed-length binary code, but the
scheme is usually more effective if used with a vari-
able-length code. If the data are to be transmitted as
they are read, the variable-length prefix encodings
of integers described by Elias [7] and by Bentley and
Yao (3] provide suitable encodings; these will be dis-
cussed in detail later. If, on the other hand, the sys-
tem can make two passes over the data, then the
first pass can count the number of times each list
position is accessed and the second pass can encode
the positions using a Huffman code.

Transmission of New Words. This is a classical
problem in information theory.

We shall see several combinations of these choices
in the next sections.

3. THEORETICAL ANALYSIS OF
PERFORMANCE

In this section we show that the move-to-front
scheme is sometimes much better than Huffman
codes but can never be much worse. Here we sum-
marize our theoretical results; the Appendix con-
tains a more complete analysis and proofs.

A simple example shows that the move-to-front
scheme can be much better than any static encoding
scheme. Consider the sequence formed by repeating
each of n words n times: 1"2” . ., n". A static Huff-
man code uses roughly log 7 bits per word sent,!
whereas the move-to-front scheme uses only a small
constant number of bits per word.

To analyze the move-to-front scheme we need to
specify a particular encoding of the integers. One
method is to prefix the binary representation of the
integer i = 1 with Llog i] 0’s. This yields a prefix
code since the total length of a codeword is exactly
one plus twice the number of 0’s in the prefix. Once
the length is known the boundary between code-
words can be found. This method encodes i with
1 + 2 Llog i} bits.

We will analyze the scheme in which the size of
the move-to-front list is equal to the number of dif-
ferent words to be sent, and the list is initialized
with all the words in their order of occurrence in
the sequence of words to be sent. This is the scheme

1 All logarithms without an explicit base are binary in this article.

Communications of the ACM

321

Research Contributions

that was outlined in Section 2, except that we ignore
the cost of sending the raw words (we ignore this
cost in both of the schemes being compared). Let
omr(X) be the average number of bits per word used
to compress a sequence X with the move-to-front
scheme as described above. Let pu(X) be the analo-
gous quantity for a static Huffman code. With the
above encoding of the integers we have

omr(X) = 2pu(X) + 1. 1

We will now sketch a proof of this theorem; a
proof of a stronger result appears in the Appendix.
Suppose in the sequence X of length N, the symbol a
occurs N, times. The distance a can move from the
front of the list between successive occurrences of a
is bounded by the number of other accesses between
these occurrences. The average size of these gaps
between successive accesses to 4 is about N/N,. If a
were at its average position whenever it occurred in
the sequence, then the number of bits needed to
transmit each occurrence would be 2 log(N/N,) + 1
bits. Although 4 is not always at this position in the
list, the concavity of the log function implies that
2 log(N/N,) + 1 is an upper bound on the average
cost of transmitting an 4. Since the cost of transmit-
ting a4 with an optimum prefix code is at least
log(N/N,), the result follows.

By using more sophisticated encodings of integers,
stronger resuits can be proved. For example,

pvr(X) = 1 + pu(X) + 2 log(1 + pu(X)). (2)

These results compare two schemes that differ in
two important ways. The move-to-front scheme is
dynamic (the encoding of a word may change with
time), whereas Huffman codes are static (they are
fixed in advance). This should, of course, give move-
to-front an advantage. On the other hand, the move-
to-front scheme works on-line (words are transmit-
ted as they appear), whereas Huffman coding is off-
line (it requires a pass over all the data before any-
thing is sent).

Gallager [10] and Knuth [16] have studied a dy-
namic version of Huffman coding in which an opti-
mum code is maintained based on the frequencies of
words so-far transmitted. Recently, Vitter [25] has
shown that with dynamic Huffman coding the aver-
age number of bits per word is at most twice the
number for static Huffman coding. He has also
shown that a modified scheme uses at most one
more bit per word than static Huffman coding.
These dynamic schemes run on-line and thus avoid
the two passes necessary for static Huffman coding,
but they still have the drawback that they do not
exploit locality of reference. Vitter’s lower bounds
on dynamic Huffman coding imply that inequalities

Communications of the ACM

(1) and (2) remain true if H is a dynamic Huffman
scheme, provided that the additive constant 1 is re-
placed by 2.

A theorem in the Appendix compares the per-
formance of the move-to-front method when com-
pressing a discrete memoryless source with the en-
tropy of the source. This result shows that the move-
to-front scheme is asymptotically optimum (see Gal-
lager [9]) because

(omr(X))
H(s)

where H(s) is the entropy of the discrete memoryless
source s which generates the sequence X and
(omr(X)) is the expected number of bits per word
sent by the move-to-front scheme averaged over all
sequences.

If the cost of rearranging the items in the list is
high, then a modified version of the move-to-front
scheme called intermittent-move-to-front can be
used. This is actually a family of schemes parame-
terized by an integer r = 1. Rather than moving an
item to the front each time it is accessed, the inter-
mittent scheme moves an item to the front every 7th
time it is accessed. To do this, the method maintains
a count of the number of accesses to each item
since its last move. (Bitner [4] called this scheme
wait-c-and-move, and analyzed it as a list updating
heuristic.)

We can prove nearly as strong a theorem about
the performance of intermittent-move-to-front as we
can about ordinary move-to-front:

—1 as H(s) — o, (3)

pmr(X) = 1 + pu(X) + 2log(1 + pu(X)) + ¢ (4)

for an arbitrary sequence X, where ¢ — 0 as the
length of the sequence goes to infinity. Furthermore,
when the sequence X is generated by a discrete
memoryless source s, we have

{pir(X))

His) — 1 as H(s) — oo (5)

Therefore, the intermittent move-to-front scheme is
also asymptotically optimum.

4. EXPERIMENTAL ANALYSIS OF
PERFORMANCE

To gain further insight into the performance of our
scheme we have implemented prototypes of the fol-
lowing three compression algorithms.

Byte-Level Huffman Code. A Huffman code is used
on individual bytes. We did not charge for transmit-
ting the Huffman tree, which requires less than 200
bytes.

Word-Level Huffman Code. Words were defined as
longest sequences of alphanumeric and nonalphanu-

April 1986 Volume 29 Number 4

Research Contributions

TABLE i. Compression Produced by Huffman Coding and the Move-to-Front Scheme

FILE |SIZE IN|HUFFMAN CODE
TYPE | BYTES | BYTE WORD

MOVE-TO-FRONT CACHE
8 416 32 64 128 256

PROGRAM| 20593 | 5285 2958 | 4.253 3785 3385 3.049 297 2.822
TEXT 19118 | 4.576 2321 | 3.071 2356 2.245 2196 2183 2233
(C) 17460 | 5248 3026 | 4672 4447 3630 3217 3033 3.019
17470 | 5210 3520 | 4510 4.028 3.814 3.637 3413 3379
18441 | 5288 3585| 4505 4088 3645 3388 3263 3.270
16282 | 5.450 2316 4044 3.517 2784 2368 2.253 2.274
23225 | 5.324 2.219 1 4025 3.269 2711 2408 2269 2.113
(PASCAL)| 31930 5402 2.467 | 4.468 3.892 3.312 2.856 2661 2.501
19144 (5.267 2.678 | 4424 3902 3392 3.035 2801 2642
14673 | 5424 2521 | 4.323 3.750 3.327 2906 2580 2454
8535 5.082 2662 | 4452 3.968 3446 3.022 2778 2675
12833 | 5349 2822 4.343 3.886 3.478 3477 2945 2627

SESSION

TERMINAL (142762 | 5.168 3.412 | 5101 4.783 4.504 4242 3929 3.685

BOOK 20616 | 4.832 3460 | 4.826 4551 4.274 3958 3.735 3.559
SECTION| 18225| 4.748 3.374 | 4.807 4.471 4.164 3.879 3.632 3474
22360 4978 3.698 | 4985 4.695 4.424 4.140 3992 3.852
17471 | 4.878 3.747 | 4.880 4.629 4.382 4.125 3.967 3.847
157091 4883 3617 | 4971 4.638 4363 4.108 3921 3.739
15104 | 4.856 3.453 | 4837 4486 4.136 3840 3637 3.509
19113 5.073 3530 | 4.923 4.579 4239 3934 3729 3594
22346| 4902 3.054 | 4723 4.270 3.819 3.547 3313 3134

meric characters. This divides the input stream into
two disjoint classes, which we therefore compressed
separately; the decoder knows to alternate between
the two classes when decoding. No case information
was recorded; “the” and “The” were thus treated as
distinct words. The words were transmitted using a
byte-level Huffman code (as above, without charge
for transmitting the tree).

MTF Cache. Many attributes of this scheme are
the same as for the word-level Huffman code, in-
cluding word definition, two-word sets, lack of case
information, and transmission of words. Because
there are two-word sets, the 8-element MTF cache
stores 16 words (8 alphanumeric and 8 nonalphanu-
meric). For ease of implementing the prototype, we
encoded the position in the list by a Huffman code,
which implies that an implementation would have
to make two passes over the data.

None of the implementations actually compresses
and restores data; rather, they measure the effi-
ciency of the various approaches. The performance
of the MTF cache scheme tested can be no worse
than the method using a fixed encoding of the posi-
tions in the list, but it could be better. We view this
work only as a preliminary experiment to demon-
strate the plausibility of the scheme and to gain in-
sight into its behavior.

The results of the experiments are presented in
Table I. The numbers show the bits per character
used by each scheme (the original encoding uses 8

April 1986 Volume 29 Number 4

55} -+++ TERMINAL SESSION
- -~-- BOOK SECTION
e O —eRI=sssy — PROGRAM TEXT
w 3 >
K 4.5 .
<
[4
< af 4
I
LA L W N Nl i e ettt
@ 35 -
S NN NS e
eor il
@ 25t]
2k i
] § | 1 i | 1 1 |

B. HUF, 8 16 32 64 128 256 W. HUF.
COMPRESSION SCHEME (CACHE SIZE)

FIGURE 1. Graph of the Data in Table |

bits per character, but that can be easily reduced to
7). The C and Pascal programs were written by sev-
eral different programmers; the book sections (writ-
ten by two sets of multiple authors) include TROFF
formatting commands. The terminal session is the
transcript of a several-hour session (we include it to
underscore the point that the performance of the
various schemes is quite dependent on the context).
Most of the data in the table are represented in the
graph of Figure 1, in which each file is represented

Communications of the ACM 323

Research Contributions

4
x TERMINAL SESSION .
O BOOK SECTION B
e PROGRAM TEXT o
° .
~'o
35} * 5o
‘o x
Z
< .
=
o o
2 3 o °
2 :
) * .
S
~
25} o
o
® .
2L L \ L
2 25 3 35

256 MTF CACHE

FIGURE 2. Comparison Between Word-Based Huffman Coding
and the Move-to-Front Scheme With a Word-List Size of 256

by a line. Each line represents {from left to right) the
cost of the byte-level Huffman encoding, MTF cache
encodings of increasing size, and the word-level
Huffman encoding.

This graph tells several stories. It is obvious that
the three types of input have different characteris-
tics; there are enough data on program text and book
sections to draw plausible conclusions. Byte-level
Huffman codes for the book sections are roughly as
effective as the 8-element MTF cache; as the cache
increases the move-to-front scheme shows steady
improvement, but even at the 256-element cache it
is still somewhat inferior to word-level Huffman
codes. The relative ordering of the book sections is
quite stable through all the encoding schemes.

The programs differ dramatically from the book
sections. Byte-level Huffman codes are less effective
for programs (presumably due to a larger character
set), but the 8-element cache is already down to
about 4 bits per character (presumably due to strong
locality of reference). The improvement with in-
creasing cache size is erratic; some documents even
exhibit nonmonotonicity (retransmitting a few
words costs less than sending longer codes for the
words that are kept in the cache). The 256-element
MTTF cache is a little more effective than word-level
Huffman codes. The outlying program contains a

324 Communications of the ACM

large table that represents legal hyphenations of
English words, so one might expect it to be quite
different.

The word-level Huffman encoding is compared to
the 256-element MTF cache in the graph of Figure 2.
For program text, the 256-element MTF cache is
usually superior to Huffman codes; it requires be-
tween 2.1 and 3.4 bits per character (which repre-
sents a space reduction factor of between 2 and 4).
For book sections, the word Huffman code is slightly
better; it uses from 3.05 to 3.75 bits per character.
All in all, though, the two schemes are quite compa-
rable.

5. IMPLEMENTATION ISSUES

It is easy to implement the move-to-front scheme if
efficiency is not important. In this section we de-
scribe an efficient implementation of the scheme,
designed to minimize the worst-case running time to
within a constant factor. The time to compress (en-
code} or expand {decode) a word is proportional to
the total number of bits in the expanded and com-
pressed forms of the word. We shall assume that the
move-to-front word list is of fixed finite size n. Our
computation model is a sequential random access
machine with unit cost measure.

Let us define the compression and expansion algo-
rithms precisely. There are two parts to each: we
must convert a word into the corresponding integer
list position (or vice-versa) and we must convert an
integer into the corresponding prefix code (or vice-
versa). We shall use the following operations on the
word list:

position(w): Compute and return the position of
word w in the word list, or n + 1 if w is not in
the list. (The positions in the list are indexed
from 1 to n.)

word(p): Compute and return the word in position
p in the list.

mtf(p): Move the word in position p to the front of
the list.

insert(w): Insert word w at the front of the list.
delete(p). Delete the word in position p of the list.

To manipulate the prefix codes for the integers we
need two primitives:

encode(p): Compute and return the prefix code of
the integer p.

decode: Read bits from the input until an entire
prefix codeword has been read; then return the
corresponding integer.

The compression algorithm can be implemented
as the following program (written in a variant (Tar-

April 1986 Volume 29 Number 4

jan [23, pp. 12-14]) of the guarded command lan-
guage of Dijkstra [6]) applied to a word w:

compress: p := position(w);

ifp<n+1->
mtf(p); ¢ := encode(1);
output c;

lp=n+1->
delete(n); insert(w); c ;= encode(n + 1);
output c; output w in raw form

fi;

The expansion algorithm can be implemented as
the following program:

expand: p := decode;
ifp<n+1->
mtf(p); w ;= word(1);
output w
lp=n+1->
read a word w from the input in raw
form;
delete(n); insert(w);
output w
fi;

To implement the primitive operations we need
four data structures: one each for encoding and de-
coding integers and one each for converting words
into list positions and vice-versa. The various opera-
tions will have the following running times: O(| ¢[)
for encode(p) and decode, where c is the relevant
codeword and | ¢| is its length; O{logp + |w) for
position(w) and word(p); O(log p) for mif(p); O(jw!)
for insert(w}); O(1) for delete(n). We assume that the
length of a prefix codeword grows with p; that is,
| ¢(p)| is a nondecreasing function of p, where c(p) is
the codeword of integer p. This assumption implies
by counting that p < 2°®)|, that is, log p < | c(p)|. By
substituting | c | for log p in the running times of the
operations and examining the programs above we
see that the time to compress or expand is bounded
by O(|w| + | c|), where w and ¢ are the word in-
vovled and its compressed form.

It remains for us to describe the data structures
and the implementation of the primitive operations.
Let us begin with the data structures for prefix cod-
ing of integers. We shall describe general-purpose
methods that apply to any prefix code; for specific
codes such as those discussed in Section 3 and the
Appendix; special-purpose algorithms can be used
instead.

To implement encode, we use an array with posi-
tions 1 to n + 1, with position p holding the code-
word for p. Then encode takes a single array access
and O(1) time, or O(]| c|) time if we charge one per
bit for reading out c.

April 1986 Volume 29 Number 4

Research Contributions

To implement decode, we use a binary trie (Knuth
[15, pp. 481-499]). This is a binary tree such that
each left edge (edge to a left child) is labeled 0 and
each right edge (edge to a right child) is labeled 1.
Each path through the tree corresponds to the word
obtained by concatenating the labels of the edges
along the path (top-down). To represent a prefix
code, we construct a trie in which the paths from
the root to the leaves (nodes with no children) rep-
resent the codewords (constructing such a trie is
possible because of the prefix property). In each leaf
we store the corresponding integer. To perform de-
code, we start at the trie root, read bits from the
input, and follow corresponding edges of the trie un-
til reaching a leaf; then we return the integer in the
leaf. Performing decode takes O(} c|) time.

Maintaining the word list efficiently is somewhat
more complicated. We use two interlinked data
structures, a binary trie to convert words into inte-
ger positions, and a binary tree to represent the
order of words in the word list. (See Figure 3, p. 326).

The trie contains marked and unmarked nodes;
node x is marked if the path from the root to x
corresponds to {the binary representation of) a word
in the word list. Given a word w in the list, the
corresponding node can be found in O(} w|) time by
traversing the appropriate path down from the root
in the trie.

The binary tree contains one node per word in the
word list; the node contains the corresponding word.
Symmetric order in the tree corresponds to front-to-
back order in the word list. (Symmetric order is de-
fined recursively as follows: for any node x, all nodes
in its left subtree are less than x, and all nodes in its
right subtree are greater than x.) The size of a node is
the number of nodes in the subtree rooted there.
Every node in the tree contains pointers to its parent
and to its left and right children. Every node except
those on the leftmost and rightmost paths (the paths
from the root to the leftmost (smallest) and rightmost
(largest) nodes) contains its size. Every node on the
leftmost path contains a mark indicating that it is on
the leftmost path.

We access the tree via a pointer to its leftmost
node. If the tree is balanced, we can find the pth
node in symmetric order in O(log p) time by starting
at the leftmost node, walking up the leftmost path,
accumulating size information in right children, and
walking down into the subtree containing the pth
node. Conversely, given a pointer to any node in the
tree, we can compute its symmetric-order position p
in O(log p) time by walking up from the node until
reaching the leftmost path and then walking down
to the leftmost node, accumulating size information
along the way.

Communications of the ACM

Research Contributions

FIGURE 3. Data Structures Representing the List of Words (in
Binary) [01, 1010, 0100, 01101, 1011]. Marked nodes in the trie are
circled.

The trie and the tree are linked together as fol-
lows: each marked node in the trie contains a
pointer to the corresponding node in the tree, and
vice-versa (see Figure 3). To compute position(w), we
walk down the path in the trie corresponding to w,
jump to the corresponding node in the tree, and
compute the symmetric-order position p of this node
as described above. This takes O(log p + [w|) time.
To compute word(p), we find the pth node in the
tree and return the word contained there. This takes
O(log p) time, or O(log p + | w|) time if we charge
one per bit for reading out w.

The update operations (mtf(p), insert(w), and
delete(p)) are more difficult to implement because
they must modify the data structures. To make these
operations efficient, we make the binary search tree
into a finger search tree with fingers at the leftmost
and rightmost nodes. A finger search tree (5] is a
data structure such that an insertion or deletion at a
position d away from a finger takes O(log d) time.
There are ways to implement a finger search tree to
obtain the O(log d) time bound either in the worst
case (Huddleston [12], Kosaraju [17], Tsakalidis [24])
or in the amortized (time-averaged) case (Huddles-
ton and Mehlhorn [13], Maier and Salveter [18]).
Any of these methods will suit our purposes. The
only modification that must be made to these struc-
tures is that the size information must be updated
after an insertion or deletion, but this does not affect
the running time, given that we do not need to
maintain the size information along the leftmost and
rightmost paths.

We perform the update operations as follows. To
carry out mitf(p), we find the node in position p in
the tree, delete it, and insert it in the leftmost posi-
tion. This takes O(log p) time. (The trie does not
change.) To carry out insert(w), we put the word w

Communications of the ACM

04 104

00 104 0 U

FIGURE 4. The Compressed Form of the Trie in Figure 3

into the trie, insert a node containing w into the tree
at the leftmost position, and link the corresponding
trie and tree nodes together. This takes O(]w) time.
To carry out delete(n), we delete the nth node in the
tree (this takes O(1) time starting from the right fin-
ger) and delete nodes in the trie, starting with the
node representing the deleted word w, and walking
up until finding a node with a marked descendant
other than w,. (The node at which we stop is w, if
w, has at least one child, or the nearest ancestor of
w, with at least two children otherwise.)

Deleting w, from the trie using this method takes
O(| wx|) time, whereas our goal is an O(1) time
bound. There are at least four ways to make deletion
more efficient, depending on which ground rules we
are willing to accept. First, if the word list is large
enough to hold all words that are ever compressed;
then deletion never takes place. Second, if we are
prepared to accept an amortized time bound, we can
charge the time for a trie deletion to the correspond-
ing insertion. Third, we can delete a word in the trie
by merely unmarking the corresponding node, and
run a background process that deletes unneeded trie
nodes. Fourth, we can compress the trie, so that
each edge represents a bit string rather than just a
single bit. (See Figure 4.) Then a deletion requires
removing at most a single edge, and even if the bit
string associated with an edge is stored in a linked
list, returning the entire linked list to the free list
takes O(1) time.

This implementation, though theoretically effi-
cient, is more complicated than one would like. A
simpler, practical alternative is to use a hash table in
place of the trie for representing words and a self-
adjusting search tree (Sleator and Tarjan {19, 22]) in
place of the finger search tree for representing the
word list. The hash table will have an O(1) average
time bound for inserting and deleting words, and it
is conjectured that self-adjusting search trees sup-
port accesses, insertions, and deletions in the vicin-
ity of a finger in O(log d) amortized time (Sleator
and Tarjan [22]). Thus this alternative implemen-
tation is probably efficient in theory as well as in
practice.

April 1986 Volume 29 Number 4

6. REMARKS

We have described a simple data compression
scheme and analyzed its performance both theoreti-
cally and experimentally. Both analyses suggest that
the method may be useful in practice. An intriguing
area for future research is to devise other locally
adaptive data compression schemes and compare
them with the move-to-front scheme. Dynamic Huff-
man coding can be made locally adaptive by keeping
a “window” as suggested by Knuth [16], maintaining
a Huffman tree for word frequencies within the win-
dow. Another possibility is to maintain a dynamic
Huffman tree based on a weight for each word that
is incremented by one each time the word is com-
pressed; periodically all word weights are multiplied
by a constant factor less than one. Recently Elias [8]
independently discovered the move-to-front scheme
and derived inequalities (1) and (2). He also proposed
a related scheme called interval coding, in which a
word is encoded as a prefix code of the number of
words occuring since its last appearance. Elias
showed that inequalities (1) and (2) hold for interval
coding {(which also follows from our analysis). Inter-
val coding always needs at least as many bits as the
move-to-front scheme but is easier to implement. It
would be useful to derive further results comparing
these locally adaptive schemes.

It is important to note that with our scheme loss of
synchronization between sender and receiver can be
catastrophic, whereas this is not true with static
Huffman coding. This suggests the study of adaptive
schemes that might overcome this problem.

APPENDIX: ANALYSIS

To analyze our scheme we need to have specific
prefix codes for the integers. Elias [7] and Bentley
and Yao [3) describe a series of encoding schemes in
which the integer i is encoded with roughly log i
bits. The various schemes differ in their choice of
trade-off between performance on small numbers
and performance on large numbers.

The simplest of the schemes encodes the integer
i =1 with 1 + 2 Llog il bits. The encoding of i
consists of Llog i} 0’s followed by the binary repre-
sentation of i (which takes 1 + Llog il bits, the first of
which is a 1). This results in a prefix code since the
total length of a codeword is exactly one plus twice
the number of 0’s in the prefix. Once the length is
known the boundary between codewords can be
found.

Another scheme results if we replace the Llog il
0’s followed by a 1, by a two part prefix (an encoding
of 1 + Llog i! by the above scheme) which takes 1 +
2 llog(1 + llog 1)} bits. Thus we have a scheme that

April 1986 Volume 29 Number 4

Research Contributions

encodes i with 1 + Llog iJ + 2Llog(1 + log i)J bits.
(Note that-Llog(1 + Llog iJ)) = Llog(1 + log i)J.)

These ideas can be applied again to give an en-
coding for i with 1 + Llog i1 + Llog(1 + log i)J +
2Llog(1 + log(1 + log i))J bits. This process can be
continued; however, the codes that result are better
only for astronomically large numbers.

Knowing the range of numbers to be encoded in
advance can be used to advantage. For example, if
the numbers are bounded above by n, then in the
first scheme the Llog i] 0's followed by a 1 can be
replaced by llog(1 + log n)J bits, giving an encoding
for i with Llog il + Llog(1 + log n)J bits. The same
idea applied to the second scheme gives an encoding
of i in Llog il + Llog(1 + log i) + Llog(1 + log(1 +
log n)))J bits.

For the following discussion we assume that an
encoding of the integers has been chosen, and that
the number of bits needed to encode the integer i is
at most f(i), where f(i) is a concave monotonically
increasing function defined on real values of i = 1.
For example, if we choose the second scheme then
we can let f(i) =1 + log i + 2 log(1 + log i). We
assume that the input stream has been partitioned
into a sequence of dictionary words, which we
shall call symbols. Let the sequence of symbols be
X =ux,X;, ..., xy. The symbols are taken from a
dictionary S of size n. Let pmp(X, f) be the average
number of bits per symbol needed to transmit X by
the move-to-front scheme using a code with code-
word length function f. That is, pyr(X) is the total
number of bits needed to transmit the sequence X
divided by N. (From now on we omit the reference
to f) Let N, be the number of occurrences of a sym-
bol 4 in X. Then we have

THEOREM 1.
N, [N
amr(X) = Z —I_J_ (—) (6)
ProoF.
Let 1, t2, . . ., tn, be the times when the N, occur-

rences of the symbol a are sent. That is, x,, = a and

t; < tiy1. When a occurs at time ¢, its position in the
list is at most ¢,. Furthermare, when a occurs at time
t; for i > 1 its position is at most t; — #;_;. Therefore
the cost of transmitting the first a is at most f(#,), and
the cost of transmitting the ith a is at most f(#; — #i-1).
If we let R,(X) be the total number of bits used to
transmit the N, occurrences of symbol a then

N,
R.(X) = f(t,) + Ez flti — tica). (7)

Noting the concavity of f and applying Jensen’s

Communications of the ACM 327

Research Contributions

inequality?® we get

RiX) = an(: (tl + 2 t— tz-l)))

i)

The equality follows from the fact that the terms

t; — t;_; telescope, and the second inequality follows
from the fact that f is monotonically increasing.
Summing over all a ¢ S and dividing by N gives
Theorem 1. o

8)

By combining Theorem 1 with a particular encod-
ing scheme we can relate the efficiency of the move-
to-front compression scheme on a particular se-
quence to the value of the “empirical entropy” of the
sequence. This entropy, H*, is defined as follows.

a N, ’
HYX) = 3 - N log 7 ©

COROLLARY 1.
pvr(X) <1 + H*(X) + 2 log(1 + H*(X)). (10)
Proor.

We use the function f appropriate for the second
scheme: f({) = 1 + log i + 2 log(1 + log i).

Substituting this into Theorem 1 we get:

oilx) < 3 3 +z—log,$i

N, N
+ Es N 2 log(l + log N.)

The value of the first sum is 1. The second sum is
just H*(X).

Because log is a concave function and Z (N,;/N) =1
we can apply Jensen’s inequality to the third sum-
mation to bound it by

N
2 logLS N <1 + log N,)] (12)

The summation in (12) is just 1 + H*(X). Combining
these results yields the corollary. a]

(1)

We may now compare the performance of the
move-to-front scheme with that of an optimum static
prefix code for any particular sequence. One way of
getting an optimum code for a particular sequence is
to generate an optimum code for a source in which
the probability of a symbol a occurring is N, /N,
which is just a Huffman code for this probability
distribution. Let pi5(X) be the average number of bits
2 Jensen's inequality states that if f is a concave function, {w} is a set of

positive real weights whose sum is 1, and { p;} is a set of points in the domain
of f, then s wif(p) = f(Z1 wips) [11).

Communications of the ACM

per symbol used by this code on the sequence X. A
well known fact about an optimum static code is

H*X) < pu(X) = H*X) + 1. (13)

{See Gallager [9, ch. 3].)
Substituting the left hand inequality into Corol-
lary 1 gives us inequality (2) in Section 3, namely

pvr(X) = 1 + pu(X) + 2 log(1 + pu(X)).

This means that the move-to-front scheme at its
worst performs almost as well as a static optimum
code, even though it has no advance knowledge of
the sequence. Moreover, the move-to-front scheme
will do much better than the static optimum on cer-
tain types of sequences.

We can also evaluate the average performance of
our scheme when compressing a sequence of sym-
bols generated independently according to a fixed
distribution. (This is called a discrete memoryless
source.)

THEOREM 2.
If the symbols are generated by a discrete memoryless
source in which Prob{x, = a} = P,, then we have

(pMF(X)> = Es Plf(Pl‘)’ (14)

where (-) denotes expected value over all sequences of
length N.

Proor.
Taking expected values on both sides of Theorem 1,

we have
26

(oner(X))
=33 (Probw. = i) —f(N))

= E
aeS im1

-3 £ () - (?)
-z g () rra-rro(d))

The next step is to pull f out of the inner summation
using Jensen’s inequality. To do this we must verify
that

(15)

N .
N)pici g _pw-1 1
2(,-)P. 1 -PPG=1.

i=1

This follows immediately from the observation that

(94-073

and the binomial theorem.

April 1986 Volume 29 Number 4

After applying Jensen’s inequality we have

(omr(X))

3 (N pi-t n-iN
Sgspaf<2<i)Pa (l—Pa) N>

i=1

5 N i N—i| _ tqa _ N
-3 nf [g(,)mu P.)] (1-PJ)
P, (16)
_ 1—(1-PJN
‘,E(sp“f(_———Pa)
1
SESP‘f(F.)

by the binomial theorem and the monotonicity of f.O0
Note. Theorem 2 holds for all values of N = 1. o

Using Theorem 2 we can derive a corollary that
bounds the expected performance of the move-to-
front scheme in terms of the entropy of the source s.
This is an expected-case version of Corollary 1. Let
H(s) denote the entropy of the source:

H(s)= Y — P,log P, (17)
@S

CoOROLLARY 2.
(omr(X)) =1+ H(s) + 2log(1 + Hs)), (18)
where the average is taken over all sequences of length N.

This follows from Theorem 2 in much the same
way that Corollary 1 follows from Theorem 1. A
substitution is made for f into Theorem 2, then the
three summations are bounded using Jensen’s in-
equality.

Corollaries similar to 1 and 2 can be proven for all
of the integer prefix codes. The bound achieved in
each case is the same as the formula for f with an
entropy replacing each log i. In particular, we can
derive inequality (1) in Section 3 for the simplest
code.

We can use Corollary 2 to prove Shannon's source
coding theorem (see Gallager [9]). This theorem says
that the number of bits per symbol needed to trans-
mit the information from a discrete memoryless
source can be made as close as desired to the en-
tropy of the source. Let X be a sequence generated
by a discrete memoryless source s. By grouping the
symbols of X in blocks of size k and using the move-
to-front scheme of Corollary 2 on these blocks, the
average number of bits per block used is bounded by
1+ H(s") + 2 log(1 + H(s¥), where H(s*) = kH(s) is
the entropy of the block source s*. Hence the aver-
age number of bits per symbol of X is bounded above
by 1/k + H(s) + (2/k)log(1 + kH(s)). As k goes to

April 1986 Volume 29 Number 4

Research Contributions

infinity this number approaches the entropy of the
source, proving the theorem.

The performance of the intermittent move-to-front
scheme is very similar to that of the move-to-front
scheme. Assume that an item is moved to the front
every rth appearance. Recall that there are |S| = n
symbols.

THEOREM 3.
N, [N+
=YY= fl— 9
pvr(X) Es N f< N,) (19)
Proor.
Let t1, tz, ..., tn, be the times when symbol a occurs

in the sequence. For 1 < i < N,, let y; be the number
of times move-to-front is applied between times
and t,41 (exclusive). The position of the symbol a at
time #;, i > 7, is at most 1 + iz}, y;. The position of
a at times #4, ta, ..., t, is at most n. Therefore the
total number of bits used to transmit the N, occur-

rences of symbol 4 is
N, i-1
R{X)=1f(n)+ X 1f(l + X w)- (20)
i=r+ jmi—r

The sum of the y;’s is at most (N — N,J/7, and each y;
is counted at most 7 times. Hence

N, i-1
,21<1 + X yj)sN. 21)
iy Jmi=t

By Jensen’s inequality and the concavity of the func-
tion f, we have

N+rn)

R(X) = N.f(N,

(22)

Summing over all a¢S and dividing by N gives the
theorem. o

Using the function f for the second integer coding
scheme, we obtain

pmvr(X) =1 + H*(X)
23
+ 2 log(1 + H*X)) + o(f—b;’). 23)

The last term is negligible for long sequences.
Similarly, we can prove

THEOREM 4.
If the symbols are generated by a discrete memoryless
source in which Prob{x, = a} = P,, then

(onap(X)) = 3 P.,f(1 = ‘) (24)
aeS a

where e = Tn/N.

A direct consequence of Theorem 4 and the sec-

Communications of the ACM

Research Contributions

ond integer coding scheme is
{pvr(X)) =1 + H(s)
+ 2 log(1 + H(s)) + O(rn/N)

where H(s) is the entropy of the discrete memoryless
source s.

(25)

REFERENCES

1. Bentley, J. L., and McGeoch, C. A. Worst-case analysis of self-organ-
izing sequential search heuristics. In Proceedings 20th Allerton Con-
ference on Communication, Control, and Computing. (Monticello, 111,
Oct. 6-8, 1982}, Univ. of Hlinois, 452-461.

2. Bentley, J. L., Sleator, D. D,, Tarjan, R. E., and Wei, V. K. A locality
adaptive data compression scheme. In Proceedings 22nd Allerton Con-
ference on Communication, Control, and Computing. (Monticello, 111,
Oct. 3-5, 1984}, Univ. of lllinois, 233-242.

3. Bentley, J. L., and Yao, A. C. An almost optimal algorithm for un-
bounded searching. Inform. Process. Lett. 5, 3 (Aug. 1976}, 82-87.

4. Bitner,]. R. Heuristics that dynamically organize data structures.
SIAM J. Comput. 8, 1 (Feb. 1979), 82-110.

5. Brown, M. R, and Tarjan, R. E. Design and analysis of a data struc-
ture for representing sorted lists. SIAM J. Comput. 9, 3 (Aug. 1980),
594-614. .

8. Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, N.J., 1976.

7. Elias, P. University codeword sets and representation of the integers.
IEEE Trans. Inform. Theory IT-21, 2 (Mar. 1975), 194-203.

8. Elias, P. Interval and recency-rank source coding: Two on-line adap-
tive variable-length schemes. IEEE Trans. Inform. Theory, submitted
for publication (1985).

9. Gallager, R. G. Information Theory and Reliable Communication. Wiley,
New York, 1968.

10. Gallager, R. G. Variations on a theme by Huffman. IEEE Trans. In-
form. Theory IT-24, 5 (Nov. 1978), 868-674.

11. Hardy, G. H., Littlewood, J. E., and Polya, G. Inequalities. Cambridge
Univ. Press, Cambridge, England, 1967.

12. Huddleston, S. An efficient scheme for fast local updates in linear
lists. Univ. of California, Irvine, 1961.

13. Huddleston, S., and Mehlhorn, K. A new data structure for repre-
senting sorted lists. Acta Inform. 17, 2 (June 1982), 157-184.

14. Huffman, D. A. A method for the construction of minimum redun-
dancy codes. In Proceedings of the IRE 40, (Sept. 1952), 1098-1101.

15. Knuth, D. E. The Art of Computer Programming, Volume 3: Sorting and

Searching. Addison-Wesley, Reading, Mass., 1973.

Knuth, D. E. Dynamic Huffman coding. J. Algorithms 6, 2 (June 1985),

163-180.

18.

Communications of the ACM

17. Kosaraju, R. Localized search in sorted lists. In Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing. (San
Francisco, Calif., May 5-7, 1982), ACM, 62-69.

18. Maier, D., and Salveter, S. C. Hysterical B-trees. Inform. Processing
Lett. 12, 4 (Aug. 13, 1981), 198-202.

19. Sleator, D. D., and Tarjan, R. E. Self-adjusting binary trees. In Pro-
ceedings of the Fifteenth Annual ACM Symposium on Theory of Comput-
ing. (Boston, Mass., Apr. 25-27, 1983}, ACM, 235-245.

20. Sleator, D. D., and Tarjan, R. E. Amortized efficiency of list update
rules. In Proceedings of the Sixteenth Annual ACM Symposium on the
Theory of Computing. (Washington, D.C., Apr. 30-May 3, 1984}, ACM,
488-492.

21, Sleator, D. D., and Tarjan, R. E. Amortized efficiency of list update
and paging rules. Commun. ACM 28, 2 (Feb. 1985), 202-208.

22. Sleator, D. D., and Tarjan, R. E. Self-adjusting binary search trees.

J. ACM 32, 3 (July 1985}, 652-686.

23. Tarjan, R. E. Data Structures and Network Algorithms, Society for
Industrial and Applied Mathematics, Philadelphia, Pa., 1983.

24. Tsakalidis, A. K. AVL-trees for localized search. In Automata, Lan-
guages, and Programming, 11th Colloquium. (Antwerp, Belgium, July
1620, 1984); also Lecture Notes in Computer Science 172. G. Goos and
J. Hartmanis, Eds., Springer-Verlag, Berlin, 1984, pp. 473-485.

25. Vitter, J. S. Design and analysis of dynamic Huffman coding. In
Proceedings of the Twenty-Sixth Annual IEEE Symposium on Founda-
tions of Computer Science. (Portland, Oreg., Oct. 21-23, 1985), IEEE
Computer Society, 293-302.

28. Ziv,]., and Lempel, A. Compression of individual sequences via
variable-rate coding. IEEE Trans. Inform. Theory IT-24, 5 (Sept. 1978),
530-536.

CR Categories and Subject Descriptors: E.4 [Data): Coding and Infor-
mation Theory——data compaction and compression

General Terms: Algorithms, Theory

Additional Key Words and Phrases: adaptive coding, move-to-front
list rearrangement

Received 8/85; revised 12/85; accepted 12/85

Authors’ Present Addresses: Jon Louis Bentley, and Daniel D. Sleator,
ATXT Bell Laboratories, Murray Hill, NJ 07974. Robert E. Tarjan, Com-
puter Science Department, Princeton University, Princeton, N] 08544;
and AT&T Bell Laboratories, Murray Hill, N] 07974. Victor K. Wei, Bell
Communications Research, Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

April 1986 Volume 29 Number 4

